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Abstract

This thesis presents the design and implementation of a software framework for dis-

tributed reasoning on Android devices. The JPR Agent Library can be used to create agents

directly from a Prolog implementation deployable on Android. Each agent contains a knowl-

edge base(KB) and an inference engine. Knowledge sharing is facilitated through a simple

message passing scheme. A sample Android application for use in disaster response scenarios

is also presented. Additionally, the framework implements a Multi-context system (MCS),

MCSs being a powerful theoretical framework for modeling a collection of knowledge sources.

Treating each agent KB as a context, the JPR Context Library provides predicates for com-

puting the global well-founded model of the system.
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Chapter 1

Introduction

1.1 Motivation

This thesis presents the design and implementation of a software framework for reasoning in

distributed knowledge management systems (DKMS). The framework is developed in Java

and Prolog, and while it was designed with mobile Android platforms in mind, it could be

deployed on a variety of platforms. In a DKMS, several autonomous computational entities

connected over a network facilitate knowledge storage, sharing and retrieval [Akscyn et al.,

1988; Bonifacio et al., 2002b,a]. As a part of this thesis, we are interested in systems in which

knowledge is formally represented, thus allowing for automated reasoning.

Context-aware systems can be viewed as a subclass of DKMSs. Context is any information

describing the situation of an entity (a person, robot, smart-home etc.) [Dey, 2001]. A system

is said to be context-aware if it automatically acquires an entity’s context, interprets it and

adapts itself to it. These systems are usually composed of multiple (connected) devices which

perform these operations in a collaborative fashion. Due to the advancements in sensing

capabilities of mobile devices (which now typically have GPS, accelerometers, gyroscopes

etc.), there has been a growing interest in context-aware systems [Du and Wang, 2008;

Hong et al., 2009; Beach et al., 2010; Adomavicius and Tuzhilin, 2011]. However, there

are hardly any frameworks that provide a methodology, modeling language, inference engine

and communication protocols for developing rule-based context-aware applications on mobile

devices [Nalepa and Bobek, 2014]. This research sets out to help fill this gap by incorporating

developments in logic-based artificial intelligence (AI).

1
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Knowledge representation and reasoning (KR&R) is a major area of interest in artificial

intelligence research [Newell et al., 1959; McCarthy, 1965; Kowalski, 1974; Buchanan and

Feigenbaum, 1978; Decker et al., 2000]. The idea of using a fragment of First-Order Logic

(FOL) for representation and reasoning led to the development of Prolog [Kowalski, 1974]

and other logic programming languages. For logic programs without negation, the semantics

(meaning/consequences of a program) are based on the notion of entailment in First-Order

logic. But the use of negation-as-failure (not) [Clark, 1978; Reiter, 1978], a non-classical

element, necessitated alternate semantics for logic programs [Van Gelder et al., 1991; Gelfond

and Lifschitz, 1988].

For KR&R purposes, the framework proposed in this thesis uses an existing Java imple-

mentation of Prolog called Java Prolog Reasoner (JPR) developed at the University of

Georgia. JPR was designed especially to make Prolog usable on Android devices. Since

context-aware systems often contain multiple connected devices reasoning about an entity,

the reasoning module of our framework provides a way of declaratively specifying the knowl-

edge dependencies and is capable of providing a global model of a distributed knowledge base.

To facilitate this, we make use of a contextual reasoning framework developed by Giunchiglia

and Serafini [1994] and later extended by Brewka et al. [Brewka et al., 2007, 2011; Brewka,

2013].

Contextual reasoning, another area of interest in AI research, is based on the intuition

that humans, to reason about a given situation, utilize only a subset of the knowledge they

possess [Giunchiglia and Serafini, 1994]. The multi-context system frameworks of Giunchiglia

and Serafini [1994; 2001] and their later extensions [Brewka et al., 2007, 2011; Brewka, 2013]

formalize this intuition. A context, in these theoretical frameworks, is a fragment of knowl-

edge represented in some logic, and the relations between different contexts are captured

by bridge rules. More recently, the problem of assigning semantics to non-monotonic multi-

context systems has been studied [Brewka and Eiter, 2007; Brewka et al., 2011]. However,

the majority of the research in this direction is theoretical and only a few implementations
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exist. In the ones that do exist, there is hardly any discussion of the applicability for mobile

devices. It is important to address this issue because mobile devices are expected to consti-

tute a primary computing platform for the foreseeable future. Our framework for contextual

reasoning on Android devices is intended to help fill this research gap.

We use an agent-based approach to perform sensor data acquisition and reasoning without

the direct intervention of a human user. Through inter-agent communication, the framework

supports knowledge sharing between agents hosted on the same or different devices. The

reasoning module is based on the non-monotonic multi-context systems framework of Brewka

et al.[Brewka et al., 2011] and is implemented using JPR. In contrast to many of the existing

context-aware frameworks, reasoning is performed in a distributed fashion.

1.2 Contributions

The framework is composed of two libraries, one for agents and another for contextual rea-

soning. The design and implementation of these libraries constitute the primary contributions

of this thesis.

1.2.1 The Development of the JPR Agent Library(JAL)

The JPR Agent library is a Prolog library that acts as a bridge between JPR and the Java

Agent DEvelopement framework (JADE) [Bellifemine et al., 2007]. Arguably, JADE is the

most popular and mature agent development framework available today. The JPR Agent

library provides predicates which can be used for creating autonomous reasoning agents

directly in JPR. Each reasoning agent has its own knowledge base (KB) and inference engine.

The KB can be loaded with a set of facts and rules written in Prolog. These may define the

actions to be performed by an agent such as sensor data collection1, context enhancement

(for example, using accelerometer data to infer that a user is running) etc. Applications

1To interact with sensors directly from JPR, a separate sensor library is available.
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can periodically query different agents and trigger corresponding changes. A communication

module provides predicates for knowledge sharing among agents.

This Prolog based multi-agent system can be used for a wide range of applications

including:

• Adaptive Systems and Smart spaces: Detecting the context of a user is highly useful

for adaptive applications including navigation, gaming, smart homes and others.

• Health Care: Context-aware systems utilizing wearable devices are expected to be

highly useful in recording and analyzing patient data. The problem of fall-detection

in elderly people has been widely discussed [Nyan et al., 2008; Kangas et al., 2007;

Doukas et al., 2007].

• Response monitoring in post-disaster scenarios. The discussion of the agent library in

chapter 3 is built around an instance of disaster response.

1.2.2 JPR Context Library(JCL)

The JPR context library (JCL) provides predicates which can be used to compute the well-

founded [Van Emden and Kowalski, 1976] consequences of a distributed knowledge manage-

ment systems (DKMS). This library extends the JPR Agent Library, treating each agent

KB as a context and providing extra predicates for computing the consequences of a multi-

context system. The well-founded model computation is performed in a distributed fashion

with a central coordinating agent. Both JAL and JCL can be used to develop applications

for Android devices or machines running Java.

1.3 Outline

The thesis is composed of four chapters. In the next chapter, we cover some preliminary back-

ground on three topics, namely multi-agent systems, context-aware systems, and logic-based

artificial intelligence (AI), laying special focus on contextual reasoning. In AI, context-related
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research has a long history with significant contributions from pioneers such as McCarthy

[1989], Giunchiglia [1994], and others. The research on context-aware systems, in contrast,

is relatively young and shows promise due to the advances in sensing capabilities of mobile

devices. We are interested in the merging of the two.

In chapter 3, we discuss the design, implementation, and limitations of JAL. We leverage

existing work in agent-related research, specifically the Java Agent DEvelopment (JADE)

framework [Bellifemine et al., 2007]. JADE has been widely used in the past for both research

and industry-level applications [Bogdanova et al., 2014; Su and Wu, 2011; Zhao et al., 2007;

Bădică et al., 2006]. Having described the agent library in detail, in chapter 4, we move on to

discussing the implementation of a multi-context system [Brewka et al., 2011, 2007; Brewka,

2013] using an agent-based middleware. The non-monotonic multi-context systems frame-

work proposed by Brewka et. Al [2007; 2007; 2011; 2013] is a prominent framework proposed

for contextual reasoning. It allows heterogeneous knowledge sources (logics) and supports

non-monotonic reasoning. In chapter 5, we summarize the work presented, limitations and

future scope of this research.



Chapter 2

Agents, Context-Aware Systems and Logic-based AI

2.1 Introduction

This thesis presents the design and implementation of a context-aware multi-agent frame-

work. In this chapter, we provide background information on three research areas that the

remainder of the thesis draws upon: agents, context-aware systems, and logic-based AI.

In general, we take an agent-based approach to implement the autonomous computa-

tional entities that constitute a distributed knowledge management system (DKMS). In

section 2.2, we provide a brief overview of agent-related research in AI. We discuss Jennings

and Woolridge’s definition of an agent [Wooldridge and Jennings, 1995], various types of

agent architectures, agent programming and communication languages.

The literature on DKMSs is relatively sparse. So, in section 2.3, we present a review

of context-aware systems which can be viewed as a subclass of DKMSs. We discuss Knapp-

meyer’s [2009] definition of context, various types of context information and the requirements

that a context-aware framework must meet. Though context aware systems and KR&R gen-

erally constitute distinct areas of research, there has been work on using KR&R techniques

including ontological and rule-based approaches for reasoning (interpreting) about context

information [Etter et al., 2006; Henricksen and Indulska, 2006; Jaroucheh et al., 2011; Knapp-

meyer et al., 2009; Luqman and Griss, 2010; Moawad et al., 2013].

The primary aim of this chapter, however, is to provide necessary background on various

concepts in logic-based AI, especially the semantics of logic programs [Van Gelder et al.,

1991; Gelfond and Lifschitz, 1988] and the multi-context systems frameworks of Giunchiglia

and Serafini [1994], and Brewka et al. [2007; 2011]. Precisely, we use an agent-based approach

6
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to model a rule-based context-aware system and allow for distributed reasoning based on the

multi-context systems framework.

2.2 Agents

One of the primary goals of the field of Artificial Intelligence (AI) is to create intelligent

artifacts. The agent is a fundamental abstraction AI researchers have developed to achieve

this goal. Amongst the several definitions of the term ‘agent ’ available in the literature, the

one most relevant to the scope of this paper is given below [Wooldridge and Jennings, 1995].

Definition 2.2.1. An agent is a software component with the following properties:

• Autonomy: Agents operate without the direct intervention of humans or other agents.

They execute complete control over their actions and internal state.

• Social ability: Agents communicate, at least with other agents, if not humans.

• Reactivity: Agents sense and react to changes in their environment.

• Pro-activeness: An agent should be capable of exhibiting goal directed behaviors.

Based on its current knowledge and percepts, an agent architecture must enable an agent

to infer which actions it should perform and its future states. A broad classification of agent

architectures is given below [Wooldridge and Jennings, 1995].

• Deliberative: Deliberative architectures are based on the Physical Symbol System

Hypothesis [Simon, 1969] which states that a symbolic representation of the world

is both necessary and sufficient to generate intelligent action. Therefore deliberative

agents possess an explicit representation of their environment as physical symbols.

Actions to be executed are decided by some symbolic manipulation process.

• Reactive: A reactive architecture, on the other hand, does not involve an explicit

representation of the world. The subsumption architecture [Brooks, 1991] is a classic



8

example. In Brook’s architecture, an agent’s sensory inputs are directly coupled to its

actions. Therefore, the response time for reactive agents is very low. However, due to

the lack of an internal representation, agents usually fail to learn from their experience.

• Hybrid: Hybrid architectures tend to provide a balance between the reactive and delib-

erative approaches. The Procedural Reasoning System of Georgeff and Lansky [1987]

falls into this category. The knowledge of an agent is decomposed in to so called ‘knowl-

edge areas’ where each knowledge area represents the beliefs, desires and intentions of

an agent in first-order logic. A reactive mapping from sensor data inputs to a particular

knowledge area is provided.

The above classification is not exhaustive. Badica et al. [2011] survey several existing frame-

works for rule-based agent systems, and identify some architectures which lie at reactive-

hybrid or hybrid-deliberative boundaries.

2.2.1 Agent Programming Languages

Agent programming languages are special purpose programming languages which provide

support for representing various aspects of agency such as beliefs, roles and plans etc. in a

multi-agent setting. Bordini et al.[2006] survey the existing agent programming languages

and platforms for multi-agent systems. Some languages take an imperative approach [Howden

et al., 2001] while others take a declarative approach [Thielscher, 2005; El Fallah-Seghrouchni

and Suna, 2004; Li, 2001]).

Objects in an Object-oriented programming language provide a natural abstraction. How-

ever, agents and objects cannot be equated unless the latter executes control over its own

thread of execution (autonomy) [Jennings et al., 1998]. The following are some benefits of

taking a declarative approach [Baldoni et al., 2010]:

• Various aspects of agency such as knowledge, beliefs and goals can be formally repre-

sented.
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• The syntactic elements of interaction protocols for multi-agent systems can be easily

implemented.

• Agents can be made proactive using a goal-directed reasoning processes.

Hybrid languages, which implement the best features from both have also been developed

[Hindriks et al., 1999].

2.2.2 Agent Communication Languages

To perform a collaborative task, the agents constituting a multi-agent system must be able to

communicate with each other in a meaningful fashion. Agent communication languages are

specifically designed for this purpose. They specify a structure for the messages exchanged

between agents. To promote a fruitful interaction, understanding the structure and content

of a message is not sufficient. It is necessary for a sending agent to specify its intention in

sending a particular message [Searle, 1969].

For example, consider the FIPA agent comunication language (FIPA-ACL) Fipa [2002a]

which is a standard agent communication language in the field [Bellifemine et al., 2007]. The

elements of a FIPA-ACL message structure are shown in Fig. 2.1. A FIPA-ACL message

bears several parameters of which the performative (type of communicative acts in Fig. 2.1)

is mandatory. It indicates the intention of the sender and can take values such as request,

inform, agree, cancel etc. The content of the message refers to the actual communicative mes-

sage being passed. The agents exchanging messages are identified using the sender, receiver

and reply-to parameters. The characteristics of the message such as its language and encoding

can also be specified. The language in which the message is encoded is called the content

language of the message. All the elements of a FIPA message are shown in Fig. 2.1.

2.2.3 Foundation for Intelligent Physical Agents (FIPA)

The literature on agent systems does not indicate any clear consensus on the type of archi-

tecture, or programming language suitable for implementing agent systems, and the present



10

Type of communicative acts

FIPA ACL Structure Participant in communication

Content of Message

Description of content

Control of conversation

     Accept
     Agree

Cancel
Call for Proposal
Query-If

Sender
Receiver
Reply-to

Language
Encoding
Ontology

Protocol
Conversation  ID
Reply-with
In-reply-to
Reply-by

Figure 2.1: The elements of a FIPA-ACL message specification

systems differ from each other along several dimensions. To promote interoperability between

existing agent systems, the Foundation for Intelligent Physical Agents (FIPA) 1, now an

IEEE Computer Society standards organization, was set up in 1996. FIPA published 25

specifications covering an abstract architecture for an agent platform [FIPA, 2002], agent

management services [Fipa, 2002b], structure of agent messages [Fipa, 2002a] etc. FIPA’s

methodology for compiling these specifications is explained in a work by Posald [2007]. In our

opinion, these are among the best specifications available in the field of agent systems. We do

not delve any further into these specifications here, but in chapter 3, a detailed description

1http://www.fipa.org
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of the Java Agent DEvelopement framework (JADE) [Bellifemine et al., 2007], which is fully

FIPA-compliant, is provided.

2.2.4 Agent Frameworks

In recent years, several agent software development frameworks have been implemented

[Bellifemine et al., 2001; Morley and Myers, 2004; Winikoff, 2005; Chen et al., 2006; Santi

et al., 2011]. They provide generic functionalities of an agent system, thereby, allowing a

developer to focus on application oriented issues. For example, JADE uses Java as the

agent programming language and FIPA-ACL as the agent communication language. Various

elements of the FIPA-abstract architecture [FIPA, 2002], FIPA-agent management system

[Fipa, 2002b], communication and interaction protocols are implemented. Developers can

embed application-specific code into agents and launch them. In chapter 3, we will discuss

more about the JADE framework and the way we have integrated it with JPR to create a

context-aware system using an agent-based middleware.

2.3 Context-Aware Systems

Context-aware systems are a general class of mobile systems that can sense their physical

environment and adapt their behavior accordingly. Dey [2009] defines context as “any infor-

mation that can be used to characterize the situation of an entity.” The Active Badges

System [Want et al., 1992] is arguably one of the earliest context-aware systems developed.

It is essentially a call forwarding system which, in a large office-like environment, forwards

phone calls to the phone nearest to the intended receiver. The users are not stationary and

the location of each user is determined using a RFID tag attached to him/her. In the fol-

lowing years, various context-aware systems were developed in different domains [Abowd

et al., 1997; Abowd, 1999; Cheverst et al., 2000; Salber et al., 1999].

In this section, we are going to discuss context-aware systems in more detail especially the

various types of context data, reasoning about context information and context modeling.
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Our aim is not to be exhaustive but provide a rough idea of context-aware systems and

research in this area. We also point to several articles which discuss this topic in more detail.

2.3.1 Context

In general any information about the user that an application is interested in can be termed as

context. More so if the information changes during the lifetime of an application. Knappmeyer

et al. [2009] identify the following types of context:

• Spatial: Information related to the geographical location of a user such as GPS co-

ordinates, proximity to a building etc.

• Temporal: Absolute time of the day or time relative to the occurrence of an event.

• Device: Device information such as sensor data, processing power etc.

• Network: Wireless access point, bandwidth, throughput etc.

• Activity: Information related to tasks being performed by a user such as running,

reading, sleeping etc.

• Other: Other types of context include emotional, mental, interaction etc.

They also provide an extended definition of the term ‘context’:

“Context is any information that provides knowledge and characteristics about

an entity (a user, an application/service, a device, or a spatially bound smart

place) which is relevant for the interaction between the entities themselves and

with the digital world. Context can be categorized as being static, dynamic and

rapidly changing.” [Knappmeyer et al., 2009]

This study does not investigate in to the mental or emotional types of context. For us, context

is any information obtained directly from sensors on Android devices or by performing some

sort of inferencing on it.
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2.3.2 Context Modeling and Reasoning

It seems to be a generally held view in the area of context-aware systems that the raw

context data obtained from sensors cannot be used directly for driving intelligent actions.

A high-level knowledge representation model of the context data called a context model is

required. It promotes interoperability between different layers or modules of a context-aware

system by serving as a common understanding of an entity’s context.

A survey of context modeling techniques and requirements is provided by Bettini et al.

[2010] and Strang et al. [2004]. The context models can be classified into: key-value Pairs

[Schilit et al., 1994]; graphical models [Henricksen and Indulska, 2006; Bui et al., 2001;

Riboni and Bettini, 2011]; ontological models [Chen et al., 2005; Saleemi et al., 2011]; and

rule-based models. A knowledge base and an inference engine are the two main components of

a rule-based system. The knowledge base contains a set of rules (and facts) about the target

entity. The inference engine periodically checks the fact base and fires the rules accordingly.

Rule-based systems, by allowing the addition and deletion of rules and facts, facilitate the

development of dynamic systems. Though there are popular rule based environments such

as CLIPS [Giarratano et al., 1993], JESS [Friedman-Hill, 2003], Drools [Bali, 2009] etc. their

application to context-aware systems has been limited [Daniele et al., 2007].

Moreover, to simplify the development of context-aware applications, some researchers

in the past have proposed specific software frameworks for them [Knappmeyer et al., 2009;

Loke, 2004; Luqman and Griss, 2010; Saleemi et al., 2011]. Dey [2009] proposed a set of

design requirements that a context-aware framework should fulfill to ease the development

of context-aware applications. These requirements tend to simplify the task of accessing

and utilizing context information, allowing an application developer to focus on the core

functionalities of the application. These requirements are listed below.

1. Separation of Concerns: The task of context acquisition i.e. acquiring sensor data by

directly accessing the respective sensors must be abstracted away from the developer.
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Different sensors may have different protocols, and behaviors. A framework must pro-

vide a simple means of obtaining sensor data and handling it in more or less the same

way as user input.

2. Continuous Context Acquisition: The program components responsible for context

acquisition should be running independently of the program itself, allowing it to query

when necessary. These components should be persistent and available at all times.

3. Interpretation: More often than not, the low level context information is of little impor-

tance to an application. So the context information should be abstracted (at different

levels) before it is handed over to an application. Also, the application should still be

able to query the low level information, if necessary.

4. Communication: Generally a context-aware application derives inputs (sensor data)

from several sources which are distributed in a physical environment. The framework

should provide a suitable communication mechanism for interaction between the appli-

cation and sensors.

5. Context Storage: The context history can be used for predictions, analyzing user

behaviour and providing user recommendations. So the architecture should provide

means for context storage.

6. Resource Discovery: Frameworks should provide a resource discovery module that

allows applications to find different sensors, services they offer and protocols to access

them.

Our framework uses the JPR sensor library [Cline, 2015], developed at University of Georgia

as a part of a separate project, for sensor data collection. This satisfies requirement 2. We use

the elements of JADE framework to satisfy requirements 4,5, and 6 above. Further details

of the framework are presented in chapter 3. In the following section, we turn to the more

theoretical aspects in logic-based AI that this project builds upon.
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2.4 Logic-based AI

The importance of assigning AI programs a context was first highlighted by McCarthy [1987].

Often, AI programs had to be restructured at the data structure level if they had to be used

for reasoning about a situation which is more general than the one they were originally

designed for. This problem is referred to as the problem of generality. Representing the

‘context’ of a program as a formal object, and using non-monotonic reasoning was proposed

as a possible solution to this problem. In the following years, a considerable amount of

literature was published, extending this proposal and some alternate ways of approaching this

problem [McCarthy, 1993; Guha, 1991; Ghidini and Giunchiglia, 2001; BuvaE and Mason,

1993; Bouquet et al., 2003; Brewka and Eiter, 2007; Bikakis and Antoniou, 2010b; Brewka

et al., 2011; Brewka, 2013]. Following is a brief review of literature published in this regard

[Przymusinski, 1989; Minker, 1993; Apt and Bol, 1994].

In 1959, Newell and Simon [1959] proposed the General Problem Solver (GPS). The idea

was to create a generic solver to solve any problem that is formally represented. General

Problem Solver was successful in solving some toy problems but suffered from combinatorial

explosion when scaled to real-world problems. However, their idea of separating the solver

and the problem heavily influenced the research in logic-based AI, in the following years.

Around the same time, McCarthy [1963] proposed the use of first order logic to repre-

sent knowledge in AI programs. In the early 1970s, Colmeraner and Kowalski [1973; 1974]

invented the Prolog programming language which, arguably, remains the dominant declara-

tive language in AI research. The fundamental aim of the declarative paradigm [Kowalski,

1974], is summarized below [Kunen, 1987]:

“The user should be able to understand the semantics just by ‘logic’; not by

a detailed understanding of the implementation of the interpreter. It is really

this key fact that separates logic programming from more conventional procedural

forms of programming.”
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However Marvin Minsky, argued that systems implemented using classical logic cannot

adequately imitate human-like reasoning [Minsky, 1974] . This is primarily due to the

monotonic nature of classical logic i.e. addition of new knowledge to an existing program

cannot defeat any of the existing conclusions. As a result, several non-monotonic formalisms

including Default Logic [Reiter, 1980], circumscription [McCarthy, 1980], defeasible logic

[Nute, 1994], and several others were defined during this period.

In 1987, McCarthy [1987] asserted that the problem of generality had not been solved.

He cited two indications of this.

• AI programs often need to be re-written when new knowledge is added.

• A suitable method of encoding common sense knowledge, that we humans often rely

on, is not found yet

He proposed that introducing a formal notion of context in AI programs, and combining

it with circumscription [McCarthy, 1980] to handle non-monotonicity could be a possible

solution to this problem. An intuitive meaning of context, as a situation in which certain

axioms hold was provided [McCarthy, 1980]. Contexts can be ordered in terms of generality.

If a context C1 is more general than a context C2, then all the axioms that hold in C2 also

hold in C1.

Based on the intuition that reasoners, like humans, need not use all the knowledge they

possess, the multi-contexts systems framework [Giunchiglia and Serafini, 1994; Ghidini and

Giunchiglia, 2001] was proposed. Context is the partial knowledge that a reasoner can use to

solve a set of goals. In the following years, this notion of context has received more attention

and the recent works including ours are based on this notion of context.

As far as the recent developments in regard to the MCS framework are considered, there

are two major camps. The first focuses on extending the Multi-Context Systems framework

to support heterogeneous non-monotonic cases. By heterogeneous, we mean the ability to

support different types of logics in a single MCS. The second camp is focused on query
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evaluation in a distributed setting, where each local theory contains strict and defeasible

rules (defeasible logic). We discuss both the approaches in the following section. Fortunately,

both the camps have discussed, to some extent, implementation of their frameworks including

algorithms, complexity and initial testing on toy problems, which are elaborated upon in the

following chapters.

2.4.1 Non-monotonic Logics and Semantics of Logic Programs

In this section, we provide a brief overview of logic programming and briefly discuss their

semantics (meaning). A logic program is a set of rules written using a first-order logic like

syntax. Assuming that the reader has a knowledge of syntax of Prolog, we skip the discussion

on the syntax of logic programs and rather focus on their semantics. Logic programs which

do not involve any form of negation (not or ¬) are called definite logic programs.

Definition 2.4.1. A definite logic program, say P, is a set of clauses of the form

A←− A1, A2, A3....An, where A1...An are atomic.

The syntactic element connecting the head of the rule (‘:-’ in Prolog, ‘⇐ ’ in some other

logic programming languages) and its body, is treated as a FOL implication. There is a

general consensus on the semantics of definite logic programs2. We briefly discuss it here.

Example 2.4.1. The following program S,

p(a).

p(b).

q(x) : − p(x).

is an instance of a definite logic program with three rules (the first two, without bodies).

Definition 2.4.2. For a logic program P, the Herbrand base BP is defined as the set of all

ground atoms formed from the predicates, constants and function symbols in P.

2The semantics of definite logic programs is discussed in many logic programming textbooks
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If function symbols are present, an infinite number of ground atoms can be formed in a

recursive fashion. Hence the Herbrand base of a program involving them is infinite.

Example 2.4.2. For program S above, the Herbrand base is {p(a), p(b), q(a), q(b)} .

Definition 2.4.3. A Herbrand interpretation of a program P is any subset of the Herbrand

base BP . A Herbrand interpretation of a program P is a model of P iff it is a model of all

the clauses in P. An interpretation I is a model of clause C if for each ground instantiation

of C, the head (C) is an element of I if all the elements in body(C) are also elements of I.

Example 2.4.3. For program S above, {p(a), p(b), q(a), q(b)}; {p(b), q(a)}, {}, are all

valid interpretations. But only the first interpretation is a model.

Definition 2.4.4. The intersection of all the Herbrand models of a program P is its minimal

Herbrand model. The minimal Herbrand model constitutes the semantics of definite logic

programs.

One way to compute the minimal Herbrand model is by using the immediate consequence

operator γP which, for an interpretation I, is defined as

γP (I) = {head(r) | rule r ∈ BP and body(r) ⊆ I}

Starting with an empty interpretation and applying the γP iteratively, a fixed point is

reached such that γP (I(m+1)) = γP (I(m)), where m is the number of iterations. It has been

showed that this unique fixed point of a program P equals the minimal Herbrand model.

So-called normal logic programs extend definite programs by allowing negation-as-failure.

The notion of failure-to-prove is semantically problematic. For example,

Example 2.4.4. Consider the program P = { p :- not(q). }. In Prolog, the intuitive meaning

of not(q) is that not(q) is true if q is not provable. Since q is not provable, the program returns

true when queried for p. If q is added as a fact, a query for p no longer succeeds.

Therefore, with normal logic programs, it is possible that the conclusions made by a

program are no longer valid, after adding new knowledge to it (non-monotonicty).



19

Example 2.4.5. Moreover, consider the following Prolog program with two rules,

P = {p : − not q. , q : − not p.}

When queried for either literal, a Prolog program goes in to an infinite loop. This behavior

is comprehensible only if one knows the way negation as failure works in Prolog. But having

to deal with the way a program operates conflicts with the basic idea of declarative program-

ming. To overcome this problem, various semantics with the following common goals were

proposed [Apt and Bol, 1994]:

1. According to any given semantics for normal logic programs, the consequences of a

program, without negation should be equivalent to the minimal Herbrand model.

2. To find a reasonable canonical model for programs involving negation as failure. Each

semantics differs from others in the way they characterize what is reasonable.

Ideally, by adopting one of these semantics, the developer must be able to work with a logic

program without having to know the way not is handled by the inference engine i.e. restoring

the declarative nature.

The most popular semantics for logic programs are the stable model/answer-set semantics

proposed by Gelfond and Lifschitz [1988], and the well-founded semantics proposed by Van

Gelder et al. [1991]. Due to reasons of space, we are not going to discuss the stable model

semantics in detail. But of interest to us is the Gelfond-Lifschitz operator which is also usared

in the computation of the well-founded semantics, explained later.

Definition 2.4.5. (Reduct) The reduct of a normal program P with respect to an interpre-

tation I is obtained by,

1. deleting each rule r such that for any term p : not(p) ∈ body (r)and p ∈ I

2. deleting all the other not q from rules of P.
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Example 2.4.6. Consider the normal logic program,

P = {a., b : − not a., c : − not d., e : − c.}.

The reduct of the program P with respect to interpretation I = {} is {a, c, e:-c.}.

Definition 2.4.6. The Gelfond-Lifschitz operator Υ(P I) maps a program P to the closure

of the consequences of its reduct with respect to an interpretation I.

The closure of a definite program is equivalent to its minimal Herbrand model. For the above

program P, γ(P I) = {a,c,e}.

Definition 2.4.7. An interpretation I is a stable model of a normal logic program P iff

γ(P I) is equivalent to I.

For the program P above, I = {a,c,e} is an interpretation because γ(P I) ={a,c,e}. Stable

models constitute two-valued models of normal programs. If one thinks of normal programs

as a set of constraints, each stable model constitutes a way of satisfying the constraints.

However, note that there is no iterative procedure to compute all the answer sets of a given

program.

The well-founded model semantics [Van Gelder et al., 1991] offers a three valued interpre-

tation and consequently, three distinct sets of ground terms : the well-founded, unfounded

and undefined. According to WFS, all the literals in the well-founded set are true and those

in the unfounded set are false. The members of the undefined set are neither true nor false.

Definition 2.4.8. The well-founded model of a logic program P, represented wfm(P), is the

tuple 〈T, U〉 such that,

1. T = lfp (γ2P )

2. U = BP - gfp(γ2P )

The well-founded model can be calculated using a fix-point procedure similar to the one

mentioned in case of definite logic programs. The only difference in this case is that the fix
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n γP (I)
0 {}
1 p,q
2 {} (lfp)
3 p,q (gfp)
4 ...
5 ...

point alternates between the lfp (least fixed point) and the greatest fixed point (gfp). Note

that the operator γ2 is monotonic.

Example 2.4.7. Consider the following program with two rules,

P = {p : − not q. , q : − not p.}

The computation of the well-founded model proceeds as shown in table 2.4.7:

The answer set semantics and the stable model semantics, stick to a two valued inter-

pretation where there is no concept of ‘undefined’ but all the atoms are either true or false

according to an interpretation. The discussion of semantics for extended logic programs,

involving both not and classical negation, is out of the scope of this thesis.

2.4.2 Multi-Context Systems and Defeasible Contextual Reasoning

So far, we have discussed the semantics for a single logic program. But often, the knowledge

pertaining to a situation or an entity may be distributed i.e. contained in multiple logic

programs. For example, consider a smart-home environment monitored by three logic-based

software agents: one each for location monitoring, activity detection and temperature control.

Also assume that each of them is equipped with sensors and a set of rules (logic program),

allowing them to infer higher-order context information about their environment. The agent

responsible for location monitoring may conclude that the user is in the kitchen, or on a
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treadmill etc. This information can be used by the activity recognizer agent to detect if the

user is walking or running. The temperature controlling agent, based on information from

the other two agents (say ”the user is running on a treadmill”), can trigger increase/decrease

the temperature of the smart-home. To actually implement such a system,

• A method of representing rules involving terms from different programs must be pro-

vided.

• A formal semantics for the whole system (encompassing all the programs) must be

provided.

The multi-context system framework [Giunchiglia and Serafini, 1994], precisely, serves

this purpose. Here we discuss the most recent and complete version of this framework, the

heterogeneous non-monotonic Multi-Context Systems [Brewka et al., 2011].

Definition 2.4.9. [Brewka et al., 2011] A logic L = (KBL,BSL,ACCL) is composed of the

following components:

• KBL is the set of well-formed knowledge bases of L. We assume that each element of

KBL is a set

• BSL is the set of possible belief sets,

• ACCL : KBL → 2BSL is a function describing the semantics of the logic by assigning

to each element of KBL a set of acceptable sets of beliefs.

For example, consider normal logic programs under well-founded semantics, defined over

a set of literals Σ,

• KB is the set of normal logic programs over Σ

• BS is the set of sets of atoms over Σ (each set constituting an interpretations)

• ACC(kb) = wfm(kb), the acceptable belief set of a kb is the singleton set containing

the well-founded model of kb.



23

Definition 2.4.10. [Brewka et al., 2011]Let L = {L1, ..., Ln} be a set of logics. A Lk-bridge

rule over L, 1 ≤ k ≤ n, is of the form s← (c1 : p1), ..., (cj : pj), not(cj+1 : pj+1), ..., not(cm :

pm) where 1 ≤ rk ≤ n, pk is an element of some belief set of Lrk, and for each kb ∈ KBk, it

holds that kb ∪ {s} ∈ KBk.

The interconnections between the different knowledge bases are modeled using bridge

rules. The head of a bridge rule is always a local literal, while the body may contain local

or foreign literals.

Definition 2.4.11. [Brewka et al., 2011] A multi-context system M = (C1, . . . ,Cn) consists

of a collection of contexts Ci = (Li, kbi, bri) where Li = (KBi,BSi,ACCi) is a logic, kbi is a

knowledge base (an element of KBi), and bri is a set of Li-bridge rules over L1,..Ln.

Example 2.4.8. A multi-context system M ={C1, C2, C3}, where all the contexts are normal

logic programs under well-founded semantics (same Li) is given below.

kb1 = {a., b., c← d.} and br1 = {}

kb2 = {r.} and br2 = {p← 1 : a., q ← 3 : x.}

kb3 = {y.} and br3 = {w ← 2 : q., x← w.}

Any set of literals in kb1 constitute its belief set. The only acceptable belief set in kb1 is its

well-founded model {a,b}. Similar relations hold for other KBs.

The semantics of a multi-context system are defined in terms of belief states, where a belief

state is a sequence S = 〈S1, S2, ....Sn〉 such that each Si is an element of BSi. Intuitively, a

belief state is a combination of belief sets, one from each context.

Definition 2.4.12. [Brewka et al., 2011] A belief state S = 〈S1, ..., Sn〉 of a multi-context

system M is an equilibrium iff Si ∈ ACCi(kbi U head(r)|r ∈ app(bri, S), 1 ≤ i ≤ n., where

app(bri, S) refers to an applicable (all the elements in its body are true) bridge rule.
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Intuitively, a belief state is an equilibrium if each of the component belief sets are accept-

able, given others. For the system in Example 2.4.8, S = {{a, b}, {p, q, r}, {w, x, y}} is an

equilibrium. Moreover, Brewka and Eiter [2007] also show that computing the equilibrium of

a MCS under well-founded semantics (WFS), is polynomial in time with respect to the size

of the program. It is this key fact that mainly motivates the use of WFS for this project.

2.4.3 Defeasible Contextual Reasoning

Moving on, the other camp we mentioned earlier, i.e. Antonio’s group mainly focuses on

developing algorithms for distributed query evaluation. Unlike the MCS framework, where

contexts could be defined in different logics, the focus here is on extending defeasible logic

[Nute, 1994] to a distributed setting. Currently, there are several versions of defeasible logic

and corresponding semantics [Maier, 2007; Maher, 2002; Governatori et al., 2004; Maier and

Nute, 2010]. Due to reasons of space, here we only discuss the syntax of defeasible logic.

According to Nute [1994], atomic formulas in defeasible logic are defined in the same way

as in FOL. A literal is any atomic φ formula or its negation. φ and ∼ φ are complements of

each other. The following types of rules are defined (for any set of literals S and a literal p):

• Strict rules, which take the form S → p

• Defeasible rules, which are written S =⇒ p

• Undercutting defeaters, which take the form S ∼> p

The strict rules can never be defeated, i.e. if the antecedent of a strict rule is true, then

the consequent must be true. The defeasible rules, on the other hand, are more like rules

of thumb. Undercutting defeaters can be used to specify exceptions to defeasible rules, but

cannot be used as a rule of inference themselves. For example, from S ∼> ¬p, we cannot

directly infer ¬p, but other ways of concluding p can be blocked. A precedence relation

among defeasible rules and under-cutting rules is defined. This ordering is used to resolve
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conflicts. Though the specifics depend on the particular logic, a conclusion P is (defeasibly)

derivable if

• P is a fact, or

• There is an applicable strict or defeasible rule for P, and all rules for ¬P are blocked

or weaker than an applicable strict or defeasible rule for P.

For contextual reasoning, Bikakis and Antonis [2010a], use a restricted form a defeasible

logic, one with out facts, defeaters and superiority relation among rules.

Definition 2.4.13. A context is a tuple of the form (V i,Ri, T i), where

• Vi is a set of positive and negative literals,

• Ri is a set containing local and mapping rules. The local rules can be strict or defeasible

where as the bridge rules are defeasible.

• and Ti is a total preference ordering on C where C is a set of contexts. In case of

conflicting conclusions from different contexts, a given context accepts the conclusions

from the context higher in the preference ordering. Intuitively, preference ordering is

the ordering of belief a context has on others.

In contrast to Brewka’s work, this can be viewed as a framework for query evaluation,

instead of model building. The distributed query evaluation algorithm returns the truth value

of a literal issued to a local theory i.e. a context Ci, in a MCS = {C1, C2, C3.....Cn} [Bikakis

and Antoniou, 2010a]. Consider a query for literal pi at Ci, it proceeds in four main steps.

In the first step, the algorithm checks if the given literal or its contradiction (pi or ¬pi) can

be proved from the strict rules in Ci. The algorithm terminates in either case, returning the

respective truth value. If the literal cannot be proven locally, it locally checks for rules with

pi as the consequent. For each foreign literal in the body of such rules, a query is initiated

to the corresponding context. If all the elements in the body of a rule are computed to be
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true, then it is applicable. A rule is unblocked, if any element in its body is either true or

undefined. Also the following sets of foreign literals are formed: one containing the literals

appearing in most preferred chain of applicable rules for pi (SSpi) and another containing

the literals appearing in most preferred chain of unblocked rules for pi (BSpi). The same

procedure is repeated for ¬pi. The algorithm returns true if there is no unblocked rule for

¬pi, or if SSpi is computed to be stronger than BSpi . The algorithm returns false if there is

at least one applicable rule for ¬pi and BSpi is not stronger than SSpi . In any other case,

the truth value is undefined.

2.5 Conclusion

In this chapter, we have provided a brief overview of agents, context-aware systems and

contextual reasoning. We have discussed the logic-based foundations of this thesis, namely the

semantics for normal logic programs and the multi-context system framework in a detailed

fashion. The following chapters elaborate on the original contributions of this thesis: the

agent library and the multi-context system framework.



Chapter 3

JPR Agent Library

3.1 Introduction

JADE is a FIPA-compliant agent development framework [Bellifemine et al., 2007]. The JPR

Agent Library (JAL) acts as a bridge between JPR and JADE, thus enabling the creation and

maintenance of agents through JPR. In this chapter, a brief overview of JADE and JPR is

provided. Using disaster management as a motivating scenario, the design, implementation,

and limitations of JAL are discussed. In chapter 4, we explain how JAL helps us realize

the primary goal of this project, namely the implementation of a multi context system on

Android devices.

3.2 Motivating Scenario

In this section, we present disaster response as a motivating scenario for the agent library.

This scenario will be used throughout the chapter to illustrate various functionalities of JAL.

At the end of this chapter, we present an Android application developed using this library,

that could possibly be used in real-world scenarios.

Disaster management involves creating plans to cope with a disaster. There are usu-

ally five phases of disaster management: prevention, mitigation, preparedness, response and

recovery1. The first three phases involve environmental planning and design, training emer-

gency responders and other activities. The response phase involves search and rescue oper-

ations, providing shelter, food and medical care to the victims, and managing additional

1http://www.fema.gov/media-library-data/20130726-1914-25045-8516/
final national response framework 20130501.pdf

27
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resources. During the recovery phase, efforts are made to restore the normal functioning of

an affected area (rebuilding infrastructure).

For present purposes, we are interested in the response phase. The personnel involved

during this phase are typically emergency responders and volunteers. The former includes

fire marshals, 911 personnel, or members of humanitarian organizations who are profession-

ally trained for disaster response activities. There exists a predefined information flow from

the personnel working on the ground level to the ones at the top-most level where overar-

ching decisions regarding the response activities are usually taken. Volunteers are the people,

mostly from surrounding areas, who gather after the disaster in an ad-hoc fashion. They usu-

ally outnumber the emergency responders. Since volunteers do not often have professional

training, collecting data from them, coordinating (volunteers or volunteers-responders) and

planning a disaster response is quite challenging.

To simplify this task, we propose a collaborative knowledge management system (CKMS),

a software system which could serve the following purposes:

• Receive disaster-related data from various volunteers and responders (via Android

devices)

• Represent the data in a suitable form for automated reasoning and

• Respond to formal queries for disaster information

The disaster related data could be the number of persons injured/dead, individual details

of victims(name, age, sex), the amount of food supplies required etc. Disaster control cen-

ters (DCC), which are setup soon after a disaster has occurred, host high-level authorities,

decision makers and several other personnel who plan/monitor the response activities. In the

following sections, we shall see how a collaborative knowledge management system (CMKS)

can be built using the JPR agent library. We assume that each responder/volunteer has an

Android device. All the personnel involved in response activities report to a disaster control

center equipped with a machine running Java.
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3.3 JADE - A FIPA-compliant agent framework

In the initial stage of this project, we surveyed the literature pertaining to agent-systems with

the aim of finding a suitable framework to linkup JPR with. The overview of agent-systems

presented in section 2.2 is an outcome of this survey. Extending Gasser‘s views [2001], Sturm

and Shehory [2014] proposed the following set of general requirements that a multi-agent

framework is expected to meet:

1. Heterogeneity: A framework should be able to support different kinds of architectures

and allow interaction with various external entities devoid of their nature (agent or

non-agent).

2. Scalability: It must be highly scalable.

3. Standardization: It should adhere to some standard specifications.

4. Support: It must evolve continuously to support modern applications.

We chose the Java Agent Development framework (JADE) [Bellifemine et al., 2007] for this

project because it fulfills all the above requirements.

1. JADE does not enforce any type of agent architecture. Through HTTP and other

standard networking protocols, it supports interaction with non-JADE agents.

2. It was fully written in Java, as is JPR (excluding some support libraries), thus favoring

an easy integration of the two. Moreover, it provides special support libraries for

Android.

3. It is fully FIPA-compliant.

4. JADE is open source.

Following five years of initial development by Telecom Italia, JADE went open source in 2000.

Companies like Motorola, Siemens etc. and several universities across the world are actively
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involved in its development [Bellifemine et al., 2007]. Therefore, it has been widely used in

the past, both for academic research and industry-level multi-agent applications [Bogdanova

et al., 2014; Su and Wu, 2011; Zhao et al., 2007; Bădică et al., 2006].

3.3.1 Architecture

JADE agents are in accordance with Jennings and Woolridge’s [1995] definition of an agent

discussed in the previous chapter. It facilitates the development of software agents as dis-

tributed code processes that can communicate with each other. The building blocks of the

JADE framework are theagent platform, containers and the agents.

The Agent Platform (AP):

An agent platform is the top most element in the FIPA abstract architecture specification.

It is composed of machines, operating systems, and agent support software. It is responsible

for providing the physical infrastructure for agents to live and execute their actions. FIPA

also specifies the services that an agent platform must provide, including agent management,

yellow pages etc. Based on this abstract element, all the communications in the system are

either inter-platform or intra-platform and specifications are provided for each. The actual

implementation of the platform is left to the developer. In JADE, a platform is implemented

as a set of connected containers. An instance of JADE agent platform is shown in Fig. 3.1.

JADE does not impose any restriction on the architecture of a multi-agent system. Also,

the developer is free to choose a reactive, deliberative or a hybrid model for the internal

architecture of an agent.

In our motivating scenario, the central computer (a PC or a server) hosted at the dis-

aster control center and the Android devices that the responders carry provide the physical

infrastructure for launching an agent platform.
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Containers:

A container is an instance of the JADE runtime environment. JADE implements the agent

platform as a set of containers, with a special container providing the services mandated

by FIPA. Agent containers are not a part of the FIPA abstract architecture specification.

Instead, they are the software elements in the JADE framework that constitute an agent

platform. They provide a runtime environment for agents which are implemented as Java

threads. They can be deployed on machines running Java or Android OS. Launching an

agent platform in JADE is equivalent to creating a special type of container called the ‘main-

container’, which hosts two special agents - AMS and DF, and maintains the addresses of all

the other containers created thereafter. The directory facilitator agent (DF) provides yellow

pages services. The Agent Management System (AMS) agent maintains the IDs of all the

agents in the platform.

NETWORK

MAIN
CONTAINER

DF AMS A1 A2 A3 A4

CONTAINER-1 CONTAINER-2 CONTAINER-3

HOST 1 (PC) HOST 2 (PC) HOST 3 (PC)

Figure 3.1: A JADE platform running on three different machines
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Work on JADE began around 1995, and so it was not initially planned for mobile devices.

Some of the design decisions made for containers result in the following short-comings when

implemented on mobile devices:

• The platform management services provided by the main-container are essential for the

functioning of a peripheral container. JADE assumes a constant connection between

the two. This cannot be guaranteed in a mobile environment.

• JADE cannot efficiently handle the dynamic IP address allocation and high network

latencies often encountered in mobile networks.

• Containers have a high memory footprint. This is problematic for resource-constrained

(mobile) devices.

Therefore, for supporting distributed applications on mobile devices, JADE offers a sep-

arate execution mode for containers called the ‘split-execution mode’. To differentiate them

from the normal containers we have been discussing so far, we call them split-containers. In

this mode, a normal container is split into a front end hosted on the mobile device and a

back-end hosted on the same machine as the main-container (that is, the central server). The

tasks assuming constant connection with the main-container are executed on the back end.

The front-end and back-end communicate over a possibly intermittent wireless connection.

As indicated in table 3.1, the front-end is much lighter compared to a normal-container.

Table 3.1: Division of responsibilities between the front-end and the back-end

Full Agent Container Back End Front End

Platform Service Management Platform Service Management Agent Management
Platform Service Finding Platform Service Finding Comm. with back-end

Comm. with main-container Comm. with main-container
Agent Message Handling Agent Message Handling

Agent Management Comm. with front-end

Given the different modes of execution for containers, some suitable architectures for

modeling the disaster scenario are:
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Configuration-I: Because a disaster control center (DCC) is the central entity of response

activities, one obvious way to model the disaster response scenario is to create a main-

container on the hardware at the DCC (say DCC-PC). All the other (Android) devices

can launch peripheral (non-main) containers. TCP/IP connections between the main and

peripheral containers (in other words, the DCC-PC and Android devices) is assumed. This

configuration is shown in figure 3.2.

Configuration-II: Like in the previous case, the main container is created on DCC-PC. Split-

containers can be launched on Android devices, carried by the volunteers and responders.

This configuration is more robust 1) due to a lighter front-end and 2) reduced dependency

on the wireless connection. This configuration is shown in figure 3.3.

Figure 3.2: Configuration-I: Full containers on Android devices
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Figure 3.3: Configuration-II: Split-containers on Android devices

Configuration-III: In the very initial stages of response it is possible that a DCC has not

been set up yet. Response activities are carried out by groups of volunteers, each led by an

emergency responder. In this case, an alternate configuration where an emergency responder

hosts a main-container, and the volunteers in his/her group host peripheral containers is pos-

sible. All the tasks performed by the DCC-PC can be performed reasonably on a emergency

responder’s device as well, although on a much smaller scale.
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Figure 3.4: Configuration-III: Ad-hoc network setup

In the rest of this chapter, we focus on configuration-II, which is more suitable for real-

world scenarios. The availability of a resource-abundant machine (DCC-PC) to reason over

huge amounts of data collected from various devices is a particular advantage. Nonetheless,

using JAL it is possible to realize any type of configuration discussed so far. The only

restriction, imposed by JADE and consequently JAL, is that a main-container cannot be

launched in split-execution mode. This implies that a machine with a reasonable computing

power should host a (complete) main-container. Chmiel et Al. [2005] performed a series

of experiments with thousands of JADE agents on machines with RAM as a low as 48-

192 Megabytes . Since most of the mobile devices available today are much more powerful

(usually 1 gigabytes of RAM or more), this is not a serious limitation.

Agents

Agents are implemented as threads running in the context of their respective containers

(processes). Each agent is identified by its Agent ID (AID) which consists of

• a local name specified by the user during its creation;
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• a full name, concatenation of local name, ”@”, and container name;

• and the address(es) of the container it resides in.

No two agents in a platform can have the same local name. Behaviors are the tasks to be

performed by an agent. Following are the basic types of behaviors defined (built-in) JADE:

• One shot behavior - Performs a given task (a piece of Java code) once

• Cyclic behavior - A task or set of tasks that are performed continuously in a cyclic

fashion

• Generic behavior - Combines different types of behaviors into one. The appropriate

behavior is triggered based on a switch.

• Waker behavior - The execution of which starts after a given timeout.

• Ticker behavior - The execution of which occurs at regular intervals of time.

One or more behaviors can be added to an agent’s behavior queue. One shot behaviors

are executed and discarded, where as cyclic behaviors are executed and placed at the end

of the queue for their next turn. Behaviors can neither take precedence in order of execu-

tion nor interrupt other behaviors. Therefore, the developers should carefully program the

behaviors so that they end promptly. JADE also provides mechanisms for running behaviors

on dedicated threads. However, it does not provide much support for synchronization. More

complex behaviors can be programmed using other subclasses of the ‘Behaviour’ class such as

Finite State Machine (FSM) behaviors, sequential, serial and parallel behaviors. A detailed

description of these behaviors is provided in the JADE manual [Bellifemine et al., 2001].

In the disaster response scenario, we assume that each container in the system hosts only

one agent. In our discussion of the agent library, we provide concrete examples of the behav-

iors of the agents on the DCC end and the volunteer/responder end. Agents communicate by

sending FIPA-ACL messages. The content of a message can be any serializable Java object.
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3.3.2 Access from External Applications

External Java applications can use the following JADE classes to create agent containers

and thus agents:

• jade.core.Runtime to create full containers

• jade.core.MicroRuntime to create split containers

To be consistent with Android’s philosophy of implementing long-running activities

as services, JADE provides implementations of the above classes as services, namely the

jade.android.RuntimeService and jade.android.MicroRuntimeService. JADE agents,

to preserve autonomy, do not provide callbacks or allow access to their object references

from external applications. Instead, when an agent or a container is created, the runtime

instance returns wrapper objects (container controller and agent controller). The interaction

with a container/agent should proceed through their respective wrapper objects.

Alternatively, for interacting with an agent, developers can create a custom interface and

have the agent expose it to external applications. This scheme internally uses Java‘s dynamic

proxy mechanism 2, to preserve agents’ autonomy.

3.4 JPR

Having provided a basic overview of the JADE framework, in this section, we provide a sim-

ilar introduction to JPR. We assume that the reader has an understanding of the basic

concepts of Prolog such as terms, backtracking, resolution etc. We rather focus on the

implementation details including organization of key Java classes and their purpose. The

jpr.engine.InferenceEngine is the key component that developers using JPR would be

dealing with.

The jpr.io package contains a set of classes which manage the input and output

streams for the inference engine. Each instance of the inference engine has attached to

2http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Proxy.html
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it an jpr.io.IOController which can be used to set or modify its IO streams. The

jpr.io.PrologReader uses the inference engine to parse a string or a file as Prolog terms.

A general interface called jpr.terms.PrologTerm and the classes implementing it pro-

vide definitions for variables, numbers, structures, and additionally reference terms in Prolog.

Reference terms are not a part of the ISO standards for Prolog. They are used to wrap arbi-

trary Java objects, allowing them to be used in Prolog programs.s Structures are compound

terms, with a functor and a set of Prolog terms as arguments. Prolog ‘atoms’ are structures

with zero arity.

JPR implements the factory method pattern to create instances of these terms. The

jpr.terms.TermFactory interface extends the respective factory interfaces for numbers,

variables and reference terms. A default implementation of the term factory, attached to the

IE, is used to create various Prolog terms. Structures are created using structure factories

defined for each predicate. Each structure is defined in a class with an execute method

which is used by the inference engine at run-time. Specifically, the execute method controls

what happens when a structure is called as a goal. A map of predicate keys(name of the

predicate, arity) and the corresponding structure factories is maintained; this controls which

predicates are created when a Prolog file is parsed.

Each library (Built-in or custom) in JPR defines structure factories for predicates. As

mentioned earlier, each predicate is typically defined in a class of its own. The libraries

implement the jpr.libraries.PrologLibrary interface, which mandates the keys and

factories methods. The JPR agent library (JAL) defines a set of predicates for creating

and managing agent systems directly from Prolog. The predicates are internally implemented

in Java and use the JADE API.

Each instance of the inference engine class has attached to it a knowledge base which acts

as a storage for rules, a list maintaining variable bindings at runtime, and a stack to store

the backtrack points that are encountered during the execution of a program. The solve

method of the jpr.engine.InferenceEngine class, which takes strings or Prolog terms as
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inputs is responsible for solving the queries. Files can be loaded into a knowledge base using

a consult method on the respective inference engine. For a simple application using Prolog

in the background, all that the developer needs to do is:

1. Create an instance of the jpr.engine.InferenceEngine(IE) and set its IO streams.

2. Add rules to the engine’s knowledge base using its consult method.

3. Use the solve method to respond to application-related events such as button clicks

etc.

3.5 JPR Agent Library (JAL)

The aim of the JPR agent library (JAL) is to interface Java Prolog (JPR) and JADE, thus

facilitating the creation and maintenance of agents through JPR. We discuss the design

of the agent library, implementation of various predicates, and its limitations. JADE is a

rather sophisticated framework, providing numerous functionalities. As a first step towards

the integration of JPR and JADE, we limit ourselves to providing hooks to a small subset

of these functionalities capable of supporting a context-aware multi-agent system.

Organization of the library

The library is organized in to three packages: agentIE, deviceIE, utils. The utils package

is composed of auxiliary Java classes which contains methods that several predicates in the

library commonly use.

In the following discussion, we shall see that each agent in the system bears its own

inference engine. The agentIE package contains Java classes that define these predicates.

But additional predicates are required to create containers and thus agents in the first place.

The classes defining these predicates are grouped under the deviceIE package. In the following

section, the difference between the two will be made more clear to the reader.



40

The DeviceLibrary.class in the deviceIE package is the bootstrap point for the library.

Two separate constructors are provided for this class, one for loading the library on a PC

and another for Android devices. Each instance of DeviceLibrary.class has attached to it,

a AgentLibraryManager.class instance. The manager stores the object references of JADE

runtime instances, service connections (on Android), and other key elements. The manager

instance is passed to all the predicates in the library.

3.5.1 Implementation

In this section, we discuss the implementation of various predicates in JAL and demonstrate

their usage through simple examples. The examples will be based on the disaster response

scenario. As mentioned earlier, we implement the configuration-II described in section 3.3.1.

We assume that the following physical infrastructure for hosting a multi-agent system (JADE

agent platform) is available:

• At the disaster control center, a PC with the latest version of Java installed.

• An Android device for each volunteer/responder participating in disaster response.

On the DCC-PC, lets assume that a Java application is created and is running an

instance of JPR (jpr.engine.InferenceEngine). A main-container can be created using the

mainContainer create/4 predicate. This predicate takes the IP address at which the main-

container is to be created, port, name, and a variable as arguments. In the DCC case, the

IP address can be same as that of the DCC-PC. This returns a reference to the created Java

object of jade.wrapper.ContainerController.class (wrapper for a container).

% On DCC-PC

?- mainContainer_create(’192.168.2.14’, 1099, dccMain, X).

X = @dccMain

...
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To make a container accessible from Prolog, the controller object is wrapped in a Prolog

reference term with the name of the container(atom) as its handle. This reference term is

then stored in a Java HashMap, maintained by the agent library manager, with its handle as

the key. In the rest of the discussion we refer to this map as the ‘container controller map’.

The variable X passed in the above example is bound to the newly created reference term.

Multiple main-containers can also be launched from a single instance of JPR. But for the

sake of simplicity we limit our discussion to a single main-container. Peripheral containers

can be created in a similar fashion using the container create/4 predicate. In this case,

the host and port arguments correspond to that the main-container.

After a container is created, its reference term can be used to manage it from the

Prolog side. For example, passing a reference term, wrapping a container controller, to the

container kill/1 predicate terminates the corresponding container. To perform this oper-

ation at a later stage when the reference term is not available, developers can pass the name

of the container as the argument.

Moreover, when a container is created, a fact is asserted to the knowledge base with

container or mainContainer as the functor and the name of the agent (atom) as the

argument. Using these assertions, the developer can retrieve a list of peripheral containers

from the KB using forall/3, setof/3 or such predicates, and perform desired operations

on each. At any point in the program, the developer can get the reference term from an

atom using the getRefObject/1 predicate. If multiple operations are to be performed on

the same container, it is recommended that the developer first obtain the reference term from

the atom using this predicate and pas7s it to the consequent goals. This would enhance the

performance because now the program does not perform the same look up multiple times.

On an Android device, JADE runs as a service. Currently, JADE does not support mul-

tiple containers on an Android device. However, there is no restriction on the type of a

container (split, full or main) or number of agents. To use JPR in an Android applica-

tion, an instance of jpr.engine.InferenceEngine must be created in one of the activi-
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ties3. To load the agent library, the developer must use an additional constructor provided

for the jal.main.AgentLibrary class which takes the android.content.Context of an

application and a boolean isSplit value as parameters. The latter indicating if the devel-

oper wants to launch a split-container or a stand-alone container (full or main). The cor-

responding service i.e. jade.android.RuntimeService for a stand-alone container and the

jade.android.MicroRuntimeService for a split-container, must be declared in the manifest

file of the application as shown below.

...

<application

android:allowBackup="true"

android:icon="@drawable/ic_launcher"

...

<service android:name="jade.android.MicroRuntimeService" />

<activity

android:name=".MainActivity"

android:screenOrientation="portrait"

...

An agent library manager is created passing the values of context and isSplit param-

eters to its constructor. The manager, in its constructor method, attempts to create a

android.content.ServiceConnection between the context (activity) and the service

declared in the manifest file. This occurs in a thread separate from the one creating the man-

ager object. If a service connection is established successfully it returns a binder object of type

jade.android.RuntimeServiceBinder or jade.android.MicroRuntimeServiceBinder.

The reference to the binder object is stored by the agent library manger for various predi-

cates to use it.

To create containers on Android devices, the following set of predicates are defined.

3We assume a basic understanding of the Android frameworkReaders lacking this may refer:
https://developer.android.com/guide/index.html
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• fullMainContainer create/0 can be used to create a main-container. This automat-

ically retrieves the IP address of the Android device and creates the main-container at

the same address.

• splitContainer create/3 can be used to create a split-container. The IP address,

port of the main-container and the name of the container to be created should be

passed as arguments

• container create/3 can be used to create a full-container. This predicate also takes

the IP address, port of the main-container and the container name as arguments

In Android, any interaction between an android activity and a service must proceed in

an asynchronous fashion. So, when a container is created, the JADE framework returns the

wrapper objects using a callback4 mechanism. When a callback is received, a reference term

wrapping the returned object is created and stored as a fact in the knowledge base (using

(container/1) predicate).

On a PC, agents can be launched using the agent create/4 predicate. This predi-

cate takes the name of the agent, name of the container or a reference term wrapping it,

the Java class of the agent, and a variable as arguments. A default agent class is pro-

vided (jal.deviceIE.agents.DefaultAgent.class), which can be passed as the third

argument to the agent create/4 predicate. Using the second argument as the key, this

predicate retrieves the corresponding container controller object from the container con-

troller map. It calls the createAgent method on the controller object. This call returns a

jade.wrapper.AgentController object that wraps the newly created agent. This object is

in turn wrapped in a reference term and stored in a map maintained by the agent library

manger.

On an Android device, agents can be created using the agent create/2 predicate

which takes the name of an agent and the Java class. Internally, this predicate triggers the

4http://docs.oracle.com/javase/7/docs/api/javax/security/auth/callback/Callback.html
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createAgent method on a container wrapper object. An empty callback is received after an

agent is created. On receiving this callback, a fact is asserted to the knowledge base with

agent as the functor and name of the agent as the argument.

Coming back to the motivating scenario, the code snippets for creating containers and

agents is shown below. Let us consider volunteers Bob and Alice and name the agents on

their devices accordingly.

% On Bob’s device (Android)

?- splitContainer_create(’192.168.2.14’, 1099, container1).

...

?- agent_create(bob,’jal.deviceIE.agent.DefaultAgent.class’).

% On Alice’s device (Android)

?- splitContainer_create(’192.168.2.14’, 1099, container2).

...

?- agent_create(alice,’jal.deviceIE.agent.DefaultAgent.class’).

Agent Behaviors

A default Java agent class called the jal.deviceIE.agents.DefaultAgent.class which

extends the jade.core.Agent class is bundled with the library. Developers can use this

default class unless some special Java libraries for JADE agents, are desired on the Java

side. JAL defines a set of low level behaviors in Java. Predicates to initiate and manage these

low-level behaviors are provided on the Prolog side. The rationale is that the developers can

program more complex behaviors, in Prolog, using these low-level predicates. Since agents

are the work horses of the system, we provide a detailed description of the default agent

class, the behaviors of an agent, communication and respective predicates.

An instance of the jal.deviceIE.agents.DefaultAgent.class has attached to it

an inference engine, a list to maintain variable bindings at runtime, and an instance of



45

jpr.io.PrologOutput that wraps a (byte array) output stream. Each time an agent is

created using the agent create/4 predicate, its setup method is called. The setup method,

initializes the inference engine, and the array list objects. It also creates a reference term,

wrapping the controller of the agent object and stores it in the agent’s knowledge base as

a myAgent(controllerRefTerm) fact. It is important to note that the agent‘s inference

engine, and therefore its knowledge base is different from the device inference engine i.e. the

engine which is executing the agent create/4 predicate. This is illustrated in fig. 3.5 where

a container with three agents is launched from an Android device.

IE-1

KB-1

AGENT-1

DEVICE IE

IE-2

KB-2

AGENT-2

Figure 3.5: Two agents hosted on an Android device, all three having distinct inference
engines

Therefore each agent with its own inference engine and knowledge base acts as an

autonomous reasoning entity whose behaviors can be triggered from the device level IE at

run time. The suggested way of implementing agent behaviors is by creating nested classes

in the agent class. In JAL, the jal.deviceIE.agents.DefaultAgent.class has nested

behavior classes implemented for one shot, cyclic, ticker and waker behaviors discussed in

sec. 3.3.1. Each behavior class has a constructor which takes a query string as a mandatory

argument and any additional arguments. For example, the ticker behavior takes the query

string and time interval as arguments. When a behavior is put to execution, the agent takes

the string argument and solves it using its inference engine. With the idea roughly stated,

we demonstrate the whole process using an example.
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Consider the disaster management scenario described in Section 3.2. Suppose, for real-

time monitoring purposes, the control center wants to know the location of the emergency

responders at regular intervals of time, say every 60 seconds. Here we describe how this

can be achieved using the dccAgent and the agent named bob. It is assumed that the agents

hosted on the Android devices able to access the sensors of the device it is hosted on. For this

purpose, we use the Android sensor library for Prolog developed at UGA. The sensor library

can be loaded to the agent‘s inference engine using the agent loadSensorLib predicate.

A behavior file defining the behaviors of agent bob (on the volunteer end) as Prolog

rules must be created. From the device level inference engine, this file can be loaded using

the behaviorFile load/2 predicate, that takes the name of the agent and file path as

arguments. File IO on Android is slightly different from that on Java. The behavior files

should be placed in the assets folder of an Android application project for the agent to be

able to access it. The predicate internally gets the agent controller object, from the name of

the agent, gets the O2A interface, and calls the DefaultAgent’s Java method loadBehaviorFile

passing the file path as a parameter. This method uses the consult method of the inference

engine class to load this file to its knowledge base. A sample behavior file is shown below.

The setSom rule creates a sensor observations manager, and sets the window size to 1. The

lastObservation/2 predicate returns the most recent observation. The message inform/2

predicate sends a message to another agent. We will discuss the inter-agent message passing

in the following section.

%bobBehav.pl

setSom:- createSom(gpsSom,gps,fastest),

setCapacity(gpsSom,size,1).

sendGPSData:- lastObservation(gpsSom,GPSValues),

getValues(GPSValues,[Lat, Long]),

message_inform(dccAgent,[Lat, Long]).
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Once the behavior file is loaded, ‘setSom’ is added as a one shot behavior. The

tickerBehavior add/3 predicate is used with the first argument as the name of the

agent, the second argument as the head of the rule describing the behavior in bob’s behavior

file. In our case, the ‘sendGPSData’ rule and the third argument as the number of seconds

it has to wait after each execution. Internally, this predicate calls the O2A interface on

the agent controller object, and calls the DefaultAgent’s Java method addTickerBehavior,

passing the last two argument as parameters. This Java method creates an instance of the

TickerBehaviorQuery class, passing the same two arguments to its constructor. This object

is added to the behavior queue of the sensor agent and the tickerBehavior add/3 predicate

returns. Now the agent executes the ’sendGPSData’ action every 60 seconds without the

intervention of the user.

% On Bob’s device (Android)

?- spliContainer_create(’192.168.2.14’, 1099, container1).

...

?- agent_create(bob,’jal.deviceIE.agent.DefaultAgent.class’).

...

?- X = bob, getObject(X,Y),

behaviorFile_load(Y, ’bobBehav.pl’),

oneShotBehavior_add(Y, setSom),

tickerBehavior_add(Y, sendGPSData, 60).

A sub-library is also provided which defines predicates for behavior loading and message

passing directly from the agent‘s behavior file. For example, the behavior add/2 predicate

adds a one shot behavior, performing some trivial operation each time the ‘sendGPSData’

predicate is triggered. The ‘trivialOperation’ is added to the end of the agent behavior queue

and is executed when all the preceding possibly more important behaviors in the queue are

executed. The behavior add/2 predicate can also be used to create nested behaviors on the

Prolog side. Internally, this predicate and all the other predicates in the sub-library uses the

myAgent(X) assertion, made at agent start-up to get a handle on its controller object. The

corresponding methods for each predicate are triggered via the O2A interface. The default
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agent class, in its setup method, loads this sub-library to the agent inference engine. So it

is completely transparent to the developer. A rule of thumb: all the predicates in JAL that

take agent name as an argument are executed primarily by the deviceIE and the ones that

do not are executed only by the corresponding agent‘s inference engine. The message passing

predicates defined in the further sections also belong to this sub-library.

%SensorDataAggregator.pl

:- setSom, behavior_add([ticker,60]sendGPSData).

sendGPSData:- lastObservation(gpsSom,GPSValues),

getValues(GPSValues,[Lat, Long]),

message_inform(dccAgent,[Lat, Long]),

behavior_add(1, trivialOperation).

setSom:- createSom(gpsSom,gps,fastest),

setCapacity(gpsSom,size,1).

trivialOperation:- ..

As mentioned earlier, JADE offers more complex behaviors such as Finite State Machine

behaviors, Sequential behaviors etc. These behaviors build upon the simple JADE behavior

classes we discusses so far. JAL provides hooks to these basic classes. Therefore complex

behaviors of an agent can be programmed on the Prolog side leveraging the basic JAL

predicates. Moreover, behaviors can be modified dynamically at runtime by editing and

re-consulting the behavior files of an agent.

Agent Queries

An agent created via JPR acts a separate reasoning entity with its own knowledge base. It

can be queried from the device inference engine using the agent query/3 predicate. This

predicate takes the name of an agent, the query (enclosed in quotes), and a list of variables

as arguments. The query is placed to the corresponding agent via the O2A interface. The

agent solves the query and returns a list of variable bindings.
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The variables returned by the agent and the variables in the input list (third argument)

are matched lexically. Each input variables is unified with a copy of the term the lexically

matching variable in the list of agent bindings is bound to. In this way, multiple agents can

be queried at the same time. The functioning of the agent query is more complex than one

might usually expect because it essentially involves two different inference engines exchanging

Prolog terms.

Agent Communication

The inter-agent communication model in JAL is shown in Fig. 3.6. An agent can send a

message to another agent using the msg inform/2 predicate which takes the name of the

receiving agent and the message to be passed as arguments. Note that this predicate is used

in the behavior file of an agent and not the device inference engine. If due to some reason, the

message sending behavior has to be triggered from the device inference engine, the developer

can define a rule in the agent behavior file that has the msg inform/2 predicate in its body.

Internally, this predicate uses the toString method on the Prolog term passed as the

second argument. It creates an jade.lang.acl.ACLMessage object with its performative

as inform and its content as the string returned by the toString method. The mes-

sage is sent using the send method of JADE’s ACLMessage object. The message passing

mechanism is asynchronous. So the msg inform/2 returns immediately after sending the

message. The receiving agent wraps the message in a reference term and triggers the

onMsgReceive(+Variable) rule, passing the reference term as the argument. The devel-

opers must reserve the onMsgReceive(+Variable) rule for this purpose and define how

an agent must respond to incoming messages. JAL provides msg getPerformative/2 and

msg getSender/2 predicates to obtafin the performative and sender of a message. To get

the content of the message as Prolog terms, the msg getTerms/2 predicate can be used.

It internally uses the inference engine of the receiving agent to parse the content string as

Prolog terms. Therefore what happens when a message is received is fully in the hands of
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msg_inform(dccAgent, gps[Lat,Long]).

JADE INFRASTRUCTURE

 

term

msg.send(); ACLMessage msg = receive();

onMsgReceive(t)

ie.solve()

Defined by the developer
in the behavior file

Agent collecting GPS data
on a volunteer's device

Disaster Control Center Agent

ACLMessage msg = new ACLMessage(7);
msg.setContent(term.toString());
//add dccAgent as receiver

AdvReferenceTerm t =
new AdvReferenceTerm(msg);

Figure 3.6: Inter-agent communication in JADE

the developer. For example, the agent hosted at the disaster control center (dccAgent) to

collect the location data of various volunteers agents is shown below.
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%dccAgentBehavior.pl

onMsgReceive(X):- msg_sender(X, NameOfVolunteer),

msg_performative(X, Performative),

msg_contentAsTerm(X, Term),

act(Performative, NameOfVolunteer,Term).

act(inform, Volunteer, gps([Lat,Long])):-

assert(location(Volunteer,Lat,Long)).

act(inform, Volunteer, victimData(Name, Age, Sex, Condition)):-

%To handle victim data

...

3.6 Conclusion and Future Work

In this chapter, we discussed the design and implementation of the agent library (JAL).

We have described the method of creating agents, configuring their behaviors, querying and

message-passing. In Appendix-A, we discuss the disaster management application at length

including a couple of use cases. Since JADE is a huge framework, we have limited ourselves

to implementing the features mandated by FIPA. The following is a list of some additional

features in JADE that JAL does not provide hooks to:

• support the use of message content ontologies.

• provide enough support for debugging the agent system (does not provide hooks to the

debugger agents in JADE)

• implement various interaction protocols to hold complex conversations

• provide means to use the DF and AMS agents effectively (no corresponding predicates)

But even in its current form, JAL is capable of supporting quite a good number of applica-

tions. It is in par with most of the existing frameworks for declarative agents. More impor-

tantly, the JAL in its present state is good enough to support a context-aware multi agent

system. This is the prime focus of the following chapter.



Chapter 4

Computing the Well-Founded Model of a Multi Context Systems

4.1 Introduction

This chapter follows from the previous which presents an agent library for JPR. The library

was used to implement a distributed knowledge management system (DKMS) where each

agent, with its own knowledge base and inference engine, acts as an autonomous reasoning

entity. Knowledge sharing is facilitated through a simple message passing scheme. Based on

the experiments performed by Chmiel et Al. [2005] for testing the performance of JADE, we

have concluded that this scheme is computationally viable.

However, this system of distributed reasoning agents does not meet the requirements of

a distributed knowledge management system. Specifically,

• Each agent KB contains a normal logic program written in Prolog. Without a proper

semantics (such as well-founded [Van Gelder et al., 1991] or stable-model [Gelfond

and Lifschitz, 1988]), the interpretation of programs involving default negation (not)

is problematic. In section 2.4.1, we have discussed this problem in more detail.

• The knowledge dependencies between different nodes cannot be declaratively specified.

For example, consider two agents, with respective knowledge bases KB1 and KB2,

reasoning about an entity. Rules such as “if p holds in KB1, then q holds in KB2” are

not specified. If these rules are accommodated, the flow of information, from one agent

to another, can be entirely managed by the framework (making it transparent to the

developer).
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• In many cases a global view/model of the distributed system is desired. But JAL does

not provide a way of computing a global model. In context-aware systems a global

model encompassing all the agent KBs provide a complete picture of the entity being

reasoned about.

In this chapter, we set out to resolve these issues by providing an enhanced reasoning

scheme for distributed knowledge management systems. It is based on a stream of research

in logic-based AI which attempts to formalize the notion of context/contextual reasoning

[Guha, 1991; McCarthy, 1993; Giunchiglia and Serafini, 1994; Brewka et al., 2011; Anto-

niou et al., 2010]. Of particular interest here is the non-monotonic multi-context systems

(MCS) framework proposed by Brewka et Al [2007; 2007; 2011; 2013]. It provides bridge

rules, as a way of formally representing interrelations between different contexts (roughly

equivalent to KBs) and, more importantly, a global semantics. There is abundant theoretical

work (starting with McCarthy’s [1989]) in this area but only a handful of implementations

(including Moawad et al. [2013]; Dao-Tran [2014]. Even in these few implementations, there

is little discussion on the applicability for mobile platforms. This is the primary motivation

for the work presented here.

4.2 Using a Multi-Agent System to Implement a MCS

A distributed knowledge management system contains several autonomous computational

entities which facilitate knowledge storage and retrieval. The autonomous computational

entities in our implementation are the agents launched through JPR. To leverage the non-

monotonic multi-context systems framework [Brewka et al., 2011], each agent KB is treated

as a context. In this section, we briefly reiterate some concepts of the MCS framework and

explain how a global model is computed.
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Definition 4.2.1. [Brewka et al., 2011] A multi-context system M = {C1, C2,....Cn,}, is a

collection of contexts, where each context is a tuple

Ci = (Li, kbi, bri), where

Li = (KBi, BSi, ACCi) is a logic,

kbi is a knowledge base (an element of KBi), and bri is a set of Li-bridge rules over L1,..Ln.

BSi and ACCi are the belief sets and acceptable belief sets respectively.

We take an agent-based approach for implementing a multi-context system. Each agent

launched through JAL has its own knowledge base and inference engine. To represent the

bridge rules in an agent KB, we provide the predicate br/2 which takes the name of an

agent(context) as the first argument and a Prolog term as the second. This representation

allows us to leverage inter-agent communication to check if a bridge rule is satisfied (or not).

Below, we decide the logic Li for each agent KB.

The stable model/answer set semantics [Gelfond and Lifschitz, 1988, 1991] and the well-

founded semantics [Van Gelder et al., 1991] are the two dominant semantics available for

normal logic programs. Using an iterative procedure, the well-founded model can be com-

puted in polynomial time with respect to the size of the program. On the other hand, it

is NP-hard to decide if a program has a unique stable model. Since we are working with

resource-constrained (mobile) devices, complexity is a crucial factor. So each logic Li in our

implementation is a normal logic program under the well-founded semantics. Consequently,

any set of literals belonging to KBi is a belief set, and the acceptable belief set ACCi is the

well-founded model. By adhering to the same Li in all the contexts, we are working with a

homogeneous system.

The semantics of a MCS is defined in terms of belief states, where a belief state is a

sequence S = {S1, S2, ....Sn} such that each Si is an element of BSi. Intuitively, a belief state

is a combination of belief sets, one from each context.
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Definition 4.2.2. [Brewka et al., 2011] A belief state S = (S1, ..., Sn) of a multi-context

system M is an equilibrium iff Si ∈ ACCi(kbi U (head(r)|r ∈ app(bri, S)), 1 ≤ i ≤ n., where

app(bri, S) means applicable bridge rules in i, given the belief state S(belief sets of all other

contexts).

Intuitively, a belief state is an equilibrium if each of the component belief sets are accept-

able, given others. Brewka and Eiter [Brewka and Eiter, 2007], theoretically, prove that the

equilibrium of a MCS under well-founded semantics (WFS) can be computed in polynomial

time (with respect to size of the program). The rest of this chapter is devoted to explaining

how the equilibrium (a global well-founded model) can actually be computed using our

implementation of a MCS.

We extend the JPR agent library, by modifying the behavior of the default agent

on the Java side, and introducing a special type of agent called a coordinator agent

(CoordinatorAgent.class) which will coordinate the computations carried out by each

agent. The extra set of predicates that are introduced in this chapter are bundled into the

JPR Context Library (JCL).

4.3 Computing a Global Well-Founded Model

In this section, we examine the contextual dependencies i.e. how different contexts in a MCS

are connected through bridge rules, in more detail. An algorithm for computing a global

well-founded model is presented and its implementation is discussed.

Example 4.3.1. Let us consider the following MCS, which we use as a running example

through the rest of this chapter:

M = {C1, C2, C3, C4}
C1 = {b., a : − b.)}
C2 = {p : − br(a1, b)., q : − not(br(a3, r)).}
C3 = {r : − not(br(a2, q)).}
C4 = {w : − br(a3, r)., x : − w.}
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We use the predicate br/2 to indicate bridge terms. This takes the subscript of a context

as the first argument and a Prolog term as the second. Intuitively, the first rule in C1 means

that: if b holds in C1, then p holds in C2. Therefore, a system implementing this MCS must

facilitate the flow of information from C1 to C2, about the truth/falsity of p. We call a

directed graph representing the flow of such information in a multi-context system as an

information flow graph. The information flow graph for example 4.3.1 is shown in figure 4.3.

C1 C2 C3 C4

Figure 4.1: Information flow graph for the MCS in Example 4.3.1

A node (representing a context) is an information provider if it occurs as the first argu-

ment of the predicate br in any other context. A node is an information receiver if it contains

any bridge rules. The information receivers and providers for each context are shown in the

following table:

Table 4.1: Information receivers and providers for each context in Example 4.3.1

Context Provider Receiver

C1 null null {C2}
C2 C1 {b} {C3}

C3 {r}
C3 C2 {q} {C4}
C4 C3 {r} s {}

For the flow of information to be automatically handled by the framework, each node in

the system must be made aware of its information receivers so that changes in the contextual

information can be selectively informed to latter. The agent initWFM predicate, which takes

the name of an agent, is provided for this purpose. Internally, this predicate scans the agent

KB for br/2 terms, and sends a message to each provider agent, registering with it as a

receiver. The terms a given agent is interested in is also bundled with the message. Below,

we discuss the steps involved in computing the well-founded model.
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To implement a multi-context system containing n contexts, the same number of agents

must be created. Agents can be launched using agent create/4 predicate, providing

jcl.agent.ContextAgent.class as the type argument. JCL relies on inter-agent mes-

sage passing to set/update the list of information receivers and to automate the flow

of information between agents. So onMsgReceive(X) predicate is triggered, only after

ensuring that it is not for one of these purposes. Also, a wfmManager (instance of

jcl.context.WfmManager.class) is attached to each instance of jcl.agent.ContextAgent

.class. These are the only major differences between the jal.agent.DefaultAgent.class

and jcl.agent.ContextAgent.class. The responsibilities of the wfmManager are discussed

later.

In addition to the agents representing contexts, a special agent which communicates and

coordinates the computation of a global well-founded model is required. This can be launched

using the predicate agent create/4, providing jcl.agent.CoordinatorAgent.class for

the type argument. Unlike the agents we have discussed so far, this agent does not possess

a KB or an inference engine, and is not a part of a MCS.

Before computing the global-well founded model, the coordinator agent must be aware

of all the other agents in the system. So, it must be initialized using the predicate

agent initWFM/1 (name of coordinator agent as the argument). Internally, this queries

the JADE AMS agent for a list of other agents in the system.

After the initialization step, the predicate computeGWFM/1, which takes the name of the

coordinating agent as the argument, can be used to start the process of computing the global

model. The algorithm for computing the global well-founded model is shown in algorithm 1.

The process of computing the reduct and closure is described later.

Algorithm 1: Computing the global well-founded model of a MCS

1: set interpretation I = {}
2: while !global fixpoint do
3: compute the reduct of each context with respect to I
4: while !global-closure do
5: compute the closure of the reduct
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6: send relevant parts of closure to information receivers

7: set I at each context to the most recent local closure
8: return I

Starting with an empty interpretation, compute the reduct and closure at each node until

an alternating fix point is reached.

In the first global iteration, the coordinator agent sends a message to all the MCS agents in

the system, requesting them to compute the reduct of the logic programs contained in their

KBs, with respect to an empty interpretation (I = {}).

The algorithm for computing the reduct is shown in algorithm 2. The knowledge base of

each agent is a list of rules (jpr.kb.Rule objects), represented by Listrules in algorithm 2.

The body of each rule is a list of Prolog terms and so is an interpretation. For computing the

reduct, we obtain a copy of rules contained in the agent KB and iterate through the body

of each rule. If the body of a rule is empty, its head is added to a list of facts (ListredFacts).

Else, the body of the rule is scanned for negated terms (not(p))) such that p is a part of

the interpretation. If no such terms are found in a rule, it is added to a list of remaining

rules (ListredRules). Otherwise, the rule is discarded. The ListredFacts and ListredRules lists are

maintained by the wfmManager. These lists are updated each time a new reduct is computed.

Algorithm 1: Computing the reduct of a program

Input: Listrules :: knowledgebase, ListIterms :: interpretation

Output(reduct): ListredFacts :: facts, ListredRules

1: for each rule r in Listrules do
2: if body of r is empty then
3: add it to the ListredFacts

4: else
5: flag ← true
6: for each term t in body of r do
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7: if predicate of term t is not then
8: t ← argument of t
9: if t ε ListIterms then

10: flag = false
11: break
12: else
13: replace t by true

14: if flag is true then
15: add r to ListredRules

The reduct of each context in example 4.3.1 relative to an empty interpretation is shown

below:

C1 = {b., a : − b.)}

C2 = {p : − br(a1, b)., q.}

C3 = {r.}

C4 = {w : − br(a3, r)., x : − w.}

After computing the reduct, each agent in the system sends a message (in reply to

“compute-reduct” message) to the coordinator agent with content as “reduct-computed”.

When all the agents in the system have responded successfully, the coordinator agent sends

the following “compute-closure” message to all the agents in the system. This corresponds

to step-5 in algorithm 1.

The receiving agents, using a fix point procedure shown in algorithm 3, compute the

closure of their reduct and send the relevant terms to their information receivers. Each agent

stores the incoming closure terms in a list of Prolog terms (ListbridgeFacts) maintained by the

wfmManager. For example, consider two agents A 1 and A 2 corresponding to contexts C 1

and C 2 of example 4.3.1,

1. Lets say A 1 computes its closure as ({a,b}), and sends b to A 2.

2. On receiving the message from A 1, A 2 creates a new prolog term br(a1,b) and adds

it to the bridge facts.
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The ListbridgeFacts list is empty for the first iteration.

Algorithm 3: Computing the closure of a reduct

Input: ListredFacts, ListredRules, ListbridgeFacts

Output: Listclosure

1: while the length of closure list increases do
2: List closure ← List redFacts
3: List closure ← List bridgeFacts
4: for each rule r in ListredRules do
5: flag = true
6: for each term t in body of r do
7: if t is not true and t /∈ Listclosure then
8: flag = false
9: break

10: if flag == true then
11: add head of r to Listclosure

12: return List closure

Add all the facts and the head of each satisfied rule to the closure list

As a response to the “compute-closure” message sent by the coordinator agent, each

agent sends a message with content as “closure-computed”, and an extra boolean field

indicating if the most recent closure is same as the previously computed closure (if any). If

any of the agents in the system respond with a false, the coordinating agent requests all the

agents in the system to recompute their closure (and send it to their respective information

receivers). Since the reduct contained in each agent KB is a definite logic program, the

closure can only increase in size with addition of new information (bridgefacts). But as

mentioned in section 2.4.1, this non-decreasing sequence has a fix-point. The system reaches

a global closure if all the agents have reached their respective (local)definite fix points.

After a global closure is reached, the coordinating agent sends a compute-reduct message

(with no interpretation attached) to all the agents in the system. In the second and all

the following iterations, the reduct is computed with respect to the most recent definite fix

point and bridge facts (interpretation← Listclosure ∪ ListbridgeFacts). After computing the
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reduct the List bridgeFacts is cleared (empty). The process of computing a global closure

repeats.

Let dfpx,k represent the kth definite-fix-point reached by agent x. Algorithm 1 terminates

when dfpx,k−1 is equivalent to dfpx,k+1 for some k and every 1≤x≤ n, where n is total number

of MCS agents. Intuitively, when the definite fix-points reached by each agent alternate.

The coordinator agent checks for the terminating condition by sending a message to the

individual agents in the system each time a global closure is reached (after k=2). The global

well-founded model is the union of the least definite-fix-points reached by each agent in the

system. The global well-founded model computation for example 4.3.1 is shown in table 4.3.

Table 4.2: Computing the global well-founded model of MCS M in Example 4.3.1

Global Iter. Local Iter. C1 C2 C3 C4 Comments

1 0 {} {} {} {} I = {}
1 {a,b} {q} {r} {} CR, CC, SC
2 {a,b} {p,q} {r} {w,x} CC, SC
3 {a,b} {p,q} {r} {w,x} GC

2 0 {a,b} {b,p,q} {q,r} {r,w,x} NI
1 {a,b} {} {} {} CR, CC, SC
2 {a,b} {p} {} {} CC, SC
3 {a,b} {p} {} {} GC

3 0 {a,b} {b,p} {} {} NI
1 {a,b} {q} {r} {} CR, CC, SC
2 {a,b} {p,q} {r} {w,x} CC, SC
3 {a,b} {p,q} {r} {w,x} GC

CR - Compute reduct with respect to most recent interpretation
CC - Compute closure of the most recent reduct
SC - Send the closure to information receivers
GC - Global closure
NI - New Interpretation

Summarizing, the whole process from a coordinator agent perspective is shown below:

1 Get a list of all the agents in the system and delete ams, df, and

itself from the list.
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2 Send a message to all the MCS agents, with "compute-reduct"

as the content and interpretation I. I equals {} for the first

global iteration.

3 Wait until all the MCS agents respond with "reduct-computed"

4 Send a message to all the MCS agents, with "compute-closure" as

the content.

5 All the MCS agents respond with "closure-computed", and a boolean

flag if the most recent closure has repeated.

6 If a global closure is reached, proceed else go to step-4.

7 Send a message to all the agents inquiring if a fix-point has been

reached

7 If all the agents respond with a true, proceed, else go to step-2

8 End

4.4 A Loosely-Coupled System

The procedure outlined in the previous section computes the global well-founded model. But

there are some limitations to this approach. In highly dynamic systems, the amount of time

taken to compute the global well-founded model (reach an alternating fix point) could be

(much) greater than the amount of time that could practically be allowed for reasoning.

The primary issue is that non-monotonic reasoning works best for static systems or systems

in which the change of knowledge over time is minimal. Moreover, the computation of the

global model assumes that the agents are constantly connected to the coordinator agent. If

any of the agents fail to respond/receive the compute-reduct or compute-closure messages,

the computation is paused.

Therefore, we propose a loosely coupled system, where each agent (context) independently

and locally computes a well-founded model and passes it to its information receivers. The

timing of these events is entirely left to the application developer. Even if the local well-

founded model computations are synchronized, the consequences are not guaranteed to match

those of the equilibrium semantics (global well-founded model). This is evident from table 4.4,

which shows the consequences of a synchronized loosely-coupled system.

However, though not guaranteed to, there could be a considerable amount of overlap

between the consequences computed through this approach and the global well-founded
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Table 4.3: The alternate method of computing semantics for MCS M in Example 4.3.1

Global Iteration Local Iteration C1 C2 C3 C4

1 0 {} {} {} {}
1 {a,b} {q} {r} {}
2 {a,b} {q} {r} {}

2 0 {} {} {} {}
1 {a,b} {p} {} {w,x}
2 {a,b} {p} {} {w,x}

3 0 {} {} {} {}
1 {a,b} {p,q} {r} {}
2 {a,b} {p,q} {r} {}

4 0 {} {} {} {}
1 {a,b} {p} {} {w,x}
2 {a,b} {p} {} {w,x}

model. This could be of interest to some applications. So the steps involved in this approach

are outlined below. Clearly, there is no need for a coordinating agent.

1. All the agents in the system, except the coordinating agent, are created and launched.

2. The predicate agent intiWFM/1, which takes the name of an agent as the argument,

is used to update the list of receivers and senders.

3. The computeWFM/2 predicate, which takes the name of an agent as the first argument,

can be used to compute the local well-founded model, taking bridge facts into consid-

eration. The result (list of Prolog terms) is bound to the second argument.

4. The computeNsendWFM/1 predicate can be used to compute the model and send a copy

of it to the information receivers.
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4.5 Conclusion

In this chapter, we dealt with the task of ascribing semantics to the multi-agent reasoning

system presented in chapter 3. Leveraging the inter-agent passing scheme, we computed the

global well-founded model of a multi-context system. To our knowledge, there are no other

existing implementations which serve the same purpose. We implemented a basic algorithm

to compute the well-founded consequences. More optimized versions based on hypergraphs

and tabling techniques are available [Berman et al., 1995; Zukowski et al., 1997; Niemelä and

Simons, 1997; Rao et al., 1997] for computing the same, locally. The applicability of these

techniques to a contextualized system should be investigated. The further research in this

direction can test the viability of other logics.



Chapter 5

Conclusion

5.1 Contributions and Significance

In this chapter we reiterate the key contributions, significance and limitations of this research.

This thesis presents the design and implementation of a reasoning framework for distributed

knowledge management systems (DKMSs) on Android devices. We take an agent-based

approach to model the constituent elements of a DKMS. The JPR Agent Library facilitates

the creation and maintenance of reasoning agents directly from Java Prolog Reasoner (JPR).

JPR is an implementation of the Prolog programming language designed to make Prolog

usable on Android devices. The agent library provides predicates for the following purposes.

• To create and terminate agents directly from JPR. Each agent with its own knowledge

base (KB) and inference engine acts as an autonomous reasoning entity.

• To load Prolog files to an agent KB

• To query an agent

• To trigger the behaviors(actions) of an agent from Prolog

• To send or receive messages from other agents (in the distributed system)

An Android application demonstrating the ease-of-use of this library was also presented. A

list of predicates defined in the library is provided in appendix-A.

The latter half of this thesis deals with the problem of assigning semantics to this

distributed system. The multi-context systems framework [Giunchiglia and Serafini, 1994;
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Brewka et al., 2007, 2011; Brewka, 2013; Serafini and Homola, 2012] is a prominent theo-

retical framework in AI for contextual reasoning. To adopt this framework, each agent KB,

containing a normal logic program, is treated as a context. The JPR context library provides

predicates using which

• the interrelations between various agents KBs(bridge rules) can be declaratively spec-

ified, and

• a global well-founded model of the system can be computed.

. The global well-founded model corresponds to the equilibrium semantics of the non-

monotonic multi-context systems framework proposed by Brewka et Al. [2011]. Additionally,

a loosely-coupled mode of execution is proposed for highly dynamic systems.

So far, the context-related research in AI has been largely theoretical with only a few

implementations. Even in the few implementations that do exist, there is hardly any discus-

sion on applicability for mobile devices. Furthermore, the research in context-aware systems

is gaining momentum due to the advances in sensing capabilities of mobile devices. But

again, to our knowledge, there is hardly any framework for developing rule-based applica-

tions on mobile devices. This research helps fill these gaps by providing a software framework

for contextual reasoning on Android devices. This framework, in conjunction with the JPR

Sensor Library, can be used to develop rule-based context-aware applications on Android

devices.

5.2 Future Research

Since this effort is only a first step towards mobile-based contextual reasoning, there is plenty

of scope for further research. Below, we provide some pointers.

• Optimization: In the past, some optimization schemes for local well-founded model

computations were proposed [Berman et al., 1995; Brass et al., 2001]. Also, topology-

based optimization techniques for computing the equilibria of a multi-context system
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were proposed. Since the target devices are resource-constrained, the applicability of

these optimization schemes must be investigated.

• Grounding and forward chaining: Forward chaining rule-based systems are highly suit-

able for event handling in context-aware systems. Also, the well-founded model compu-

tation requires ground logic programs. Since programs with function symbols cannot

be ground, alternate techniques are required. We intend to provide a reasonable way

of handling these issues in the next version of this framework.

• Applicability of other logics for contexts: The applicability of logics other than well-

founded semantics for logic programs has to be tested. To avail this, we have designed

this framework in a modular fashion.



Appendix A

Disaster Response Application

Here we provide a detailed description of the Disaster Management Application developed

as a part of this thesis. This is intended to serve as a demo application for the developers

using the JPR Agent Library discussed in Chapter 2. Several ways of configuring a disaster

response system were discussed in the same chapter. A summary of the configuration we end

up pursuing is given below:

A disaster control center is a command and control facility responsible for planning and

monitoring the response activities in a disaster-hit area. The aim of this application(s) is to

provide tools for knowledge management in such situations. It is assumed that a disaster

control center (DCC) host a PC/server and that all the personnel taking part in the response

activities are carrying an Android device.

In the initial stages of the disaster response, responders and volunteers collect data from

the affected area that depicts the severity of the situation such as number of victims affected,

food and shelter required etc. This data must be passed to the disaster control center for

planning, managing and distributing resources, etc. Moreover, it is important that the data

collected is labeled by its source. The activity data (%split of the duration a volunteer/re-

sponder) was standing, sitting or walking would indicate the physical strain he/she is sub-

jected to. The tasks assigned on the following day can be planned accordingly (avoiding

fatigue). If the responder/volunteer needs to approach someone for help, he must know the

location of the nearest warehouse and/or emergency responder. Below, we discuss the basic

steps involved in designing an Android application that can fulfill the requirements discussed

68



69

so far. These steps can guide the development of similar applications. Prolog files specific to

this application are provided at the end of this chapter1.

To implement this, a main-container can be launched on the DCC-PC by following the

steps outlined below 2:

• On the JAVA side, create a Prolog console (jpr.PrologConsole.class) which has an
associated inference engine.

• Load the agent library to the inference engine wrapped by the console.

• Create a main-container providing the IP address of the machine and a suitable port,
using the mainContainer create/4 predicate

• Create an agent named ’dccAgent’, using the agent create predicate.

• Create a behavior file (.pl file) containing the behaviors of the dccAgent. In the simplest
case, the dccAgent only needs to respond to incoming messages. For this, the developer
only has to write the body of the rule ‘onMsgReceive(X):- ’.

• Load this file to the dccAgent, using the behaviorFile load/2 predicate.

• Issue the query ‘listing. ’, to the agent to double-check if all the above steps were
successful.
agent query(dccAgent,’listing. ’).

Similarly for the volunteer side, an Android application is created with a blank activity

called MainActivity.class, following the standard steps in the developer guide3. A snapshot

of this activity is shown in figure A.1.

The jade.android.MicroRuntimeService is declared in the manifest file of the appli-

cation. The following steps are performed in the startup of the disaster response application

(main activity):

1. A form is displayed, requesting the volunteer to enter his name.

1@maier: to be added
2A list of predicates is provided in the Appendix-B for reference.
3https://developer.android.com/guide/index.html
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Figure A.1: The main activity with disaster related data

2. An instance of JPR is created. An instance of the agent library is created by passing

the context of the application and true(for isSplit) as parameters. This is loaded to

JPR using the loadLibrary method.

3. A split container is created and an agent is launched with the same name as the

volunteer.
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4. The behavior file of this agent is loaded.

The behavior file of the agent for this application must contain rules which can be trig-

gered in response to button clicks. For example, if the volunteer fills a form, using the drop-

down list,text fields etc. and clicks the submit button, this should fire a rule which in its body

sends this data to the dccAgent. The agents can also send the GPS location when requested

by remote agents. The GPS information would be highly useful to plan collaborative tasks.



Appendix B

List of Predicates

Predicate Arguments Function
mainContainer create/4 Host,Port,Name of the con-

tainer,Variable
To create a main container
using the arguments pro-
vided

mainContainer create/3 Host,Port, Variable To create a main container
with the default name main-
container

isMain/1 Variable To retrieve the main con-
tainer (reference term)

container create/4 Name of the con-
tainer,Host,Port,Variable

To create an agent con-
tainer, store object refer-
ence of its controller in a ref-
erence term

list containers/1 Variable Returns a list of active con-
tainers

mtp add/2 Name of the con-
tainer,IPAddress

Adds an MTP to a con-
tainer

mtp del/2 Name of the con-
tainer,IPAddress

Removes an existing MTP

splitContainer create/3 Name of the con-
tainer,Address and Port of
main-container

Creates a split-container on
Android device

fullContainer create/3 Name of the con-
tainer,Address and Port of
main-container

Creates a full container on
Android device

fullMainContainer create/3 Name of the con-
tainer,Address and Port of
main-container

Creates a main container on
an Android device

container kill/0 Terminates a running con-
tainer on an Android device

agent create/4 Name of the agent, (path
to) Class of the agent,Name
of the container &Variable

To create an agent on a PC
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agent create/2 Name of the agent, Class of
the agent

To create an agent on an
Android device

agent kill/1 Name of the agent To terminate an agent
agent container/2 Name of the Agent, Name of

the container
To store agent-container
pairs

agent query/3 Name of the agent, Query,
Asynchronous or not

To query an agent on the
device from the device IE

agent message/3 Sender, Receiver, Message To request the Sender to
send the Message (String)
to the Receiver

agent changeStateTo/1 New state (activate/sus-
pend)

To switch between activated
and suspended

oneShotBehavior add/2 Name of the agent,agent
behavior to be loaded

To trigger a predicate
defined in the agent
behavior file as a one shot
behavior

cyclicBehavior add/2 Name of the agent,agent
behavior to be loaded

To trigger a predicate
defined in the agent
behavior file as a cyclic
behavior

wakerBehavior add/3 Name of the agent,agent
behavior to be loaded, time
delay

To trigger a predicate
defined in the agent
behavior file as a waker
behavior.

tickerBehavior add/3 Name of the agent,agent
behavior to be loaded, time
delay

To trigger a predicate
defined in the agent
behavior file as a ticker
behavior.

agent getCurrBehav/1 Name of the agent Returns a prolog list of
behaviors in the agent
queue

agent removeBehav/2 Name of the agent, Name of
the behavior

To remove a behavior from
the agent queue

assert br/1 Rule To assert a bridge rule to an
agent KB

retract br/1 Rule To retract a bridge rule
from an agent KB

init wfm/0 To initialize the information
receivers and providers

info receivers/1 Variable Returns a list of information
receivers

info providers/1 Variable Returns a list of information
providers
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lwfm/1 Variable Returns the local well-
founded model of an agent
KB
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Ilkka Niemelä and Patrik Simons. Smodelsan implementation of the stable model

and well-founded semantics for normal logic programs. In Logic Programming and

Nonmonotonic Reasoning, pages 420–429. Springer, 1997.

Donald Nute. Defeasible logic. Handbook of logic in artificial intelligence and logic

programming, 3:353–395, 1994.

MN Nyan, Francis EH Tay, and E Murugasu. A wearable system for pre-impact fall

detection. Journal of biomechanics, 41(16):3475–3481, 2008.

Stefan Poslad. Specifying protocols for multi-agent systems interaction. ACM Trans-

actions on Autonomous and Adaptive Systems (TAAS), 2(4):15, 2007.

Teodor C Przymusinski. Non-monotonic formalisms and logic programming. In ICLP,

pages 655–674. Citeseer, 1989.



85

Prasad Rao, Konstantinos Sagonas, Terrance Swift, David S Warren, and Juliana

Freire. Xsb: A system for efficiently computing well-founded semantics. In Logic

Programming And Nonmonotonic Reasoning, pages 430–440. Springer, 1997.

Raymond Reiter. On closed world data bases. Springer, 1978.

Raymond Reiter. A logic for default reasoning. Artificial intelligence, 13(1):81–132,

1980.

Daniele Riboni and Claudio Bettini. Cosar: hybrid reasoning for context-aware activity

recognition. Personal and Ubiquitous Computing, 15(3):271–289, 2011.

Daniel Salber, Anind K Dey, and Gregory D Abowd. The context toolkit: aiding the

development of context-enabled applications. In Proceedings of the SIGCHI conference

on Human Factors in Computing Systems, pages 434–441. ACM, 1999.
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