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ABSTRACT 

Using a relatively small amount of accessible data, we developed machine learning 

models to predict alfalfa yield and compared how different sets of features affected their 

error. We also compared the regression tree (RT), random forest (RF), neural network, 

support vector machine (SVR), k-nearest neighbors (KNN), Bayesian ridge regression, 

and linear regression methods. These methods were trained and evaluated with cross 

validation. The best set of features consisted of the Julian day of the harvest, the number 

of days between the sown date and the harvest date, and the cumulative amount of solar 

radiation and rainfall the crop received since the previous harvest. The RF, KNN, RT, 

and SVR methods obtained results that, when averaged, did not vary significantly from 

each other. The best individual model was a RF with a R2 of 0.941. This model had the 

highest R2 value compared to the best results from similar studies. 
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CHAPTER 1 

INTRODUCTION 

 This project seeks to explore the use of machine learning for crop yield 

prediction. First, the motivation of this work and an overview of related work is covered 

in Chapter 2. It will also draw connections between related work and the efforts of this 

study.  

 Chapter 3 presents a system for developing machine learning models for the 

purpose of biomass yield prediction and explores how different sets of features affect the 

error of these models. It does this by analyzing the results found by machine learning 

models trained on features found by different feature selection methods. The models are 

trained to predict alfalfa biomass yield. In doing this, a method for developing optimized 

machine learning models for the field of biomass yield prediction is demonstrated. The 

hope is that this system for developing machine learning models will allow plant 

scientists and agricultural planners to use machine learning for crop yield prediction, 

without needing a thorough background in machine learning. This chapter will also 

show how feature selection can provide insights into what attributes most affect alfalfa 

crop yield. It concludes by showing that the feature selection method that found the best 

set of features was a correlation-based method that minimized the correlation between 

the chosen features and maximized the correlation between that set of features and the 

target. The set of features this method found included the Julian day of the harvest, the 
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number of days between the sown date and harvest date of the crop, and the cumulative 

solar radiation and rainfall the crop received since its previous harvest. 

 Chapter 4 begins by describing the motivation behind researching crop yield 

prediction. It then gives a brief summary of recent studies that also use machine 

learning to predict crop yield. Then, it expands on the work done in Chapter 3 by using 

the best set of features from Chapter 3 to predict alfalfa yield with a variety of machine 

learning methods. Regression trees, random forests, neural networks, support vector 

machines, k-nearest neighbors, Bayesian ridge regression, and linear regression are all 

used and compared. These models are evaluated with a variety of metrics and the results 

are compared to recent other studies. This project’s results are comparable to the best 

results from similar studies, and the R2 values of this project’s models were the highest. 

This project’s methods also used simpler data and more accessible features than many 

recent works. Specifically, the best results found by this study were found by a random 

forest with a mean absolute error of 162.01 lbs/acre, and a R2 of 0.941.  
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CHAPTER 2 

LITERATURE REVIEW 

Agricultural planning is used to ensure that enough crops are produced, and is 

thus important for the economy, humanitarian efforts, and fighting world starvation and 

poverty (Dodds & Bartram, 2016; Rosegrant, Magalhaes, Valmonte-Santos, & Mason-

D’Croz, 2018). It has also been found that research and development on increasing crop 

yields would result in $34 worth of benefit for every 1$ spent (Lomberg, 2015). One 

important tool in researching ways of increasing crop yield is yield prediction. Not only 

can it inform planners, but it could also potentially be used to streamline efforts in crop 

variety development. 

There are many factors that affect crop yield, and many of these factors vary both 

spatially and temporally. Given this, it can be difficult to predict a crop’s yield at a 

specific time. However, farmers often rely on their own experience to predict their yield 

(RuB, 2009). Given that personal experience can be unreliable, it would be beneficial to 

know what features have the largest impact on yield prediction. Work has been done 

showing that feature selection can improve the performance of machine learning models 

for crop yield prediction (Bocca & Rodrigues, 2016). This suggests that some factors play 

a larger role in affecting crop yield then others. Chapter 3 will expand on this idea by 

investigating how different factors affect predictive accuracy of machine learning models 

for alfalfa yield. This study will also reveal what factors more largely impact alfalfa yield 

itself. 
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There have been a variety of methods used to predict crop yield. The USDA 

makes monthly forecasts of crop yield in the United States by using survey techniques. 

They have achieved a very low percentage error (You, Li, Low, Lobell, & Ermon, 2017) 

but this method is very resource intensive, requiring thousands of phone calls and 

hundreds of inspections every month (National Agricultural Statistics Service, 2018; 

Johnson, 2014). Other studies have used remote sensing image data to train machine 

learning algorithms to predict crop yield (Chlingaryan, Sukkarieh, & Whelan, 2018). 

These methods have been successful (You et al., 2017; Johnson, 2014; Panda, Ames, & 

Panigrahi, 2010), but they require a large amount of processing of data from different 

platforms (Chlingaryan et al., 2018). There is also no particular piece of remote sensing 

data that universally works for all applications (Xue & Su, 2017). Remote sensing also 

cannot be used to make predictions until images are available to act as inputs. This 

means that models trained on remote sensing data cannot make predictions until the 

season starts, which is often too late to be useful (Cunha, Silva, & Netto, 2018).  

Finally, other work has been done on using weather and soil features to train 

machine learning models to predict crop yield (González Sánchez, Frausto Solís, & 

Ojeda Bustamante, 2014; Ayoubi & Sahrawat, 2011; Jeong et al., 2016; Chlingaryan et 

al., 2018). Chapter 4 will expand on this by developing machine learning that not only 

uses accessible features like solar, rainfall, and planting data, but will also demonstrate 

that accurate machine learning models can be made using a small amount of this 

accessible data.  
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CHAPTER 3 

THE IMPACT OF FEATURE SELECTION ON MACHINE LEARNING METHODS FOR 

BIOMASS YIELD PREDICTION USING WEATHER AND PLANTING DATA1 

  

                                                 
1 Whitmire, C.D., Rasheed, H.K., Missaoui, A., Rasheed, K.M., & Maier, F.W. To be submitted to 
Applications in Plant Sciences 
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ABSTRACT 

Predicting biomass and crop yield is important, and many features could be used to 

train machine learning models for yield prediction. Using yield data of different alfalfa 

varieties from multiple years in Kentucky and Georgia, we compared the impact of 

different feature selection methods on machine learning models trained to predict 

alfalfa yield. Linear regression, regression trees, support vector machines, neural 

networks, Bayesian regression, and nearest neighbors were all developed with cross 

validation. The features used included weather data, historical yield data, and the sown 

date. The feature selection methods that were compared included a correlation-based 

method, the ReliefF method, and a wrapper method. It was found that the best method 

was the correlation based method, and the feature set it found consisted of the Julian 

day of the harvest, the number of days between the sown and harvest dates, cumulative 

solar radiation since the previous harvest, and cumulative rainfall since the previous 

harvest. Using these features, the k-nearest neighbor and random forest methods 

achieved an average R value over 0.95 and average mean absolute error less than 200 

lbs./acre. This work could be used to develop and improve efforts for biomass and crop 

yield prediction. 
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INTRODUCTION 

In 2015, the United Nations developed 17 goals for the world to reach by the year 

2030 (United Nations, 2015). These goals are meant to focus nations’ efforts on solving 

the world’s biggest problems, such as reducing worldwide poverty, improving physical 

health, reducing social inequalities, and improving environmental conditions. In order 

to evaluate whether those 17 goals were achieved, 169 targets were made (United 

Nations, 2015). However, these goals were not prioritized, and 85% of the proposals for 

these goals did not consider economic costs or benefits (Copenhagen Consensus Center, 

2015). In response to this, the Copenhagen Consensus Center performed cost-benefit 

analyses on these 169 targets and ranked them according to the cost benefit ratio. One of 

their findings found that increasing research and development in increasing crop yields 

would be one of the most cost-effective ways of achieving some of these goals 

(Rosegrant, Magalhaes, Valmonte-Santos, & Mason-D’Croz, 2018). Specifically, every $1 

spent on this kind of R&D would result in $34 worth of benefit. (Lomberg, 2015) 

Improvements in agricultural planning and R&D on crop variety testing would 

increase crop yields, so work in these areas would help achieve some of the UN’s goals. 

Machine learning techniques can be used for crop yield predictions, and these 

predictions can improve efforts in agricultural planning and crop variety testing. 

Specifically, by predicting a community’s potential crop yield given certain conditions, 

farmers can better plan what to plant. This can help humanitarian efforts as well, by 

showing what communities should be receiving crops (Dodds & Bartram, 2016). Also, 

machine learning can help with crop variety testing. This testing is done to test the 

short-term and long-term yield of new varieties of crops. Having a prediction of a 
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variety’s yield may give agricultural scientists some insight into what varieties may be 

successful, allowing them to develop better varieties more efficiently. 

Bocca and Rodrigues showed that feature selection can improve the predictive 

accuracy of machine learning models for crop yield prediction, while also simplifying the 

models (2016). This is because decreasing the number of features that are used to train a 

machine learning model can reduce noise in the data. This helps the performance of the 

machine learning models, but it can also help scientists understand what factors most 

impact crop yield. Because of this fact, this study will use alfalfa data from Georgia and 

Kentucky to make machine learning models to predict alfalfa yield. Then this study will 

explore the effect different feature selection methods have on the performance of these 

machine learning models. This will also provide information that may lead to insight 

into what factors most impact alfalfa yield in the Southeastern United States.   

This paper will also present a method to develop optimized machine learning 

models for biomass and crop yield prediction. It is the hope of the authors that this will 

help readers, especially plant scientists and agricultural planners, develop their own 

machine learning models for crop yield prediction without requiring a background in 

machine learning. 

Linear Regression 

There are several diverse machine learning methods that can be used for crop 

yield prediction. Linear regression can be considered a machine learning technique and 

is often used as a baseline whose results are compared to the results of other techniques. 

Conceptually, linear regression finds a linear function that minimizes the squared error 

between the predictions of that function and the true values (Russell & Norvig, 2016). 
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This function will have the form 𝑦𝑖 = 𝑤𝑜 + ∑ 𝑤𝑖
𝑘
𝑖=1 𝑥𝑖, where 𝑘 is the number of features, 

the 𝑥𝑖 is the value of a data point’s 𝑖th feature, 𝑤𝑖 is a coefficient associated with the 𝑖th 

feature, 𝑤𝑜 is the intercept, and 𝑦𝑖 is the prediction of the linear regression.  

Neural Networks 

 Neural Networks, like linear regression, learn a function that minimizes the error 

between the predictions of the function and the true values. However, neural networks 

are capable of learning nonlinear functions of any complexity. It does this by roughly 

imitating the structure of the human nervous system (Rojas, 1996). A neural network is 

made up of multiple layers of nodes. Each node takes in inputs from a previous layer, 

performs a mathematical operation on those inputs, and outputs the results of that 

mathematical operation to the nodes in the next layer. The last layer outputs the final 

prediction. Typically, each node will output 𝑛 where 𝑛 = 𝐴(∑ 𝑤𝑗
𝑡
𝑗=1 𝑚𝑗) with 𝑡 being the 

number of inputs for that layer, 𝑚𝑗 being the value of the 𝑗th input, 𝑤𝑗 being the learned 

coefficient for the 𝑗th input, and 𝐴 being a predefined nonlinear function. To train a 

neural network, all the coefficients (𝑤𝑗’s) are initialized with random values. Then the 

training data is fed to the network and predictions are found. An error is calculated by 

finding the difference between the prediction and the true value. By finding the gradient 

of the error, the neural network can iteratively change the coefficients of each node to 

minimize the overall error. By changing the number of layers and nodes, a neural 

network can approximate many different functions (Mitchell, 1997). 

Support Vector Machines 

 Another approach is done by support vector machines (SVMs). SVMs attempt to 

make a linear best fit line that keeps all the predictions within a certain error threshold 
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from that best fit line. However, this technique can fit nonlinear data by projecting the 

data into a higher dimensional space. In this higher dimensional space, that data will 

appear more linear, so a linear best fit line can be made in this higher dimensional 

space. The best fit line is then projected back to the original space where it no longer 

appears linear (Gonzalez, Frausto, & Ojeda, 2014). This is called the ‘kernel trick’ 

(Russell & Norvig, 2016). 

K-Nearest Neighbors 

 The k-nearest neighbor (kNN) method is another spatially based machine 

learning method. This method remembers all the data it has been shown before, and 

when it receives an input X, it looks at the distance between X and all those other points. 

It then finds the k closest points to X and uses them to make a prediction. The 

prediction is found by calculating a normalized weighted sum of the values of the k 

closest points. The weights are often proportional to the distance between the saved 

point and X (Gonzalez et al., 2014), but all the weights could be equal. If this case, kNN 

is finding the average value of the k closest points. 

Regression Trees 

Regression trees learn patterns by recursively breaking up the sample space into 

different regions where each region gives a certain prediction. Note that regression trees 

tend to split the space into many regions, so it can make many predictions. (Quinlan, 

1992) It does all of this by forming a tree of nodes. Each node asks a certain question 

about one of the input’s features. For example, a node may ask whether the input data 

point has a solar radiation value greater than 600 MJ/m2. If the answer is yes, then it 

will go to another node and ask another question. If the answer is no, it will go to a 
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different node. This process continues until an answer is given. In order to learn what 

questions to ask, the regression tree will minimize some impurity measure (Gonzalez et 

al., 2014). Note that a random forest is a collection of multiple regression trees, and the 

final output of a random forest is the average result of all its regression trees. 

Bayesian Ridge Regression 

Bayesian ridge regression is a probabilistic method that is like linear regression. 

But instead of making a linear function, a probability distribution is made based on the 

training data. Using Bayes rule, this method outputs the most likely value given the 

input values (Gelman, 2013). Since this is a ridge regression, a cost is added to the error 

if the coefficients are above a certain threshold. This encourages the model to not 

become too complicated and overfit the data.  

Feature Selection 

These machine learning methods use a variety of different techniques to make 

predictions, and the effect different feature selection methods have on their results will 

be compared. Correlation based feature selection (Cfs) will be done, and its effect on 

each model will be shown. Cfs methods look at the correlation between each feature and 

the target as well as the correlation between the features. It then finds the set of features 

that maximizes the correlation between the feature set and the target while also 

minimizing the correlation between the chosen features (Dash and Liu, 1997; Hall, 

1999). By minimizing the intra-correlation between features, Cfs reduces redundancy 

and noise and can show what relatively independent processes contribute to the target’s 

value. 



12 

 

 

 Another feature selection method is the ReliefF method. It develops weights for 

each of the features and adjusts those weights depending on the similarity of feature 

values among clustered data points. It does this by first initializing each weight to be 

zero. Then, it picks a random point from the dataset and finds the point in the dataset 

that has the closest target value to that random point. Then the features between these 

two points are compared. For every feature, if the values of that feature are similar 

among those two points, the weight for that feature is increased. However, if the values 

are dissimilar, then the weight of that feature is decreased (Kononenko, 1994). 

 Cfs and ReliefF are both filter feature selection methods. This means that they 

look at characteristics of the features themselves and uses that information to decide 

what features should be used. Wrapper feature selection methods on the other hand, use 

a machine learning algorithm to learn what sets of features lead to the best results. This 

paper will use a wrapper method using a ZeroR classifier. The ZeroR classifier uses the 

average value of each feature to predict the target. The effects of Cfs, ReliefF feature 

selection, and the wrapper method on the results of machine learning models for alfalfa 

biomass yield will all be analyzed and compared. 

METHODS 

The programming language used to clean the data, make visualizations, apply 

feature selection methods, and to make the machine learning models was Python 

(Python Software Foundation) within the Anaconda environment (Anaconda Software 

Distribution). Many packages for python were used. Pandas was used to clean and 

organize the data (McKinney, 2010), matplotlib was used to make the visualizations 
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(Hunter, 2007), seaborn was used to make a heat map showing the correlation between 

features (Waskom et al., 2016), sci-kit learn was used for all of the machine learning and 

the SelectKBest feature selection operations (Pedregosa et al., 2011), and finally, numpy 

was used for general mathematical operations (Oliphant, 2006; Van Der Walt, Colbert, 

& Varoquaux, 2011). Weka was used for the CfsSubsetEval (Cfs), ReliefFAttributeEval 

(ReliefF), and WrapperSubsetEval (Wrapper) feature selection operators (Witten, 

Frank, Hall, & Pal, 2016). 

The features used in training our machine learning models were the Julian day of 

the harvest, the number of days between the harvest and the sown date of the crop, the 

number of days between the current harvest and the previous harvest, the total amount 

of solar radiation and rainfall since the last harvest, the percent cover and day length at 

the time of the harvest, the average air temperature since the previous harvest, the 

average minimum air temperature since the last harvest, and the average maximum air 

temperature since the previous harvest, and the average soil moisture since the last 

harvest (Table 3.1). All the features that are averages were formed by obtaining daily 

values and averaging over every daily value. For example, the average air temperature 

feature was found by getting the average temperature for each day between the crop’s 

previous harvest and current harvest. Then all the daily values were averaged resulting 

in the final value for the average air temperature feature.  

These features were constructed from various datasets. All the data sources are 

shown in Appendix 1. Alfalfa yield and harvest data were obtained from alfalfa variety 

trials done by the University of Georgia (UGA) and University of Kentucky (UKY). This 

data contained the yield (tons/acre) of multiple varieties of alfalfa. UGA’s data was from 
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Athens and Tifton, Georgia from the years 2008 to 2010 and included data points from 

April to December. UKY’s data contained yield data from Lexington, Kentucky ranging 

from 2013 to 2018 and contains data from May to September. Each data set contained 

the yield, harvest date, and sown date for multiple varieties over time. The percent cover 

was also given along with the dates it was measured, but the percent cover was 

measured on different dates than when the crop was harvested.  

For every data point, the date the crop was harvested was converted into a Julian 

date. For each harvest, the number of days since the crop’s sown date and the number of 

days since the last harvest were calculated. The percent cover of the crop at its harvest 

date was found using interpolation. 

Daily weather data was also found. Data for Tifton and Watkinsville, which is 

about 13 miles from Athens, GA, was retrieved from the Georgia Automated 

environmental network. Similar data was found for Versailles, which is nearby 

Lexington, KY, from the National Oceanic and Atmospheric Administration (NOAA). 

These weather data sets contained the daily amount of solar radiation and rainfall, as 

well as the average air temperature, minimum and maximum air temperature, and the 

soil moisture. The day length was found using the United States Naval Observatory 

website. 

By using the weather data for the dates corresponding with the alfalfa harvest 

times, we calculated for each harvest: the total amount of solar radiation and rainfall 

that location had received since the previous harvest, and the average temperature, 

minimum temperature, maximum temperature, and soil moisture since the previous 

harvest. 
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TABLE 3.1: Sample data point. A data point with the same features as the data used 
to train our machine learning models. 

 

Once the data was gathered, all the data which had invalid values were 

disregarded. Also, all the data points that had harvest dates that happened in the same 

year as the sown date were filtered out. Similarly, the first harvest of every season was 

filtered out. This is because the amount of time since the previous harvest would be 

much larger for this harvest relative to subsequent harvests. After this cleaning process, 

770 data points were left. Athens had 108 corresponding data points, Tifton had 70, and 

Lexington had 592. 

Before training the models, we applied feature selection and standardized the 

data. For feature selection, we first used Sci-Kit Learn’s SelectKBest to show how 

changing the number of features changes the average R of each method. Feature 

Feature Name Value Abbreviation 

Julian day of harvest  249.00 JD 

Number of days since the crop was sown 643.00 DSS 

Number of days since last harvest 30.00 DSH 

Total solar radiation since the previous harvest (MJ/m^2) 610.29 Sol 

Total rainfall since the previous harvest(mm) 98.83 Rain 

Avg air temp since the previous harvest (C) 25.33 T 

Avg max air temp since the previous harvest (C) 31.25 MaxT 

Avg min air temp since the previous harvest (C) 19.1 MinT 

Avg soil moisture since the previous harvest (%) 0.11 SM 

Interpolated percent cover for the day of the harvest (%) 78.82 PC 

Day length on the day of the harvest (hrs) 12.62 DL 
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selection with Weka’s CFsSubsetEval (Cfs), ReliefFAttributeEval (ReliefF), and 

WrapperSubsetEval (Wrapper) operators was then used to train machine learning 

models, and their results were compared. Then all the features were standardized 

according to the formula 𝑥𝑛𝑒𝑤 =
𝑥𝑜𝑙𝑑−𝑥𝑚𝑒𝑎𝑛

𝑥𝑆𝐷𝑒𝑣
 where 𝑥𝑜𝑙𝑑 is the value of the feature before 

standardization, 𝑥𝑚𝑒𝑎𝑛 is the average value of the features, and 𝑥𝑆𝐷𝑒𝑣 is the standard 

deviation of the values for that feature. 

The following was done for each method. Before training the models, the data 

was shuffled and split into ten folds to be used for 10-fold cross validation. For each 

iteration of cross validation, one of the ten folds was used as a testing set while the other 

nine folds were used to train the machine learning model. Each fold was a testing set for 

one of the 10 iterations and was not used as the testing set more than once. Then for 

each iteration of the cross validation, a machine learning model was initialized. A grid 

search (Appendix 2) with 5-fold cross validation was done to find the hyperparameters 

for the model that most minimized the mean absolute error. Only the training set for 

this iteration was used here. Once the hyperparameters were found, the machine 

learning model was trained on the training set and was evaluated against the testing set. 

The mean absolute error (MAE), R value, and R squared value were all found and 

recorded. This was done for each of the ten iterations. Note that this means that ten 

different models were made for each method. The average MAE, R, and R squared value 

over all ten models were also found and recorded.  

This process was done to train and evaluate regression tree, random forest 

regression, k-nearest neighbor regression, support vector regression, neural networks, 

Bayesian Ridge regression, and linear regression. Once all the machine learning models 
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were trained and evaluated for the different sets of features found by the different 

feature selection operators, a two-tailed unpaired t test was performed between the 

results. This was used to determine if any of the feature selection operators picked 

feature subsets that led to significantly better results.  

RESULTS 

For every feature selection method, the average MAE, R, and R2 value for each 

model over the ten iterations are shown. Note that the average yield in the dataset is 

2020 lbs./acre.  

Using the SelectKBest feature selection method, we made all features available 

for feature selection and compared the results for K=3 to K= 11. Notice that as K 

increases, the R value increases, but the increase in R levels off at around K=6 features 

(Fig 3.1). These 6 features were the Julian day, number of days since the crop was sown, 

total solar radiation, average soil moisture, day length, and percent cover. The results of 

the models with no feature selection are shown in Fig 3.2 and Table C.1. Here, the 

support vector regression model had the highest average R of 0.948. 

We used Weka’s Cfs method for feature selection. If all features were made 

available for feature selection, it found that the best features to use would both 

maximize the correlation between the features to the target and minimize the 

correlation between the features were the Julian day, total solar radiation, total rainfall, 

and the percent cover. The results from training the models using just these features are 

shown in Fig 3.3 and Table C.2. The random forest method had achieved the highest R  
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FIGURE 3.1: Performance of models with k features and all features made 
available for feature selection. The average R value of the models is shown. 
SelectKBest feature selection was used with K values from K=3 to K=11. Note that the 
average R value for Bayesian Ridge Regression and linear regression were much lower 
than any of the other models, so they were not shown here. 
 

with a R of 0.933. The correlations between the features and target are shown in Fig 

C.1.  

However, because it may not be easy to get an accurate value of percent cover, we 

did another experiment with Weka’s Cfs method for feature selection. In this 

experiment, we made all the features available for feature selection except for percent 

cover. It found that the best set of features to use in this case were the Julian day, total 

solar radiation, total rainfall, and the number of days since the sown date. The results of 

evaluating the models trained on just these features are shown in Fig. 3.4 and Table C.3.  
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FIGURE 3.2: R values found with no feature selection. The results from linear 
regression and Bayesian ridge regression were much lower than the other models, so 
their results are not shown here. The results are shown explicitly in Table C.1. 
 

The k-nearest neighbor and random forest methods both achieved the best average R 

with this set of features by obtaining an average R of 0.952.  

To compare the results obtained from using the two sets of features found by Cfs, 

an unpaired two-tailed t test was performed between the R values of the models trained 

with the features chosen by the Cfs operator (Table 3.2). The random forest, k-nearest 

neighbor, and regression tree methods performed significantly better using the feature 

set that excluded percent cover from being available for selection. The other methods 

did not vary significantly across the two sets of results. Because excluding percent cover 

led to results that were significantly better or the same when compared to not excluding 
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percent cover, only the results found by Cfs without percent cover will be considered for 

the rest of this work. 

The ReliefF operator found that the best features were the number of days 

between the crop’s sown date and harvest date, the cumulative amount of rainfall the 

crop got since the previous harvest, and the average minimum daily temperature since 

the previous harvest. The results from training the machine learning models with these 

features are shown in Fig. 3.5 and Table C.4. In this case, k-nearest neighbors achieved 

the highest average of R with a value of 0.953. 

The Wrapper operator reported that the best features were number of days 

between the crop’s sown date and harvest date, the cumulative amount of rainfall since 

the previous harvest, the day length at the time of the harvest, and the Julian day of the 

harvest. The results of the machine learning models trained on these features is shown 

in Fig. 3.6 and Table C.5. The best R value of these methods was also k-nearest 

neighbors getting an average R of 0.952.  

Unpaired two-tail t tests were done between the R values of the methods which 

used all the features, the Cfs features (without percent cover), the ReliefF features, and 

the Wrapper features (Table 3.3). To show these results more clearly, Table 3.4 shows 

what feature selection operator led to the best results for each machine learning method. 

There is no significant difference in the results given by the feature selection operators 

in the same row of Table 3.4. 
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FIGURE 3.3: Results from Cfs feature selection with all features. The results 
from linear regression and Bayesian ridge regression were much lower than the other 
models, so their results are not shown here. The results are shown explicitly in Table 
C.2. 
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FIGURE 3.4: Results from Cfs feature felection with no percent cover. The 
results from linear regression and Bayesian ridge regression were too low to show. The 
results are shown explicitly in Table C.3. 
 
TABLE 3.2: P-values between the R2 values of the models trained by the two 
CfsSubsetEval feature sets. The results were found by doing unpaired two-tailed t 
tests. The first feature set contained the Julian day, total solar radiation, total rainfall, 
and percent cover. The second feature set contained the Julian day, the number of days 
since the sown date, total solar radiation, and the total rainfall. Significant results are 
shown in bold. 

Model T test results 

Random forest 0.0046 

K-nearest neighbor 0.0007 

Regression tree 0.0103 

Support vector 
regression 

0.2820 

Neural network 0.2070 

Linear regression 0.8940 

Bayesian ridge 
regression 

0.7481 
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FIGURE 3.5: Results from ReliefF feature selection. The results from linear 
regression and Bayesian ridge regression were much lower than the other models, so 
their results are not shown here. The results are shown explicitly in Table C.4. 
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FIGURE 3.6: Results from Wrapper feature selection operator. The results 
from linear regression and Bayesian ridge regression were much lower than the other 
models, so their results are not shown here. The results are shown explicitly in Table 
C.5. 
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Table 3.3: P-values between R2 values of different feature selection 
operators. Results from unpaired two-tail t tests. ‘All’ represents the results from 
Table C.1, ‘Cfs’ represents the results which used the features from Fig 3.4/Table C.3, 
‘ReliefF’ represents the results from Fig 3.5/Table C.4, and ‘Wrapper’ represents the 
results from Fig 3.6/Table C.5. If a p-value is followed by a parenthesis, the value in the 
parentheses is an abbreviation of the feature selection method that resulted in the 
higher average R2 value.  

T test RF KNN RT SVR NN Lin Bayes 

All vs Cfs 0.2973 0.3303 
0.0086 

(C) 
0.0559 0.0871 0.3758 0.3795 

All vs 
Relieff 

0.4631 0.2306 
0.0140 

(R) 
0.0001 

(A) 
0.0010 

(A) 
2E-13 

(A) 
3E-15 

(A) 

All vs 
Wrapper 

0.2398 0.3321 
0.0045 

(W) 
0.0038 

(A) 
0.0035 

(A) 
0.7555 0.3569 

Cfs vs 
Relieff 

0.8331 0.9179 0.8967 
0.0002 

(C) 
0.0156 

(C) 
3E-12 

(C) 
3E-11 

(C) 

Cfs vs 
Wrapper 

0.9867 0.9804 0.7840 0.0685 0.2196 0.6726 0.9486 

Relieff vs 
Wrapper 

0.8057 0.8924 0.6999 
0.0014 

(W) 
0.1052 

5E-10 
(W) 

8E-13 
(W) 

 
 
Table 3.4: Best feature selection operators for each machine learning 
method. There is no significant difference between the results in the same cell. ‘All’ 
refers to all features being used, ‘Cfs’ refers to the set of features found by 
CfsSubsetEval, ‘ReliefF’ refers to the set of features found by ReliefFAttributeEval, and 
’Wrapper’ refers to the set of features found by ‘WrapperSubsetEval’. 

Machine learning method 
Feature selection operator that led 

to the best results 

Random forest All, Cfs, ReliefF, Wrapper 

K-nearest neighbors All, Cfs, ReliefF, Wrapper 

Regression tree Cfs, ReliefF, Wrapper 

Support vector regression All, Cfs 

Neural network All, Cfs 

Linear regression All, Cfs, Wrap 

Bayesian ridge regression All, Cfs, Wrap 
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DISCUSSION 

The Cfs operator was the best overall feature selection method because it led to 

the best results for each method. None of the other feature selection operators led to the 

best results for each method. The feature set that the Cfs operator found consisted of the 

Julian day, the number of days between the sown and harvest date, the cumulative solar 

radiation since the previous harvest, and the cumulative rainfall since the last harvest.  

There was no significant difference in any of the random forest results, no matter 

the feature selection method. The same is true for k-nearest neighbors. Even though 

using all features does not result in a significant difference from using a feature selection 

operator, it would still be beneficial to use a feature selection operator. Doing so would 

lower computational time and could simplify the models. The same can be said for 

support vector regression and the neural network, which got the best results from using 

either all the features or Cfs. For the regression tree, using any of the three feature 

selection methods resulted in better results than if all the features were used. In this 

case, even though fewer features are used, the results improved. This may be because 

different features can embed the same information. For example, the Julian day of the 

harvest and the day length features both refer to seasonal information, therefore they 

would have a high correlation with each other (Fig C.1). Thus, including both the Julian 

day of the harvest and the day length could add noise to the model. For linear regression 

and Bayesian ridge regression, using anything but the ReliefF operator led to the best 

results. This is probably because forming a linear prediction function with only three 

features is not appropriate for this domain. 
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 This work may be helpful because it describes a framework that can be applied to 

other machine learning problems in predicting crop and biomass yield. This work also 

shows what features are most important for predicting alfalfa yield in the Southeast 

United States from Spring to the end of Fall. The best results came from training the 

models with the Julian day, amount of solar radiation and rainfall since the previous 

harvest, and the number of days since the crop was sown. This is useful because 

gathering data is resource intensive and knowing the best features can help make data 

collecting more efficient. These four features are also relatively easy to obtain. The 

Julian day and amount of time since the crop was sown are trivial to retrieve, and the 

amount of solar radiation and rainfall can be obtained from weather data sources. 

 Also, besides possibly improving the results of the models, feature selection can 

provide insight into the problem domain (Dash & Liu, 1997). By understanding what 

features are most important for predicting yield, one may gain insight into what factors 

most impact a crop’s yield. The cumulative rainfall since the previous harvest and the 

number of days between the harvest date and sown date were chosen by all the feature 

selection methods, so this is evidence that they may be the most important features for 

this problem. Similarly, the Julian day was chosen by two out of three feature selection 

methods, so this is evidence that it is also an important feature. 

This work could be extended by providing this framework to alfalfa crops grown 

in other locations besides Georgia and Kentucky. It could also be improved by 

incorporating more data from other locations in the Southeast United States. 

 

 



28 

 

 

 

 

CHAPTER 4 

COMPARING MACHINE LEARNING METHODS FOR BIOMASS YIELD PREDICTION 

USING WEATHER AND PLANTING DATA2 

                                                 
2 Whitmire, C.D., Rasheed, H.K., Missaoui, A., Rasheed, K.M., & Maier, F.W. To be submitted 
to Computers and Electronics in Agriculture 
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ABSTRACT 

Predicting crop yield is important for agricultural planning and humanitarian efforts. 

Efforts had been made to use remote sensing, weather, planting, and soil data to train 

machine learning models for yield prediction. However, remote sensing, though 

successful, requires large amounts of data be processed, and the models cannot make 

predictions until the harvesting season begins. Using weather and planting data from 

alfalfa variety trials in Kentucky and Georgia, we developed machine learning models to 

predict biomass yield. Linear regression, regression trees, support vector machines, 

neural networks, k-nearest neighbor and Bayesian ridge regression methods were all 

used. Cross validation was used to find the optimal hyperparameters and to evaluate the 

methods. There was no significant difference between the results of the random forest, 

k-nearest neighbor, regression tree, and support vector regression when the results for 

each model were averaged. We compared the results of our methods to the results of 

other studies. We achieved results that were comparable with the best results of the 

studies we examined, but our models used a small amount of data and accessible 

features. Our best individual model was a random forest with a mean absolute error of 

162.01 lbs/acre and a R2 of 0.941. 
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INTRODUCTION 

With the intent of directing world leaders towards solving some of the world’s 

biggest problems, the United Nations has recently developed 17 goals and 169 targets. 

The hope is that the world will reach these goals by the year 2030 (United Nations, 

2015). However, it is the opinion of the Copenhagen Consensus Center (CCC), a think 

tank, that prioritizing these goals will make it more likely that the goals will be reached 

(Copenhagen Consensus Center, 2015).  The CCC has performed a cost-benefit analysis 

on all these targets and ranked them accordingly. One of their findings was that 

increasing research and development of increasing crop yields would be one of the most 

cost-effective ways of achieving the UN’s goals (Rosegrant, Magalhaes, Valmonte-

Santos, & Mason-D’Croz, 2018).  Specifically, every $1 spent on this kind of R&D would 

result in $34 worth of benefit worldwide. (Lomberg, 2015)  

One possible way to increase yields is to improve agricultural planning. This 

would help ensure that there are sufficient yields of particular crops. At the start of every 

season, agricultural planners need to estimate the yields of different agricultural plans 

(Frausto-Solis, Gonzalez-Sanchez, & Larre, 2009). Often, farmers rely on their own 

personal experiences of history to predict what their yields will be, but this can be 

inaccurate (RuB, 2009). Given that crop yield varies spatially and temporally, and are 

sensitive to varying conditions like weather, better prediction methods should be 

investigated. 

The USDA, with its National Agricultural Statistics Service branch, makes 

monthly forecasts of crop yields in the United States. It does this by conducting two 

surveys, a farm operator survey and an objective survey. The farm operator survey is 
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done by calling farmers at random and asking them what they think their predicted 

yield for the next month will be. The objective survey involves an investigator going out 

and surveying random fields and recording data on the output of those fields. The 

findings of these surveys are compared to previous historical data to confirm that the 

findings are consistent with previous harvests with similar conditions. The final 

predicted yields then come from the results of these surveys (National Agricultural 

Statistics Service, 2018; Johnson, 2014). The findings of this methodology, when 

compared to the ground truth, have had very low errors (You, Li, Low, Lobell, & Ermon, 

2017; National Agricultural Statistics Service, 2018). However, it is very resource 

intensive. The farm operator survey is done primarily over the phone, and the objective 

survey requires measurements to be taken in person at hundreds of farms every month 

(National Agricultural Statistics Service, 2018; Johnson, 2014).  

An alternative approach is to use remote sensing (RS) data. RS techniques use 

images achieved primarily from aircraft of satellites, and these images will record 

spectral, spatial, and temporal information (Chlingaryan, Sukkarieh, & Whelan, 2018). 

Mathematical operations can be performed on these images to form vegetation indices 

(VIs), which can be used as inputs into machine learning algorithms (Xue and Su, 2017). 

Recent work has been done to use VIs to predict crop yield. You et al., had great success 

at predicting county level soybean yield in the United States using remote sensing data 

as input for a convolutional neural network and a LSTM, both with a Gaussian Process 

component (2017). Panda, Ames, & Panigrahi used several different VIs as an input to a 

neural network to predict corn yield (2010). Johnson did something similar but used 

regression trees to predict both corn and soybean yield (2014). However, despite these 
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successes, there are difficulties with making machine learning models based on remote 

sensing data.  This is because using remote sensing data means depends on the 

processing of large amounts of data across different platforms (Chlingaryan, 2018). 

These models also cannot make a prediction unless there are images available for input, 

which means that this model cannot begin making predictions until the season has 

started (Cunha, Silva, & Netto, 2018). Xue and Su also compared over one hundred 

different vegetation indices and found that no VI is universally better than the others. 

Each is more suitable to certain situations, and each has their own limitations (2017). 

This means that it may be difficult to know the optimal VI to be used in any particular 

case. 

Weather, spatial, and soil features have also been used to train machine learning 

models to predict crop yield (González Sánchez, Frausto Solís, & Ojeda Bustamante, 

2014; Ayoubi & Sahrawat, 2011; Jeong et al., 2016; Chlingaryan et al., 2018). These 

kinds of data also require less processing than remote sensing data and can be used to 

make predictions before the season starts. They also have the potential to use weather 

forecasting results to make predictions before the season begins, making it more 

convenient for planning purposes than using remote sensing data. This paper will use 

weather and planting data to develop a variety of machine learning models and will 

compare the results. 

METHODS 

The Python programming language was used throughout this research (Python 

Software Foundation). Specifically, Python as provided within the Anaconda 
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environment was used (Anaconda Software Distribution). The following packages were 

used: Pandas for data cleaning and preparation (McKinney, 2010), matplotlib (Hunter, 

2007) and seaborn (Waskom et al., 2016) for visualizations, sci-kit learn to make and 

evaluate the machine learning models (Pedregosa et al., 2011), and finally, numpy for 

general mathematical operations (Oliphant, 2006; Van Der Walt, Colbert, & Varoquaux, 

2011).  

The features used in training our machine learning models were the Julian day of 

the harvest, the amount of days between the harvest and the sown date of the crop, the 

cumulative solar radiation since the previous harvest, and the cumulative rainfall since 

the last harvest. The cumulative solar radiation and rainfall values were found by 

summing daily values. 

All the data sources for this work are presented in Appendix 1. Alfalfa harvest 

data was obtained from variety trials done by the University of Georgia (UGA) and 

University of Kentucky (UKY). This data contained the yield (tons/acre) of multiple 

varieties of alfalfa. UGA’s data came from Athens and Tifton, Georgia from the years 

2008 to 2010. Harvests were done here from April to December. UKY’s data contained 

yield data from Lexington, Kentucky ranging from 2013 to 2018 and contains data from 

the months of May through September. Each data set contained the yield, harvest date, 

and sown date for alfalfa crop. 

Daily weather data was found for each location. Data for Tifton and Watkinsville, 

which is about 13 miles from Athens, GA, was retrieved from the Georgia Automated 

environmental network. Similar data was found for Versailles, which is nearby 
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Lexington, KY, from the National Oceanic and Atmospheric Administration (NOAA). 

These weather data were made up of daily weather data.  

All the data which had invalid values were disregarded. Also, all the data points 

that had harvest dates with the same year as the sown date were filtered out. Similarly, 

the first harvest of every season was removed because the amount of time since the 

previous harvest would be much larger for this harvest relative to subsequent harvests. 

After this cleaning process, 770 data points were left. Athens had 108 corresponding 

data points, Tifton had 70, and Lexington had 592.  

Before training the models, we standardized the data. All of the features were 

standardized according to the formula 𝑥𝑛𝑒𝑤 =
𝑥𝑜𝑙𝑑−𝑥𝑚𝑒𝑎𝑛

𝑥𝑆𝐷𝑒𝑣
  where 𝑥𝑜𝑙𝑑 was the original 

value of the feature, 𝑥𝑚𝑒𝑎𝑛 is the average value of the features, and 𝑥𝑆𝐷𝑒𝑣 is the standard 

deviation of the values for that feature. 

Before training the models, the data was shuffled and split into ten folds to be 

used for 10-fold cross validation. For each fold, a machine learning model was 

initialized. This means that ten models were made for each method, one model for each 

fold. Then, within this outer fold, a grid search (Appendix 2) with 5-fold cross validation 

was done to find the hyperparameters for the model that most minimized the mean 

absolute error. Once the hyperparameters were found, the machine learning model was 

trained on the training set and was evaluated against the testing set. The mean absolute 

error (MAE), mean absolute percent error (MAPE), root mean square error (RMSE), R 

value, and R squared value were all found and recorded (Table 4.1). The average errors, 

percent error, R, and R squared value over the ten iterations was found and recorded, 
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and the results of the best model were also recorded along with their standard 

deviations.  

This process was done to train and evaluate the following methods: regression 

tree, random forest regression, k-nearest neighbors, support vector machines, neural 

networks, Bayesian Ridge regression, and linear regression. Once the results for each 

method were obtained, an unpaired two-tailed t test was used to find the p-value 

between the average R2 values of each method. 

 

TABLE 4.1: Evaluation metric definitions. The metrics used to evaluate each 
method. For each case, 𝑛 is the number of total data points, 𝑡𝑟𝑢𝑒𝑖 is ground truth value 
for the 𝑖th data point, 𝑝𝑟𝑒𝑑𝑖 is the predicted value for the 𝑖th data point, 𝑦�̅� is the average 
yield value from the dataset, and 𝑦𝑝̅̅ ̅ is the average value of the predictions. 

Metric Equation 

Mean absolute error (MAE) 
1

𝑛
∑𝑡𝑟𝑢𝑒𝑖

𝑛

𝑖=1

− 𝑝𝑟𝑒𝑑𝑖 

Mean absolute percent error (MAPE) 
100

𝑛
∑|

𝑡𝑟𝑢𝑒𝑖 − 𝑝𝑟𝑒𝑑𝑖
𝑡𝑟𝑢𝑒𝑖

|

𝑛

𝑖=1

 

 

Root mean square error (RMSE) √
∑ (truei– predi)2
n
i=1

n
 

R 

∑ (𝑡𝑟𝑢𝑒𝑖 − 𝑦�̅�)(𝑝𝑟𝑒𝑑𝑖 − 𝑦𝑝̅̅ ̅)
𝑛
𝑖=1

√∑ (𝑡𝑟𝑢𝑒𝑖 − 𝑦�̅�)2
𝑛
𝑖=1 ⋅ ∑ (𝑝𝑟𝑒𝑑𝑖 − 𝑦𝑝̅̅ ̅)

2𝑛
𝑖=1

 

R2 1 −
∑ (𝑡𝑟𝑢𝑒𝑖 − 𝑝𝑟𝑒𝑑𝑖)

2𝑛
𝑖=1

∑ (𝑡𝑟𝑢𝑒 − 𝑦�̅�)2
𝑛
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RESULTS 

For each method, ten models were made and evaluated. These results are shown 

in Fig 4.1 and Table 4.2. Also, for each method, the results for the model with the best R2 

value out of the ten models were recorded (Table 4.3). Note that the average yield from 

the entire dataset was 2020 lbs./acre. The p-values between the average results of each 

method is shown in Table 4.4. 

FIGURE 4.1: Average results. The average results found over the 10 iterations for 
each type of model. The results from linear regression and Bayesian ridge regression 
were much lower than the other models, so their results are not shown here. 
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TABLE 4.2: Average results. The average results found over the 10 iterations for 
each type of model. Each result is shown as ‘average results +/- 2σ’, where σ is the 
standard deviation. The best result in each column is shown in bold. 

Model  
MAE 

(lbs./acre) 
MAPE 

(%) 
RMSE 

(lbs./acre) 
R R2 

Regression 
Tree 

199.87 +/- 
29.884 

12.742 
+/- 5.15 

272.085 +/- 
60.982 

0.951 +/- 
0.02 

0.9 +/- 
0.042 

Random Forest 
197.508 +/- 

34.128 
12.728 

+/- 6.916 
267.067 +/- 

54.412 
0.95 +/- 

0.03 
0.902 +/- 

0.058 

K-Nearest 
Neighbors 

194.558 +/- 
42.612 

12.725 
+/- 5.2 

267.363 +/- 
54.572 

0.952 
+/- 

0.026 

0.903 
+/- 

0.052 

Support Vector 
Machines 

227.375 +/- 
56.136 

17.093 
+/- 7.372 

301.198 +/- 
59.65 

0.937 +/- 
0.034 

0.876 +/- 
0.068 

Neural 
Network 

242.95 +/- 
61.886 

15.874 
+/- 5.608 

316.218 +/- 
89.124 

0.932 +/- 
0.042 

0.861 +/- 
0.088 

Bayesian Ridge 
Regression 

372.139 +/- 
72.446 

25.798 
+/- 9.84 

518.463 +/- 
177.618 

0.802 +/- 
0.118 

0.642 +/- 
0.188 

Linear 
Regression 

371.836 +/- 
92.538 

25.521 
+/- 10.176 

518.365 +/- 
173.14 

0.802 +/- 
0.096 

0.638 +/- 
0.146 
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TABLE 4.3: Results of best models. The results from the model with the highest R2 
value. The best result in each column is shown in bold. 

Model  
MAE 

(lbs./acre) 
MAPE 

(%) 
RMSE 

(lbs./acre) 
R R2 

Regression Tree 182.078 14.632 248.418 0.963 0.928 

Random Forest 162.01 9.892 218.913 0.97 0.941 

K-Nearest 
Neighbors 

181.082 13.264 231.769 0.968 0.936 

Support Vector 
Machines 

188.365 14.016 245.468 0.958 0.917 

Neural Network 184.816 15.561 239.856 0.965 0.931 

Bayesian Ridge 
Regression 

294.055 21.723 380.825 0.882 0.777 

Linear Regression 320.906 34.528 474.567 0.851 0.723 
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Table 4.4: P-values between different machine learning methods. Significant 
values are shown in bold. 

 RF SVR KNN RT NN Linear Bayes 

RF 1 0.080 0.923 0.888 0.027 2E-07 5E-06 

SVR 0.080 1 0.058 0.069 0.421 4E-07 1E-05 

KNN 0.923 0.058 1 0.792 0.021 2E-07 5E-06 

RT 0.888 0.069 0.792 1 0.025 4E-07 7E-06 

NN 0.027 0.421 0.021 0.025 1 5E-07 1E-05 

Linear 2E-07 4E-07 2E-07 4E-07 5E-07 1 0.903 

Bayes 5E-06 1E-05 5E-06 7E-06 1E-05 0.903 1 

 

DISCUSSION 

Linear regression is commonly used as a baseline, and all other methods 

performed better than it except for the Bayesian ridge regression method. On average, 

the k-nearest neighbor method had the best MAE, MAPE, R value, and R2 value, and the 

random forest had the best average RMSE. However, K-nearest neighbor, random 

forest, regression tree, and support vector regression all had average results that did not 

differ significantly from each other. The best individual model overall was a random 

forest model. It performed the best according to all metrics.  

It can be difficult to compare results between papers given that different metrics 

are used in different papers. Some metrics are also not suitable for comparing two 

models if the models used different datasets or are working in different contexts. 

However, we have attempted to compare our results with the best results of other work 
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that used machine learning to predict crop yield by using the R, R2, and MAPE values 

(Table 4.5). These values are inherently normalized to the data used to train each 

model.  

 Note that You et al, Johnson, Panda et al., and Kuwata & Shibasaki all used 

remote sensing data to train their machine learning models. González Sánchez et al.,  

Ayoubi & Sahrawat, and Jeong et al. used weather, planting, and/or soil data as features 

for their machine learning models.  

Our results are better or at least comparable to the findings of other studies 

(Table 4.5). Our procedure also uses features that are easy to find and require little and 

no processing, unlike remote sensing data. Our method has the potential to make 

predictions before the harvesting season begins, while remote sensing cannot make any 

predictions until data from the harvesting season has been recorded (Cunha et al., 

2018). In this way, our procedure for developing machine learning algorithms for crop 

yield prediction is more convenient. As we and others have demonstrated, good results 

can be obtained with these simpler features that do not use remote sensing data.  

 A weakness of our method is that is only applicable to a specific region. Our 

models were trained with alfalfa data in Kentucky and Georgia, USA, and they would not 

be able to make reliable predictions for alfalfa in other parts of the world. However, 

some studies have worked to make more universal models, and with great success (You 

et al., 2017). Further work could be done to compare the results of a universal model 

against the results of several regional models, using similar datasets. 

  



41 

 

 

TABLE 4.5: Results comparison. A comparison between different studies on using 
machine learning for crop yield prediction. A dash means the study did not use that 
metric. Note that the best results from each study is shown here. 

Study R R2 MAPE (%) 

Our Study’s Average Results: RF 0.95 0.902 12.728 

Our Study’s best Results: RF 0.97 0.941 9.892 

You et al., 2017: CNN and LSTM with GP - - 3.19 

Johnson, 2014: DT - 0.93 - 

Panda et al., 2010: NN - 0.72 7 

Kuwata & Shibasaki, 2015: NN 0.81 - - 

González Sánchez et al., 2014: DT 0.74 - - 

Ayoubi & Sahrawat, 2011: NN - 0.93 - 

Jeong et al., 2016: RF  0.98 - - 

 

CONCLUSION 

Predicting crop yield is essential for agricultural preparation and can be helpful 

in reaching some of the worldwide goals established by the United Nations. Much work 

has been done using remote sensing, weather, planting, and soil data to predict crop 

yield. We have proposed a procedure that uses only four features that are easy to find 

and process, and this procedure results in good results regarding alfalfa yield in the 

Southeast United States. The four features used were the Julian day of the harvest, the 

number of days between when the crop was sown and when it was harvested, the 

cumulative solar radiation since the previous harvest, and the cumulative rainfall since 

the previous harvest. K-nearest neighbor, random forest, a regression tree, and support 
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vector regression had average results which did not vary significantly from each other. 

The best single model was a random forest, which achieved a MAE of 162.01 lbs./acre 

and a R2 value of 0.941. 
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CHAPTER 5 

CONCLUSION 

 This project was successful in exploring the effect of feature selection on machine 

learning models for biomass yield prediction and in developing machine learning 

models with high R2 values and low percentage errors using a relatively small amount of 

accessible data. The models were made to predict alfalfa yield in the Southeastern 

United States. After doing feature selection, the optimal features found were the Julian 

day, the number of days between the sown date and harvest date, the cumulative solar 

radiation since the crop’s previous harvest, and the cumulative rainfall since the crop’s 

previous harvest. K-nearest neighbor, random forest, a regression tree, and support 

vector regression performed the best and did not vary significantly from each other. The 

best average result found was obtained by k-nearest neighbor, and it had a MAE of 

194.558 lbs/acre and a R2 of 0.903. The best individual model was a random forest 

model which achieved a MAE of 162.01 lbs/acre and R2 of 0.941. 

 This work could be expanded by using more data. The methods described here 

could also be used to develop predictive models for other crops in other regions. It 

would also be interesting to determine if the set of features that were found to be 

optimal in our study were also optimal for other regions and other crops. A direct 

comparison between using weather and historical planting data, and vegetative indices 

would also be insightful. By using the same region and time, these differing sets of 
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features could be better compared. An exploration of using a combination of remote 

sensing, historical planting, and weather data together would also be useful.  

 This work could be further expanded by exploring more hyperparameters for the 

different methods. Neural networks may especially benefit from this given that there has 

been so much recent work in developing successful deep learning neural networks for a 

variety of applications. 

 Finally, work on using plant characteristics as features may help to make a 

universal prediction model that could work across different species and regions. 

Features such as leaf size, root depth, and temperature constraints, along with weather 

and soil features, may could be used to make universal models. 
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APPENDIX A  

CODE AND DATA ACCESSIBILITY 

The code used for this project can be found at 

https://github.com/chriswhitmire/alfalfa-yield-prediction 

 
The University of Georgia alfalfa yield data can be found here: 

https://georgiaforages.caes.uga.edu/species-and-varieties/cool-season/alfalfa.html 

 
The University of Kentucky alfalfa yield data can be found as progress reports on this 

page: http://dept.ca.uky.edu/agc/pub_prefix.asp?series=PR 

Note that the only data that was used from the University of Kentucky was the non-

roundup ready alfalfa varieties that were first harvested in the year 2013 or later. 

The daily weather data for Kentucky was found on the National Oceanic and 

Atmospheric Administration website: https://www.ncdc.noaa.gov/crn/qcdatasets.html 

 
The daily weather data for Georgia was given to us by the Georgia Automated 

Environmental Monitoring Network. 

 
The day length was found from the United States Naval Observatory’s website: 

https://aa.usno.navy.mil/data/docs/Dur_OneYear.php 

  

https://github.com/chriswhitmire/alfalfa-yield-prediction
https://georgiaforages.caes.uga.edu/species-and-varieties/cool-season/alfalfa.html
http://dept.ca.uky.edu/agc/pub_prefix.asp?series=PR
https://www.ncdc.noaa.gov/crn/qcdatasets.html
https://aa.usno.navy.mil/data/docs/Dur_OneYear.php
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APPENDIX B 

HYPERPARAMETER GRID VALUES 

The grid for the hyperparameters of each model is as follows: 

Regression Tree- 

•     ‘criterion': ['mae'], 

•     ‘max_depth': [5,10,25,50,100] 

Random forest - 

• 'n_estimators': [5, 10, 25, 50, 100], 

• 'max_depth': [5, 10, 15, 20],  

• 'criterion': ["mae"] 

K-nearest neighbors-  

• 'n_neighbors': [2,5,10], 

•  'weights': ['uniform', 'distance'], 

• 'leaf_size': [5, 10, 30, 50]     

Support vector machine- 

•  'kernel': ['linear', 'poly', 'rbf', 'sigmoid'], 

•  'C': [0.1, 1.0, 5.0, 10.0], 

•  'gamma': ["scale", "auto"], 

•  'degree': [2,3,4,5] 

Neural Network- 

•  'hidden_layer_sizes':[(3), (5), (10), (3,3), (5,5), (10,10)], 
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•  'solver': ['sgd', 'adam'], 

•  'learning_rate' : ['constant', 'invscaling', 'adaptive'], 

•  'learning_rate_init': [0.1, 0.01, 0.001]       

Bayesian ridge regression- 

• 'n_iter':[100,300,500], 

• 'lambda_1': [1.e-6, 1.e-4, 1.e-2, 1, 10], 

• 'lambda_1': [1.e-6, 1.e-4, 1.e-2, 1, 10] 

Linear Regression- no hyperparameters 
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APPENDIX C 

CHAPTER 3 ADDITIONAL TABLES AND FIGURES 

 Each table is organized in descending order based on the model’s R value. Each 

result is given as ‘average result +/- 2σ’, where σ is the standard deviation. 

 
FIGURE C.1: Correlation heat map between features. A heat map showing the 
value of the correlation coefficient between each possible pair of features. 
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TABLE C.1: Results with no feature selection. The results from training the 
models with all possible features. Each result is shown as ‘average results +/- 2σ’, where 
σ is the standard deviation. 

Model 
Mean absolute error 

(lbs./acre) 
R R2 

Support vector 
Machine 

209.888 +/- 43.626 
0.948 +/- 

0.018 
0.895 +/- 

0.034 

K-nearest neighbors 205.418 +/- 20.214 
0.946 +/- 

0.032 
0.891 +/- 

0.06 

Random Forest 207.448 +/- 42.568 
0.945 +/- 

0.034 
0.887 +/- 

0.068 

Neural network 232.937 +/- 49.23 
0.937 +/- 

0.036 
0.873 +/- 

0.068 

Regression Tree 236.039 +/- 58.794 
0.927 +/- 

0.042 
0.849 +/- 

0.088 

Linear Regression 358.454 +/- 80.506 
0.818 +/- 

0.094 
0.664 +/- 

0.15 
Bayesian ridge 

Regression 
357.686 +/- 67.776 

0.818 +/- 
0.07 

0.663 +/- 
0.11 

 

TABLE C.2: Results from Cfs feature selection with all features. The results 
are from using the features Julian day, total solar radiation, total rainfall, and percent 
cover. Each result is shown as ‘average results +/- 2σ’, where σ is the standard deviation. 

Model 
Mean absolute error 

(lbs./acre) 
R R2 

Random Forest 228.651 +/- 60.952 
0.933 +/- 

0.018 
0.865 +/- 

0.04 

Support vector 
Machine 

248.458 +/- 50.402 
0.925 +/- 

0.048 
0.851 +/- 

0.094 

K-nearest neighbors 251.494 +/- 78.648 
0.914 +/- 

0.05 
0.831 +/- 

0.094 

Regression Tree 272.247 +/- 87.004 0.9 +/- 0.106 0.8 +/- 0.192 

Neural network 293.606 +/- 74.538 
0.887 +/- 

0.068 
0.778 +/- 

0.136 

Linear Regression 382.928 +/- 91.962 
0.792 +/- 

0.104 
0.627 +/- 

0.164 

Bayesian ridge 
Regression 

383.459 +/- 73.826 
0.79 +/- 

0.096 
0.619 +/- 

0.162 
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TABLE C.3: Results from Cfs Feature Selection with no percent cover. The 
results from using the features Julian day, number of days since the sown date, total 
solar radiation, and total rainfall. Each result is shown as ‘average results +/- 2σ’, where 
σ is the standard deviation. 

Model 
Mean absolute error 

(lbs./acre) 
R R2 

K-nearest neighbors 193.938 +/- 50.358 
0.952 +/- 

0.028 
0.904 +/- 

0.054 

Random Forest 196.539 +/- 43.768 
0.952 +/- 

0.028 
0.903 +/- 

0.06 

Regression Tree 200.052 +/- 39.43 
0.95 +/- 

0.026 
0.899 +/- 

0.056 

Support vector 
Machine 

231.222 +/- 60.97 
0.936 +/- 

0.032 
0.871 +/- 

0.064 

Neural network 260.651 +/- 96.324 
0.911 +/- 

0.084 
0.821 +/- 

0.162 

Bayesian ridge 
Regression 

372.945 +/- 56.526 0.8 +/- 0.122 
0.632 +/- 

0.186 

Linear Regression 372.547 +/- 51.848 
0.798 +/- 

0.096 
0.632 +/- 

0.166 

 

TABLE C.4: Results from ReliefF Feature Selection. The results from using the 
features number of days since the sown date, total rainfall, and the average minimum 
temperature since the previous harvest. Each result is shown as ‘average results +/- 2σ’, 
where σ is the standard deviation. 

Model 
Mean absolute error 

(lbs./acre) 
R R2 

K-nearest neighbors 195.86 +/- 44.704 
0.953 +/- 

0.018 
0.905 +/- 

0.038 

Random Forest 197.026 +/- 49.294 
0.95 +/- 

0.038 
0.9 +/- 0.076 

Regression Tree 199.584 +/- 34.374 
0.948 +/- 

0.036 
0.897 +/- 

0.066 

Neural network 357.532 +/- 133.118 
0.842 +/- 

0.146 
0.7 +/- 0.234 

Support vector 
Machine 

344.604 +/- 104.482 
0.83 +/- 

0.128 
0.688 +/- 

0.206 

Linear Regression 667.121 +/- 104.778 
0.262 +/- 

0.176 
0.05 +/- 0.12 

Bayesian ridge 
Regression 

666.844 +/- 73.35 
0.258 +/- 

0.236 
0.049 +/- 

0.114 
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TABLE C.5: Results from Wrapper feature selection operator. The results 
from using the features number of days since the sown date, total rainfall, day length, 
and the Julian day. Each result is shown as ‘average results +/- 2σ’, where σ is the 
standard deviation. 

Model 
Mean absolute error 

(lbs./acre) 
R R2 

K-nearest neighbors 199.28 +/- 69.822 
0.952 +/- 

0.026 
0.904 +/- 

0.052 

Random Forest 197.782 +/- 51.598 
0.952 +/- 

0.024 
0.903 +/- 

0.044 

Regression Tree 200.208 +/- 41.574 
0.951 +/- 

0.018 
0.902 +/- 

0.036 

Support vector 
Machine 

261.395 +/- 56.65 
0.917 +/- 

0.054 
0.835 +/- 

0.098 

Neural network 300.245 +/- 84.178 
0.883 +/- 

0.088 
0.776 +/- 

0.156 

Linear Regression 370.509 +/- 108.572 
0.807 +/- 

0.144 
0.651 +/- 

0.22 

Bayesian ridge 
Regression 

372.011 +/- 59.48 0.8 +/- 0.092 
0.634 +/- 

0.154 

 


