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ABSTRACT 

Parkinson’s disease is one of the most prevalent neurodegenerative diseases, second only to 

Alzheimer’s. There is an urgent need to improve detection through means outside observation of 

motor symptoms. The present research is to examine diffusion tensor images (DTI) from 

Parkinson’s and control patients through linear dynamical systems and tensor decomposition 

methods to generate features for training classification models. We will reduce the dimensionality 

of these images to allow us to focus on the key features that differentiate PD and control patients. 

We show through our experiments that these approaches can result in good classification accuracy 

(90%) and indicate this avenue of research has a promising future. In our second experiment we 

further examine the effect of orientation on features. We find that we are able to produce robust 

features regardless of orientation. We are able to train a classifier with these features to get up to 

94% accuracy. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Understanding the progression of Parkinson’s Disease 

Parkinson’s disease (PD) is complex and affects multiple parts of the human nervous system, but 

the various stages of it’s progression up the central nervous system (CNS) can be related back to 

one key factor, the ɑ-synuclein protein. This protein is naturally occurring in many different types 

of neural cells, and there must be a large amount of this protein present for Parkinson’s to 

manifest. In normal healthy cells, ɑ-synuclein floats freely in cytosol concentrated mostly in the 

neuronal somata and terminal buotons. It is typically hydrophilic and has a strong affinity for 

membranes of cell vessicles. In Parkinson’s patients this protein can become denatured and lose 

hydrophility. In this event, it tends to form b-sheets that tend to clump together. Only in 

Parkinson’s does this occur. This denaturation of ɑ-synuclein is not a part of the normal aging 

process nor does it occur in other neurodegenerative diseases.  (Braak et al., 2004) Once 

aggregates of the ɑ-synuclein protein begin to form, they will eventually develop into pale, 

branching inclusion neurites or Lewy neurites (LN) . This pathology will persist eventually 

forming, round pale granular aggregations known as Lewy bodies or inclusion bodies. (Del 

Tredici and Braak, 2016) 

The ɑ-synuclein protein is also interesting in that only specific nerve cells are susceptible to the 

Lewy pathology (LP) that it causes, regardless of location in the brain. Projection cells with long, 

axons that are not well myelinated are the most vulnerable to ɑ-synuclein aggregates. Conversely 

neurons with short or strongly myelinated axons are largely unaffected. As a consequence, 
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Parkinson’s develops and spreads in the CNS in consistent, well documented patterns. (Del 

Tredici and Braak, 2016)   

This spread and development of PD can be divided into 6 stages of increasing severity, with 

stages 1-3 corresponding to pre-symptomatic pathology and stages 4-6 corresponding to 

symptomatic pathology. It typically begins in the olfactory regions of the central nervous system 

and moves upward. By stage 4, LBs can be seen in leading from the dorsal motor nucleus to the 

substantia nigra. Around this stage of development in the pathology, onset of motor symptoms 

can start to be noticed and lesions in the anteromedial temporal cortex. Decline in this region 

marks the beginning of cognitive decline and memory issues as it is an important pathway of 

communication between the prefrontal cortex and limbic system. As the disease progress, it 

eventually climbs up the central nervous system, taking over the neocortex sometimes reaching 

even the premotor and sometimes primary systems. (Braak et al., 2004) 

Brain Imaging Techniques 

There are a multitude of brain imaging techniques to measure structure and function of the brain. 

The earliest of these is electroencephalography or EEG. It involves placing several electrodes on 

the scalp and measuring post-synaptic electrical activity from neurons. The key type of EEG 

studies are those involving the examination of event related potentials or ERPs.  These measure 

changes in electrical activity following the presentation of specific stimuli. The premise of these 

studies is to compare differences in the magnitude of ERPs across different subject groups. It is 

excellent for this type of task as EEG has excellent temporal resolution, however it is less suited 

to localizing response as it significantly lacks in spatial resolutions (Dale and Halgren, 2001). 
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Furthermore, as functional changes (in behavior) don’t tend to occur until much later in the 

disease timeline, it is less useful to focus on neurological responses.  

To remedy this, various forms of brain imaging that focus on studying structure, have been 

developed over the years. Key among these is magnetic resonance imaging or MRI. This relies on 

using a magnetic field and changing the spin of hydrogen molecules in tissue. Once the field is 

deactivated the molecules return to their resting state at varying rates depending on the type of 

tissue they are present in. In this manner by tracking this change we are able to construct three-

dimensional (3D) images of the human brain and body. 

Other brain imaging modalities that focus on the development of features include single photon 

emission computed tomography (SPECT) and positron emission tomography (PET). Both of 

these use similar techniques to image tissue as a radioactive tracer emits gamma radiation or 

positrons respectively (Lewine, et al., 2007). A subset of SPECT, known as DatScan, uses the 

tracer Ioflupane/FIP-CIT-I-123 to evaluate uptake of dopamine, which is known to be reduced in 

Parkinson’s patients (Martinez-Murcia et al., 2013). While SPECT and PET both provide good 

spatial resolution, they are extremely invasive due to the use of radioactive tracers. For this same 

reason, they may rule out certain individuals prone to adverse reactions from the radioactive 

tracers. MRI for this reason becomes the favored choice, with the ability to provide good contrast 

images without these drawbacks.  

A specific subset of MRI, diffusion tensor imaging (DTI), tracks diffusion of water molecules to 

capture microstructural changes (Soares et al., 2013). In general the diffusion of water in 

biological materials is restricted or hindered by cell membranes. With necrosis of tissue, 

diffusivity in and out of the cell increases. For this reason, DTI is particularly good for identifying 
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minute changes in the central nervous system. DTI produces a diffusion matrix at each voxel to 

indicate magnitude and direction of diffusion. When visualizing, these are mapped to scalar 

values that can be used to generate a pixel array. We aim to examine these scalar maps for feature 

extraction. 

Previous Work 
A variety of tools currently exist for diagnosis of Parkinson’s through pre-motor symptoms. For 

example Parkinson’s seems to measurably affect olfactory sensitivity prior to presenting motor 

symptoms more than other motor neuron diseases, as illustrated by the University of Pennsylvania 

Smell Identification Test (UPSIT). While there is still more work needed to refine tests like these, 

it is one example that proves the feasibility of earlier diagnosis of Parkinson’s disease. 

The PPMI was established under the premise that there are key biomarkers that can be used to 

better observe and diagnose Parkinsons.  Chahine & Stern, (2016) through evaluation of previous 

research determined that several biomarkers can be studied to better understand Parkinson’s. 

Among these are behavioral observations of motor function, accelerometer-based observation of 

motor skill, biofluids, peripheral tissue, imaging, genetics. Many researchers have sought to 

quantitatively evaluate these biomarkers to describe and classify Parkinson’s from biomarkers 

alone. 

On group of researchers, (Adeli et al., 2017) achieved notable results using kernel-based features 

to train a classification framework. The kernel-based selection approach allowed the researchers 

to select features best suited for different classification algorithms. Accuracy of 70.5% and 95.6% 

were obtained for features found from MRI and SPECT data respectively.   
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Other researchers, Banerjee, et al. (2016) were able to achieve 98.53% using ensemble learning 

methods trained on T1 weighted MRI data. However, Banerjee, et al. used several domain 

knowledge based feature extraction methods to preprocess their data including image registration, 

segmentation, and volumetric analysis. 

Tensor and Matrix Decomposition 
Matrix decomposition has been used in a variety of computer vision applications in recent years 

including analysis of facial features. It offers a another means of quantifying the features that 

describe the relationships between values in a 2D space and can be generalized to a variety of 

applications. The key being that decomposition offers a powerful means of simultaneously 

evaluating the relationships of values in a 2 or higher dimensional space. In higher dimensional 

spaces, tensor decomposition is used, where tensors are a generalization of matrices. (Rabanser, et 

al. 2017) 

Matrix decomposition can be described as a means of separating a matrix into several component 

matrices whose product would result in the original matrix. For example when solving a system 

of equations you might approach formulate the problem as: 

𝐴𝑥	 = 𝑏, 

where A is a matrix and x and b are vectors. When trying to solve this equation, we could apply a 

matrix decompositions operations to the matrix A, to more efficiently solve the system. By 

finding the products of the of x and b with the the one matrix resulting from the decomposition 

and the inverse of the other, we can solve the system of equations with significantly fewer 

operations. 
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We can generalize this premise to machine learning, when model complexity of models, often 

result in exponential increases in number of computations. This also affects the applications of 

new algorithms and pipelines can be used in because of their complexity. 

We can choose specific types of decompositions that also allow us to preserve unique information 

about original matrix while also reducing the the size of the matrix. For example, in the case of 

singular value decomposition we are trying to solve: 

𝐴	 = 	𝑈𝑆𝑉), 

Where A is the original matrix, of size m ✕ n, U is an orthogonal matrix of size m ✕ n, S is a 

diagonal matrix of size n ✕ n, and VT is an orthogonal matrix of size n ✕ n. This generalization 

of the eigendecomposition is useful in compressing matrices without losing information. It will 

come into play with our final experiment using linear dynamical systems to extract features from 

the DTIs. 

Extending the premise of singular value decomposition (SVD) to higher order matrices, or 

tensors, we come to Tucker decomposition. Tucker decomposition can be described by the 

equation, for an example of a third of: 

𝑇+(𝑖, 𝑗, 𝑘) = 	∑ 𝑇3
45,46,47
85,	86,9+

(𝑟+, 	𝑟3, 𝑟;) ⋅ 𝐴(𝑖, 𝑟+) ⋅ 𝐵(𝑖, 𝑟3) ⋅ 𝐶(𝑗, 𝑟;) , 

Where T1 is the original tensor of size i ✕ j ✕ k, and T2 is the resulting, third order core tensor of 

size R1 ✕ R2 ✕ R3 . The tensors (which in this case are matrices) A, B, and C of size  i ✕ R1 , j ✕ 

R2 , and k ✕ R3 respectively (Rabanser, 2017). 
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Tensor decomposition has already been shown to be useful for feature extraction, as Phan  and 

Chichocki (2010) illustrate. Using several processes similar to the one described above, they are 

able to successfully train a support vector machine (SVM) to classify features extracted from the 

MNIST handwritten digits dataset with accuracy of over 99 %.   

Additionally this process is of interest to us because of its success in compression algorithms. For 

example Ruiters and Klein (2009) compare sparse tensor decomposition to other popular data 

compression algorithms. They are able to achieve compression ratios 3 to 4 times higher than 

state of the art methods, and preserve many high frequency textural details of the images using 

tensor decomposition. Because of this, we believe that we can productively train features obtained 

from using tensor decomposition and correlate our results to the key features in the original brain 

images.  

Autoregressive Techniques 

Autoregressive techniques have been previously used in dynamic texture analysis of videos to 

model. Specifically we focus on state-space models also known as linear dynamical systems 

(LDS). In this technique we are trying to find the appearance model 

𝑦@ = 𝐶𝑥@ + 𝑢@ 

and the state model 

𝑥@ = 𝐴𝑥@C+ +𝑊𝑣@ . 

In the state model we are effectively trying to predict the next image in a sequence based on the 

previous, or a version of a moving average. This is however rather computationally inefficient do 
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do on whole images, thus our appearance model comes in, to make the problem smaller. You can 

think of yt as an image flattened into a vector and C is an output matrix corresponding the low 

dimensional state space vector, xt. We account for noise with ut. The state space vector, xt is found 

at each time point using singular value decomposition (SVD) to find the dot product on the top q 

singular values and columns of 𝑉F). We can then calculate the state-transition matrix A to which 

can then be applied to predict the next state in the model. (Hyndman, et al., 2007) 

This method is selected because it will translate well to modeling the average change over the 

course of the timesteps of a diffusion tensor image.  
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CHAPTER 2 

PARKINSON’S CLASSIFICATION & FEATURE EXTRACTION FROM DIFFUSION 
TENSOR IMAGES1 

1 Sivakumar, R and Quinn, S.  Accepted by Scipy Conference 2019, 
Reprinted here with permission of the publisher. 
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Introduction 
Parkinson’s disease (PD) affects over 6.2 million people around the world. Despite its prevalence, 

there is still no cure, and diagnostic methods are extremely subjective, relying on observation of 

physical motor symptoms and response to treatment protocols. Other neurodegenerative diseases 

can manifest similar motor symptoms and often too much neuronal damage has occurred before 

motor symptoms can be observed. The goal of our study is to examine diffusion tensor images 

from Parkinson’s and control patients through linear dynamical systems and tensor decomposition 

methods to generate features for training classification models. Diffusion tensor imaging 

emphasizes the spread and density of white matter in the brain. We will reduce the dimensionality 

of these images to allow us to focus on the key features that differentiate PD and control patients. 

We show through our experiments that these approaches can result in good classification accuracy 

(90%) and indicate this avenue of research has a promising future. 

Parkinson’s Disease 
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders (Chaudhuri, et 

al., 2016). The disease mainly affects the motor systems and its symptoms can include shaking, 

slowness of movement, and reduced fine motor skills (Sveinbjornsdottir, 2016). As of 2015 an 

estimated 6.2 million globally were afflicted with the disease (Rabansar, et al., 2017). Its cause is 

largely unknown and there are some treatments available, but no cure has yet been found. Early 

diagnosis of PD is a topic of keen interest to diagnosticians and researchers alike. Currently 

Parkinson’s is diagnosed based on the presence of observable motor symptoms and change in 

symptoms in response to medications that target dopaminergic receptors such as Levdopa. The 

problem with this approach is that it relies on treating symptoms instead of preventing them. Once 

motor symptoms present, at least 60% of neurons have been affected and there is little likelihood 
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of healing them fully. Additionally early diagnosis will help reduce likelihood of misdiagnosis 

with other motor neuron diseases. 

Parkinson’s Progression Markers Initiative Datasets 
The Parkinson’s Progression Markers Initiative (PPMI) is an observational clinical study designed 

to identify PD biomarkers [4] and contribute towards new and better treatments for the disease. 

The cohort consists of approximately 400 de novo, untreated PD subjects and 200 healthy 

subjects followed longitudinally for clinical, imaging and biospecimen biomarker assessment. 

The PPMI data set is a collection of biomarker data collected from a longitudinal study of 

Parkinson’s and control subjects. They have thus far collected DaT scan, MRI, fMRI, and CT 

scan data from several hundred subjects in 6 month intervals. The first began collecting data in 

2010, funded by the Michael J.Fox Foundation. 

The dataset chosen for this paper was PPMI’s Diffusion Tensor Imaging (DTI) records. DTI has 

been shown to be a promising biomarker in Parkinsonian symptoms [5] and can provide unique 

insights into brain network connectivity. Moreover, the DTI data was one of PPMI’s cleanest and 

largest datasets and thus expected to be one of the most useful for further analysis. A DTI record 

is a four-dimensional dataset comprised of a time-series of a three-dimensional imaging sequence 

of the brain. PPMI’s DTIs generally consisted of 65 time slices, each taken approximately five 

seconds apart.  

Related Work 
A variety of tools currently exist for diagnosis of Parkinson’s through pre-motor symptoms. For 

example Parkinson’s seems to measurably affect olfactory sensitivity prior to presenting motor 

symptoms more than other motor neuron diseases, as illustrated by the University of Pennsylvania 
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Smell Identification Test (UPSIT). While there is still more work needed to refine tests like these, 

it is one example that proves the feasibility of earlier diagnosis of Parkinson’s disease. 

The PPMI was established under the premise that there are key biomarkers that can be used to 

better observe and diagnose Parkinsons.  Chahine & Stern, (2016) through evaluation of previous 

research determined that several biomarkers can be studied to better understand Parkinson’s. 

Among these are behavioral observations of motor function, accelerometer based observation of 

motor skill,  biofluids, peripheral tissue, imaging, genetics. Many researchers have sought to 

quantitatively evaluate these biomarkers to describe and classify Parkinson’s from biomarkers 

alone. 

On group of researchers, (Adeli et al., 2017) achieved notable results using kernel-based features 

to train a classification framework. The kernel-based selection approach allowed the researchers 

to select features best suited for different classification algorithms. Accuracy of 70.5% and 95.6% 

were obtained for features found from MRI and SPECT data respectively.   

Other researchers, Banerjee, et al.(2016) were able to achieve 98.53% using ensemble learning 

methods trained on T1 weighted MRI data. However Banerjee used several domain knowledge 

based feature extraction methods to preprocess their data including image registration, 

segmentation, and volumetric analysis. 

Our present research strikes a balance between the two. While our autoregressive model does 

utilize a basic understanding of relevance of time in diffusion tensor imaging, we do not utilize 

any other domain specific knowledge to inform our feature extraction. Our hope is to build a 

generalizable approach that can be applied to other data structured similarly both within and 

outside the domain of biomedical image analysis. Additionally we want to improve the models 
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being trained without domain specific knowledge on MRI data. This is because MRI is a far less 

invasive brain imaging method than SPECT imaging which is an X-ray based technique and must 

be used at a limited frequency. Additionally the multiple MRI modalities offer versatility in 

examining biological structures. 

Tensor and Matrix Decomposition 
Matrix decomposition has been used in a variety of computer vision applications in recent years 

including analysis of facial features. It offers a another means of quantifying the features that 

describe the relationships between values in a 2D space and can be generalized to a variety of 

applications. The key being that decomposition offers a powerful means of simultaneously 

evaluating the relationships of values in a 2 or higher dimensional space. In higher dimensional 

spaces, tensor decomposition is used, where tensors are a generalization of matrices.  

Matrix decomposition can be described as a means of separating a matrix into several component 

matrices whose product would result in the original matrix. For example when solving a system 

of equations you might approach formulate the problem as: 

𝐴𝑥	 = 𝑏, 

where A is a matrix and x and b are vectors. When trying to solve this equation, we could apply a 

matrix decompositions operations to the matrix A, to more efficiently solve the system. By 

finding the products of the of x and b with the the one matrix resulting from the decomposition 

and the inverse of the other, we can solve the system of equations with significantly fewer 

operations.(Rabanser, et al. 2017) 
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We can generalize this premise to machine learning, when model complexity of models, often 

result in exponential increases in number of computations. This also affects the applications of 

new algorithms and pipelines can be used in because of their complexity. 

We can choose specific types of decompositions that also allow us to preserve unique information 

about original matrix while also reducing the size of the matrix (Phan and Chichocki, 2010). For 

example, in the case of singular value decomposition we are trying to solve: 

𝐴	 = 	𝑈𝑆𝑉), 

Where A is the original matrix, of size m ✕ n, U is an orthogonal matrix of size m ✕ n, S is a 

diagonal matrix of size n ✕ n, and VT is an orthogonal matrix of size n ✕ n. This generalization 

of the eigendecomposition is useful in compressing matrices without losing information. It will 

come into play with our final experiment using linear dynamical systems to extract features from 

the DTIs. 

Extending the premise of singular value decomposition (SVD) to higher order matrices, or 

tensors, we come to Tucker decomposition. Tucker decomposition can be described by the 

equation, for an example of a third of: 

𝑇1(𝑖, 𝑗, 𝑘) = 	∑ 𝑇3
41,42,43
81,	82,9+

(𝑟1, 	𝑟2, 𝑟3) ⋅ 𝐴(𝑖, 𝑟1) ⋅ 𝐵(𝑖, 𝑟2) ⋅ 𝐶(𝑗, 𝑟3) , 

Where T1 is the original tensor of size i ✕ j ✕ k, and T2 is the resulting, third order core tensor of 

size R1 ✕ R2 ✕ R3 . The tensors (which in this case are matrices) A, B, and C of size  i ✕ R1 , j ✕ 

R2 , and k ✕ R3 respectively.  (Rabanser, et al., 2017) 
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Methods 

There are two main experiments conducted. We examine both Tucker tensor decomposition and a 

linear dynamical systems approach to reduce number of dimensions and scale down diffusion 

tensor images. The goal is to evaluate the two approaches for the quality of features extracted. To 

this end, the final feature vectors produced by each method is then passed on to a random forest 

classifier, where the accuracy of the final trained model is measured on a classification task to 

predict control or Parkinson’s (PD) group. 

Figure 1: Tucker decomposition, visualized. Similar to SVD, it is used to compress 
tensors. We are thus able to use it as means to describe brain images without breaking 
down specific regions of interest or or focusing on specific brain images. 
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Algorithm Selection 
To guide our selection of a classifier, we used the python package TPOT (Olson, et al., 2016). 

TPOT uses genetic algorithms to iteratively generate, select and evaluate classification pipelines. 

We evaluated 10 generations of pipelines with population size 100 in each and found that 

Random Forest classification was most successful as predicting Parkinson’s from the generated 

features. 

Given the success of random forest classifier, we considered that we might further improve our 

accuracy by reducing the number of features we used from the generated set. We considered that 

because we are focused on the differences in a relatively small specific brain regions, only a small 

number of features would be relevant. To test this theory, we used three different methods to 

reduce the dimensionality of our feature set to 20 components: linear principle component 

analysis (PCA), linear discriminant analysis (LDA) and kernel PCA using a radial basis function 

(RBF). 

Experiment 1 
Using the tensorly package (Kossaifi, et al., 2016), a Tucker decomposition was applied to each 

brain image. This approach to tensor decomposition was selected because it produces one core 

tensor that is representative but scaled down from the original diffusion tensor image. 

Additionally Tucker decomposition, unlike other forms of tensor decomposition is significantly 

better at preserving features specific to the tensor being decomposed. Because of this it has 

applications in compression algorithms. 

The Tucker decomposition method was chosen in the over other tensor decomposition methods to 

preserve features unique to each brain image it is applied to. This allowed us to scale down each 

image and focus features and regions of interest in each that are specific to that image. 
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In this experiment we decompose each brain image from a dimension of (65,100,116,116) to 

(10,10,10,10) to have a continuity in number of features produced.  

Experiment 2 
This experiment focused on breaking down the feature extraction further and evaluate another 

approach: linear dynamical systems. We scale down each coronal slice in the images and then 

evaluate the change over time. The reason for scaling down the coronal slices is to allow us to 

more efficiently build a transition model to represent the flow of water over the time steps of the 

image. This will allow us to build a three-dimensional representation of the brain from the images 

that will show the flow of water and the distribution of white matter in the brain. We evaluate the 

produced transition matrix as features to be applied to the classification pipeline.  

Results 

Experiment 1 
While we were able to successfully classify images as belonging to PD or control subjects with an 

accuracy of 94% immediately (Table: 1), we were not able to improve on this by further reducing 

the produced features with various dimensionality reduction methods. In fact it appears that in 

some cases, such as linear discriminant analysis (LDA), additional dimensionality reduction 

adversely affects classifier performance. In exploring a slice of the output core tensor at one 

‘time’ point, what we see suggests that the output of the tensor decomposition might be likened to 

a stack of sliced that focus on the regions of interest in the original image. This is validated by 

examining several corresponding decomposed core and original slices. 
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Table 1: Classification accuracy of features generated from Tucker decomposition after various 
additional dimensionality reduction techniques are applied 

Dimensionality Reduction Method F-measure Accuracy 

- 0.94 0.94 

PCA 0.94 0.94 

LDA 0.82 0.81 

Kernel PCA 0.94 0.94 

Experiment 2 
We were able to achieve accuracy of 82% with random forest classifier alone. This outperforms 

previous benchmarks in training classifiers on synthetic features derived from MR images (Cole, 

et al., 2016). Compared to present results Cole et al. (2016) achieved only 70% accuracy at best 

on synthetic features generated from T1 weighted MRI scans. Furthermore, based on the F-

measure scores across the experiment conditions, we can reasonably say that our model is not 

skewed as a consequence of the uneven distribution of the data.(Table: 2) The PPMI data is 

heavily skewed toward Parkinson’s individuals, with a majority of our data set coming from 

Parkinson’s patients (421 subjects) versus controls (213 subjects), which was also addressed by 

rebalancing the classes by oversampling the control. 

We intuited that we could speed up model training and improve accuracy by reducing the number 

of synthetic features we retained. We initially tried linear PCA and LDA to perform the 

dimensionality reduction. However, these actually hurt performance, resulting in test accuracy of 

81% and 74% respectively. Based on this, we considered non-linear dimensionality reduction 
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would be more effective. To this end we used Kernel PCA with RBF kernel, which effectively 

improved accuracy to 89%. 

Table 2: Classification accuracy of features generated from linear dynamical systems after 
various additional dimensionality reduction techniques are applied. 

Dimensionality Reduction Method F-measure Accuracy 

- 0.90 0.82 

PCA 0.89 0.81 

LDA 0.84 0.74 

Kernel PCA 0.93 0.89 

Figure 2: a) (left): Slice from original brain image at a specific time point; b) 
(right): Corresponding slice from tensor decomposition output 
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Discussion 

In summary we can conclude that dimensionality reduction is a useful method for extracting 

meaningful features from brain imaging. Furthermore the impressive performance of these 

features in machine learning applications indicates that at least some subset of these features 

strongly correlates with the patient group. While not explored in this paper, it would be interesting 

to explore why LDA seemed cause a drop in classifier performance while traditional PCA did not 

in the tensor decomposition. In looking at Figure 2 we compare a slice of a brain image with a 

corresponding slice from tensor decomposition output. Because we maintain a similar color scale 

between the two groups, we can intuit that we have managed to select features that focus on the 

key areas of textural change in the image. The yellow corresponds to more diffuse, random 

movement of water and our slice from our decomposed core shows that we are emphasizing pixel 

values closely related to the region of diffuse water movement. Additionally, it would be 

interesting to explore the effect of various preprocessing methods to improve out comes and to 

systematically obscure the data to evaluate which features of the raw pixel data are being 

hilighted by the tensor decomposition and linear dynamical systems steps. 
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ANALYZING LDS FEATURES AS A FUNCTION OF ORIENTATION2 
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Introduction 
Increasingly biomedical researchers are using statistical techniques to further evaluate existing 

biological datasets. Part of this goal is to improve automatic classification of illnesses based on 

imaging, genetic, and behavioral data, but it also includes a larger goal to understand and better 

describe illnesses. To this end we have used an autoregressive method, linear dynamical systems 

(LDS) to extract features from 1196 diffusion tensor images and train a random forest classifier 

on these features to predict Parkinson’s disease(PD) group subjects. We generate features by 

sampling image data at different orientation to apply to our autoregressive feature extraction 

protocol and successfully train a classifier with up to 94% accuracy. Additionally we show that 

the features produced are strongly correlated based on an average Welch’s t-statistic of -0.031 

across the PD group and -0.0363 across the control group. 

Current biomedical research is increasingly trying to use existing medical data in new ways to aid 

clinicians in describing and identifying illnesses from a variety of diagnostic measures such as 

images, behavioral tests, and measures of blood and DNA tests. In particular it is of keen interest 

to researchers studying Parkinson’s Disease. Previous research has looked at classifying 

Parkinson’s disease based on brain images alone. The present study evaluates features from brain 

images for successfully classifying Parkinson’s as well, but it also seeks to interpret the 

consistency of features generated by autoregressive methods.  

For example, Lee and Lim (2012) evaluate gait characteristics of Parkinson’s patients based on 

wavelet data from sensors placed on subjects’ legs and feet. The researchers in this study extract 

several descriptive feature sets by aggregating the sensor data and use these features to 

successfully classify Parkinson’s disease with accuracies ranging from 74 to 77 percent across 

their experimental protocols. This sort of methodology is valuable not just for success in 
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classification accuracy, but because of the generalizability of best practices for interpreting other 

similarly structured data for other conditions.  

Likewise we have previously shown that we can successfully extract useful features for 

classification of Parkinson’s from diffusion tensor images (DTI) using autoregressive techniques. 

The present study aims to show that these techniques are robust in identifying specific features 

that consistently correlate with each other and to the classification group. 

Methods 

The present study aims to examine in depth the influence of brain image orientation on features 

generated from  autoregressive dimensionality reduction methods. We begin with a 4D pixel array 

of scalar maps corresponding to mean diffusion and fractional anisotropy at each voxel. If we 

think of movement of water as a vector these can correspond to magnitude and direction 

respectively. In this case these represent several 3D images taken over 65 time points at regular 

intervals (the number of time points is consistent across all subjects). At each time point there is a 

3D image of dimensions 100, 116,116, that correspond to depth, width and height respectively. 

These dimensions are also consistent across subjects.  To visualize how orientation of slices 

would affect experimental condition, please refer to Figure 3. 
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The experiment protocol begins by iterating over corresponding slices in the 3D pixel arrays at 

each time point for one subject. For the example in the first case, we take coronal slices of each 

brain image, that is iterating over the depth axis. This would yield slices of shape 116 x 116. We 

would grab one at each time point and flatten to a vcctor. Stacking these would yield a 2D matrix 

of which one dimension is number of time points. From this we perform singular value 

decomposition to reduce the dimensionality of the matrix. We further reduce the time dimension 

by calculating the transition model (Hyndman, et al., 2007). We then flatten to a vector and repeat 

for all slices along the dimension. Each additional vector is appended to form one final feature 

vector for each subject. These are then used as training features for a random forest classifier. We 

have chosen random forest based on a genetic algorithm based pipeline evaluator. Based on 

several generations of classifier pipelines, the algorithm found random forest classifiers to be 

optimal based on accuracy and f-measure.    

Figure 3: Illustration to show how slices are taken from the brain image for the 
different orientation conditions. Axial refers to vertical slices taken front to back. 
Coronal refers to horizontal slices. Saggital slices are vertically taken left to right. 
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Results 
Our classification results as do not differ significantly based on changes in orientation of slice for 

saggital and axial slices, while coronal slices performed slightly worse. As we can see from 

Tables 3 through 5, we consistently perform well on features extracted from the images without 

additional post-processing, presumably because we lose information as perform secondary 

dimensionality reduction on the features. To verify how similar the features are, we perform a 

subject to subject Welch’s T-test on the features between each possible pairing of the orientation 

groups. We average the results across the subject groups. We are thus able to see that the features 

are statistically similar regardless of which orientation we iterate over. 

We do note however a marked decrease in performance in the coronal slice condition relative to 

the other two. It is possible this effect may be due to the upward progression of Parkinson’s. As 

we take slices and reduce their dimensionality, we inevitably lose more key information on key 

slices that are predominated with affected tissue. These may conversely rise to the top in vertical 

slices which equally cover neocortical regions less likely to be affected by Parkinson’s and lower 

regions more likely to be affected. 
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Table 3: Cross-validated(n=5) classification accuracy of features generated from linear 
dynamical systems after various additional dimensionality reduction techniques are applied. 
(Orientation 1, coronal slices) 

Dimensionality Reduction Method F-measure Accuracy 

- 0.87±0.007 0.77±0.001 

PCA 0.83±0.009 0.72±0.014 

LDA 0.83±0.024 0.73±0.034 

Kernel PCA 0.84±0.009 0.72±0.013 

Table 4: Cross-validated(n=5) classification accuracy of features generated from linear 
dynamical systems after various additional dimensionality reduction techniques are applied. 
(Orientation 2, sagittal slices) 

Dimensionality Reduction Method F-measure Accuracy 

- 0.98±0.021 0.98±0.022 

PCA 0.89±0.019 0.90±0.022 

LDA 0.85±0.015 0.85±0.017 

Kernel PCA 0.91±0.040 0.91±0.039 
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Table 5: Cross-validated(n=5) classification accuracy of features generated from linear 
dynamical systems after various additional dimensionality reduction techniques are applied. 
(Orientation 3, axial slices) 

Dimensionality Reduction Method F-measure Accuracy 

- 0.98±0.021 0.98±0.022 

PCA 0.91±0.023 0.91±0.023 

LDA 0.82±0.019 0.84±0.020 

Kernel PCA 0.91±0.028 0.91±0.028 

Table 6: Mean Welch’s T-statistics for Parkinson’s and control groups when comparing features 
from different slice orientations. 

Orientation Parkinson’s Disease Control 

Coronal v Saggital 0.0072061 0.025465 

Saggital v Axial -0.057516 -0.083675

Coronal v Axial -0.045403 -0.050656



31 

Table 7: Resulting p-value corresponding to mean t-statistic comparing orientation as function of 
patient condition 

Orientations Parkinson’s Disease Control 

Coronal v Saggital  0.41136  0.41927 

Saggital v Axial 0.41136 0.41927 

Coronal v Axial 0.46706 0.50251 

Discussion 

In summary we show that features extracted through autoregressive methods can be consistently 

used to evaluate brain images from Parkinson’s and control subjects. The success across all 

orientation types suggests that in all cases features being extracted are strongly correlated to 

patient group. Additionally, the Welch’s T-test shows that this methodology produces similar t-

statistic for vertically sliced orientations. This is encouraging with regards to the generalizability 

of this approach to feature extraction. These promising results suggest that autoregressive 

methods may be appropriate means of feature extraction in other imaging modalities as well as in 

other types of biomedical data. These could also be a useful tool for consistently, and efficiently 

quantifying images and other data from patients. 

On the other hand, the coronal slices (taken horizontally) performed significantly worse, even 

though statistically, the features this orientation generated aren’t significantly different from those 

produced from the other two orientations. Table 6 and 7 illustrate this when we look at the mean 



32 

T-statistic (assuming unequal variance) between the possible pairwise comparisons. We fail to

reject the null hypothesis, as we see very high p-values and low t-statistic. 
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CHAPTER 4 

CONCLUSION 
In conclusion it is clear there is clear value in using pixel based features of brain imaging to better 

understand and quantify diseases such as Parkinson’s. In doing so, not only can we more 

consistently detect biomarkers and correlate them to the onset of outward manifestations of the 

disease.  This has implications for other diseases, not just those of neurological origin.  

Features obtained from extracting a core tensor via Tucker decomposition were able to train a 

random forest classifier to successfully classify Parkinson’s brain images at 94% accuracy. These 

results are further validated with a strong f-measure score of 94% as well.  

When extracting features using linear dynamical systems, we are once again able to achieve very 

strong results. We are able to train a random forest classifier to 82% accuracy at an f-measure 

score of 90%. These results are further boosted by further reducing the extracted features vectors 

using kernel PCA. These reduced features are able to train a random forest classifier to predict 

Parkinson’s from brain images with 92% accuracy and f-measure of 93% By also attempting to 

extract features through varying orientations, we are able to increase baseline accuracy to 94% 

with rebalanced classes. We also show that these features are effectively similar in mean and 

variance using Welch’s t-test on a subject to subject basis between orientation groups. When 

reviewing the mean statistics in the Parkinson’s and control groups, we see that we can not reject 

the null hypothesis that the mean of the features differ according to orientation. 
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