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ABSTRACT 

This research presents re-training of Phonet Library, a speech technology that calculates 

posterior probabilities for phonological classes by leveraging distinctive features, on an 

American corpus. We re-trained the model on 49 phonemes classified by 24 distinctive features 

+ pause (silence). We call the resulting model Phonet_English. It considers both the acoustic 

features and the phonetic features to estimate the posterior probabilities for a given audio signal. 

This statistical approach helps us understand patterned variability in speech. Phonet_English 

exhibits an impressive range of accuracies for phonological class recognition, with the lowest 

accuracy value of 80.7% and the highest accuracy value of 96.3%. This thesis also delves into 

the model’s phoneme recognition accuracy and examines how its distinctive feature probabilities 

align with linguistic expectations for selected vowels and consonants. Our results showcase that 

Phonet_English is successful in capturing fundamental relationships between theoretical natural 

classes of sounds and their realization in English, making it highly useful in speech analysis and 

phonetic research. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In the world of language study, understanding how we make sounds (phonetics) and how 

these sounds work in different languages (phonology) is crucial. There are certain key elements, 

called distinctive features, that make up these speech sounds. These features are immensely 

beneficial for linguists in analyzing and understanding the diverse phonetic elements utilized in 

speech. They not only facilitate a deeper comprehension of our communicative methods and the 

construction of languages but are also regarded by phonologists as a formal system. This system 

undergoes rigorous scientific validation across various languages across the globe, highlighting 

its foundational role in the study of phonology. 

 For linguistic applications of speech technology, researchers often study systematic 

variations in pronunciation that may indicate language change, dialect differences among 

speakers, or context-dependent (allophonic) alternations. For example, in American English 

varieties, /t/ can change depending on its lexical positioning and adjacent phonemes. For 

instance, in words like water and butter, /t/ is typically realized as /ɾ/. Many tools, such as ASR 

systems or forced alignment systems, include a lexicon, and their goal is to assign specific word 

or phoneme labels to portions of the acoustic signal. These technologies can struggle with 
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capturing subtle speech variations, understanding context-dependent pronunciation, and 

recognizing diverse dialects, while also constraining researchers to analyze variation only at the 

level of individual segments.  

In the field of pathological speech processing, it is difficult to obtain the speech features 

of the patient, which helps us to understand the patient’s speech condition, by incorporating the 

traditional speech processing features like Mel frequency cepstral coefficients (MFCCs) and 

perceptual linear predictive coefficients (PLPs), which are widely used in the field of automatic 

speech recognition (ASR), speaker identification etc. It is difficult to extract the clinically 

interpretable features from the pathological context due to their complexity. Addressing this 

issue, the Phonet library (Vásquez-Correa et al. 2019) was developed, a recent tool that utilizes 

bidirectional Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) to extract 

posteriors from speech signals. These phonological posteriors contain explainable data on the 

place and manner of the articulation that can be well understood by clinicians. The Spanish 

corpus CIEMPIESS, that consists of 17 hours of FM podcasts in Mexican Spanish with a 

sampling frequency of 16kHz and16-bit resolution, was used to train the original model. The 

model was trained on chunks of speech that were 0.5 seconds. The input features are extracted 

from the 33 Mel-filter banks. Using the Adam optimizer, the networks were trained with a 

weighted categorical cross-entropy loss function. To improve generalization, dropout and batch 

normalization layers were included. The model achieved an Unweighted Average Recall (UAR) 

ranges from 80.4% to 93.3% for phonological classes and recall values ranging from 0.50 to 0.80 

for phoneme recognition.  

This thesis presents a version of the Phonet system (Vásquez-Correa et al. 2019) trained 

on US English. We call it Phonet_English. Phonet is a classifier that uses recurrent neural 

networks to assign phonological posterior probabilities to portions of an input. Posteriors 
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correspond to natural classes, which in this case are assigned according to the sound system of 

US English. Natural classes are groups of speech sounds that share one or more phonetic or 

articulatory characteristics and behave similarly within the phonological system of a language 

(Mielke 2004). Phonet uses the full acoustic signal for analysis (just like speaker-hearers do 

during speech perception), rather than focusing e.g., on a small number of acoustic correlates, as 

in traditional phonetic analysis. We re-train the Phonet library using the Common Voice 14.0 

dataset from the Mozilla Common Voice Project’s US-based English corpus. Our basic method 

for evaluating Phonet is to compare its phonological posterior probabilities and phoneme 

recognition results against segmental labels from forced alignment. We focus on major natural 

class features for a subset of US English vowels and consonants and demonstrate that Phonet 

performs well. 

 

1.2 Experiments and Results 

This research focuses on retraining the model Phonet on a US English corpus and its 

subsequent performance. The re-trained model, which we call Phonet_English, exhibited an 

impressive range of accuracies with the lowest accuracy value of 80.7% and the highest accuracy 

value of 96.3% and is able to identify the phonemes with recall values ranging from 0.146 to 

0.760.   

To evaluate the model’s performance, we plotted the AUC-ROC curve for each 

phonological class, and we obtained AUC values ranging from 0.56 to 0.92. Therefore, we can 

say that the model is successfully able to classify the phonemes. Our research proceeded to a 

more granular level of analysis focusing on specific phonological categories such as tense 

vowels, lax vowels, and coronal obstruents. We plotted violin graphs to analyze the distribution 
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of the posteriors. These graphs provided an intuitive way to visualize the data that allowed us to 

look into the distribution of the posteriors and in-depth patterns that might not be immediately 

seen from just looking at numerical data. This approach helped us understanding the similarities 

and distinctions between the phonological classes and their respective phonemes. 

 

1.3 Contributions 

This thesis contributes to the field of computational linguistics and speech analysis, 

especially in spoken language processing, by refining the Phonet (Vásquez-Correa et al. 2019) 

tool such that it can be used to analyze US English speech. This work has mostly focused on 

improving the performance of the model on analyzing the English speech. The results of the 

experiments shows that Phonet_English can be used to obtain phonological posteriors and it can 

be used in various linguistic explications. This comprehensive method has the potential to 

transform how phonological features are utilized and analysed in a wide range of linguistic 

applications, advancing both theoretical and applied linguistics. This work facilitates linguistic 

study and allows researchers to perform in-depth, nuanced studies of English speech. This works 

aims to significantly enhance linguistic analysis and phonetic transcription applications across a 

spectrum of fields including speech recognition and transcription, language learning and 

teaching, dialectology and sociolinguistics, phonetic research, speech therapy and rehabilitation, 

forensic linguistics, speech synthesis, and linguistic documentation of endangered languages.  

  

1.4 Outline of the thesis 

 The outline of the thesis is as follows: Chapter 2 discusses more background information 

on human vocal tract, articulatory phonetics, natural classes, distinctive features, various state-
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of-the-art machine learning models and their training processes used for the extraction of the 

signal features. Chapter 3 discusses the traditional and adopted distinctive feature theory and also 

defines the distinctive features that are relevant to this thesis. Chapter 4 provides in-depth 

information on the steps involved in training Phonet_English by describing the dataset used, 

explaining the necessary data preprocessing steps that need to be implemented before training 

the model and the expected output. Chapter 5 provides the results of the trained model. Chapter 6 

gives in-depth details of evaluation on the performance of the model. Finally, Chapter 7 provides 

the conclusion of this thesis and possible future developments. 
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CHAPTER 2 

DISTINCTIVE FEATURES IN PHONOLOGY 

2.1 Introduction  

The journey into understanding the complexity of phonological analysis through 

computational means, requires us to delve deeper into the anatomy of speech production, 

building blocks of linguistics and the cutting-edge computational methodologies that were used 

for speech recognition. In this section, we begin with exploring the vocal tract which is 

responsible for the production of speech (Zsiga 2013). This subsection focuses on the 

physiological mechanisms and articulatory mechanisms that are essential to create human speech 

sounds. To identify and understand the underlying pattern of the speech sounds and how these 

sounds are categorized, we next delve into the concepts of natural classes and distinctive 

features; we can better comprehend the complex structure of the language by grasping how 

sounds are grouped together according to shared phonetic characteristics. This investigation 

helps us understand the importance of elements from linguistic theory in developing 

computational models for speech analysis. Finally, we explore the evolution of sophisticated 

machine learning algorithms from traditional methods to interpret the nuances of spoken 

language. This part will elucidate how these computational techniques are employed to extract 
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and analyze phonological features from audio data. Moreover, we will also discuss various 

optimization techniques that were used to improve the performance of the model.   

 

2.2 Anatomy and function of the Human Vocal Tract 

The human vocal tract is responsible for speech in the human body. The vocal tract 

consists of 3 parts: sub-laryngeal, laryngeal or larynx, and supra-laryngeal. Speech is produced 

when air is driven into and out of the lungs. The larynx regulates pitch and voice vibration. The 

upper part of the larynx is said to be supra-laryngeal which is responsible for producing different 

speech sounds. The structure of the mouth is divided into passive articulators and active 

articulators. The lower lip, tongue tip, tongue blade, tongue body, and tongue root fall under the 

active articulators. The passive articulators include upper lip, upper teeth, alveolar ridge, post-

alveolar region, hard palate, soft palate which is also known as velum, and pharyngeal wall. 

These articulators are used to control the flow of the airstream. Figure 1 shows the 

supralaryngeal vocal tract.  

 

Figure 1: The supralaryngeal vocal tract, essential for understanding speech sound production 

and analysis. (Figure 1.8 in (Zsiga 2013)) 
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2.3 A quick overview of Phonetics and Phonology 

 
Phonetics and Phonology are both subfields of linguistics that deal with how speech 

sounds are made and how we organize these sounds (Zsiga 2013). Within the context of general 

phonetic theory (Laver 2017), phonetics tells us how speech is produced by using the human 

organs and how these sounds are transmitted and perceived. Phonetics is mainly divided into 

three sub-categories articulatory phonetics, acoustic phonetics, and auditory phonetics (Skandera 

2011).  

 

2.4 Articulatory Phonetics: Manner and Place of 

Articulation 

 
Building on the foundational understanding of the vocal tract’s anatomy, we now focus 

on the specifics of how speech sounds are formed. Articulatory phonetics details the usage of the 

vocal organs to produce speech sounds, which are also called articulators. According to the 

movements and the position of different articulators, various speech sounds are created. Based 

on the level of constriction made in the vocal tract to produce the sound the “Manner of 

Articulation” is assigned. The place where this constriction is happening defines the “Place of 

Articulation.” (We will discuss only the ones that are relevant to this research.).  

  The English consonants are categorized as follows (Zsiga 2013). The sounds that are 

formed by blocking the airflow are said to be obstruents. The sounds that resonate are sonorants. 

Vowels fall under sonorants. The sounds that are made where there is a complete stoppage of the 

air flow are said to be Plosives. These are also called Oral stops. In this research, the plosives are 

[p, b, t, d, k, ɡ, ʔ]. We also considered the aspirated stops [pʰ, tʰ, kʰ]. The sounds made by the 

vibration of the vocal folds (shown in Figure 1) are said to be voiced and the sounds that are 
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made without the vibration of the vocal fold are said to be voiceless. The action of opening the 

glottis, the space between the vocal folds, at the moment of the release of the oral closure of a 

stop is known as aspiration (Kim 1970). The sounds that are formed by pressing the two 

articulators together without closing them, resulting in a forced airflow, are fricatives. The 

sounds /f, v, θ, ð, s, z, ʃ, ʒ, h/ are considered for our research purposes. The sounds that are the 

combination of the plosive and fricative are said to be affricates. The sounds /tʃ, dʒ/ are 

considered. When the vocal tract is narrowed down by the active articulator, approximants are 

formed, without producing any friction. Additionally, this constriction facilitates resonance 

within vocal tract. The approximants included are /ɹ, j, w, l/. The l-sounds /l ɫ/ are the lateral 

approximants. When the active articulator strikes the passive articulator flap sounds are formed. 

The flap [ɾ] is considered.  

The sounds are also distinguished into various categories depending on which place they 

are produced at. The sounds that are produced with both lips are bilabials. The bilabial stops and 

nasals are [p, b, m, pʰ]. If the sounds are made with bottom lip and upper teeth, then they are 

labiodentals. The fricatives /f, v/ are labiodentals analyzed here. The sounds that are formed with 

the front tongue part are coronals. The sounds that are made with upper teeth and front part of 

the tongue are dentals. The considered dental fricatives are / θ, ð /. Alveolars, [t, d, n, s, z, l, ɹ, ɾ, 

tʰ] are formed by using the front of the tongue and the alveolar ridge. Post-alveolar sounds /ʃ, ʒ, 

dʒ, tʃ/are made with blade of the tongue and post-alveolar region. When the middle part of the 

tongue is raised to meet the hard palate palatals /j/ are formed. When the back of the tongue is 

raised to meet the velum velars [k, g, ŋ, kʰ ɫ] are formed. The sounds [h, ʔ] that are made at the 

glottis are called glottals. For a comprehensive overview of the consonants discussed, please 

refer to Table 1. 
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M
an

n
er

 o
f 

A
rt

ic
u
la

ti
o
n

 

Place of Articulation 
 

Bilabial Labiodental Dental Alveolar Post-

alveolar 

Palatal Velar Glottal 

Plosive p, pʰ, b 
  

t, tʰ, d 
  

k, kʰ, 

ɡ 

ʔ 

Nasal m 
  

n 
  

ŋ 
 

Flap 
   

ɾ 
    

Fricative 
 

f, v θ, ð s, z ʃ, ʒ 
  

h 

Approximant 
   

ɹ 
 

j 
  

Lateral 

Approximant 

   
l  

  
ɫ 

 

Affricate 
    

dʒ, tʃ 
   

 

Table 1: English Consonants: An IPA Chart Overview. 

 

 The English vowels are categorized (Zsiga 2013) according to the position of the tongue 

(by height, backness, tenseness) and shape of the lips (rounded or unrounded). The front vowels, 

central vowels and back vowels that are considered are /i, ɪ, e, æ, ɛ/, /ə, ɚ/, and /ʊ, ɑ, ɔ/ 

respectively. When the sound is formed by combining two vowels, diphthongs are formed. The 

considered diphthongs are /aj, aw, ɔj, ej, ow/. Among these, /ɑ/ is an open vowel, /æ/ is a near-

open vowel. The vowel /i/ are considered as high vowels and near-close vowels are /ɪ, ʊ/, and 

mid vowels include /ə, ɚ, ɛ, o/. The vowels discussed are shown in Table 2. 

 
Front Central Back 

Close (High) i ɪ, ʉ  ʉ: 

Close-mid ej ə, ɚ  ʊ 

Open-mid ɛ 
 

ɔj, ow 

Open (Low) æ 
 

ɑ, aw 

 

Table 2: English Vowels: An IPA Chart Overview. 
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2.5 Natural Classes 

Natural classes are significant in phonology because these groups predict which sounds 

may participate in phonological processes across different languages. When a set of sounds 

demonstrates similar characteristics, it is typically likely that they are phonetically alike (Mielke 

2008). Natural classes share certain phonetic properties and behave similarly in phonological 

processes. These classes are essential to phonological theory as they offer insights into how 

languages organize sounds and predict phonological patterns. According to Sylak-Glassman 

(2014), a natural class frequently appears across various unrelated languages, suggesting a 

universal linguistic principle that accounts for the arrangement of phonemes within that class. 

Typically, a natural class represents a phonological grouping of phonemes that can be justified 

by phonetic properties which distinguish these phonemes from all others. Conversely, an 

unnatural class consists of a phonological grouping that does not adhere to this phonetic rationale 

and is generally unique to a specific language. For instance, in Evenki (Tungusic), the phonemes 

/v, s, g/ transform into /m, n, ŋ/, respectively, when they follow a nasal consonant. Also, in 

Dravidian languages1, a long radical long vowel shortens why they follow certain suffixes. For 

example, in the Telugu language, the long vowels are shortened when followed -ku, -gu, -cu, -tu, 

and -du. For instance, the root word "pāl-" changes to "paluku" (meaning "to say" or "to speak") 

when the suffix "-uku" is added, shortening the long vowel "ā" to "a" (Krishnamurti 1955).  

According to Sagey (1990), natural classes are thought to be defined by specific 

combinations of phonological features. This theory offers precise and robust predictions but falls 

short in encompassing phonological classes that are natural due to similar patterns in phonetic 

features. For example, Noam Chomsky and Morris Halle (1968) wrote that “if a theory of 

 
1 Generally, South India Languages like Telugu, Tamil, Kannada, Tulu, and Malayalam are Dravidian languages. 
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language failed to provide a mechanism for making distinctions between more or less natural 

classes of segments, this failure would be sufficient reason for rejecting the theory as being 

incapable of attaining the level of explanatory adequacy”. According to Flemming (2005), 

natural classes align formally with phonological classes since they are defined as any group of 

phonemes affected identically during a derivation. Consequently, there is no formal 

differentiation between natural and unnatural classes in terms of having a phonetic foundation 

and potential occurrence across various languages. This similarity implies that this concept lacks 

the capability to predict which phonological classes are likely to appear in multiple languages. 

 

2.6 Distinctive features 

In phonological theory, features are the units that constitute individual segments (e.g., 

vowels and consonants); they are defined both by their articulatory and acoustic properties. The 

idea of distinctive features has long been a cornerstone of phonology. The concept of distinctive 

features is based on the premise that the identification of a sound relies on its lexical contrast 

with other sounds within the system (Trubetzkoy 1939). Later, in 1952, Jakobson, Fant and Halle 

published Preliminaries to Speech Analysis: The Distinctive Features and Their Correlates. 

Distinctive features are used in theoretical phonology to place phonemes into natural classes 

based on shared phonetic properties. Traditional approaches hold that features are binary, to 

capture mutually exclusive “oppositions” in characteristics like [+voice] (for /b/) vs. [–voice] 

(for /p/) (Jakobson, Fant & Halle 1963). Distinctive features help us understand the phonetic and 

phonological properties of the sound, as well as the difference(s) between two sounds. They 

capture the phonological properties of a segmental inventory, using a closed class of descriptors 
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that link the mental representation of speech to its specific articulatory or acoustic properties, 

such as place or manner of articulation for consonants.  

According to Chomsky & Halle (1968), distinctive features in phonological theory are 

binary attributes that provide a systematic representation of the phonetic and phonological 

properties of the speech sounds. These features describe how individual phonemes are articulated 

and perceived across languages. They break down phonemes, the smallest units of sound that can 

differentiate meaning, into a series of binary oppositions such as [+voice] or [–voice], [+nasal] or 

[–nasal]. This binary system allows linguists to categorize phonemes not just based on their 

individual characteristics, but also in relation to one another, enabling a deeper understanding of 

the internal structure of phonological systems in any given language. One prominent way to 

represent these binary attributes is through the traditional feature matrix. In this approach, 

phonemes are viewed as bundles of distinctive features that are organized in a two-dimensional 

grid: one dimension is for the distinctive feature set, and the other is for the phonemes. For 

example, in a feature matrix phoneme as shown in Figure 2, /n/ is represented as [+nasal] and /p/ 

is represented as [–nasal].  

 

Figure 2: Example of a Feature Matrix - shows the initialization of phonemes in a traditional 

binary system. (Chomsky & Halle 1968) 
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This structured approach greatly facilitates the description and classification of the 

sounds of any language; linguists can analyze and compare phonemes in the matrix according to 

shared features. These features simplify the description and classification of sounds across 

languages. Therefore, these are important in phonological theory. With the help of a set of 

universal phonetic categories, linguists can effectively describe and predict phonemic behavior in 

phonological contexts, such as sound changes in different environments or the organization of 

phoneme systems in unfamiliar languages. Hence, this universal applicability of these features 

suggests their fundamental role in what Chomsky describes as Universal Grammar (UG) – a set 

of innate linguistic principles and structures shared by all human languages. When placed under 

such a light, the distinctive features as part of UG are almost the same as a cognitive blueprint 

guiding the process of language acquisition and processing, claiming that knowledge of language 

perception and production is not completely acquired but is also highly predetermined by genetic 

factors. Furthermore, the integration of distinctive features into UG supports the argument that 

the human brain is pre-wired with a specific set of linguistic capabilities. These capabilities 

facilitate the idea of rapid acquisition of language in early childhood, guiding the development of 

phonological systems by providing a framework within which all languages operate. For 

example, the presence of features like place, and manner of articulation helps children 

distinguish and produce the sounds necessary for effective communication within their linguistic 

environment without explicit instruction. Moreover, the research also discusses the application of 

the distinctive features in phonological rules, which are guidelines of how sounds interact and 

change in specific linguistic contexts. These rules are universally applicable due to their 

foundation in distinctive features. Hence, this further exemplifies the innate and systematic 

nature of human language as proposed by theories of UG. 
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In (1985), Clements addresses a weakness in the traditional feature matrix and proposes a 

multi-tiered hierarchical structure for the description of phonological features. He argues that the 

two-dimensional grid approach does not capture the complexity and hierarchical nature of the 

phonological systems. It treats features just as if they were independent and unstructured, not 

being able to reflect the real interactions and dependencies of features in natural languages. He 

concludes that the proposed structure offers a way in which phonological features and their 

interactions can be represented in a dynamic manner. This new model, also known as feature 

geometry, arranges the features into natural classes and considers insights from auto segmental 

and metrical phonology. This approach provides a more precise and comprehensive framework 

for analyzing phonological phenomena. His research is a significant advancement in 

phonological theory. It helps linguists to understand the behavior of the phonological features 

across various languages.  

Hall (2001) explores two main topics. Firstly, how features are represented in phonology, 

like the structure of features and when certain features are left unspecified. Secondly, how these 

phonological features are related to their actual use and interpretation in phonetics. Hall (2007), 

stands as a comprehensive resource in the field of phonology, offering a detailed exploration of 

phonological theories and concepts that are fundamental to the study of language sounds. This 

chapter delves into a variety of phonological features, including segmental features that form the 

basic units of sound, major class features which distinguish between different types of sounds like 

sonorants and obstruents, laryngeal features that deal with voice and voicelessness, manner 

features which describe how air flows through the mouth during speech, and place features that 

indicate where in the mouth sounds are articulated. 

The research in the Mielke (2008), challenges the traditional view described by Chomsky 

& Halle (1968), which states that distinctive features are part of UG. A finite, innate set of 
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features can describe all natural classes in any language, reflecting an inherent aspect of human 

linguistic capability. Mielke contends that distinctive features are not inherent but develop with 

the use of language. His study involved a large-scale cross-linguistic sample that involved 561 

languages and 6,077 different sound classes. The results of the survey showed that many natural 

classes are not predicted by such theories. More than 24% of these classes remain unaccounted 

for by any existing theory, which points out that the occurrence of phonological patterns is wider 

and more variable than innate theories can account for. He introduces Emergent Feature Theory. 

This theory states that distinctive features arise from the phonological patterns observed in 

languages rather than being pre-specified. In this perspective, features are abstract 

generalizations that are developed while learning, under the influence of phonetic properties, 

cognitive processes, and social interaction. Therefore, according to the Emergent Feature 

Theory, the features themselves are learned constructs, reflecting the language-specific 

experiences of the speaker, while phonological patterns are constrained by phonetic factors. This 

theory accounts for variability and adaptability across the phonological systems of different 

languages; in that sense, it goes against the universality claimed by the innate feature theories. 

Cohn (2011) includes a detailed review of the multifaceted role of distinctive features as 

defined by Chomsky & Halle (1968), focusing on their ability to capture contrast, phonological 

patterns, and phonetic realizations. The research argues that while the characterization of 

segments as combinations of universally defined distinctive features is approximately correct, it 

is not entirely accurate. This study looks at different views that could have the primitives of 

phonology be either segments, features, neither, or both, as well as the transition from the 

concept of segments to the understanding of distinctive features being the primitives in 

generative phonology. The study also discusses the concept of distinctive features as innate and 

universal elements which are necessary to describe the possible speech sounds and to explain the 



 

17 

 

concept of natural classes. Moreover, it details language-specific phonetics, showing that 

phonetic implementation varies across languages, with the help of examples, such as vowel 

lengthening and intonation patterns. It illustrates that the same phonological features can 

manifest differently depending on the language. The paper also examines how distinctive 

features help characterize phonological inventories and alternations. Mielke (2008) demonstrates 

that while distinctive features account for many phonological patterns, they also show 

limitations. The study also details the relationship of adult phonological systems and language 

acquisition and points out that the way in which those phonological systems are learned might be 

different from the end state knowledge of adult systems. 

The phonological representations which are also called the representational aspect of 

phonology are defined by syntagmatic and paradigmatic dimensions (van der Hulst 2016). The 

organizational structure of breaking down phonemes into syllables, then those syllables into 

words, and beyond is said to be the syntagmatic dimension. This approach highlights how speech 

sounds are arranged in a hierarchical structure and in a sequential order within language. On the 

other hand, the concept of considering the idea that phonemes are not the smallest units of sound 

structure, rather, they can be broken down into even smaller, fundamental elements is said to be 

the paradigmatic dimension. Van der Hulst’s paper examines the unary elements with the help of 

using the three frameworks: Dependency Phonology (DP), Government Phonology (GP), and 

Radical CV Phonology (RCVP). Each framework helps us to understand the unary features and 

how they are used to depict the underlying phonological structures across different languages. 

Dependency Phonology (introduced by Anderson 1987) explains the importance of unary 

features and how these help us to learn about the dependency relationships seen in the 

phonological structures. Government Phonology (Kaye, Lowenstamm & Vergnaud 1985; Kaye, 

Lowenstamm & Vergnaud 1990) introduces a set of unary components that are simple, and the 
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phonological information is processed cognitively. Radical CV Phonology further simplifies the 

idea and proposes that all phonological structures can be expressed by only two basic unary 

elements, simplifying the complexity of phonological representation. The analysis concludes that 

the unary features are more beneficial when compared to binary features to capture the 

phonological characteristics. Another alternative is a theoretically motivated mixture of feature 

types (Zsiga 2013).  

According to Mitkov et al. (2014), phonetic similarity is judged primarily by place and 

manner of articulation, as organized in the International Phonetic Alphabet (IPA) consonant 

chart. This chart categorizes sounds based on their articulatory features. The IPA chart follows 

the binary distinctive feature system. The IPA chart for the phonemes in this study are 

represented in Tables 1 and 2. 

 

2.7 Phonetic correlates of distinctive features 

There are regular linguistic patterns such as all tense vowels or all coronal obstruents, 

within specific segmental contexts. For example, tense vowels are produced with more 

peripheral articulatory movements than lax vowels. This results in more extreme formant 

frequencies, leading to a larger vowel space (Hillenbrand et al. 1995). Therefore, the vowel space 

between the first (F1) and second formant (F2) frequencies is generally large when compared to 

lax vowels. Tense vowels show greater lengthening (temporal modifications) whereas lax vowels 

exhibit greater changes in their dynamic spectral properties. For example, the duration of the 

sound /i/ in “see” or /u/ in “boot” is longer in clear speech. On the other hand, lax vowels, such 

as /ɪ/ in “sit” or /ʊ/ in “put”, display more significant changes in their acoustic qualities over 

time, with noticeable shifts in formant frequencies (F1, F2, F3) (Leung 2016). Coronal 
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obstruents undergo place assimilation (Zuraiq & Zhang 2006). This phonological process 

involves altering the place of articulation to align with the place of articulation of the following 

consonant. 

 From these patterns we can interpret the underlying structures of languages and their 

systematic variations. Phonological features often do not correspond directly to segments on a 

one-to-one basis. In American English, for example, vowels typically become nasalized before 

nasal consonants, as in the word pan [pæ̃n], where the [nasal] feature extends over two segments 

(mapping one feature to two phones). Also, consider the affricates /tʃ/ and /dʒ/, which start with a 

stop closure, represented by [–continuant] (lacking the [continuant] feature), and end with 

fricative noise, represented by [+continuant] (two features mapping to one phoneme). Since these 

phonological elements often span multiple segments and can extend across word boundaries, it is 

crucial to have tools capable of identifying features without being restricted by segmental limits 

(further explored in subsequent sections). Phonetics researchers seek to identify precise acoustic 

correlates for distinctive features, independent of symbolic transcription. 

According to Johnson (2005), listeners can often perceive two acoustically different 

signals as the “same sound”. However, identifying consistent acoustic cues that correspond to 

commonly recognized phonological features is quite a challenge (Stevens & Blumstein 1981). 

On the other hand, early acoustic phonetic research showed that the relationships between 

phonetic features and acoustic features were typically centered on a limited number of human-

measurable and interpretable correlates of features. The study, Peterson & Barney (1952), 

analyzed the acoustic characteristics of vowels to investigate the relation between the vowel 

sounds that speakers targeted, and the vowel sounds that listeners perceptually experienced. The 

values of these formants represent the resonant frequencies of the vocal tract. For this paper, the 

researchers recorded and measured the pronunciation of ten monosyllabic words – each with 
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different vowel sounds for 76 speakers and 70 listeners – and analyzed vowel quality. The results 

conclude that identification of the vowels dependent on the speaker's dialectal background and 

the formant value was an important acoustic cue in vowel quality. Delattre, Liberman & Cooper 

(1955) studied the role of second-formant transitions of the stop and nasal consonants. The 

results conclude that that each consonant has a fixed frequency position, or locus, of the second 

formant, and this locus can be associated with a consonant's place of articulation. The research 

also investigated the invariant acoustic cues for the place of articulation in stop consonants 

within the consonant-vowel syllables. The study (Stevens & Blumstein 1978) was carried out by 

pairing synthetic stop consonants with different vowels and manipulating acoustic attributes such 

as noise bursts at onset and formant transitions following consonantal release. The study 

concludes that the stimuli containing formant transitions, with or without noise bursts, were 

consistently identified according to place of articulation, while those are amplified with noise 

bursts. Lisker & Abramson (1964) measured the voice onset time (VOT) for initial stop 

consonants in their cross-language work. The duration of the release of the stop closure and the 

onset of voicing is measured in several different languages. The research concludes that VOT is 

one important cue to the distinction between voiced and voiceless stops, or to the distinction 

between aspirated and unaspirated stops. For example, in English, voicing-onset time for the 

voiced stops /b/ and /d/ is low, while for the voiceless aspirated stops /p/ and /t/ is high2.  

 

 

 

 
2 Please refer to (Olive, et al., 1993) for more examples. 
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2.8 Speech technologies 

In phonetic analysis, speech technologies are necessary to extract distinctive features 

within phonetic analysis because they are more precise, efficient, and can work with voluminous 

data. Due to subjective perceptions, there are bound to be errors with manual transcriptions, 

meaning that they are not reliable. Technological tools make objective and consistent 

measurements of acoustic characteristics like frequency, amplitude, and duration. Such tools are 

essential for the visualization of fine phonetic details that usually are lost – fine detail in the 

position of formants, structure of their transitions, or fine structure of the pitch contours. Besides, 

speech technologies allow large-scale analysis that permits researchers to process great amounts 

of speech data. This, in turn, is of utmost importance for cross-linguistic comparisons and 

universal phonetic features. It allows complex analysis of the speech signal because it uses 

advanced signal processing techniques such as Fourier analysis and Mel-Frequency Cepstral 

Coefficients (MFCCs). Practical examples and case studies (which are discussed later further in 

detail) represent the necessity and reason for technological tools in modern phonetic analysis; 

accordingly, detailed, objective, and comprehensive studies of speech sounds have been made 

possible in this area. 

Lee (1989) utilizes the Hidden Markov models (HMM) for speaker independent phone 

recognition. The analysis was carried out on the subset of the TIMIT database (Lamel & Kassel 

1986; Fisher, Zue & Bernstein 1987). The data considered consists of 2830 sentences from 357 

speakers, used for training, and 160 sentences from 20 speakers used for testing. The model was 

trained under two scenarios: Context - Independent and Context – Dependent. In the case of the 

latter, the phone was dependent on the neighboring phones. This paper also proposes the concept 

of co-occurrence smoothing, which determines the similarity of each pair of phones, and then 
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modifies the distributions of each phone according to it. The model achieved a phone recognition 

accuracy of 73.8% speaker-independent phone recognition. This was the best accuracy reported 

at that time.  

The study Lee et al. (2000) suggests a brand-new technique for extracting speech features 

from human audio data using Independent Component Analysis (ICA). The authors show that by 

extracting Gabor-like characteristics that are confined in both time and frequency, ICA can 

effectively encode speech signals. These characteristics, which together constitute a novel filter 

bank, outperformed conventional Mel-Frequency Cepstral Coefficients (MFCCs) in speech 

recognition tests. The structure of the ICA network is composed of inputs and outputs that have 

equivalent sizes of speech segments and the feature vectors are represented by inverse of the 

trained weight matrix. The ICA model was trained by using samples of human voice signals 

from 75 phonetically balanced Korean words said by 59 speakers. The ICA network was trained 

with randomly produced speech segments to extract basis function. To compare the effectiveness 

of ICA-based features against MFCCs, experiments were conducted to train the ICA network by 

determining dominant feature vectors and performing isolated-word recognition tasks. The study 

demonstrates that the proposed method achieved an error reduction of 47.4% when compared to 

MFCCs. The paper concludes that the extracting features employed by the ICA technique 

outperformed a traditional MFCCs approach and is an effective method for speech feature 

extraction. 

In Lee et al. (2009) the authors use convolutional deep belief networks (CDBNs) to learn 

features of unlabeled data (speech and music), for tasks like speaker identification, gender 

classification, phone classification, and music genre classification. The authors demonstrate that 

CDBNs can learn hierarchical representations from the given signal, and these hierarchical 

representations increased the performance of the deep learning models, when compared with the 
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models trained on traditional features MFCCs, for audio classification tasks especially in case of 

limited labelled data. The architecture of the CDBNs is refined from the architecture of the 

convolutional restricted Boltzmann machine (CRBMs) for unsupervised learning of the 

hierarchical audio features. The CDBN is a CRBM with probabilistic max-pooling. For this 

research purpose the unlabeled TIMIT dataset (Fisher, Doddington & Goudie-Marshall 1986) is 

used. The first and second layers of the CDBN are trained via unsupervised learning method with 

the spectrogram as the input to the layers. The spectrogram is extracted from the utterances of 

the training data and has a window size of 20ms with 10ms overlaps. The model undergoes 

greedy layer wise training; the hidden layers are trained in a bottom-up fashion. The contrastive 

divergence technique is used to approximate the gradient effectively. The results of the 

experiments demonstrate that the proposed method outperformed the MFCC features by 

achieving an over 90% accuracy for speaker identification, around 95% for gender classification 

and around 80% for phone classification. 

Graves, Mohamed & Hinton (2013) explore the application of Deep Recurrent Neural 

Networks (RNNs), with a focus on Long Short-term Memory (LSTM) architectures, for speech 

recognition. The analysis was carried out on the TIMIT corpus (DARPA-ISTO 1990), utilizing 

audio recordings from 74 speakers. The audio signals were analyzed using a Fourier-transform-

based filter-bank. The signal data was normalized to make sure that all inputs have zero mean 

and unit variance. The models that were used are LSTM, Deep LSTM, Bidirectional LSTM (Bi-

LSTM) and Deep Bidirectional LSTM. The architecture of the models ranged from simple 

configurations CTC-1L-250H, a single-layer LSTM network trained with Connectionist 

Temporal Classification (CTC), to more complex structures like the CTC-5L-250H. The paper 

mainly focuses on the impact of the deepening of the number of multiple layers of recurrent 

hidden units and explores the efficiency of these architectures in capturing the long-term 
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dependencies to enhance the accuracy of the speech recognition. The models were trained to 

recognize 61 phoneme labels which were mapped to 39 phonological classes. The stochastic 

gradient descent optimization technique was used with a learning rate of 0.0001. The proposed 

LSTM RNN model achieved a minimum test error of 17.7%.  

 In Arora, Lahiri & Reetz (2015), the research explores the advancement of ASR systems. 

The study proposes a novel framework that integrates phonological insights by transforming 

acoustic signals into a phonological feature space using Artificial Neural Networks (ANNs), to 

improve digit recognition. This approach is tested on the TIDIGITS database. The aim of the 

experiment is to overcome traditional ASR limitations in handling phonological variations such 

as assimilation and coarticulation. The demographic and dialectal diversity in the database gives 

the system robustness. Here, instead of the conventional statistical methods, the experiment 

incorporated the ANNs for the extraction of phonological features and a ternary matching 

scheme for phoneme estimation. It showed an overall accuracy of 62% in the recognition of 

digits. The study concludes that integration of phonological knowledge in ASR systems provides 

a promising way ahead, opening the gates to much more adaptive and robust speech recognition 

technologies. 

The article Arora, Lahiri & Reetz (2018) introduces an ASR system dedicated to the 

specific task of improving pronunciation training for the non-native English learners (L2 

learners). The proposed method uses Deep Neural Networks (DNNs) and Hidden Markov 

Models (HMMs) to analyze the speech of L2 learners at a sub-phonemic level. This approach 

allows the feedback produced regarding the pronunciation error to be more precise. The 

performance of the system was tested using an experiment with participants that are German and 

Italians learning English. The results show that the proposed approach resulted in high accuracy 

in detecting mispronunciations and diagnosing specific phonological errors. In real-world 
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application situations, the Deep Neural Networks (DNNs) for feature extraction to the HMMs for 

their interpretation, have been demonstrated to high performance. The study concludes that 

phonological feature-based systems can give detailed, constructive feedback in a way that helps 

learners substantially improve their pronunciation skills in a new language. 

 Sailor & Patil  (2016) used Convolutional Restricted Boltzmann Machine (ConvRBM) 

model to extract the features from the given signal based on the unsupervised learning. In this 

model, initially, the speech signal is fed into a convolution layer, followed by the application of 

Rectified Linear Unit (ReLU) activation function. Subsequently, the pooling operation is 

performed with a window length of 25 milliseconds and a window shift of 10 milliseconds. 

Finally, the logarithmic transformation is applied to the output. The trained model achieved a 

performance improvement of 5% on the TIMIT corpus (Garofolo et al. 1993) and the Wall Street 

Journal WSJ0 database (Paul & Baker 1992) when compared to MFCC and Mel-filterbank. The 

data from TIMIT includes utterances from around 500 speakers and the from WSJ0 includes data 

from 84 speakers which consists of 7138 utterances. The model was fed normalized speech 

samples and was trained with a learning rate of 0.005 for the first 10 epochs. Following that, the 

learning rate was decreased.  

Phonvoc (Cernak & Garner 2016) is a toolkit equipped with fully connected parallel 

networks that could identify 15 different phonological patterns in the English language, 

including nasal, strident, and vocalic classes, with more than 96% accuracy. Feature-based tools 

have been used in clinical applications; Jiao, Berisha & Liss (2017) used recurrent neural 

networks with long short-term memory, trained on the TIMIT database, to identify 15 sound 

patterns and assess the pronunciation abilities of individuals with speech difficulties, achieving 

over 90% accuracy in detecting these patterns. 
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2.9 Previous work using Phonet 

In this thesis, we aim to re-train the Phonet Library (Vásquez-Correa et al. 2019) to adapt 

it for English speech. It provides deeper insights on the dynamics of spoken language, which will 

aid theoretical linguistic research and practical applications such as speech recognition and 

language-teaching tools. There are previous tools that utilized Phonet to understand the phonetic 

phenomena. 

For instance, Wayland et al. (2023), offer in-depth research specifically focused on the 

lenition of voiced and voiceless stops in intervocalic positions of Argentinian Spanish. That 

study compares classic acoustic measurements with state-of-the-art deep learning techniques to 

enhance the quantification of lenition, an extremely common phonological process in which 

consonants become less obstructive in their articulation, hence affecting their acoustic quality. 

More particularly, the study deals with the lenition process of the Spanish voiced stops /b, d, g/ 

that surface as fricatives [β, ð, ɣ] in intervocalic positions, conditioned by phonetic factors such 

as stress, place of articulation, surrounding vowel quality, and speaking rate. In this experiment 

the researchers adopted a multi-method approach for the analysis of a corpus of Argentinian 

Spanish. They utilized both classic acoustic metrics (intensity, duration, spectral properties) and 

Phonet to analyze the Argentinian Spanish corpus. The output posterior probabilities of sonorant 

and continuant phonological features that are obtained by Phonet are compared against 

traditional measurements to assess its efficacy in capturing the nuances of lenition. This 

comparison was critical to evaluate the model’s generalization capacity over lenition patterns 

that fulfil phonetic restrictions. Results from the study showed that the traditional acoustic 

measurements and Phonet gave good guidance as to the process of lenition. Specifically, the 

predictions of the Phonet model compared quite well with traditional acoustic measurements, 
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such as intensity and duration, in its ability to simulate expected phonological changes. The 

posterior probability predictions of sonorant and continuant classes made by Phonet took on a 

similar pattern to those taken from the relative acoustic intensity measures, which illustrated its 

effectiveness in reflecting the effort-based view of lenition and previous phonetic findings. 

Thereby, it allowed Phonet to be a valuable and a reliable tool alternative or supplementary 

source for a detailed phonological analysis. 

The research (Tang et al. 2023) presents a study of lenition in speech using Phonet. The 

model is trained to recognize posterior probabilities of sonorant and continuant phonological 

features in Argentinian Spanish. The research focuses on voiced and voiceless stops, uncovering 

lenition patterns that align with previous studies and revealing additional patterns. Results of the 

study showed that Phonet can simulate the lenition patterns that were otherwise detected using 

traditional quantitative acoustic methodologies. More lenition of voiceless stops was found than 

for voiced stops, while lenition was also more prevalent in an unstressed compared to a stressed 

syllable. This would seem to accord with linguistic theory that lenition is conditionally due to the 

phonetic environment and to articulatory effort and would confirm the model’s ability to 

interpret these subtle phonetic changes. The study confirms the model’s effectiveness as an 

alternative or complement to traditional quantitative acoustic measures of lenition. It also 

concludes that Phonet will be the new application of automated lenition measurement, through 

the translation of complex acoustic data into interpretable phonological features. This model 

frees researchers from manual labeling and helps to analyze a great quantity of data. The authors 

argue that such a tool will greatly help in allowing scalable and efficient research on phonetic 

and phonological patterns. 

Both aforementioned studies used a corpus of crowd-sourced recordings from 44 native 

Argentinian Spanish speakers, encompassing over 8.0 hours of speech with 7449 unique words, 
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to analyze word tokens with voiced and voiceless stops in varying vocalic environments. Both 

studies conclude that Phonet can automate and refine the analysis of complex phonological 

features and provides a fine-grained understanding of lenition when compared to traditional 

methods. Therefore, Phonet is a very useful research tool that enables in-depth analysis of the 

dynamics of language sound systems. It expands the frontier of linguistic research with 

methodologies for acoustic speech analysis, which opens a scope for further exploration of the 

complex interrelationship of phonetics and phonology in natural languages. 

 

 

 

 

 

 

 

 

 

 



 

29 

 

 

 

CHAPTER 3 

DISTINCTIVE FEATURE ASSIGNMENTS 

3.1 Introduction 

In this chapter we discuss the distinctive feature assignments that were adapted in 

Phonet_English. We start with Section 3.2, that elaborates binary and unary distinctive feature 

system in Phonet_English. Next, Section 3.3 defines the Manner Features, Section 3.4 defines 

the Laryngeal Features, Section 3.4 defines the Place Features, Section 3.5 defines the Vowel 

Features and Section 3.6 describes the other features that are considered for training 

Phonet_English. 

 

3.2 Binary and Unary Distinctive Feature System 

 The traditional binary distinctive feature systems for consonants and vowels are shown in 

Figures 3 and 4, respectively. On the other hand, the Phonet architecture uses a unary distinctive 

feature system. For example, phones like /i e a o u/ are typically characterized as [+syllabic]. In a 

binary feature theory, consonants outside of this natural class like /d t z/ would be designated as 

[-syllabic]; but for Phonet, [syllabic] is specified for all vowels, and simply not specified 

otherwise. This system reduces the complexity of the input data to the neural network during the 
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training phase of the model, leading to quicker model convergence and lower computational 

demands. 
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Figure 4: Distinctive feature specifications for British English Vowels Table 7.2 in (Davenport & 

Hannahs 2010) 

 

 

 Now, let us dive into different distinctive features namely: Manner features, Place 

features, Laryngeal features, Vowel features. These features help us to understand the phonetic 

characteristics that distinguish different speech sounds. This detailed analysis aids in enhancing 

speech recognition systems and improving the accuracy of phonetic transcriptions. 

 

3.3 Manner Features 

 [syllabic] sounds form the nucleus of a syllable, and mainly include vowels and syllabic 

consonants. [consonantal] sounds are the ones that are formed due to significant constriction in 

the vocal tract. [sonorant] sounds are produced by the accumulation of pressure behind an oral  

constriction and encompass vowels, nasals, approximants, and laterals. If the sound is produced 

when the oral cavity is not restricted, then it is a [continuant]. Vowels, fricatives, and 

approximants are Continuant. [nasal] sounds emerge when the velum is open, allowing air to 

escape through the nose, as in the sounds /m/, /n/, and /ŋ/. The [lateral] feature indicates a sound 

that is formed when the vocal tract is open at sides and closed at the center, allowing the 

airstream to flow over the sides of the tongue. 
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3.4 Laryngeal Features 

 [spread glottis] features indicate that there is a significant glottal opening gesture. The 

feature [voice] indicates the vibration of the vocal folds. 

 

3.5 Place Features 

 The [distributed] feature tells if the sounds are produced using the blade of the tongue 

with a long constriction. A sound is [anterior] if it is made with the tongue front at or in front of 

the alveolar ridge. Dentals and alveolars are [anterior], while postalveolars, retroflexes and 

palatals crucially are not. [strident] sounds have high-amplitude and high-pitched frication. The 

[dorsal] feature tells if the sound is formed by moving the back of the tongue against or toward 

the velum. [labial] tells if the sounds are formed by using the lower lip. The [coronal] feature 

tells if the sounds produced use the tip or blade of the tongue. 

 

3.6 Vowel Features  

The [high] feature tells if vowels are produced with the tongue positioned close to the top 

of the mouth, the [low] feature tells if vowels have the tongue positioned at the bottom of the 

mouth, the [back] feature tells if vowels are articulated when the tongue is moved towards the 

back of the mouth, and the [front] feature tells if the vowels are articulated when the tongue 

advances towards the front of the mouth. Diphthongs, as defined before, start with one vowel and 

glide into another vowel within the same syllable. [round] tells if the sounds are articulated with 

rounded lips. The [tense] feature tells if the vowels are formed by stiffening the tongue root. 
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3.7 Other Features  

 In our research, we also use the [flap] feature that tells if the sound is formed when the 

tongue and alveolar ridge are in contact. Incorporating this feature is necessary, as it helps the 

model to identify the alveolar stops /t/ and /d/. The [rhotic] feature tells if the sounds possess a r-

like quality. 

 Table 3 shows the distribution of phones into phonological classes for US English as they 

were specified for Phonet. 

Phonological 

Feature 

Phonemes 

Syllabic  /a, æ, aj, aw, ɔj, ə, ɚ, ej, ɛ, i, ɪ, ow, ʉ, ʉ:3, ʊ/ 

Consonantal  /b, d, ð, dʒ, f, ɡ, h, k, kʰ, l, ɫ, m, n, ŋ, p, pʰ, ɹ, ɾ, s, ʃ, t, tʰ, tʃ, v, z, ʒ, ʔ, θ/ 

Sonorant  /a, æ, aj, aw, ɔj, ə, ɚ, ej, ɛ, i, ɪ, j, l, ɫ, m, n, ŋ, ow, ɹ, ɾ, ʊ, ʉ, ʉ:, w/ 

Continuant  /a, æ, aj, aw, ɔj, ð, ə, ɚ, ej, ɛ, f, h, i, ɪ, j, l, ɫ, o, ow, ɹ, ɾ, s, ʃ, tʃ, ʉ, ʉ:, ʊ, v, 

w, z, ʒ, θ/ 

Nasal  /m, n, ŋ/ 

Voice  /a, æ, aj, aw, b, ɔj, d, ð, dʒ, ə, ɚ, ej, ɛ, ɡ, i, ɪ, j, l, ɫ, m, n, ŋ, ow, ɹ, ɾ, u, ʉ, 

ʉ:, ʊ, v, w, z, ʒ/ 

Labial  /b, f, m, p, pʰ, v, w/ 

Round  /aw, ɔj, ow, ʊ/ 

Coronal  /d, ð, dʒ, j, l, n, ɹ, ɾ, s, ʃ, t, tʰ, tʃ, z, ʒ, θ/ 

Distributed  /ð, dʒ, ɹ, ʃ, ʒ, θ/ 

Anterior  /d, ð, l, n, ɹ, ɾ, s, t, tʰ, z, θ/ 

Strident  /dʒ, s, ʃ, tʃ, z, ʒ/ 

Spread glottis  /h, kʰ, pʰ, tʰ/  

Lateral  /l, ɫ/ 

Dorsal  /ɡ, j, k, kʰ, ɫ, ŋ, w/ 

 
3 The symbol ‘:’ , indicates it is a long vowel.  
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Rhotic  /ɚ, ɹ, ɾ/ 

Flap  /ɾ/ 

Long / ʉ:/ 

High  /i, ɪ, j, ʉ, ʉ:, ʊ, w/ 

Low  /a, æ, aj, aw/ 

Back  /a, aj, aw, ɔj, ow, u, ʉ, ʉ:, ʊ, w/ 

Front  /æ, ej, ɛ, i, ɪ/ 

Tense  /ej, i, ow, ʉ, ʉ:/ 

Diphthong  /aj, aw, ɔj, ej, ow/ 

Table 3: Assignment of English phones to phonological classes. Symbolic notation is based on 

MFA’s (McAuliffe 2017) US English lexicon. 
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CHAPTER 4 

PHONET FOR US ENGLISH 

4.1 Introduction 

In this chapter we outline the architecture and the retraining process of Phonet for English 

speech. Firstly, Section 4.2 details the architecture of the model. This section describes the 

utilized neural networks and how acoustic features, and phonetic features are incorporated in the 

training process which helps the resulting model to consider both acoustic and phonetic features 

while estimating the posterior probabilities of the given audio file. This aspect is especially 

important for the model to estimate the posterior probabilities of the input audio files and it 

strongly enhances the model’s performance. Next, Section 4.3 provides the details of the training 

corpus like number of words, speaker diversity, and overall hours of audio used for training. 

Next, Section 4.4 goes more into detail on the preprocessing that needs to be done on the data 

prior to training and the procedure of retraining. Finally, Section 4.5 discusses the expected 

output of the model. 

 

4.2 Overview of Phonet’s architecture  

The Phonet library (Vásquez-Correa et al. 2019) is an advanced phonetic analysis tool 

utilizing bidirectional recurrent neural networks (RNNs) with gated-recurrent units (GRUs) (Cho 
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et al. 2014). Its primary function is the estimation of posterior probabilities of phonological 

features, which can assist linguistic data analysis. The model is trained with both acoustic and 

phonetic features extracted from the audio files. 

Initially, the raw audio signals which are in the .mp3 format4 are converted into .wav 

format with a sampling frequency of 16 Hz. Next, each audio signal undergoes preprocessing 

which helps to enhance uniformity and quality of the signal. In this step, we perform both mean 

normalization and amplitude normalization. Mean normalization involves subtracting the 

average value from the signal to keep the signal centered around zero and amplitude 

normalization is carried out to ensure signal’s highest value is below a consistent value. These 

steps are important as they help us to handle the varying recording volumes and background 

noise. To capture the dynamic nature of the audio signal over time, the signal is segmented into 

overlapping frames, specified by a frame size of 25 ms and a time shift (or hop length) of 10 ms. 

Next, by using the pyfeat.fbank function, we carry out a filter bank analysis on each section of 

the audio. This is carried out with the help of 33 triangular Mel filters and a setting of the Fourier 

Transform size (nfft=512) ensuring to capture the frequency-based features. These features 

provide a granular and detailed acoustic representation. Subsequently, we calculate the energy of 

each frame, which helps us control the loudness of the signal changes over time. Therefore, 

along with these spectral characteristics we also capture the dynamic changes in signal intensity. 

Then, we concatenate both filter bank coefficients and energy values to create a feature vector 

for each frame. Finally, logarithmic scaling is applied to these features. This step improves the 

performance of the machine learning models as we normalize the distribution of the data. These 

 
4 The raw signals do not need to be in .mp3 format. 
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extracted acoustic features are then saved in a .pickle file for each audio. Figure 5 shows the 

steps involved in extracting the acoustic features from the signals. 

 

 

 

 

 

 

Figure 5: Acoustic feature extraction roadmap for Phonet training – details essential steps for 

model training. 

 

Along with the acoustic features, we also extract the phonetic features, which are crucial 

for understanding the dynamics of speech. The phonetic features include the start and end time of 

a phoneme, and the phonological class of each phoneme. To extract these features accurately, we 

employed forced alignment. The process of synchronizing the audio signal with respect to its 

corresponding orthographic transcription is called forced alignment. This technique helps us to 

align the text, each word, and each phoneme, precisely with the corresponding segment in the 

audio signal. We used Montreal Forced Aligner (MFA; McAuliffe 2017). The MFA was applied 

to audio recordings and their associated text files to generate Praat TextGrid files (Boersma & 

Weenink 2023), containing word- and segment-level time alignments. The TextGrids identify the 

phones present in the recordings, generated by grapheme-to-phoneme conversion and with 

assistance from pronunciation variants in MFA’s lexicon. Figure 6 illustrates the alignment of 

each phoneme and word to the audio signal. This figure shows the alignment of the waveform, 

spectrogram, and Textgrid file tiers for the utterance ‘a tray of lighted embers /ə tɹej əv lajtjɪd 

ɛmbəz/’ as produced by MFA. The top panel displays the audio waveform, the middle panel 

Signal 

Preprocessing 
Filter Bank 

Analysis 

Energy 

Computation 

Logarithmic  

Scaling 

Feature 

Concatenation 
Feature Extraction 



 

38 

 

shows the spectrogram, and the bottom panels present the word-level and phone-level 

annotations (tiers present in TextGrid file).

 

Figure 6: Display of audio file and textgrid file in Praat. The Textgrid file is obtained by MFA 

for utterance: a tray of lighted embers /ə tɹej əv lajtjɪd ɛmbəz/ - helps us to understand a textgrid 

file in which the phonemes and words are aligned with audio. 

 

 

Using the pre-defined phoneme-to-phonological class mappings (Table 3), phonemes are 

first encoded to phonological features in the phonetic feature extraction segment. This encodes 

phonemes in a binary vector according to their phonological classes. The next step is to convert 

these phonemes into numerical indices so that every phoneme is recorded in a way that can be 

analyzed computationally. The last step involves processing TextGrid files to extract the 

maximum and minimum timing and identification of each phoneme. This data is then arranged 

into structured dictionaries for analysis at the frame and phoneme levels. Figure 7 shows the 

steps involved in extracting the phonetic features from the signals. 
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Figure 7: Phonetic features Extraction roadmap – details essential steps for model training. 

 

Both input feature sequences, acoustic features and phonetic features are processed by 

two layers of bidirectional GRUs. These layers enable the system to integrate temporal context 

by processing data from both previous (backward) and upcoming (forward) temporal states. This 

dual-directional analysis enhances the system’s ability to capture dynamic temporal 

dependencies within speech. After the GRU layers, the data passes through a time-distributed, 

densely connected neural layer. This layer operates as a hidden dense layer, further refining the 

feature representation and maintaining temporal sequence integrity. The final output generation 

involves a time-distributed layer equipped with a softmax activation function. This layer 

categorizes the processed features into distinct phonological classes, effectively translating the 

complex acoustic patterns into linguistically relevant categories. Additionally, Phonet contains a 

model for phoneme recognition. Source code of Phonet is accessible through its open-source 

repository at: https://github.com/jcvasquezc/phonet 
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 We have adapted the Phonet’s architecture with significant changes for the retraining 

procedure. The architecture is used to train a total of 26 neural networks: 25 phonological classes 

and one layer for the recognition of 49 phonemes. The original Phonet model that was trained on 

Spanish has 19 neural networks (18 for phonological classes and one layer for 21 phonemes). We 

utilized weighted categorical cross-entropy for the loss function and adopted the Adam optimizer 

(Kingma & Ba 2017) for efficient model training, ensuring precise weight adjustments and 

optimal convergence. The usage of weighted categorical cross-entropy loss function helps to 

tackle the class imbalance problem. The weight factors for each class are determined from the 

training set based on the proportion of samples that belong to each class. 

 

4.3 Dataset 

 Our dataset is a subset of Common Voice 14.0 from the Mozilla Common Voice project 

(Ardila 2020) which is an open-free source voice database. Our focus was exclusively on the 

data labeled as “United States English”, consisting of 6448 audio files, which consists of around 

68,000 words and is approximately 10 hours of spoken English, involving 237 speakers. The 

data set consists of audio files in .mp3 format and their orthographic transcriptions in .tsv files. 

 

4.4 Data Preprocessing & Model Training 

We converted the audio files from their original .mp3 format to .wav format with a 

sampling frequency of 16kHz, as required for the Phonet’s processing needs. Alongside this, we 

extracted the corresponding orthographic texts from the dataset’s provided .tsv files, creating an 

individual text file for each audio piece. We then divided this data into two sets: training and 

testing. The training set, comprising 80% of the data, was used to train the model, while the 
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remaining 20% of the data was used as a validation dataset to test and evaluate the performance 

of the model (validation dataset = test dataset). We utilized the ‘fit_generator’ method in Keras 

and defined our validation dataset by using ‘validation_data’ parameter. For both sets, we 

extracted acoustic features and phonetic features from the audio files, saving them into .pickle 

files. As described in section 4.2, we combined the acoustic features with the time-aligned phone 

labels (obtained via MFA) to train the Phonet_English architecture.  

We trained the model for 50 epochs utilizing an early stopping strategy to avoid 

overfitting. Early stopping5 is an optimization technique that prevents the model from learning 

only the details that are specific to the training data. It monitors the performance of the model on 

the validation set (we used the test data for validation) and saves the best model if the validation 

loss is not improved. This approach ensures that the model generalizes well. Implementing an 

early stopper improves the performance of the model on unseen data. Additionally, it also 

reduces the computational cost by stopping the training process once the validation accuracy 

stops improving. Our model converged at the 26th epoch. 

Data preprocessing and model training employed Python scripts running on Python 

version 3.12.1. Our computational setup consisted of a system equipped with an Intel i7 6850K 

processor, an Nvidia Titan V graphics card, 128GB of DDR4 RAM, and storage comprising a 

1TB SSD and a 4TB HDD. 

 

 

 

 
5 https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping 

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
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4.5 Output of the Model 

In phonological analysis, Posterior Probabilities, also known as the phonological 

probabilities, are log probabilities that show the possibility of phonological classes existing at 

each time step. These probabilities are the direct outputs form a trained model, like Bidirectional 

Recurrent Neural Networks in this study, that help us understand the presence of different 

phonological classes in a given speech signal.  

The Phonet_English model is designed to do two things: Phonological Class recognition 

and Phoneme identification. It is a multi-label classification problem. In the case of Phoneme 

identification, the model outputs the predicted phoneme at each time stamp. In the case of 

phonological class recognition, at each time step, this model outputs log-likelihood ratios This 

value indicates the likelihood of that sound belonging to a phonological class. 

Firstly, the acoustic features are extracted from the input audio. Then these features are 

segmented and normalized, before passing through the model whereby posterior probabilities are 

obtained for all phonological classes. These posteriors provide a temporal map of the 

phonological structure present in the audio and represent the likelihood of specific phonological 

features at each step in time. From these posterior probabilities, the log-likelihood probabilities 

are computed using (1), Phonological Log-Likelihood Ratio. This transformation converts the 

posterior probabilities into a feature space that emphasizes the relative likelihoods of 

phonological classes, enhancing their ability to distinguish between classes. Additionally, to 

avoid the bounding effect and improve robustness, the PLLR features can be projected into an 

orthogonal space. By transforming the posterior probabilities into a feature space that 

emphasizes the relative likelihoods of phonological classes, the ability of the phonological class 

distinction of the model is enhanced. Posterior probabilities provide direct insights into the 
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phonological composition of speech. On the other hand, PLLR features further enable 

differentiation between phonological classes based on relative likelihoods. 

 

𝑃𝐿𝐿𝑅 =  log10(
𝑃

1−𝑃
)                                               (1) 

where, 

• PLLR: Phonological Log-Likelihood Ratio. 

• P: Posterior probability of a specific phonological class being present at a given time 

step. 

• 1 − 𝑃: Probability of the specific phonological class not being present at the given time 

step. 
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CHAPTER 5 

RESULTS 

5.1 Introduction 

This chapter describes the results obtained by running the Phonet_English model. In 

Section 5.2, we delve into the performance accuracy of the model for classification of 

phonological classes. Next, Section 5.3 explores the performance of the model with respect to 

the phoneme recognition task. Finally, Section 5.4 provides in-depth analysis of the posterior 

probabilities obtained from the Phonet_English model applied to an English audio file. This 

chapter highlights the efficacy of the trained model and potential areas of improvement in the 

phonological class identification and phoneme recognition tasks. 

 

5.2 Recognition of Phonological classes 

After training Phonet, we obtained evaluation metrics for every phonological class, 

shown in Table 4. As mentioned in section 4.4, the data is divided into training and test sets. 

After training, the test set is used to evaluate the model’s performance. Since it is a classification 

problem, we have considered recall, f1-score, precision, and validation accuracy as the 

evaluation metrics. These metrics were derived using a confusion matrix, discussed in the later 

sections, that compared the predicted labels against the true labels in our test dataset. The 
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model’s recall values ranged from 80.8% to 98.5%, highest for [flap], [long], [lateral], and 

[strident] features.  

Recall indicates the model’s ability to identify true positives of the phonological classes 

accurately. Recall is the ratio of the number of true instances of a phonological class predicted to 

be that phonological class divided by the total predicted true instances of the phonological class. 

It indicates how well the model predicts the true positive instances of a phonological class. 

Precision is calculated by dividing the number of true instances of a phonological class predicted 

to be that phonological class and the total number of instances predicted as that phonological 

class. Precision shows how well the model was performing in terms of correctness for its positive 

predictions. The F1-score, being the harmonic mean of precision and recall, can be balanced in 

giving an overview of the performance by the model. Validation accuracy measures the correctly 

predicted instances to the ratio of the total instances in the validation set in gauging the overall 

correctness of the model’s predictions. 

 

Phonological Class Recall F-score Precision Validation Accuracy 

Syllabic 83.10% 83.80% 85.90% 83.40% 

Diphthong 88.90% 91.20% 95.20% 89.60% 

Consonantal 82.30% 82.60% 83.80% 82.80% 

Sonorant 87.50% 87.60% 88.10% 87.40% 

Continuant 85.10% 85.10% 85.50% 85.10% 

Nasal 89.40% 91.20% 95.00% 89.30% 

Voice 86.20% 86.20% 86.30% 86.10% 

Labial 83.30% 86.60% 93.40% 84.10% 

Round 88.80% 91.80% 96.40% 89.30% 

Coronal 81.20% 82.10% 85.00% 81.30% 

Distributed 84.90% 88.10% 94.20% 85.10% 
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Anterior 80.30% 81.50% 85.30% 80.50% 

Strident 91.60% 92.40% 94.50% 91.90% 

Spread Glottis 92.40% 94.30% 97.40% 92.30% 

Lateral 92.20% 94.30% 97.70% 92.90% 

Long 96.30% 97.40% 98.90% 96.30% 

Dorsal 85.10% 88.40% 94.40% 85.50% 

High 80.50% 82.70% 88.00% 80.70% 

Low 89.00% 91.30% 95.70% 89.50% 

Back 86.80% 89.30% 93.90% 87.20% 

Front 82.30% 84.20% 89.10% 82.30% 

Tense 87.00% 89.40% 93.90% 87.60% 

Rhotic 87.30% 90.00% 95.10% 87.10% 

Flap 98.20% 99.00% 99.80% 98.20% 

Pause 92.20% 92.10% 92.20% 91.80% 

Table 4: Phonological Class Performance Metrics 

 

5.3 Recognition of Phonemes 

 To evaluate results of the phoneme recognition task, output from Phonet’s trained 

phoneme recognition model was compared against the original MFA-generated input 

transcriptions (see section 4.2 and Fig. 6), and results are summarized in Table 5. The sounds /ʃ/, 

/s/, and /ej/ were recognized more accurately than others, showing higher recall values; /ɪ/, with 

low recall, was often recognized as /i/ instead. The Recall values tell us about the accuracy of the 

model for recognizing specific phonemes. High recall values indicate the model’s effectiveness 

in differentiating phonemes’ spoken forms.  
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Phoneme Precision Recall F1-score 

ɑ 0.330 0.619 0.431 

æ 0.492 0.495 0.493 

aj 0.521 0.724 0.606 

aw 0.335 0.628 0.437 

b 0.319 0.517 0.394 

ɔj 0.239 0.376 0.292 

d 0.212 0.279 0.241 

ð 0.077 0.292 0.122 

dʒ 0.371 0.573 0.451 

ə 0.570 0.185 0.280 

ɚ 0.351 0.582 0.438 

ej 0.442 0.643 0.524 

ɛ 0.356 0.431 0.390 

f 0.540 0.622 0.578 

ɡ 0.155 0.381 0.220 

h 0.389 0.654 0.488 

i 0.366 0.575 0.447 

ɪ 0.577 0.170 0.263 

j 0.286 0.461 0.353 

k 0.360 0.570 0.441 

kʰ 0.422 0.760 0.542 

l 0.369 0.572 0.449 

ɫ 0.438 0.666 0.528 

m 0.407 0.510 0.452 

n 0.585 0.449 0.508 

ŋ 0.245 0.517 0.332 

ow 0.322 0.469 0.382 

p 0.341 0.514 0.410 

pʰ 0.424 0.616 0.502 

ɹ 0.650 0.433 0.520 

ɾ 0.105 0.262 0.150 

s 0.680 0.652 0.666 

ʃ 0.573 0.739 0.646 

t 0.344 0.280 0.309 

tʰ 0.429 0.656 0.519 

tʃ 0.356 0.470 0.405 

ʉ 0.115 0.146 0.129 

ʊ 0.110 0.299 0.161 

ʉː 0.271 0.344 0.303 

v 0.398 0.468 0.430 

w 0.461 0.664 0.544 

z 0.559 0.540 0.549 
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ʒ 0.209 0.229 0.219 

ʔ 0.076 0.360 0.126 

θ 0.156 0.364 0.218 

Table 5: Phoneme Recognition Performance for Phonemes 

5.4 Sample output  

Figure 8 shows a sample output from the Phonet_English model. 

 

Figure 8: Sample output of the Phonet_English model outputting predicted phonemes and log-

likelihood probabilities at each time stamp of 10ms. This figure demonstrates the model’s ability 

to predict phonemes and their associated phonological posteriors over time. 

 

 As discussed in section 3.3, in phonetic theory, [syllabic] and [consonantal] are 

theoretically opposed: [syllabic] refer to the sounds that are formed from the nucleus of a 

syllable, which are typically vowels, while [consonantal] refers to sounds that are formed due to 

the constriction in the vocal tract, which are typically consonants. Figure 9 shows the waveform 

of an audio file with its corresponding [syllabic] and [consonantal] probability values. From the 

figure we can say that the model is successful in predicting the phonological classes for the 

phonemes at each time stamp. The phoneme labels in Figure 10 are the true phonemes obtained 

by MFA: the blue line indicating [syllabic] is typically high probability during portions of the 

audio labeled with vowel symbols and having high amplitude, while the orange line indicating 

[consonantal] has the opposite pattern. Where the two lines have similar values, such as during 

the sequence /v l/, we note that while these sounds are [consonantal], they are voiced and /l/ is a 

sonorant, meaning they share phonetic characteristics with [syllabic] vowels.  
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Figure 9: A waveform of the English utterance “a tray of lighted embers” /ə tɹej əv lajtjɪd 

ɛmbəz/, with phonological posterior values for the theoretically opposed distinctive features 

[syllabic] and [consonantal]. This figure displays model’s ability to distinguish phonological 

features. 

 

The figure 10 shows the heat map of the posteriors obtained for the English audio speech 

“He also taught at the Art Institute of Chicago” /çiː ɒɫsow tʰɑʔ æʔ d̪iː ɑɹt ɪnstʲɪtʲʉːt əv ʃɪkʰɑːɡow/. 

The greater presence of blue on the heatmap indicates a lower frequency of that phonological 

class at the corresponding timestamp.  
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Figure 10: shows the Posteriors obtained for the English sentence “He also taught at the Art 

Institute of Chicago,” demonstrating model’s ability to capture fine-grained phonetic details. 
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CHAPTER 6 

EVALUATION & DISCUSSION 

6.1 Introduction 

In this chapter, we analyze the outcomes of the Phonet_English model. The obtained 

Phonet_English model is used to obtain the posteriors for the test data audio files. Subsequently, 

we utilized Praat (Boersma & Weenink 2023) to obtain the MFA (McAuliffe 2017) labelled 

phonemes, named as phoneme_vox, in 10ms intervals. Then, we combined the results of all 

audio files into a single file which contains the MFA-labelled phonemes (representing a “ground 

truth” set of labels), the corresponding phonemes predicted by Phonet_English, and respective 

phonological posteriors for each distinctive feature. We took the average values of posteriors per 

individual segment for each audio file, rather than treating each sample separately, to control for 

the fact that some sounds have longer duration than others and could thus be overrepresented in 

the data. The averaged results of all audio files are merged into a single file, used for the 

evaluation of Phonet_English. 

In Section 6.2, we analyze the results by violin plots. Section 6.3 provides the AUC-ROC 

curves for each phonological class and the entire model, that tells the training accuracy of the 

model. For the plots we have used the true phonemes, obtained via MFA. Finally, in Section 6.4, 
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we analyze a confusion matrix to obtain further insights into the underlying problems and the 

errors of the phoneme recognition task. 

 

6.2 Violin Plots 

To evaluate Phonet_English’s performance, we considered 14 phonemes: the natural 

class of US English front vowels (Table 6) and the natural class of coronal obstruents (Table 7).  

The front vowels are noteworthy because they undergo systematic changes in their pronunciation 

across different US regions (Clopper, Pisoni & de Jong 2005), including variations in how  

tense vowels /i ej/ and lax vowels /ɪ ɛ æ/ are pronounced. From Renwick & Cassidy (2015), 

(Dunagan & Renwick 2021) we can say that coronal obstruents consist of a broad category of 

consonants encompassing stops, fricatives, and affricates and these are further divided by the 

attributes [voice], [continuant], and [anterior]. These consonants commonly exhibit extensive 

variation. For example, as heard in the pronunciation of miss you as [mɪʃ ju], the anterior series [t 

d s z] may transform into [tʃ dʒ ʃ ʒ] when it occurs before /j/. In Miller, Brailey-Jones & Renwick 

(2022) the methods for the automatic detection of palatalization by /t, d/ are described. Just like 

automatic speech recognition, digital symbolic representation of the speech sounds is also 

affected by variation. Moreover, in future research we can study dialect variation with the 

Phonet_English model as it produces the continuously varying phonological posteriors. 

 Tense Lax 

High / i / / ɪ / 

Mid / ej / / ɛ / 

Low  / æ / 
 

 Alveolar Post-Alveolar 

Plosive / t /, / d /  

Fricative / s /, / z / / ʃ /, / ʒ / 

Affricate  / tʃ /, / dʒ / 
 

             Table 6: English front vowels.    Table 7: English coronal obstruents        
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From Figure 11, that displays a violin plot of posteriors for the feature [tense], we can say 

that the model is partially successful at differentiating the vowels. We can infer that the model 

correctly provided the highest [tense] probability for vowels /i ej/, and lowest [tense] probability 

for vowels /ɛ æ/. However, for lax vowel /ɪ/ the model provides the indication that Phonet may be 

confusing vowel height with tenseness. On contrast, from the distribution patterns in Figure 12 we 

can infer that the model is able to identify the [low] feature among the front vowels. 

In case of coronal obstruents, we compared the posterior probabilities of [continuant] and 

[anterior] among the phonemes. In Figure 13, we can infer that the [continuant] feature value for 

stops /t, d/ is low when compared to the fricatives, which have high probabilities for this feature. 

For affricates /tʃ dʒ/ the [continuant] feature values are intermediate values since they are a stop-

fricative sequence. From Figure 14, the subtle place of articulation differences that separate fronter 

/t d s z/ from the remaining coronals are similarly displayed via [anterior].  

 

Figure 11: Phonological Log-Likelihood Ratios of [tense] for front vowels, demonstrates the 

model's effectiveness in identifying [tense] vowels. 
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Figure 12: Phonological Log-Likelihood Ratios of [low] for front vowels, showcases the model’s 

ability to identify [low] vowels. 

 

Figure 13: Phonological Log-Likelihood Ratios of [continuant] for coronal obstruents, 

demonstrates the model’s ability to distinguish [continuant] phones. 

 

Figure 14: Phonological Log-Likelihood Ratios of [anterior] for coronal obstruents, showcases 

the model’s ability to identify [anterior] phones. 
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6.3 AUC-ROC Curves 

For further analysis we plotted AUC - ROC (Area Under the Curve of the Receiver 

Operating Characteristic) curves for each phonological class to analyze the performance of the 

model. For this purpose we normalized the data using Min-Max scaler6, a technique used to 

scale/normalize the data so that all values fall between 0 and 1. Later we created the ideal 

posteriors for the phonemes with respect to phonological class; in case of [strident], for example, 

the posteriors will be 1 if the phoneme is among /dʒ, s, ʃ, tʃ, z, ʒ/ else the value will be 0. Then, 

we plotted the AUC-ROC curve for each class between posteriors obtained by Phonet_English 

and the ideal posteriors for that respective class. 

The AUC-ROC curves in Figure 15 show the performance of the Phonet_English model 

for each phonological class. All phonemes in Table 3 are considered. The ROC curve is plotted 

with True Positive Rate (TPR, also known as recall or sensitivity) on the y-axis against the False 

Positive Rate (FPR, or 1 – specificity). The TPR shows the percentage of positive data points 

that are correctly interpreted as positive with respect to positive data points and the FPR shows 

the percentage of negative data points that are falsely interpreted as positive with respect to 

positive data points. In our context, considering [syllabic], TPR illustrates an answer to the 

question, “of all the syllabic phonemes present, how many did the model correctly identify as 

[syllabic]?”, FPR provides information regarding “Of all the non-syllabic phonemes, how many 

did the model incorrectly label as [syllabic]?” and the area under curve (AUC) indicates the 

percantage of the phonemes that are correctly identified for each phonological class. In the AUC-

ROC curve for [syllabic] the AUC is 0.75 which indicates that 75% of the time model is capable 

of identifying the syllabic and non-syllabic phonemes. The five phonological classes with 

 
6 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html 
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highest AUC values are as follows: [strident], [spreadglottis], [low], [nasal], [sonorant]. 

Therefore, we can say that the model was able to categorize the phonemes correctly for these 

classes for most of the cases.  

Note that from Table 4 we can infer that the highest Recall values are for [flap], [long] 

and [lateral], whereas the AUC values are 0.75, 0.74, 0.67. This indicates that the model is good 

at identifying phonemes of these classes but there is also a tendency of the model to identify 

phonemes under these classes which, in reality, do not belong these classes.  
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Figure 15: AUC-ROC curves for each phonological class, indicating model performance and 

classification accuracy for each class. 

 

Figure 16 illustrates the ROC curve of the entire model, obtained using the macro-

average technique7 to provide a comprehensive assessment of the model’s performance. For a 

multi-label classification problem, calculating the ROC curve for the entire model involves 

aggregating the performance across all labels. There are two main techniques, namely macro-

average, and micro-average. The macro-average technique calculates the ROC metrics (TPR and 

FPR) for each label. On the other hand, the micro-average technique aggregates the True 

Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN) across all 

labels. In the case of the macro-average technique each label equally contributes to the overall 

metric. This is important especially in the case of imbalanced datasets such as this one. In the 

case of micro-average technique, more weights are given to the label that has more samples. The 

macro-average technique is preferred in multi-label classification problems, especially when 

dealing with imbalanced datasets, as it ensures a more balanced and fair evaluation across all 

classes. Therefore, for our study we have considered utilizing macro-average technique. 

 
7 https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html 
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Figure 16: AUC-ROC curves for entire model using macro-average technique, demostrates the 

overall performance of the model for phonological classification. 

 

These results confirm a high effectiveness of the library Phonet_English library in 

prediction of the phonological features and the accuracy of differentiation of complex 

phonological classes. The model’s ability to model and predict both segmental and 

suprasegmental features makes the library an important utility for theoretical and applied studies 

in phonology. Such results evidence the usefulness of Phonet_English in supporting the 

conducting of linguistic research in the field of dialectics, the accuracy of phonetic 

transcriptions, and the improvement in developing automatic speech recognition systems. 
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6.4 Confusion Matrix Results 

Figures 17 and 18 show the normalized confusion matrices for Consonants and Vowels, 

respectively. The confusion matrices were generated using the complete test dataset, with MFA-

labelled phonemes as the true labels and the phonemes predicted by Phonet_English as the 

predicted labels. We have considered the normalized confusion matrix as it reduces the impact of 

the imbalances in the dataset. From the confusion matrices we can say that there is a notable 

confusion between certain phonemes that have similar acoustic properties. For example, the 

phoneme /ɹ/ is often misclassified as /ɫ/, /s/ is more classified as /ʒ/ and /ʃ/. Similarly, for /i/ and 

/ʉ/. Therefore, we can say that phonemes that share similar places of articulation or manner of 

articulation tend to have higher misclassification rates. Phonemes with lower diagonal values 

indicate areas where the model performs poorly. While certain phonemes are recognized with 

high accuracy, there is considerable room for improvement, particularly in distinguishing 

between similar-sounding phonemes.  

However , phonemes with high confusions offer tantalizing opportunities for 

investigation of context-specific phonological variation and dialectal variation. For example, if 

/ɪ/ is often mistaken for /i/, which suggests that the lax vowel is being pronounced more like the 

tense vowel. Does this happen in all words, stress patterns, and consonantal contexts, or just in 

specific cases? or could it be a dialectal difference? To investigate, we could look at instances 

where /ɪ/ is misclassified and check for patterns in the words and their acoustic properties (like 

F1, F2, duration) compared to /i/ to find out why this overlap happens. Similar investigations are 

possible for consonants, such as /ʃ/ vs. /s/ or /ɫ/ vs. /ɹ/. 
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Figure 17: Normalized Confusion matrix – Consonants for phoneme recognition task. The color 

bar indicates the percentage of predictions per actual Phoneme. 
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Figure 18: Normalized confusion matrix (in %) – Vowels for phoneme recognition task. The 

color bar indicates the percentage of predictions per actual Phoneme. 
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CHAPTER 7 

CONCLUSION  

 In this study, we have re-trained Phonet, a tool which incorporates the architecture of 

RNN and bidirectional GRU units, on the US English Common Voice 14.0 dataset, enabling it to 

identify that language’s phonological classes in speech samples. This model has good capability 

to recognize 49 sounds, more than the 24 sounds Phonet was developed with (Vásquez-Correa et 

al. 2019). We have mainly investigated two things: to see if the distinctive feature values 

obtained by our model match our expectations for the sounds and testing whether the model is 

able to predict the phoneme at the given timestamp. The first element was analyzed by violin 

plots, and AUC-ROC curves and the second was analyzed by confusion matrix. Based on these 

results we conclude that the model is well-trained and can provide appropriate, accurate 

posteriors for the given audio. The trained Phonet_English model is freely available at 

https://github.com/dhvl1754/Phonet_English 

 

7.1 Limitations 

 A closer look at Phonet shows some problems. The major one is the absence of negative 

natural class specifications, which are essential in phonological analysis. For example, the class 

[-sonorant] includes stops /p, t, k/ and fricatives /f, s, ʃ/. The class [-voice] includes all voiceless 

https://github.com/dhvl1754/Phonet_English
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sounds, and the class [-continuant] distinguishes plosives from fricatives. However, since the 

framework of Phonet is constructed based on a unary specification system, those classes cannot 

be explicitly specified with negative specifications. Instead, they should be indirectly specified 

with either low posterior probabilities or with additional unary features such as [obstruent]. 

7.2 Future developments  

 One immediate avenue for future research is testing the generalization of this model to 

other English dialects and accents or retraining it using other accent-specific corpora. 

Additionally, research will explore the integration of more nuanced phonological features to 

investigate spoken-language variation across English varieties. While analyzing the performance 

of model on predicting the posteriors along with AUC-ROC curve we can also plot Area Under 

the Curve for Precision-Recall (AUC-PR). This approach will enable a more comprehensive 

analysis of the model’s accuracy and reliability. 
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