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ABSTRACT 

 This study explores the inefficiencies inherent in group decision-making processes, 

particularly when critical information is dispersed among team members. The limitations of 

traditional human-based research methods prompt an AI-driven approach to model discussion. 

CogSystem is designed for simulating group decision-making, examining the interplay between 

group-level processes and individual-level cognition. The system comprises of CogFrame, a 

discussion framework, and CogChain, a cognitive architecture. CogFrame allows for the 

manipulation of discussion length, information distribution, and decision rules. CogChains are 

introduced to LLM-based agents to enhance their realism and simulate the cognitive processes 

influencing contribution of information items. Each CogChain captures a different individual level 

factor, including motivations, memory, and trust. Combinations of CogFrame and CogChain 

configurations are tested to investigate their impact on the optimality of the discussion result and 

human-like behavior of agents. The results offer insights into enhancing behavior modeling, 

decision-making outcomes, and human-AI collaboration.  
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CHAPTER 1 

INTRODUCTION 

Decision making groups are deployed across a wide range of tasks, from simple with 

mundane implications to complex with irreversible consequences. The adage ‘there is wisdom in 

numbers’ is not without evidence. Decisions made by group consensus, in comparison to 

individuals, may lead to overall higher quality and reliability (Stasser & Titus, 1985). A group 

represents an array of viewpoints, and this collective knowledge potentially resolves issues of 

social judgment and preference (Stasser, 1988). They facilitate the combining of knowledge, skills, 

and capabilities of their team members (Martinez-Miranda & Pavon, 2012). This is reflected in 

decisions with large-scale impact, such as democratic governance systems, and ethically 

challenging undertones, like jury deliberations. Discussions can be framed as an exchange of 

information, where group members contribute information items as they work towards their 

decision. The decision-making process includes discovering and integrating information items to 

generate evaluations of decision options and arriving at a consensus (Stasser, 1988). Groups 

function as information processors, intaking relevant information to perform cognitive tasks to 

reach their goal (Hinsz et al., 1997). With a larger information capacity, groups are better equipped 

to make an informed decision in comparison to individuals.    

Unfortunately, a comprehensive exchange of information cannot always be guaranteed. 

The nature of collaboration may result in the utilization of only 70% of the groups’ storage 

capacity, stemming from inefficient information processing (Hinsz et al., 1997). Group and 

individual level factors, including communication barriers, cognitive biases, and interpersonal 
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dynamics, can impede the free flow of information exchange. Group settings often fail to recognize 

that one option is better supported than another, as a direct consequence of the limited information 

exchange failing to uncover the hidden profile.    

Hidden Profiles 

A hidden profile is the set of information items that indicates a better alternative among 

decision options (Stasser, 1988). Initially, the information items within this set are dispersed across 

individual group members. Information item utility is defined with respect to the positive or 

negative semantic connotation they cast on decision alternatives. As members discuss, there are 

many group-level and individual level processes influencing which information items are 

mentioned. Group discussions are not a perfect mechanism in balancing the complex 

interrelationships between these influences to maximize the amount of information exchanged 

(Stasser & Titus, 1985). As a result, uninformed decisions are possible, leading to suboptimal 

outcomes. The failure to uncover hidden profiles underscores the inherent limitations of group 

discussions as decision-makers. While the exchange of information within groups encourages the 

exposure of various perspectives, it does not guarantee the identification and synthesis of all 

relevant information. There is wisdom in numbers—sometimes. Evidently, the efficacy of a group 

correlates as a proportional function to the amount of information shared.  

Investigating human-collaborative decision making provides insights into when and why 

groups do not arrive at optimal decisions. Analyzing the hidden profile phenomenon requires 

separating group interaction, the means of information exchange, from individual processing 

(Hinsz et al., 1997). There is a bidirectional flow of influence between group processing and 

individual level processing. The trading of information items can be examined to uncover causal 

associations between specific group and individual level processes. These associations can be used 
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to predict the distribution of preferences, such as group consensus or opinion changes (Stasser, 

1988). Modeling this information provides a theoretical framework for a deeper understanding of 

human collaboration, serving as a practical tool to develop strategies that mitigate the risk of 

uninformed decisions.  

The Potential of AI in Simulating Human Behavior 

Comprehensively modeling information exchange involves tracking an exponentially 

increasing number of variables, all of which have their own potential outside influence. 

Investigating this exhaustive list of variables affecting both the individual and group level 

processes, and their subsequent interactions, is arguably intractable. Existing literature slims down 

this list to a digestible scope by noting the processes that are most relevant to interaction, such as 

initial information distribution (Stasser & Titus, 1985), expert role assignments (Stasser et al., 

2000), and socio-emotional attributes (Stasser & Davis, 1981). This human-based research is 

limited insofar as the inability to directly measure the relevant factors in a white-box manner, such 

as tracking the internal states of participants. Additionally, researchers are limited by the pre-

disposed attributes of participants that affect group dynamics and individual processing. Computer 

modeling provides convenience to researchers, allowing them to vary parameters to conduct large 

batches of low-cost simulations of typically tedious studies. Participants can be synthesized using 

artificially intelligent agents and deployed in discussion simulation environments. This level of 

control allows for granular experimentation to investigate a causal relationship between specific 

group and individual level processes.  

Artificial intelligence has evolved exponentially in recent years, particularly with the 

research in generative AI and the development of generative pre-trained transformers (GPTs). 

GPTs are a transformer architecture, training a deep neural network on vast amounts of human 
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written text data.  The network learns the connecting weights between nodes necessary to generate 

coherent and contextually relevant responses (Yenduri et al., 2023). Large language models 

(LLMs), a type of GPT, afford intelligent agents the capabilities of simulating human-like 

language. GPT-4, a model developed by OpenAI, passed the Turing test with remarkable 

consistency; long considered the milestone assessment of conversational intelligence (Jones & 

Bergen, 2023). LLMs offer a platform for systematic experimentation, enabling researchers to 

manipulate variables such as temperature, seed, and token limits. Unlike human participants, who 

may vary in their availability, reliability, and responsiveness, LLM-based agents can be deployed 

consistently and repeatedly across numerous experimental conditions. Conducting experiments 

with human participants typically entails maintaining records of confidentiality, consent, and 

specific training. They also require extensive preparation, such as finding willing participants and 

scheduling appointments. These administrative tasks can impose practical limitations on the scale 

of research, especially when focusing on discussion tasks that may contain sensitive topics. AI 

agents do not possess consciousness, eliminating ethical concerns regarding participant privacy 

and well-being.   

While LLM-backed agents successfully mimic the surface-level dynamics of human 

interactions, they struggle to emulate the depth and complexity of human cognition. Their high 

linguistic capacity is not enough to meet the criterion to simulate human-like thinking, which is 

necessary when designing the agents for discussion simulation. LLMs lack cognitive modality as 

there is no semantic understanding of the content parsed or generated (Yenduri et al., 2023). This 

limitation becomes apparent in contexts that require nuanced logical reasoning, deep 

comprehension, or context-aware decision-making. This lack of ability to ‘think humanly’ 

undermines the usage of purely LLM-based agents in computer models investigating individual 



 

5 

level processes that influence group discussions. The first step to creating more complex agents is 

integrating cognition (Sun, 2007). Instilling cognitive processes into an LLM-based agent provides 

it with a reasoning system to enhance human-like thinking (Sun, 2007), turning it into a CogAgent. 

If the input and output behavior of the CogAgent matches human behavior, then there is evidence 

to suggest that the cognitive mechanisms modeled may be a plausible explanation for human 

behavior (Russel & Norvig, 2020).   

When implemented with task-specific prompts and inference systems, CogAgents can 

cooperate with one another. By leveraging the linguistic capabilities of LLMs, group level 

dynamics can be simulated. The design of inference systems can be guided by the objective for 

agent behavior. Simply enhancing logical reasoning of LLMs can be done through prompt 

engineering, which alone has developed some strategies for improvement through iterative trial 

and error. One strategy is Chain-of-Thought, which decomposes a prompt to intermediary steps 

(Wei et al., 2022). This approach still leads to suboptimal performance in arithmetic tasks and does 

not translate easily to a reasoning structure. Program-Aided-Language is a strategy that uses LLMs 

to translate from natural language into intermediary programming steps, with the final output being 

a script to provide for a code interpreter to generate the response (Gao et al., 2023). This seemingly 

works with straightforward tasks but is difficult to adapt to cognitive based intermediary steps. 

Cognitive architectures can define an inference system of intelligent agents, greatly improving 

their ability to think humanly (Kotseruba & Tsotsos, 2020). The main difference between cognitive 

architectures and intelligent systems, is that the latter produces a purely fixed model for general 

computation. CogAgents that employ cognitive architectures can dynamically adjust their 

contributions based on the internal cognitive mechanisms modeled.   
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  Computer modeling gives researchers the opportunity to define the cognitive architecture 

used by CogAgents. The individual level processes of an agent can be defined to their liking and 

tracked throughout simulation by the CogAgents internal state. The selection of these mechanisms 

is guided by their ability to influence the contribution of a CogAgent. This includes if, and what, 

information is shared. The group-level processes, such as information distribution and role 

assignments, may be defined in tandem with the individual level processes to precisely capture the 

relationship between specific mechanisms. Simulation easily allows for the manipulation of these 

variables for large scale experimentation. The internal state of the agent cannot be measured in 

human-based experiments with explicit isolation from extraneous influence. This capability of 

explicitly tracking internal states, delineated by the cognitive architecture design, is only afforded 

through simulation.  

Cognitive Architectures 

Cognitive architectures are computational models that aim to simulate and understand 

human cognition. The main proponent of cognitive architectures is to create something that can 

accurately demonstrate reasoning, adaptation, and improvement (Kotseruba & Tsotsos, 2020). 

These models typically consist of a set of interconnected components, each representing a different 

aspect of human cognition, such as perception, attention, memory, and decision-making. 

Kotseruba and Tsotsos (2020) groups cognitive architectures with a particular focus on perception, 

attention mechanisms, action selection, learning, memory, and reasoning. The components of a 

cognitive architecture are designed to work together to produce intelligent human-like behavior. 

These categories allow for the study of the human mind and the underlying cognitive process that 

galvanizes behavior. By explicitly representing general human cognitive mechanisms, a strong 

comprehension of the mind can be obtained (Kotseruba & Tsotsos, 2020).  
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The design of the computational procedures defines which cognitive attributes are relevant 

to the application domain. In group-based discussions, a cognitive architecture would outline how 

an agent processes a message and the procedures performed to guide their contributions. These 

processes directly impact the exchange of information items and the discovery of the hidden 

profile. Intelligent behaviors exhibited by CogAgents can be analyzed with respect to the 

computational procedures that perform operations on mental representations (Kotseruba & 

Tsotsos, 2020). If the deployment of a cognitive process makes an impact on CogAgent behavior 

in a similar fashion to humans, it is indicative of their presence in humans. Simulating human-like 

thinking is central to investigating the hidden profile phenomenon through simulation, as 

CogAgents should not act omnipotently. They should, in effect, make the same mistakes as 

people.   
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CHAPTER 2 

LITERATURE REVIEW 

Hidden Profiles: Theoretical Foundations and Empirical Studies 

Initial research into hidden profiles began with Stasser’s challenging of the idea that groups 

make more informed decisions. Four-member decision-making groups were given information 

regarding a hypothetical student body president election and were requested to discuss the 

candidates before making a decision (Stasser & Titus, 1985). The results of the study indicated 

that even though the groups had access to the information highlighting the better candidate, the 

superior candidate was not chosen. This is because their initial distribution biased their initial 

decision alternative preference, suggesting that discussions would perpetuate rather than correct 

candidate perception (Stasser, & Titus, 1985). This research was among the first to indicate that 

unbound group discussion may not be the optimal means of disseminating information.    

Stasser’s (1988) findings were further extrapolated using the DISCUSS model, which 

emphasizes information flow throughout discussion and identifies the product of information 

exchange as the evolution of opinion. The focus is on a discussion oriented single decision task, 

not accounting for temporal influences. The input parameters include valence variability, group 

size, participation rate, advocacy, and discussion norms (Stasser, 1988). The advocacy parameter 

influences the extent to which personal preference biases contributions, while the norm defines the 

rate of whether discussion resolves differences and conveys information. The first phase, 

prediscussion, specifies the distribution of items. This distinguishes between shared and unshared 

information items, defining the hidden profile. The second phase is where discussion takes place 
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in a series of steps where members exchange information based on a recall probability and 

advocacy. The recall probability employs a ratio of information load and number of recalled items 

to bias memory. Stasser (1988) assumes members recall and contribute information that supports 

their current preference. The output of the model is the initial and final distribution of preferences, 

the group decision, recalled information, and discussion content.   

The DISCUSS model departed from the existing models at the time, such as DICE (Penrod 

& Hastie, 1980), JUS (Hastie et. al, 1983), and SIS (Stasser & Davis, 1981), as they did not 

explicitly define the revision of preferences in the presence of new information (Stasser, 1988). 

These models represent group decision making through a series of opinion changes that may lead 

to a decision or statement depending on convergence. The input consists of the distribution of 

initial preferences, and the output is the predicted outcome of the group decision. The change in 

preferences is not galvanized by the information items available, rather, they deploy a strength-in-

numbers approach. The probability of preference change is based on the number of advocates, 

focusing on social influence. The operationalization of this influence varies between the models, 

with DICE and JUS using a persuasibility parameter and SIS through certainty states (Stasser, 

1988). By investigating this information exchange in group discussion, the manipulation of 

information levels is isolated in the DISCUSS model. The model initially assumed that member 

participation rates were significant, which was later disproved when manipulating the variable did 

not affect the simulation (Stasser, 1988). The DISCUSS model produced results that indicate that 

groups fail to discover the hidden profile, regardless of if the discussion contributions are biased 

based on advocacy or minority status (Stasser, 1988).    

Stasser et al. (2000) has conducted further research into yet another potential factor: expert-

role assignments. The results demonstrated that export roles may encourage retention and encoding 
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of information items. This is because experts increased the prevalence of unshared information, 

while forewarning of expert roles heightened the probability of retaining that information (Stasser 

et al., 2000). This research spurred the emerging view of conceptualizing groups as information 

processors. Researchers considered factors including processing objectives, attention, encoding, 

storage, retrieval, processing, response, feedback, and learning in small group settings (Hinsz et 

al., 1997). These factors are designed to encompass the dimensions of variability in group 

discussions performing cognitive tasks: commonality-uniqueness of information, convergence-

diversity of ideas, accentuation-attenuation of cognitive processes, and belongingness-

distinctiveness of members (Hinsz et al., 1997).   

Group and Individual Behavior Models 

The temporal taxonomy by Marks et al. (2001) expands group modeling by focusing on 

the general team effectiveness of teams completing a wide range of tasks. It differs from the 

DISCUSS model as it utilizes recurrent input-process-output episodes, rather than two phases for 

pre-discussion and discussion for a single task accomplishment period (Stasser, 1988), splitting a 

task into multiple episodes. Processes are viewed as multidimensional, composed of a two-tier 

hierarchical structure, organizing 10 processes into 3 higher level categories–action, transition, and 

interpersonal. By differentiating between task types, different process periods can be correlated 

with each task (Marks et al., 2001). These tasks include cognitive, verbal, and behavioral activities 

as a part of the task work. These distinctions are very significant as information processing in 

groups is sensitive to context; task characteristics can dictate processing goals (Hinsz et al., 1997). 

The task characteristics of group-based decision making indicate the types of cognitive processes 

that impact information exchange. With temporal consideration, and a broader task set, the 

taxonomy allows for a cyclical process that influences itself (Marks et al., 2001). This approach is 
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more easily generalized to real world scenarios, as teams typically manage multiple activities over 

time. Marks’ temporal taxonomy introduces a component of social interaction: emergent states of 

whole teams, which delineate cognitive, motivational, and affective states. Emergent states explain 

how these aspects may influence interaction between team members, rather than focusing on the 

processes of interaction. They are also updated due to interaction outcomes, introducing a feedback 

concept (Marks et al., 2001). These emergent states explain the interaction between group level 

and individual level processes and can be studied to link states with which information items are 

shared, and when they are shared.   

Marks et al. (2001) discusses how emergent states influence the group, while Hinsz et al. 

(1997) establish that individual non-interaction related factors can also influence group interaction. 

This offers an insight that Stasser and Titus’s (1985) original study does not, through explaining 

factors that influence individuals which in turn influence the group. The method of study also 

varies, as Stasser and Titus (1985) utilized discussion groups, while Hinsz et al. (1997) employed 

ad hoc, or lab, settings. Member roles are another individual related consideration that affects 

group processing objectives (Hinsz et al., 1997). Stasser et al. (2000) does highlight this, as expert-

role assignments were included in the study. The group information processing framework 

outlined by Hinsz et al. (1997) functions as a bridge between research focused on individuals and 

research focused on groups. It adds more dimension to processes and provides explanations for 

more realistic scenarios where multitasking is necessary. By expanding processes, components are 

more clearly visible. This makes it easier to correlate specific processes with information exchange 

variability. In isolating the influence of attention on the processing objective, researchers may 

explain, or predict, the recall of hidden profiles. A small enough minority group may result in their 

information being perceived as an opinion, or they may be discouraged from contributing 
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altogether (Hinsz et al., 1997). The additional temporal variable, also seen in the Marks et al. 

(2001) temporal taxonomy, captures authentic business environments, where teams operate on 

multiple tasks in pursuit of an extended goal and maintain a relationship history.   

On the other end of the spectrum, focusing more deeply on the individual, Martinez-

Miranda and Pavon (2009) introduce a more personal concept into their TEAKS model: trust. Trust 

is a significant aspect of human relationships, specifically teams. The trust relationship between 

team members influences both individual and team performance. The feedback concept presented 

in the work by Hinsz et al. (1997) is also apparent in this model, as trust increases when an outcome 

meets an expectation. Elevated trust results in a reduced sense of risk in future interactions and a 

positive expectation of future interactions (Martinez-Miranda & Pavon, 2009). The impact of trust 

on this sense of risk and positive expectation may influence whether individuals choose to 

contribute information, especially novel items. Another similarity is in considering task 

characteristics as influencing factors. The temporal aspect of TEAKS maintains a relationship 

history in order to manage trust updates (Martinez-Miranda & Pavon, 2009). This differs from 

previous models, which were more process oriented. The DISCUSS model (Stasser, 1988), as well 

as the research by Hinsz et al. (1997), emphasizes information exchange. The TEAKS model 

shares similarities with the DISCUSS model in relation to modeling team members as agents in a 

virtual environment. The model expands agent representation by including variables for emotional 

states, social characteristics, cognitive abilities, and personality types. The internal state of an agent 

is a combination of these variable values, and the state is also influenced by interaction with other 

agents’ states and task characteristics (Martinez-Miranda & Pavon, 2009). The method parameters 

vary between the DISCUSS and TEAKS models. The TEAKS model utilizes fuzzy values in 

assessing parameters of an agent’s internal state. This is done in an attempt to capture the 
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randomness of the non-deterministic nature of human emotion (Martinez-Miranda & Pavon, 

2009). The results demonstrate that other-person controlled emotions influenced trust more than 

personal control emotions; anger decreased trust, while gratitude increased trust.  

In summary, the DISCUSS model (Stasser, 1988) was group and information exchange 

oriented, with the TEAKS (Martinez-Miranda & Pavon, 2009) model expanding into collections 

of individuals with personalized elements. The DISCUSS model focuses on how the exchange of 

information is influenced by group size, participation, advocacy, and discussion norms. The 

evolution of group preference is illustrated using the presence of information items, giving insight 

into how the influencing parameters may impact the uncovering of the hidden profile. TEAKS 

leans more into a specific influencing social factor, namely trust, and how it is influenced by 

emotion. The temporal taxonomy (Marks et al., 2001), and Hinsz et al. (1997) discussion on groups 

as information processors provide more group level factors for consideration. The expansion of 

task type, and accounting for temporal influences, create even more potential factors to investigate 

their interrelationships. In conjunction, these frameworks expound the factors that impact 

information exchange, including situational, individual, and environmental attributes.    

The models discussed were all designed in a time where the capabilities of technology were 

not apt enough to pass a Turing test. The agents in DISCUSS and TEAKS are not designed with 

the ability to dynamically alter their processes due to incoming context, rather, they are statically 

defined. Moreso, even the most current LLMs may not be successfully deployed into the DISCUSS 

or TEAKS model. Their lack of cognition also inhibits their use in simulating the temporal 

taxonomy (Marks et al., 2001) or framework proposed by Hinsz et al. (1997). There would not be 

any points of analysis for individual level processes. However, their use in modeling group team 

members provides a level of realism in generating human like discussion of information items. 
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With more natural commentary, LLM-based agents allow for context aware analysis of group level 

processes. To capture individual level processes, however, the task of implementing a reasoning 

system remains. 

Cognitive Architectures 

Cognitive architectures are a pivotal framework in understanding and emulating human 

cognitive processes. These frameworks draw together insights from cognitive science, artificial 

intelligence, computational neuroscience, cognitive robotics, and computational cognitive systems 

(Lieto et al., 2017). The architectures aim to capture invariant cognitive processes such as 

reasoning, learning, perception, memory, and action execution (Oltramari & Lebiere, 2012). The 

cognitive architecture, as a system, demonstrates human-like abilities and deficiencies in 

cognition, reasoning, perception, memory, and attention (Russel & Norvig, 2020). Human 

performance modeling is dominated by a small number of specialized architectures (Kotseruba & 

Tsotsos, 2020).    

Cognitive architectures can be tailored to specific scientific objectives and task types. 

Examples include SOAR (Laird, 2012), ACT-R (Anderson et al., 2004), CLARION (Sun, 2006), 

and iCub (Vernon et. al, 2007). SOAR aims to model general cognitive processes such as 

reasoning, learning, and decision-making. ACT-R emphasizes cognitive processes involved in 

perception, memory, and problem-solving. CLARION integrates symbolic and connectionist 

approaches to cognitive modeling. Icub is specifically designed for cognitive robotics applications. 

These architectures differ in their approaches, ranging from cognition-centric designs aimed at 

capturing general cognitive processes to application-driven designs focused on fulfilling specific 

requirements. Cognitive architectures are often categorized based on their design perspectives, 

with some prioritizing adhering to cognitive theories while others emphasize functional attributes 
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and user needs (Vernon, 2017).  Some aim to model cognition comprehensively, focusing on 

generality, completeness, and the standardization of mind models (Laird et. al, 2017). These types 

of models utilize a ‘cognition in the loop’ approach, simulating cognitive and biological processes 

to refine theories about intelligent behavior (Cordeschi, 2002). Other models prioritize application 

value, employing system architectures. Like cognitive architectures, system architectures exhibit 

cognitive abilities such as perception, action anticipation, learning, and adaptation (Vernon, 2017). 

However, their design is based on application and user requirements, drawing from algorithms and 

data structures (Vernon, 2017).   

Symbolic architectures align closely to human-like thought processes, being a natural 

representation of knowledge. They are common in planning tasks, which is effective in a team-

based setting due to its recursive decomposition of tasks into subgoals identified in the attention 

module (Kotseruba & Tsotsos, 2020). A conversational agent can utilize this to model human 

performance, as seen in the IMPRINT architecture (Kotseruba & Tsotsos, 2020). Other types of 

planning may work well with pre-existing time frameworks, for example, temporal planning would 

work efficiently with the temporal taxonomy proposed by Marks et al. (2001). Symbolic 

architectures appear in architectures that are formalized with modal logic (Cohen & Levesque, 

1990), such as those based on the Belief-Desire-Intention paradigm (Bratman, 1987). However, 

symbolic architectures face perceptual limitations insofar as the reliance on direct data (Kotseruba 

& Tsotsos, 2020). This limitation curbs the ability to deploy symbolic architectures in more 

realistic, uncontrolled, environments. Alternatively, sub-symbolic reasoning facilitates the storing 

of intricate sensory data such as intonation, speech rate, and loudness (Kotseruba & Tsotsos, 2020). 

Connectionist networks are inspired by the biological phenomenon of the human brain, with nodes 

acting as dendrites. Examples of these networks are deep learning architectures like neural 
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networks, capable of processing vast amounts of data and extracting patterns that are undetectable 

by humans (Kotseruba & Tsotsos, 2020).  

Cognitive architectures have been utilized in reasoning, learning, perception, action, 

execution, selective attention, and recognition tasks (Vernon, 2017). Historically, cognitive 

architectures have been implemented to target three main objectives (Lieto et al., 2017). First, to 

elucidate the fundamental mechanisms of human cognition. Second, to facilitate the development 

of cognitive capabilities over time. Third, to achieve human-level intelligence in artificially 

intelligent agents, also known as General Artificial Intelligence. This third elusive goal attempts 

to take on the challenge of realism. Agent success could be evaluated in terms of its likeness to 

human cognitive processes and behavior (Kotseruba & Tsotsos, 2020). Reflexive agents, cognitive 

agents, emotional agents, personality agents, and normative systems are all architectures proposed 

to undertake realism (Bourgais et al., 2020). These architectures are not used often in social 

simulation, due to a lack of implementation or restriction to domain dependency (Bourgais et al., 

2020).   

However, existing cognitive architectures face limitations. Few existing architectures have 

the theoretical, software, and hardware foundations to facilitate simulation of communication and 

social interaction (Kotseruba & Tsotsos, 2020). Moreover, existing architectures rarely have the 

capacity to detect the emotional states or intentions of an individual (Breazeal, 2003), or provide 

personalized responses (Gobet & Lane, 2012). Another limitation of cognitive architectures is that 

modeling human memory to a realistic magnitude is intractable (Kotseruba & Tsotsos, 2020). 

These limitations do not revoke the benefits of integrating a cognitive architecture with an LLM 

agent, rather they necessitate the development of a cognitive architecture that is designed to be 

implemented with the current capacity of artificial intelligence. 
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CHAPTER 3 

DESIGN AND METHODOLOGY 

 CogSystem is for goal-based group decision-making simulation using LLM-based 

cognitive agents. It consists of CogFrame, a discussion framework, and CogChain, a cognitive 

architecture.    

CogFrame: Discussion Framework 

Figure 1: CogFrame Diagram  

Discussions are depicted as a single step turn-based series of contributions by team 

members. Due to the nature of the simulation of discussion, CogFrame is designed for text-based 

discussions. This is not a major limitation, as text is the most common input for architectures that 

perform inference tasks (Kotseruba & Tsotsos, 2020). CogFrame allows for two input parameters 

that vary the group level processes: decision rule, and the discussion task. Decision rules define 

the termination of conversation. The discussion task defines the task prompt, as well as the initial 
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distribution of information items across CogAgents. This formalizes the definition of the hidden 

profile set and the initial distribution of CogAgent preferences. CogFrame is structured by drawing 

inspiration from the DISCUSS model (Stasser, 1988) and temporal taxonomy proposed by Marks 

et al. (2001). Similar to DISCUSS, CogFrame has 3 phases: pre-discussion, discussion, and post-

discussion. The justification of this design choice is aligning with the decomposition of the 

discussion process for simulation, as done by Stasser’s original model.   

In the first phase, the distribution of information items to agents is used to determine their 

initial individual preferences for the group’s impending decision. Items are not necessarily unique 

across team members. This accounts for the commonality-uniqueness dimension of variability in 

group level processing (Hinsz et al., 1997). In a realistic setting, it cannot be known whether a 

hidden profile is entirely revealed. However, in this simulation, the pre-discussion phase allows 

for a knowledge bank, where an additional input parameter contains the comprehensive list of 

information items.  The next phase, discussion, embeds action-emergent episodes. The integration 

of episodes is seen in the temporal taxonomy by Marks et. al (2001), allowing for the correlation 

of processing periods to specific tasks. The first episode encompasses a discussion turn, the action 

phase, and the second episode captures recursive feedback in the emergent phase. The emergent 

phase is where the emergent state of the team and individuals is updated as a result of a 

contribution. Each loop of a discussion phase constitutes one discussion turn. At the beginning of 

the discussion, the first speaker is selected from the pool of eligible CogAgents. This agent triggers 

the action phase, which consists of querying the CogChain of the CogAgent to generate a 

contribution. This is the shell module for the cognitive architecture, which is responsible for the 

individual agent processes. Contributions consist of an information item and the CogAgents 

commentary (see example contribution below). The emergent phase in CogFrame links the 
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framework to the CogChain cognitive architecture, representing the interaction between group and 

individual processing. After a contribution is generated in the action phase, the emergent phase 

updates CogAgents by providing the input to update the agent's internal state within CogChain.    

Example Contribution:  

INFORMATION ITEM: While it is widely known that Bean holds a bachelor’s degree in 

Aerospace Engineering and Cross-Cultural studies, few know that he also pursued a minor in 

Counseling Psychology.  

 COMMENTARY: Acknowledging the importance of Collins's linguistic skills in enhancing 

communication and cultural bonding within the diverse crew, it's imperative to also consider the 

psychological dynamics and mental well-being of the team during the extended Mars mission.  

CogFrame maintains a revealed profile variable that serves as the group's shared 

representation. The revealed profile is updated with every contribution made, tracking which items 

from the knowledge base have been revealed to the group. When group members collectively 

develop and share representations of information, it helps to validate and strengthen the choices 

made. The shared representations provide a common understanding and perspective, aligning 

group members' thoughts and decisions. Transactive memory enhances the quality of choices and 

promotes consensus within the group, accounting for the accentuation-attenuation dimension of 

variability (Hinsz et al., 1997). It also allows for observing the changes in the amount of 

information revealed throughout the discussion. This is particularly useful when investigating the 

effects of specific CogChain variables, as a researcher can isolate the changes to view the direct 

impact on shared information.      

Once the emergent phase is complete, the current preferences of each CogAgent are 

compared to determine whether the group has arrived at a consensus given the decision rule. The 
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decision rule is either unanimous or majority. This accounts for the last dimension of variability in 

group level processing, convergence-diversity (Hinsz et al., 1997).  If the agents have agreed, the 

conversation is terminated, and the successful outcome is reported. If the agents have not yet 

agreed, the next speaker is selected from the pool of possible participants to begin the next iteration 

of the discussion phase. The most recent contribution is provided as context for the next speaker. 

CogFrame continues to iteratively loop discussion phases until the agents have agreed, or until the 

maximum number of turns have elapsed. If the maximum number of turns has been reached, and 

the agents have not come to a decision, then the discussion result is returned as failure.      

In essence, CogFrame facilitates the simulation of the group level processes that influence 

discussion between CogAgents. These group level processes, being the decision rule and 

discussion task, can be varied to investigate their influence on the individual level processes that 

are defined in the CogChain architecture. The initial preferences of CogAgents are determined, 

followed by the simulation of discussion. The discussion simulation consists of iteratively selecting 

the next speaker, querying their CogChain to generate a contribution. Each contribution is 

broadcasted to all other CogAgents for CogChain internal state updates, linking group level and 

individual level processes. The revealed profile is aggregated as turns progress. The consensus 

condition is checked after each discussion phase iteration, terminating upon group agreement. If a 

decision was reached, the preferred alternative is returned as the discussion result.  

CogChain: Cognitive Architecture Design 

While CogFrame captures the group-level influences on information exchange related 

processes, it still needs its counterpart CogChain. Each CogAgent has a CogChain, serving as their 

reasoning system. CogChain is designed with a modular approach, each component responsible 

for a different aspect of the overall individual processing. Generally, the CogChain parses 
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incoming contributions by updating the internal state and generates contributions by referencing 

this internal state and performing cognitive computations. This defines the two main components 

of CogChain: Process, and Response. These components are where the individual level processes, 

known as CogModules, are categorized. The addition of CogModules to CogChains modify the 

input parameters to the model, which can be varied for investigating the relationship with the group 

level processes defined in CogFrame. CogChain is an unfolding model, with each iteration 

selecting CogModules designed to capture human communication and behavior based on the KISS 

principle: Keeping It Simple Stupid (Axelrod, 1997). CogChain captures the simplest CogModules 

necessary to model the discussion, and only expands the scope to iteratively increasing the realism 

of human-like thinking. Each new CogModule builds on the limitations of the previous 

CodModule, adding to the CogChain layer by layer. By isolating each module, the architecture is 

scalable, with the ability to support a range of behaviors in a transparent and interpretable manner. 

CogChain layers can be deployed atomically or compounded. To actuate, CogAgents employ 

LLMs to generate their commentary with the guidance of their cognitive architecture.      
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Figure 2: Generic CogChain Flowchart  

BaseCog, the simplest version of CogChain, defines the CogAgents’ internal state as 

having a decision preference and a knowledge base. This provides insight into the preference 

changes and expansion of CogAgent knowledge bases, allowing for investigating their connection 

to the final revealed profile. These parameters are defined using the group-level discussion task 

input, defining the initial information items that are in each CogAgents’ knowledge base. 

CogAgents are selected to contribute at random. When an agent receives a broadcast contribution, 

they undergo a processing update in the first component. If the information item in the contribution 

is not present in the CogAgents’ knowledge base, it is added. This updated knowledge base is then 

used to update the agent's preference (see the prompt below). The knowledge base update is Python 

based, while the preference update and contribution generation are LLM based.   
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Preference Update Prompt:  

You have access to a list of facts, called a 'knowledge base', to help guide your preference. 

Here is the most recently updated list:  

{updated knowledge base}  

Based on the above facts, choose one alternative from the decision options. You must 

choose from the provided options only.   

 {decision options}  

Use this format for your output: PREFERENCE: (Insert candidate name) EXPLANATION: 

(justify your decision, limit to 300 tokens).  

Upon an agent’s turn, given the most recent prior contribution, they reference their decision 

preference to choose an information item from the knowledge base and generate commentary (see 

prompt below). The biasing of this retrieval impacts the information items revealed from the hidden 

profile (Stasser, 1988). The knowledge base of the agent serves as their memory, dynamically 

updating in the process component. The ability for agents to have, and change, their preference 

delineates the motivational process affecting the attentional mechanism of the agent. Attentional 

processes are significant in a discussion context, as the distribution of information across group 

members guides the focus of attention. BaseCog is limited insofar that the CogAgents correctly 

generate commentary that align with their goal, but do not interact with one another. Even with the 

given context, CogAgents need to be ushered to respond to their teammates.   

Contribution Prompt:  

Your team mate just contributed: {context}.  

It is your turn in the discussion. Choose a fact from the knowledge base and provide it 

(exactly as phrased) alongside your commentary. You are likely to choose a fact that aligns with 
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your preference. You may also directly address the team member who just contributed, if you want 

to do so.  

Preference: {CogAgent current preference}  

Knowledge Base: {CogAgent knowledge base}  

Output format: INFORMATION ITEM: (insert fact exactly as given) COMMENTARY: (insert your 

commentary)  

  

Figure 3: BaseCog Flowchart  

To address this potential pitfall, interaction is encouraged as the next CogModule 

introduced to the chain. The encouragement of interaction should vary the information items 

selected for sharing by forcing contextually relevant bias, increasing the likelihood of exchanging 
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a wider array of information. This can be demonstrated if the resulting revealed profile is larger 

than those produced by BaseCog simulations. InteractionCog utilizes the same architecture 

structure as BaseCog, with the addition of directly requesting agents to respond to the incoming 

context from their teammate in the contribution prompt. No additional input parameters are 

included. The justification behind this Cog is to facilitate more human-like interactive behavior. 

The flowchart for InteractionCog is almost identical to BaseCog’s, with the addition of the 

interaction guide in the response component. The selection of information items is from the mental 

representation of the agent’s memory, which is operationalized as the knowledge base. The 

knowledge base is stored as a dictionary, but information items are presented to the CogAgent as 

a list of strings when LLM prompting is used (see example knowledge base below). This 

operationalization does not mimic a human-like process of memory storage and access. The 

retrieval of information from long-term memory to short term memory is based on bias (Kotseruba 

& Tsotsos, 2020), which is not captured by InteractionCog.   

Example Knowledge Base:   

Knowledge Base  

Collins has a passion for languages. He is fluent in English, Spanish, and French and 

proficient in Russian. Recently he started a class on Mandarin and already he is nearly proficient.  

Astronaut Anders received the highest possible scores on the military survival standards, 

an assessment that all astronauts must complete in order to qualify for space missions.  

While it is widely known that Bean holds a bachelor’s degree in Aerospace Engineering 

and Cross-Cultural studies, few know that he also pursued a minor in Counseling Psychology.   

.   
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Figure 4: InteractionCog Flowchart  

MemoryCog adds a new cognitive module to the respond component of CogChain. The 

knowledge base is cast as the long-term memory, while a relevant information item set (RIS) is 

generated to simulate working memory. Working memory is critical when considering the 

cognitive capabilities modeled in the attention and decision-making mechanisms (Kotseruba & 

Tsotsos, 2020). This is drawn from the multi-store memory model, which was influenced by the 

Atkinson-Shiffrin model (1968). Working memory and long-term memory are typical for planning 

tasks, in which the latter retains the factual information, and the former contains the information 

relevant to the current world model and goal stack (Kotseruba & Tsotsos, 2020). The RIS is used 

for selection when generating contributions to bias the attention to retrieve information items from 
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the knowledge base that pertain to the CogAgents’ preference. This is similar to Stasser’s (1988) 

assumption that agents recall items that support their preference. The RIS is generated as a 

randomized list of these information items and is presented to the LLM as a list of strings in the 

contribution prompt. The knowledge base is also randomized each time it is accessed to ensure no 

bias is introduced from the order. The impact of including memory should increase the amount of 

information items shared and the variance. MemoryCog, like InteractionCog, does not introduce 

any additional input parameters to the architecture beyond those provided in BaseCog by the group-

level discussion task.   

 

Figure 5: MemoryCog Flowchart  

Typically, team members do not equally participate in discussion unless there are strong 

norms or procedural constraints that enforce equal contribution (Stasser, 1988). ContributeCog 
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allows agents to choose whether or not they want to contribute, modeling a motivational internal 

process that affects a group-level process. The impact of this addition can be investigated in the 

resulting distribution of contributing agents. This internal level process does not require any input 

to the model beyond those introduced by BaseCog. CogAgents are instructed to reference their 

current preferred decision in updating their contribute variable as a part of the process component, 

relying on the capability of LLM natural language processing (see contribute tendency prompt 

below). This ‘contribute tendency’ variable, added to the CogAgents’ internal state, then 

constitutes the pool of possible contributors to select for the next CogAgent speaker.   

Contribute Query Prompt:  

Your teammate just contributed: {context}  

Determine whether you would like to respond to this contribution based on your 

preference.  

Preference: {preference}  

Use this format for your output: CONTRIBUTE: (insert YES/NO) \n EXPLANATION: 

(explain why you want to respond to your teammate (max 150 tokens)    
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Figure 6: ContributeCog Flowchart  

TrustCog predisposes a CogAgents’ integration of new information items, introducing a 

mutable variable to the internal state—trust tendency. The input parameter is static, defined upon 

CogAgent instantiation as ‘low’, or ‘high’. This trust tendency is referenced during the processing 

of incoming context. CogAgents with high trust tendencies will always update their knowledge 

base with a new information item. Low trust agents have a fifty percent probability of integrating 

new information into their knowledge bases. The addition of this CogModule influences the 

distribution of information items, as CogAgents with lower trust tendencies will have a bias to 
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their existing information items. Even if the hidden profile is revealed to the group, distrusting 

CogAgents may still choose a suboptimal alternative due to their lack of trust in the truth of the 

information items contributed by others (Martinez-Miranda & Pavon, 2009). TrustCog is the only 

CogChain that allows for the variation of an individual level process in experimentation.  

  

Figure 7: TrustCog Flowchart  

CogFrame maintains the discussion simulation by storing the conversation history and 

knowledge bank. CogChains track internal state parameters that help identify important results for 

discussion analysis, including CogAgent information profiles and preferences. At the end of 

discussion simulation, three files are returned by the CogSystem: conversation thread, agent states, 
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and the discussion report. The report uses the internal states from CogChain, and the conversation 

in CogFrame, to generate a summary of the discussion’s indicators.  

The information items in CogAgents’ knowledge bank are initially determined through the 

discussion task. As each discussion turn passes, their knowledge bank may grow with incoming 

context that contains a potentially novel information item. At each new loop of the discussion 

phase, after message processing, a snapshot of the CogAgent’s information profile is taken. The 

initial, turns, and final information profiles of each CogAgent are provided as information 

distribution indicators. Similarly, the revealed profile is returned after each discussion phase as the 

group information distribution indicator. Preferences are determined prior to the start of discussion 

on the basis of the CogAgents’ knowledge bases. This is noted as the CogAgents’ initial preference 

distribution. Similar to the information distribution indicator, the preferences of each CogAgent 

are tracked at each turn as a result of the process update. The initial, turns, and final preferences 

are provided per CogAgent as preference distribution indicators. The frequency of CogAgent 

contributions, as well as the distribution of the information items that they chose to share, are 

returned as agent speaker frequency and agent information distribution indicators. Since 

CogAgents’ knowledge bases are mutable, the percentage of contributions that contain information 

items outside of their initial knowledge bases are tracked as the agent reshare tendency indicator. 

The discussion result indicator notes whether the group reached consensus, alongside the 

summarized conversation parameters (e.g number of turns, decision rule, etc.). If the agents did 

agree, the number of rounds it took to reach the decision is also returned. Finally, the percentage 

of the information items from the knowledge bank that were revealed in discussion are given as 

the revealed hidden profile indicator. 
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Model Development 

Implementation occurs in LangChain and Python. LangChain is an open-source framework 

that simplifies the use of LLMs in model development by providing a Python library to integrate 

LLM models, APIs, and code. Templates are provided to standardize LLM prompts across agents, 

with the inputs to the templates varying across the CogModules implemented in the CogChains. 

These LLM calls are ‘chained’ together to form a sequence in an order defined by the CogChain. 

This approach to cognition, namely Chain-of-Thought, can be structured with python-based 

processing modules to enhance LLM-based performance (see chapter 1.b). Within these chains, 

Program-Aided-Language is employed by utilizing the capabilities of LLM’s to extract variables 

from natural language prompts to provide as inputs to the python-based modules. The LLM model 

used in development, for fine-tuning prompts and experimentation, is OpenAI’s GPT-4-0125-

preview.  Python is used for developing the CogSystem scheme. CogSystem is the main directory 

that contains the class files that implement the agents, discussion framework, cognitive 

architecture, and facilitate discussion simulation by instantiating conversations and tracking 

measurable variables for output analysis. A new CogSystem is created for each variation of 

CogChain, but they all contain the same five base files: CogAgent, CogChain, Conversation, 

Discuss, and Report. The functions implemented, input parameters defined, and sequence of 

chains, vary across these files according to the requirements of the CogChain specifications.  

For BaseCog, the CogAgent class consists of variables maintaining the agent's name, initial 

knowledge base, current preference, the number of contributions they have made, and list 

aggregating their internal state changes. The CogChain class takes an instance of CogAgent, and 

defines the functions for updating preference, generating a contribution, and processing a message. 

The process function takes a generated contribution as the input and updates the knowledge base 
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and preference of the agent. The knowledge base update and message processing sequence are 

python based, while the preference update and contribution generation are LLM-based. The 

Conversation class contains the variables that define the structure of the discussion, including the 

task, maximum number of rounds, decision rule, available decision options, the revealed profile, 

the knowledge bank, and the set of CogAgents participating. It also contains an instance of the 

Report class for use at the end of discussion simulation. The function that simulates the discussion 

is included in the Conversation class, capturing the phases of CogFrame. Functions are also defined 

for the specific episodes in the discussion phase, such as broadcasting the message, updating the 

revealed profile, checking the consensus condition, and selecting the next speaker. The Report 

class defines the functions necessary to summarize the discussion indicators and is generated at the 

end of the conversation simulation. Finally, the Discuss class ties the files together, instantiating 

the information items, CogAgents and their CogChains, the discussion task, maximum number of 

rounds, and the decision rule. These data points are used to instantiate the conversation. When the 

Discuss file is run, the CogSystem comes together to simulate the discussion.   

InteractionCog only differs from BaseCog in the contribution generating function. 

MemoryCog adds an additional function to the CogChain class that generates the relevant 

information set. The contribution generating function is edited to use this relevant information set, 

instead of the CogAgents’ knowledge base. ContributeCog adds an additional variable to the 

internal state in the CogAgent class, and the processing update function in CogChain is modified 

to update this variable. The internal state is referenced in the function that selects the next speaker 

in the Conversation class.  TrustCog adds the internal state variable ‘trust tendency’ in CogAgent, 

and the corresponding function in CogChain that processes the incoming message is modified to 

use this variable to bias integration.   
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Experimental Setup 

The discussion task chosen for experimentation is the Fast Five hidden profile. A team of 

four agents, CMR, MS1, MS2, and FE, are tasked with choosing between 3 alternatives. The 

discussion task explains to the agents that they are a part NASA’s Astronaut Crew Composition 

team that is choosing a candidate to serve as a flight engineer for a Mars mission. The three 

candidates each have their own set of information items. The best candidate, Samuel Anders, has 

six positive, four negative, and four neutral information items. The average candidate, John Bean, 

has three positive, three negative, and six neutral information items. Scott Collins, the worst 

candidate, has four positive, six negative, and four neutral information items. The knowledge bank 

encompasses forty total information items. The distribution of the items across the four agents is 

predefined (see Table 1). This data mirrors the set used in Stasser and Titus’ (1985) original study 

about a hypothetical student body election with three candidates.   

Table 1: Distribution of Fast Five Information Items   

    CMR  MS1  MS2  FE  

Collins  Good  G1, G2, G3, G4  G1  G1, G2, G3, G4  G3, G4  

  Bad  B4  B3, B4, B5, B6  B1  B1, B2, B6  

  Neutral  N1, N2  N3, N4  N1, N3  N2, N3  

Bean  Good  G1, G2, G3  G1, G2, G3  G1, G2, G3  G1, G2, G3  

  Bad  B2, B3  B1, B2, B3  B1, B2  B1  

  Neutral  N1, N2  N3, N4  N1, N3  N2, N3, N5, N6  

Anders  Good  G2, G6  G1, G2, G3, G4  G3, G4  G5  

  Bad  B1, B2, B3, B4  B1  B1, B2, B3, B4  B1, B2, B3, B4  

  Neutral  N1, N2  N1, N2, N3  N3, N4  N2, N3, N4  

 

Investigating the efficacy of CogSystem lies in the analysis of the input and output 

parameters of the CogFrame and CogChains with respect to the points of analysis. The discussion 

indicators returned by the end of discussion report are synthesized to return the analysis report. 

The first analysis point in the report returns the percentage of the knowledge bank that was revealed 
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in discussion. The second consists of the percentage of CogAgents that deviated between their 

initial and final preferences. The third is the distribution of CogAgent contributions. If the team 

reached a decision, the optimality of their preference can be analyzed with two factors: the revealed 

profile, and the knowledge bank. A preference is considered optimal if it has the highest number 

of positive information items, average if it has the most neutral items, and the worst option if it has 

the most negative items. If the number of positive items is equal, then the candidates are considered 

average. If there are no negative or neutral items presented, the rank is determined with the worst 

option having the least positive items. If the agents did not come to a consensus, the individual 

final preferences of the agents are analyzed using the same two factors. The mutable group level 

processes in CogFrame are the information distribution and the decision rule. The information 

distribution is defined by the discussion task (see table 1). The decision rules, unanimous and 

majority, provide the other condition. The discussion length is fixed at a maximum of 10 turns due 

to limitations in cost and time. The combination of these testing conditions provides the group 

processes experiment configurations (see table 2).    

Table 2: CogFrame Experiment Configurations 

Configuration Label  Discussion Length  Decision Rule  

GE1  10  Unanimous  

GE2  10  Majority  

 

Each CogChain is unit tested and the resulting analysis report is compared to BaseCog, 

which serves as the baseline of CogAgent behavior. BaseCog, InteractionCog, MemoryCog, and 

ContributeCog are unit tested by running ten trials under the group experiment CogFrame 

configurations GE1 and GE2 (see table 3) to investigate the relationship between group level and 

individual level processes. TrustCog requires additional configurations for unit testing due to the 

additional mutable trust tendency parameter. Three trust conditions are considered, all agents 
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having a high trust tendency, all agents having a low trust tendency, and splitting the agents into 

half high and half low trust tendencies. Each trust condition is tested across GE1 and GE2 for 

TrustCog’s unit testing (see table 3). A 95% confidence interval of the revealed profile percentage 

and preference change percentage from these trials are calculated. The percentage of trials that 

resulted in a decision are returned with their optimality rating percentages. The number of rounds 

taken to reach the decision is also returned using a 95% confidence interval. The percentage of 

trials that do not arrive at a consensus are returned with the distribution percentages of individual 

final preference optimality ratings. The contribution frequency of agents is also returned as a 95% 

confidence interval.   

Table 3: CogChain Experiment Configurations  

Configuration 

Label  

CogChain  Discussion 

Length  

Decision Rule  Trust Tendency  

BGE1  BaseCog  10  Unanimous  -  

BGE2  BaseCog  10  Majority  -  

IGE1  InteractionCog  10  Unanimous  -  

IGE2  InteractionCog  10  Majority  -  

MGE1  MemoryCog  10  Unanimous  -  

MGE2  MemoryCog  10  Majority  -  

CGE1  ContributeCog  10  Unanimous  -  

CGE2  ContributeCog  10  Majority  -  

T1GE1  TrustCog  10  Unanimous  All High  

T1GE2  TrustCog  10  Majority  All High  

T2GE1  TrustCog  10  Unanimous  All Low  

T2GE2  TrustCog  10  Majority  All Low  

T3GE1  TrustCog    10  Unanimous  Half/Half  

T3GE2  TrustCog  10  Majority  Half/Half  

 

For each configuration in the above table, 10 trials are run, totaling 140. Then, compound 

chains are tested by combining the CogChains and running each combination for 10 trials across 

the group level and trust condition configurations, totaling 60 trials (see table 4). This results in 
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200 trials between the unit test and compound chain experiments. The amount of trials is limited 

by cost and time restrictions.  

Table 4: Compound Chain Experiment Configurations  
 

Configuration Label  Discussion Length  Decision Rule  Trust Condition  

ICMT1_GE1  10  Unanimous  All High  

ICMT1_GE2  10  Majority  All High  

ICMT2_GE1  10  Unanimous  All Low  

ICMT2_GE2  10  Majority  All Low  

ICMT3_GE1  10  Unanimous  Half/Half  

ICMT3_GE2  10  Majority  Half/Half  
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CHAPTER 4 

RESULTS AND ANALYSIS 

Table 5: BaseCog Experiment Analysis  
 

  BGE1 (%)  BGE2 (%)  

Revealed Profile   11.50 ± 1.24  11.25 ± 0.78  

Preference Change  0  0  

Agent Contribution 

Distribution  

CMR: 21 ± 5.85  

MS1: 20 ± 5.54  

MS2: 30 ± 8.32  

FE: 29 ± 6.47  

CMR: 25 ± 6.93  

MS1: 23 ± 6.23  

MS2: 26 ± 5.68  

FE: 26 ± 7.937  

Decision Made   0  0  

Agent Optimality: 

Revealed Profile  

Best: 25  

Average: 65  

Worst: 10  

Best: 25  

Average: 62.5  

Worst: 12.5  

Agent Optimality: 

Knowledge Bank  

Best: 25  

Average: 25  

Worst: 50  

Best: 25  

Average: 25  

Worst: 50  

 

The BaseCog experiment results indicate that agents never deviated from their initial 

preference (see table 5). These initial preferences did not constitute a consensus, and as such a 

group decision was never reached, regardless of the decision rule. The analysis of final individual 

preferences demonstrates that the CogAgents most often select the average preference according 

to the revealed profile, and the worst preference with respect to the entire knowledge bank. For 

both decision rule conditions, the revealed profile percentage did not exceed 12% (approximately 

5 information items out of 40).  

Table 6: InteractionCog Experiment Analysis 

  

  IGE1 (%)  IGE2 (%)  

Revealed Profile   11.75 ± 0.71  10.25 ± 1.287  

Preference Change  0  0  
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Agent Contribution 

Distribution  

CMR: 24 ± 4.958  

MS1: 27 ± 3.969  

MS2: 31 ± 4.339  

FE: 18 ± 3.719  

CMR: 22 ± 4.638  

MS1: 30 ± 4.801  

MS2: 26 ± 4.111  

FE: 22 ± 6.073  

Decision Made   0  0  

Agent Optimality: 

Revealed Profile  

Best: 40  

Average: 55   

Worst: 5  

Best: 15  

Average: 77.5   

Worst: 7.5  

Agent Optimality: 

Knowledge Bank  

Best: 25  

Average: 25  

Worst: 50  

Best: 25  

Average: 25  

Worst: 50  

 

The CogAgents in the InteractionCog experiments also never reached a consensus. The 

percentage of the revealed profile in the InteractionCog experiments does not differ substantially 

from the BaseCog experiments. However, the optimality of the CogAgents’ final individual 

preference represents a significant reduction in the selection of the worst preference with respect 

to the revealed profile. This can be attributed to the relevance of shared information items, as each 

contribution builds upon the context of the previous message. CogAgents shared the same 

information items, causing a cyclical loop of discussing the same topic. This resulted in an increase 

of the frequency of specific shared items but did not increase the variance of information item 

uniqueness. This repetition of shared information is also evident in Stasser’s (1988) DISCUSS 

model, in which the results demonstrated that discussion may reinforce misaligned preferences 

rather than correct them.   

Table 7: ContributeCog Experiment Analysis  
 

  CGE1 (%)  CGE2 (%)  

Revealed Profile   11.50 ± 1.028  12 ± 1.351  

Preference Change  0  0  

Agent Contribution 

Distribution  

CMR: 26 ± 4.958  

MS1: 17 ± 3.969  

MS2: 27 ± 5.578  

FE: 30 ± 2.772  

CMR: 28 ± 5.403  

MS1: 23 ± 9.214  

MS2: 25 ± 8.874  

FE: 24 ± 4.958  

Decision Made   0  0  
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Agent Optimality: 

Revealed Profile  

Best: 35  

Average: 55   

Worst: 10  

Best: 32.5  

Average: 55   

Worst: 12.5  

Agent Optimality: 

Knowledge Bank  

Best: 25  

Average: 25  

Worst: 50  

Best: 25  

Average: 25  

Worst: 50  

 

The results of the ContributeCog experiments also share a similar percentage of the 

revealed profile as BaseCog and InteractionCog trials. The discussions in this set of experiments 

also never reached a group decision regardless of the decision rule. Even with the introduction of 

the choice for CogAgents to contribute, the distribution of contributing agents did not majorly 

change. There is a noticeable increase in the width of the confidence intervals, but it is still not 

statistically significant enough to demonstrate that the inclusion of this cognitive process had an 

impact on speaker distribution. Looking deeper into the justifications for CogAgents’ choice to 

contribute, which is provided in the agent states output file, the CogAgents almost always chose to 

contribute. This points to the altruistic nature of LLM’s, particularly GPT-4, being that they are 

trained to produce helpful responses. The results of the InteractionCog experiments indicate further 

guidance into the choice for contributing, such as implementing personality or emotions, is 

necessary to counteract the inherent benevolent nature of LLMs.   

The TrustCog experiment results (see appendix B) did not produce statistically significant 

deviations from the BaseCog results, regardless of the trust condition. The only minor change 

observed was a slight increase in the optimality of average preferences, with respect to the revealed 

profile. A minor decrease in the optimality of best preferences is also seen, accommodating the 

increase in the average optimality. The revealed profile percentage reaches a maximum of 

approximately 13%. These results indicate that the integration of information into the knowledge 

base, influenced by the static trust definition, does not impact the choice of which information 
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items are chosen for exchange. This cognitive process, alone, is not enough to emulate the impact 

of trust. Alternatively, this may necessitate a more nuanced approach to trust measures or the 

requirement of integrating another cognitive process.   

Table 8: MemoryCog Experiment Analysis  
 

  MGE1 (%)  MGE2 (%)  

Revealed Profile   16.25 ± 1.588  10.25 ± 2.977  

Preference Change  20 ± 11.596  32.5 ± 9.922  

Agent Contribution 

Distribution  

CMR: 25 ± 5.714  

MS1: 22 ± 7.228  

MS2: 24 ± 6.321  

FE: 29 ± 3.338  

CMR: 17.096 ± 9.002  

MS1: 16.107 ± 9.332  

MS2: 36.773 ± 6.341  

FE: 30.023 ± 10.088  

Decision Made   0  100  

Rounds Taken: 5.5556 ± 1.633  

Optimality: Revealed 

Profile  

Best: 30  

Average: 45  

Worst: 25  

Best: 60  

Average: 40   

Worst: 0  

Optimality: Knowledge 

Bank  

Best: 30  

Average: 47.5  

Worst: 22.5  

Best: 0  

Average: 100  

Worst: 0  

 

The introduction of memory causes the first seismic effects on the points of analysis. The 

unanimous decision rule condition still did not result in a consensus, however the majority 

condition always resulted in a group decision being made. Preference changes are seen in 

CogAgents, with a lower percentage for the unanimous decision rule condition. This can be 

explained by the shortened discussions, due to the premature consensus afforded by the majority 

decision rule. Discussions that reached a consensus did so in approximately half the maximum 

allocated discussion length. Less discussion turns also impacted the distribution of CogAgent 

contributions, with more biased weighting of half of the participants. Additionally, MemoryCog 

increased the best optimality percentage of the final individual preferences of CogAgents (with 

respect to the revealed profile).  Differing from the results of BaseCog, InteractionCog, and 

TrustCog, the optimality rating percentages (with respect to the knowledge bank) demonstrated a 
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large decrease in worst choices in the unanimous condition. The best and average rating 

percentages increased as a result. In the majority decision rule, worst choices were eliminated 

entirely in favor of only average choices in the optimality ratings regarding the revealed profile 

and the knowledge bank.   

The results of the MemoryCog experiments indicate that there is a major impact on the 

order of the information presented to the LLM. MemoryCog is the only CogChain to reveal non-

supportive and neutral items in simulation. This ‘scope of sight’ of language models proves to be 

a challenge in modeling human-like memory, as the attention of the LLM is biased based on 

internal weights that are trained into the model. These internal weights may not represent a true 

emulation of how the order of presentation affects attention processing. This prompts the obligation 

to further investigate if, and how, these internal weights can be manipulated to mimic human-like 

memory bias.   

When analyzing for human-likeness across cogs, the only CogChain to demonstrate 

preference changes is MemoryCog (see table 9). This is consistent with the findings demonstrated 

in Stasser and Titus’ hidden profile experiments with human participants, where the pregroup and 

postgroup preferences varied by a range of 5 to 14 percent (Stasser & Titus, 1985). Preference 

changes are also seen in the distribution preferences produced by the DISCUSS model predictions, 

with a range of 3 to 9 percent (Stasser, 1988). However, all CogChains exhibit the phenomenon of 

individual CogAgents choosing the average decision option according to the revealed profile (see 

table 9). This aligns with the human-based results of Stasser and Titus, as the average option was 

the clear favorite attaining 61% of individual member support.  

Table 9: CogFrame Group Configuration 1 Cross-Cog Analysis  
 

  Preference 

Changes  

Contribution Split  Agent Optimality 

(Revealed Profile)  

Agent Optimality 

(Knowledge Bank)  
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BaseCog  0  CMR: 21 ± 5.85  

MS1: 20 ± 5.54  

MS2: 30 ± 8.32  

FE: 29 ± 6.47  

Best: 25  

Average: 65  

Worst: 10  

Best: 25  

Average: 25  

Worst: 50  

  

InteractionCog  0  CMR: 24 ± 4.958  

MS1: 27 ± 3.969  

MS2: 31 ± 4.339  

FE: 18 ± 3.719  

Best: 40  

Average: 55  

Worst: 5  

  

Best: 25  

Average: 55  

Worst: 50  

  

ContributeCog  0  CMR: 26 ± 4.958  

MS1: 17 ± 3.969  

MS2: 27 ± 5.578  

FE: 30 ± 2.772  

Best: 35  

Average: 55  

Worst: 10  

  

Best: 25  

Average: 25  

Worst: 50  

  

MemoryCog  20 ± 11.596  CMR: 25 ± 5.714  

MS1: 22 ± 7.228  

MS2: 24 ± 6.321  

FE: 29 ± 3.338  

Best: 30  

Average: 45  

Worst: 25  

  

Best: 30  

Average: 47.5  

Worst: 22.5  

  

TrustCog (All 

High)  

0  CMR: 25 ± 4.997  

MS1: 24 ± 4.958  

MS2: 27 ± 6.818  

FE: 24 ± 4.11  

Best: 20  

Average: 62.5  

Worst: 17.5  

  

Best: 25  

Average: 25  

Worst: 50  

  

TrustCog (All 

Low)  

0  CMR: 30 ± 3.92  

MS1: 18 ± 5.403  

MS2: 23 ± 7.864  

FE: 29 ± 4.339  

Best: 22.5  

Average: 60  

Worst: 17.5  

  

Best: 25  

Average: 25  

Worst: 50  

  

TrustCog 

(Half/Half)  

0  CMR: 30 ± 3.92  

MS1: 18 ± 5.403  

MS2: 23 ± 7.864  

FE: 29 ± 4.339  

Best: 30  

Average: 60  

Worst: 10  

  

Best: 25  

Average: 25  

Worst: 50  

  

 

Table 10: Compound Chain 1 Experiment Analysis 

  

  ICMT1 GE1 (%)  ICMT1 GE2 (%)  

Revealed Profile   16.25 ± 1.588  9 ± 2.42  

Preference Change  22.5 ± 12.871  32.5 ± 12.102  

Agent Contribution 

Distribution  

CMR: 24 ± 5.681  

MS1: 27 ± 6.818  

MS2: 23 ± 7.3  

FE: 26 ± 5.681  

CMR: 20.453 ± 10.983  

MS1: 27.453 ± 11.573  

MS2: 27.453 ± 11.573  

FE: 29.643 ± 13.135  

Decision Made   0  100  

Rounds Taken: 4.1 ± 1.222  

Optimality: Revealed 

Profile  

Best: 27.5  

Average: 55  

Worst: 17.5  

Best: 40  

Average: 50   

Worst: 10  

Optimality: Knowledge 

Bank  

Best: 25  

Average: 42.5  

Best: 0  

Average: 100  
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Worst: 32.5  Worst: 0  

 

Table 11: Compound Chain 2 Experiment Analysis  
 

  ICMT2 GE1 (%)  ICMT2 GE2 (%)  

Revealed Profile   14 ± 1.24  11.5 ± 2.956  

Preference Change  30 ± 11.596  27.5 ± 8.344  

Agent Contribution 

Distribution  

CMR: 25 ± 8.43  

MS1: 21 ± 7.566  

MS2: 29 ± 3.338  

FE: 25 ± 6.93  

CMR: 24.745 ± 8.102  

MS1: 26.873 ± 11.878  

MS2: 27.856 ± 8.056  

FE: 20.523 ± 9.037  

Decision Made   0  60  

Rounds Taken: 4.5 ± 2.053  

Group Optimality:  

Revealed Profile  

-  Best: 33.33  

Average: 66.7  

Worst: 0.00  

Group Optimality:  

Knowledge Bank  

-  Best: 0  

Average: 100  

Worst: 0  

Agent Optimality: 

Revealed Profile  

Best: 40  

Average: 42.5  

Worst: 17.5  

Best: 31.25  

Average: 62.50  

Worst: 6.25  

Agent Optimality: 

Knowledge Bank  

Best: 22.5  

Average: 55  

Worst: 22.5  

Best: 25  

Average: 43.75  

Worst: 31.25  

 

Table 12: Compound Chain 3 Experiment Analysis  
 

  ICMT3 GE1 (%)  ICMT3 GE2 (%)  

Revealed Profile   16.5 ± 1.028  11.25 ± 2.219  

Preference Change  22.5 ± 12.871  24.5 ± 9.844  

Agent Contribution 

Distribution  

CMR: 24 ± 4.111  

MS1: 29 ± 4.339  

MS2: 20 ± 3.92  

FE: 27 ± 2.84  

CMR: 21.611 ± 9.309  

MS1: 25.611 ± 10.926  

MS2: 25.055 ± 10.261  

FE: 27.722 ± 9.006  

Decision Made   0  90  

Group Optimality:  

Revealed Profile  

-  Best: 33.33  

Average: 55.55   

Worst: 11.12  

Group Optimality:  

Knowledge Bank  

-  Best: 0  

Average: 100  

Worst: 0  

Agent Optimality: 

Revealed Profile  

Best: 45  

Average: 40  

Worst: 15  

Best: 50  

Average: 25  

Worst: 25  
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Agent Optimality: 

Knowledge Bank  

Best: 27.5  

Average: 47.5  

Worst: 25  

Best: 25  

Average: 50  

Worst: 25  

 

The compound chain results demonstrate that the combination of the CogChains produce 

the highest percentage of the revealed profile, in comparison to the unit CogChain results, across 

trust conditions for both decision rules. The preference changes and distribution of contributing 

agents align with the impact described by their unit test. No group decisions were made in 

unanimous conditions, however the highest optimality rating for best decisions (according to the 

revealed profile) is seen in the ICMT3_GE2 configuration (see table 12). This indicates that the 

half and half trust tendency split between high and low biased the information retention of 

CogAgents, reinforcing the preference of CogAgents that have the best optimality rating. The rarity 

of the best choice being made in this condition aligns with human-like behavior, as only 18% of 

human-based groups agreed on the best decision option (Stasser & Titus, 1985). The majority 

decision rule conditions did not always arrive at a group consensus, as seen in the ICMT2 and 

ICMT3 configurations, differing from the MemoryCog results. They are similar insofar as the 

distribution of knowledge bank group optimality ratings for the majority decision rule, which never 

chose the worst preference.   

The combination of CogChains is intended to produce a more cognitively complex human-

like agent in comparison to the individual CogChains. As previously discussed, the unit testing 

trials pointed towards a clear favoritism of the average decision option (see table 9). This human-

like trend continues in the combination chain results, as seen in the second group configuration 

cross-analysis table (see table 13). The major distinction between the combination trials and the 

MemoryCog trials is that the group does not always come to a decision. In the ‘all high’ trust 

configuration, information is always integrated, so the results are similar to the MemoryCog 
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results. In the second and third trust configurations, the variation in trust tendencies indicate an 

impact on the percentage of trials that resulted in a consensus (see table 13). The ‘all low’ condition 

generated an agreement 60% of the time, while the half and half condition jumped to 90%. The 

participants in Stasser & Titus’ human-based study came to an agreement most of the time, with 

only one group unable to reach a decision (Stasser & Titus, 1985). This is indicative of the half 

and half condition being a more natural representation for the team composition (see table 13), as 

human groups do not always reach a decision (as seen in the ‘all high’ condition) but do so more 

often than 60% (as seen in the ‘all low’ condition).     

Table 13: Combination Chain Group Configuration 2 Cross-Analysis 
 

  Preference 

Changes  

Decision 

Made  

Group Optimality 

(Revealed Profile)  

Group Optimality 

(Knowledge Bank)  

ICMT1 (All 

High)  

32.5 ± 12.102  100  

Rounds 

Taken:   

4.1 ± 1.222  

Best: 40  

Average: 50  

Worst: 10  

Best: 0  

Average: 100  

Worst: 0  

  

ICMT2 (All 

Low)  

27.5 ± 8.344  60  

Rounds 

Taken:  

4.5 ± 2.053  

Best: 33.33  

Average: 66.7  

Worst: 0  

  

Best: 0  

Average: 100  

Worst: 0  

  

ICMT3 

(Half/Half)  

24.5 ± 9.844  90  

Rounds 

Taken:   

4.2 ± 1.897  

Best: 35  

Average: 55  

Worst: 10  

  

Best: 25  

Average: 25  

Worst: 50  

  

 

Combining these chains illustrates that the CogChains that have a similar impact on the 

same point of analysis across their unit and compound test are not massively influenced by their 

combination with other CogChains. The distribution of CogAgent contributions were not 

overwhelmingly different across trials, signaling that ContributeCog either has limited interaction 

with other CogChains or needs further extrapolation of CogModules. A similar conclusion can be 

drawn for TrustCog. The most impactful of CogChains is MemoryCog, which produced changes 
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in preference, discussion result, optimality ratings, and an overall increase in the revealed profile 

percentage (see table 9). Memory proves to be pivotal in its impact on attention, which further 

delineates which information is most pertinent to consider when determining a preference or 

choosing which information item to share.   
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CHAPTER 5 

IMPLICATIONS AND CONTRIBUTIONS 

Advancement of AI-Based Human Behavior Modeling 

The advancements made in AI-based human behavior modeling presented in this study 

contribute to the broader goal of developing more sophisticated and realistic AI agents. It 

demonstrates the ability to implement a cognitive architecture as the inference system of AI agents 

that actuate with an LLM. This was achieved through the chaining of LLM cognitive process 

prompts and coded cognitive processes. The results also point towards the limitations in the 

abstraction of these cognitive processes to fit the capabilities of technology. Highly abstracting 

minor processes is possible, but the same cannot be said for broadly impactful processes like 

memory. Memory is one of the most difficult processes to simulate at a human-like level, and there 

is no consensus on the bounds of working memory in cognitive architecture (Kotseruba & 

Tsotsos). There are relatively few architectures utilizing working memory models that provide 

satisfactory information on the internal process structure and their interactions (Kotseruba & 

Tsotsos). The result of this study provides evidence that further research into implementing and 

modeling memory related processes, such as activation mechanisms (Anderson et al. 1996), can 

shed light on which are necessary to emulate human behavior. Investigating this avenue uncovers 

the more intricate underlying mechanisms of memory, and to what extent it can be captured by the 

current capacity of artificial intelligence. 
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Enhanced Understanding of Hidden Profiles 

There was not a single discussion simulation across any of the trials that produced a 

consensus agreeing on the best decision, with respect to the overall knowledge bank. The 

prevalence of the hidden profile is demonstrated even at the BaseCog level. The presence of hidden 

profiles persists even in the absence of consensus, emphasizing that information exchange is not 

only valuable to group decision making but also individual-made decisions. Singular cognitive 

processes do not majorly impact the hidden profile; rather, it is their combination that produces 

the largest effect. This suggests that the interrelationships between cognitive processes are crucial 

in revealing, and obscuring, hidden profiles. The results of this study point towards investigating 

the interactions between modules that cause the highest impact, rather than focusing solely on 

individual processes. Prioritizing depth over breadth in understanding the nuances of the influences 

of cognitive processes can provide insight into a specific association between a detailed process 

interaction and the hidden profile. 

Potential Applications: Improving Decision-Making Processes 

Researchers can deploy the CogSystem schema in different task environments to analyze 

which cognitive modules affect conversation trends and warrant further investigation. By 

providing an insight into how people make decisions and interact with others, techniques can be 

developed to counteract potential obstacles. These strategies can be further explored through 

CogSystem  by implementing additional CogModules that define the interaction rules, relevant 

cognitive processes, and other calculated restrictions. The architecture is designed to be open and 

extensible, so that it can be easily modified and extended to support new cognitive processes as 

needed for specific discussion tasks. A modular and hierarchical design is implemented, enabling 

the ability to incorporate new modules and systems as they are developed. In doing so, the 
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architecture is flexible and adaptable while remaining transparent for explainability. Future 

extensions of this architecture may incorporate more complex inference by also implementing 

causal reasoning. Computational techniques, such as parallel processing, can be employed to 

increase optimization.  An alternative method to the optimization technique would be using 

machine learning strategies to enhance performance as time passes. An example of this would be 

reinforcement learning, where the agent would receive a negative reward if their contribution 

resulted in a conflict or deviation from the discussion task.  

Potential Applications: Enhancing Human-AI Collaboration 

CogSystem can be used in optimizing productive human interaction through conversational 

agents. Human behavior may be misaligned, inhibiting conversation flow. Conversational agents 

can function as facilitators for group discussions to enhance conversation flow (Hogan et. al, 

2021). The special role of a team member is also seen in Stasser’s expert-role assignments. These 

conversational agents may potentially be interventive experts that encourage the exchange of 

unshared information. Kraus et. al (2020) identifies human team member perceptions of trust as 

significant in the evaluation of a conversational agent. Team member perception is influenced by 

how proactive or reactive the system is designed to be, as higher-level proactive rule interactions 

negatively impact perception of the agent. The conversational agents themselves may also be 

optimized to have a more human-like performance through the integration of a CogChain. A more 

human-like performance would provide a more realistic team member interaction, rather than the 

‘wizard of oz’ approach used in other studies, which may enhance team member perception of the 

agent  
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