
KEYPHRASE EXTRACTION FROM SCIENTIFIC LITERATURE USING JOINT

GEOMETRIC GRAPH EMBEDDING MATCHING

by

JUSTIN PAYAN

(Under the Direction of Frederick Maier)

ABSTRACT

Keyphrase extraction is the task of selecting representative words and phrases from a

document. Recent research has focused on keyphrase extraction via graph-theoretic approaches, 

which leverage various graph-based centrality measures to locate important nodes in a 

constructed keyphrase candidate graph. In this thesis, we propose the use of an inexact graph 

matching algorithm for keyphrase extraction. We match graphs derived from test documents with

graphs that have labeled keyphrases, and label as keyphrases the test nodes matching with known

keyphrases. Our graph matching keyphrase extraction algorithm obtains an F-score of 14.6% on 

the standard SemEval 2010 Task 5 dataset and 37.1% on the well-known Inspec dataset. These 

scores are in line with time-tested algorithms on both datasets. We therefore conclude that 

inexact graph matching algorithms can be applied to keyphrase extraction successfully.
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CHAPTER 1

INTRODUCTION

1.1 PROBLEM DEFINITION

Keyphrase extraction involves selecting a representative subset of phrases and words from a doc-

ument. The subset is expected to both fully cover the document’s topics as well as distinguish the

document from other documents. Keyphrases are very useful for information retrieval, document

clustering, automated summarization, opinion mining, and other downstream information extrac-

tion tasks [2; 3; 6; 12; 26]. In particular, keyphrase extraction in a scientific context helps with

content recommendation and automated reviewer assignment, as well as serving as a key resource

for forming a complete understanding of temporal changes in the research community over time

[2]. In these tasks, it is rather important to assign keyphrase sets that a human would deem both

fully relevant and adequately expansive, as automatically assigned keyphrases serve to position

documents within a conceptual space that must be interpretable to humans. Keyphrase extraction

can be contrasted with keyphrase assignment, which involves selecting words and phrases present

in a external vocabulary as representative of the concepts in the document, regardless of whether

or not the words actually appear in the document. The present study focuses entirely on keyphrase

extraction.

Most methods for keyphrase extraction belong to one of three major categories - approaches

based on linguistic theories of word distributions, supervised machine learning approaches, and

unsupervised graph algorithm based approaches. Most recent keyphrase extraction studies use

graph algorithm based approaches, though some work draws on advances in neural machine

learning such as Word2Vec embeddings and supervised deep learning architectures [5; 32; 37].
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1.2 CONTRIBUTIONS

We propose a new supervised graph-based algorithm based on inexact graph matching. The

inexact graph matching algorithm we leverage is called Joint Geometric Graph Embedding Based

Matching [41], so we call our end-to-end keyphrase extraction algorithm Joint Geometric Graph

Embedding Based Keyphrase Extraction (JGGE-KE). To our knowledge, this is the first time that

visual pattern recognition technologies have been leveraged for keyphrase extraction.

The major contributions of this work are as follows: 1) we present a novel paradigm for treating

keyword extraction as a pattern recognition task, and 2) we combine the two dominant keyword

extraction methods (supervised and graph-theoretic) for the first time.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we discuss early theories on term identification and statistical distribution of impor-

tant keyphrases, feature-based supervised machine learning keyphrase extraction approaches, and

unsupervised graph-based approaches. These three categories of prior art are largely organized

chronologically; the basic term identification and statistical linguistic theories come from early

pioneers of information retrieval, the traditional machine learning work is more recent but fading

in relevance, and the unsupervised graph-based approaches are still being researched today. We

also discuss the most commonly used metrics for evaluating any of the aforementioned keyphrase

extraction techniques.

2.1 STATISTICAL LINGUISTICS FOR KEYPHRASE EXTRACTION

In the most basic sense, keyphrase extraction consists of selecting words and phrases with some

specific properties from a document. These properties are meant to accomplish abstract and open-

ended tasks, such as “summarizing a document” or “making a document easier to retrieve in a

search engine.” Researchers began formalizing these properties as they began to consider ways to

optimize information search and retrieval.

Before understanding more abstract properties of words and phrases that make them good

keyphrases, we must first understand what simple syntactic elements constitute keyphrases.

Keyphrases are typically lexical terms, which means that they are single elements of a language’s

lexicon which convey a single meaning. The meanings of keyphrases are not compositional (com-

posed in any simple fashion from the component words); rather, keyphrases often constitute the

smallest possible units of meaning for whatever concepts they convey. In addition, keyphrases
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tend to be technical terms which are specific to a small domain. A technical term is defined as

a multi-word lexical term. Justeson and Katz describe a theory of technical terms, where they

find that meaningful multi-word technical terms are almost exclusively composed of nouns and

adjectives, with occasional prepositions [21]. Non-technical noun phrases often contain other

syntactic constructions, distinguishing them from technical terms. Most keyphrase extraction

algorithms select an initially large list of technical terms as potential keyphrases before filtering

out the terms which do not adequately represent the document’s topic. In the next section, we

shall see a number of early machine learning based keyphrase extraction algorithms. Nearly all

studies of such keyphrase extraction algorithms have found that optimal results are obtained

when selecting nouns, adjectives, noun phrases, or some combination of these syntactic units as

candidate keyphrases.

Despite the existence of this obvious heuristic (keyphrases tend to be technical terms - lexical

noun phrases specific to the language of a small technical domain), we still need other metrics

on top of this heuristic to further filter technical terms into keyphrase sets that are small enough

to be useful in document indexing or other tasks. The most widely known early metric used for

keyphrase selection and document indexing was the TFxIDF term weighting scheme [20]. TFxIDF

stands for term frequency, weighted by inverse document frequency. This measure can be used for

selecting keywords for documents, by computing TFxIDF for a set of candidate keyphrases and

selecting the candidates with the highest TFxIDF scores as final keyphrases. Term frequency is

computed by dividing the count of the term in the document by the total number of terms in the

document. The second term, the inverse document frequency, is computed as

id f (t) = log(
N

d f (t)
)

where N is the total number of documents, and d f (t) is the number of documents containing term

t.

This metric, and its empirical success, indicate an important feature of the keyphrase extraction

task - selecting keyphrases means balancing exhaustiveness with specificity. The best keyphrase

sets are exhaustive, in that they adequately cover the full range of topics in a document. However,
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they also must describe the concepts in the document in a way that distinguishes the document

from others in the collection. Term frequency captures exhaustiveness, while inverse document

frequency is a corrective measure capturing specificity.

The keyphrase extraction field owes much to the insights of these initial investigations. Simply

using TFxIDF still performs remarkably well on many datasets [15]. It is surprisingly competitive

with newer keyphrase extraction algorithms, depending on the dataset. Even on datasets which do

not admit TFxIDF or simple technical term identification as useful keyphrase extraction methods,

the basic insights of the works discussed in this section provide theoretical justification for more

complicated algorithms. Although most of the research of the past decade has relied on either

machine learning or graph theoretic frameworks, it has all been heavily influenced by the early

linguistic and statistical intuitions developed in these seminal studies.

2.2 SUPERVISED MACHINE LEARNING APPROACHES

In this section we briefly discuss supervised machine learning algorithms that have been applied

to the keyword extraction task. All such algorithms identify a set of candidate keyphrases, extract

a set of linguistically or statistically motivated features for each candidate in the set, then train a

machine learning classifier on positive and negative examples of keyphrases from a training set

of documents. The positive and negative examples are generated from the training documents by

extracting candidate keyphrases from each document, then comparing these candidate keyphrases

to a human-annotated set of keyphrases, often referred to as the “gold-standard” set. The same

process is applied to create a set of test documents. Any machine learning classifier can then be

trained on the extracted training set and evaluated on the extracted test set. It is clear that these

methods can be distinguished by their candidate generation heuristic, their chosen feature set, and

their chosen machine learning algorithm. Some approaches introduce additional subtle variations,

but for the most part these three decisions fully describe any machine learning based keyphrase

extraction approach.
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The KEA algorithm was one of the earliest to use supervised machine learning methods to

select keywords, and it is still widely known and used today [51]. The algorithm selects all uni-

grams, bigrams, and trigrams that are not proper nouns and do not begin or end with a stopword as

candidates. It then uses TFxIDF and distance from beginning of document as the two features input

to a Naïve Bayes classifier. The authors later extended the KEA system into another system called

Maui [36]. Candidate selection mirrors the candidate selection in KEA, but they use an expanded

set of features and test a bagged decision tree machine learning algorithm. The features used are

TFxIDF, index of first usage in the document, distance between first and last usage, keyphrase-

ness (the number of times the phrase appears as a gold standard keyphrase in the training corpus),

and phrase length. In addition, they also use some features derived from the Wikipedia page most

closely related to the candidate keyphrase - node degree in Wikipedia hyperlink graph, Wikipedia-

based keyphraseness (likelihood of being a hyperlink on Wikipedia), a semantic relatedness score

[51], and inverse Wikipedia linkage (a number derived from the number of incoming links to the

page). They try both a Naïve Bayes model and a bagged decision tree model.

One of the other early advocates of machine learning based keyphrase extraction was the

GenEx system [48]. The features they use for each phrase are number of words in the phrase,

first occurrence of the phrase, earliest occurrence of any word in the phrase, frequency of the

phrase, highest frequency of any word in the phrase, length of the phrase in characters, whether the

phrase is a proper noun, whether the phrase ends in an adjective, and whether the phrase contains

a common verb. Note that occurrence and frequency are calculated in the context of the single

document, not the corpus. They then use these features to train a C4.5 decision tree or a genetic

algorithm.

Although highly advanced feature sets seem to improve accuracy of keyphrase extraction algo-

rithms, studies which focus on feature sets fail to adequately explore the effects of candidate gen-

eration on the accuracy of the final machine learning algorithms. Anette Hulth was the first author

to explore the impact of candidate selection on machine learning algorithm accuracy [18]. She

presents three candidate selection methods, which she calls n-gram, NP-chunks, and PoS tag pat-
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terns. The n-gram method selects candidates as all unigrams, bigrams, or trigrams that do not start

or end with a stopword. The NP-chunks method selects candidates as all noun phrase chunks. For

the PoS tag pattern method, Hulth defined the 56 part-of-speech tag patterns that appeared at least

ten times among gold standard keyphrases in the training data. On the testing data, any sequence of

part-of-speech tagged words following one of these patterns was selected as a candidate keyphrase.

For each of the three candidate selection methods, she extracted four features for each candidate -

relative position of the first occurrence, within-document frequency, corpus frequency, and part-of-

speech tag sequence. The machine learning algorithm used to classify the candidate keyphrases as

actual keyphrases is a bagged random forest ensemble classifier, as implemented in Compumine’s

Rule Discovery System. She found that the n-gram method performed best, followed by NP-chunks,

then PoS tag patterns. In the current study, we will replicate the finding that candidate selection

often has a strong impact on the quality of the final keyphrases. However, we also see that the

optimal candidate selection method is often highly dependent on the underlying characteristics of

the dataset, as well as the properties of the machine learning algorithm in use.

In the early 2000’s, there was a large body of work on supervised machine learning approaches.

However, we mention only one additional approach here, as it is the top-performing method on

one of the datasets studied later in this work. In addition, it represents a trend in feature-based

approaches towards complicated, highly engineered systems which work incredibly well on a

single dataset but do not necessarily generalize. The algorithm, called HUMB, is a supervised

machine learning approach, so they first convert each candidate keyphrase to a set of features [30].

They have 6 binary features indicating precense or abscence in the title, abstract, introduction, all

section titles, conclusion, and the reference or book title. They also use a fairly standard structural

feature, relative position of the first occurrence of the phrase. We later find in the current study

that many scientific research papers have keyphrases heavily concentrated towards the front of

the article. Taking advantage (or failing to take advantage) of this “front-loading” of keyphrases

affects the accuracy of keyphrase extraction algorithms to a large degree. They use three “content-

based” features - Generalized Dice Coefficient (how much more likely the words are to occur in
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the phrase rather than separately), TFxIDF, and the number of times the term was selected as a

keyphrase in the training data. Finally, there are three lexical/semantic features - presence in a ter-

minological database the authors previously created called GRISP [31], Wikipedia keyphraseness

(the probability that when a term appears in a Wikipedia article, it appears as a hyperlink anchor),

and term length in number of words. The authors experimented with many machine learning algo-

rithms, finding bagged decision trees perform best. Finally, after selecting the final list of classi-

fied keyphrases, they run a post-processing step, in which they reward candidate keyphrases that

cooccur with other candidate keyphrases in the HAL database. HAL is a French repository of

139,000 research articles, many of which are labeled with keyphrases. This method is rather com-

plex, and requires a large amount of hand-engineered features (GRISP and HAL-based features

are especially expensive).

In general, feature-based machine learning approaches require extensive feature selection and

computation, which hinders their general applicability. In addition, the reliance on costly human-

annotated training data limits their ability to transfer to low-resource domains. Although ensemble

approaches can reduce some limitations of the machine learning paradigm for keyphrase extraction

(such as overfitting to the training data), they have the extremely negative side effect of further

decreasing the interpretability, tractability, and ease of implementation of a keyphrase extraction

algorithm. Graph-theoretic approaches have enjoyed success in recent years, because they address

many of these limitations. They are generally unsupervised, they reduce the need for complicated

feature engineering, and they are generally easily implemented and interpreted.

2.3 UNSUPERVISED GRAPH-BASED APPROACHES

Like machine learning approaches, most graph-based approaches select a set of candidate

keyphrases, and then classify each candidate as a keyphrase or not using some classification

algorithm. However, the classification algorithms in this case typically involve constructing a

graph in which the candidate keyphrases are the nodes, then ranking the graph nodes by some
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graph-theoretic importance metric. The top ranking nodes are selected as the final keyphrases for

the document. The process is illustrated in Figure 2.1.

Node properties that have been considered for ranking include degree (number of incident

edges), strength (sum of the weights on incident edges), selectivity (strength divided by degree),

neighborhood size, coreness (outermost core number in the k-core graph decomposition), clus-

tering coefficient (edge density in neighborhood), structural diversity index (normalized entropy

of adjacent edge weights), PageRank score, HITS score, betweenness (number of shortest paths

passing through the node), closeness (reciprocal of sum of distances to all other nodes), eigen-

vector centrality, and small-worldness (contribution to small-world property of the network) [4; 8;

25; 52; 47; 38; 27; 17; 1; 35; 53; 39].

The earliest example of a graph-based keyphrase extraction algorithm is TextRank [39]. All

noun and adjective unigrams in the test document are represented as nodes in a graph. The authors

then draw unweighted, undirected edges between vertices representing unigrams that co-occur

within an N-word sliding window in the test document. The TextRank algorithm uses an adaptation

of Google’s PageRank algorithm. Vertices vote for the other vertices which they have edges with,

and votes are weighted by the importance of the vertices casting votes. Thus vertices with high

degree and vertices adjacent to vertices with high degree will be selected as being most important.

The update equation is given as follows:

W (Vi) = (1−d)+d ∗ ∑
Vj∈N(Vi)

(
W (Ei, j)

∑
Vk∈N(Vj)

W (Ek, j)
∗W (Vj))

Where d is a damping factor from the original PageRank algorithm, typically set to 0.85. N(Vi)

refers to the neighborhood of vertex Vi, the set of vertices connected to Vi by an edge. W ( ·) refers

to the weight of an edge or vertex. The authors experiment with random values between 0 and

10 for the edge weights, and note that setting random edge weights obtains significantly different

keyphrase rankings than setting all weights to 1. However, the authors ultimately report scores

when weights are set uniformly to 1. In this work, we implement TextRank using edges weighted

by the number of co-occurrences within the N-word sliding window, which is a standard varaint
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of the TextRank algorithm in later works [49; 28; 9]. All vertices start with a score of 1, and the

iterative updates are applied until convergence at a threshold of 0.0001. The authors note conver-

gence usually occurs after 20 to 30 iterations. The top 33% unigrams are selected for a final post-

processing step. Because the graph nodes are unigrams, a post-processing step is required. This step

consists of considering all of the suggested unigrams and collapsing keywords that appear next to

each other in the text into single keyphrases. The TextRank algorithm is interesting in its own right,

but it is mostly important because it provided the first example of graph-based keyphrase extrac-

tion. Following this paper, the most recent keyphrase extraction algorithms have all proceeded by

extracting a graph from a test document, and then using a graph algorithm to rank nodes in the

graph. In addition, many extensions have been made to the pre- and post-processing steps, such as

extracting whole phrases as candidate keyphrases or using alternative methods to score keyphrases

based on the scores of unigram nodes in the graph.

To give a concrete example of extensions of the graph-based keyphrase extraction framework,

the most recent graph-based algorithm in the literature is MultipartiteRank [9]. The authors first

extract candidate keyphrases as all sequences of nouns and adjectives ending in nouns. Then they

sort candidates into topics using a hierarchical agglomerative clustering algorithm proposed by

Bourgoin et al. [11], and they draw edges among all candidates which do not share a topic. Finally,

they run the standard TextRank iterative algorithm on the resulting graph. Many studies follow

this standard formula of extending the TextRank algorithm by changing pre-processing, candidate

selection, edge weighting, or post-processing steps around the TextRank iterative node-ranking

algorithm. This paper is the most recent and successful of this line of reasoning.

RankUp is another graph-based algorithm that extends the TextRank framework [13]. Their

extension is quite literal - the RankUp algorithm begins by computing the TextRank score of each

candidate keyphrase. Then they compute the L2 loss of the TextRank scores against the TFxIDF

scores of each candidate keyphrase, and apply a gradient descent update. They iterate back and

forth between TextRank and the gradient updates until scores converge. They note that this back-

propagation based on “error” computation improves upon the baseline of TextRank. However, they
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also report scores for their reimplementation of TextRank that are much higher than those reported

by the original TextRank study ([39]) for the same dataset. This discrepancy may indicate that some

of their improvements in scores can be attributed to differences in pre-processing or evaluation.

Another rather interesting extension of TextRank is SemGraph [34]. They extract candidates

from the “title, abstract, introduction, related work, future work, and conclusion” of the papers

only, which benefits their algorithm’s performance on their evaluation dataset. In addition, they

have an alternative edge weighting scheme for their graphs. Rather than weighting edges by cooc-

currence within a sliding window inside the evaluation document, they weight edges by the degree

to which the nodes’ cooccurrence across the entire corpus differs from random chance. They get

very good results on their evaluation dataset. However, the authors only evaluate on a single dataset.

Unfortunately, it is well-known in the keyphrase extraction community that keyphrase extraction

algorithms must be evaluated on more than one dataset, as improvements on one dataset may be

related to spurious correlations between the document preprocessing pipeline and the idiosyncratic

characteristics of the dataset [15; 10]. If one is interested in the performance of the algorithm in

question, these spurious correlations obfuscate the true aim of the study.

One important extension of TextRank is given in [49], which introduces the ExpandRank algo-

rithm. This algorithm locates neighboring documents to the test document by ordering according

to the TFxIDF cosine distance, and then executes the PageRank algorithm on the combined graph

between the two documents. Graphs are combined by weighting inter-graph edges according to the

following equation:

a f f inity(vi,v j) = ∑
dp∈D

sim(d0,dp)∗ countdp(vi,v j)

where d0 is the test document, and D is the full test set of documents. The similarity function is

the cosine similarity between the TFxIDF vectors for the two documents, and countdp(vi,v j) is the

number of times that vi and v j cooccur within a sliding window in document dp. In our present

study, we will also construct joint graphs by combining the test graph with neighboring graphs.

However, ExpandRank connects multiple graphs into one large graph, while we will only connect

two at a time. ExpandRank also sets aside a neighborhood size of 0, which they call SingleRank.
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SingleRank is almost equivalent to TextRank, but for one major difference. SingleRank also gen-

erates graphs from documents by including unigrams as graph nodes. However, in SingleRank,

final phrases are selected by ranking each candidate phrase using the sum of the component uni-

gram scores. The TextRank reconstruction scheme is quite brittle; as an example, note that if two

words of a three word phrase have very high scores and one word has a medium-high score, the

entire phrase may be discarded because of the medium-high scoring word. Yet the SingleRank

method does not suffer from this brittleness as severely. In a study from 2010, Hasan and Ng found

that after converting SingleRank [49] to use the post-processing procedure used in TextRank, the

results suffer greatly [15], indicating that the recombination by sum vastly outperforms the naïve

recombination scheme used in the original TextRank paper. We will report a similar finding in this

work.

The effect of post-processing (unigram recombination) is more explicitly explored in a recent

paper by Florescu and Caragea [14]. They compare 6 graph-based ranking algorithms in con-

junction with 3 post-processing (unigram recombination) schemes. In the “sum” recombination

scheme, they compute phrasal scores as the sum of the component unigrams’ scores. In the “mean”

recombination scheme, they compute phrasal scores as the mean of the component scores. Finally

in the “mean-tf” scheme they compute phrasal scores as in the “mean” scheme, then multiply by

the frequency of the phrase within the document. They find that across 3 datasets, all algorithms

attain the highest accuracies when using the “mean-tf” recombination scheme. We demonstrate

later that the primacy of the “mean-tf” recombination scheme largely depends on the dataset under

consideration.

There are many studies on graph-based keyphrase extraction which have been published in the

last decade. Ultimately, the success or failure of various methods is challenging to measure, since

performance largely depends on pre- and post-processing procedures and fickle characteristics of

the evaluation datasets. It is therefore highly important to control for pre- and post-processing rou-

tines by comparing a new algorithm against an old algorithm while using the exact same pre- and

post-processing procedures. In addition, algorithms must be compared across multiple datasets in
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order to rule out unknown characteristics of any single dataset which fortuitously boost perfor-

mance of a newly proposed algorithm. More details on evaluation are presented in the next section.

2.4 EVALUATION OF KEYPHRASE EXTRACTION ALGORITHMS

It is customary to evaluate keyword extraction algorithms using micro-averaged precision, recall,

and F-score on a testing dataset of documents that has been annotated with gold-standard

keyphrases. Many datasets are used in the literature. However, there are two particularly pop-

ular datasets consisting of technical terms, commonly referred to as SemEval [23] and Inspec [18]

respectively. Both datasets consist of text in the domain of computer science research. SemEval

contains full conference articles, while Inspec contains only the abstracts of journal articles. Both

datasets are freely available online1. In addition, some keyphrase extraction algorithms require an

external corpus for training unsupervised, distributed vector representations of words (Word2Vec).

When studying technical literature, the ArXiv academic preprint repository is often selected for

this purpose. We explain these three datasets and the Word2Vec word embedding model in more

detail in Sections 4.1 and 3.3.2 respectively.

Precision and recall are computed based on exact full phrase matches. Micro-averaged preci-

sion is computed simply as

D
∑

i=1
# correctly extracted keyphrases f or doci

D
∑

i=1
# extracted keyphrases f or doci

Micro-averaged recall is

D
∑

i=1
# correctly extracted keyphrases f or doci

D
∑

i=1
# gold standard keyphrases f or doci

F-score is computed as

2∗ precision∗ recall
precision+ recall

1https://github.com/snkim/AutomaticKeyphraseExtraction
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While these metrics seem rather simple, there is an additional complication. In many labeled

keyphrase extraction datasets, some of the gold standard keyphrases do not appear in the text of the

document. Because of this, the recall of any algorithm on that dataset cannot be greater than the

number of phrases which actually appear in the document (assuming the algorithm is extractive

rather than abstractive). Some studies report precision, recall, and F-score on the original gold

standard, accepting that their recall has a ceiling. However, other studies report precision, recall,

and F-score on an adjusted gold standard in which every phrase is present in the document (making

perfect recall possible) [29]. These two evaluation schemes are not directly comparable, but some

studies in the literature leave it unclear which scheme they are operating under. This confusion has

been explicitly noted at least once in the literature, though it is often not addressed explicitly [15].

In addition to the aforementioned point of confusion, there is one other discrepancy in results

reported in the literature. Most studies either select multi-word candidate keyphrases or select

single-word candidate keywords and recombine them into phrases as a post-processing step. They

then evaluate against the gold standard keyphrases in their original forms. However, there is at least

one study that extracts single-word candidates and does not recombine them into phrases [45]. They

instead split the gold standard keyphrases into their component words, and they evaluate against

these keywords rather than against the full keyphrases. The scores resulting from this approach are

thus not directly comparable to the scores resulting from any study evaluating on full keyphrases.

Although the authors of the mentioned study do explicitly state they focus on keywords only, it is

very important for researchers in this domain to pay very close attention to whether or not other

works evaluate on keywords or keyphrases, as the results will differ substantially.

Most graph-based keyphrase extraction algorithms produce individual rankings for nodes in

the graph, which represent the candidate keyphrases. The size of the final set of keyphrases thus

can vary, depending on how final keyphrases are chosen from the ranked list. Some papers select

the top p% of ranked candidate keyphrases as final keyphrases, and other papers select the top N

ranked candidate keyphrases as final keyphrases. A minority of studies allow an arbitrary number

of keyphrases to be chosen as final keyphrases. While this flexibility makes intuitive sense and
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often improves precision, recall, and F-score, it also makes direct comparisons between algorithms

rather difficult. We therefore fix p% and N in this study. For many datasets in the literature, there

is a common setting of p or N that is universally adopted, making direct comparison possible.

Given a ranking of candidate keyphrases, one may also evaluate the quality of the ranking

as a whole. In this case, final keyphrases are not selected. Instead, we seek to verify that the

candidates are sorted in the correct order, such that correctly chosen candidates appear closer to

the top of the list than incorrect keyphrases. Many metrics exist in the document retrieval literature

for this very purpose, including Mean Reciprocal Rank, Binary-preference, R-precision, and Mean

Average Precision [16]. In addition, the metric of R-precision has been modified specifically for

keyphrase extraction, allowing partial matches in addition to exact matches. Finally, metrics from

other natural language processing tasks, such as BLEU, METEOR, NIST, and ROUGE, have been

applied to keyphrase extraction, though these metrics are not widely adopted [22]. They have been

shown to correlate strongly with human preferences, however.

Based on ubiquity in the literature, we choose to evaluate our newly proposed algorithm as

well as our reimplementations of existing algorithms on two datasets using precision, recall, and

F-score at p% or N. This evaluation procedure is the simplest and most widely accepted procedure,

and as such, it allows us to compare our proposed algorithm directly against other algorithms from

the literature.
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Figure 2.1: Outline of graph-based keyphrase extraction (more details in Chapter 3). There are six
steps in the process: preprocessing converts the raw text into stemmed, tagged tokens, candidate
extraction selects noun phrases or noun and adjective unigrams to be nodes in the graph, graph
construction weights the edges using semantic similarity, node ranking assigns scores to candidate
phrases/unigrams, a recombination step converts scored unigrams to scored phrases if required,
and the final selection step picks the top p% or top N scored phrases/unigrams as the keyphrases.
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CHAPTER 3

KEYPHRASE EXTRACTION AS INEXACT GRAPH MATCHING

Most graph based keyphrase extraction algorithms consist of six parts:

• text preprocessing

• selection of candidate keyphrases, each of which becomes a vertex in the graph

• drawing and weighting edges among candidate keyphrase nodes

• application of a graph algorithm to rank the keyphrases/nodes

• recombination of unigram candidates into full keyphrases if required

• selecting the top p% or top N keyphrase candidates as final keyphrases

The full pipeline is illustrated in Figure 3.1.

In this section, we explain our implementation of each of these six steps (corresponding to the

six parts of the visual pipeline). All code was written in Python, and is available on Github1.

3.1 TEXT PREPROCESSING

We begin by breaking each input document into a list of sentences. We use the Python Natural

Language Toolkit (NLTK) Punkt Sentence tokenizer [7]. The Punkt sentence tokenizer builds an

unsupervised model of abbreviations, collocations, and words that start sentences to determine

the sentences. It considers periods, commas, semicolons, colons, exclamation marks, and question

marks as punctuation. This algorithm is explained in detail in the paper by Kiss and Strunk [24].

1https://github.com/justinpayan/KeyphraseExtraction
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Figure 3.1: The full keyphrase extraction pipeline. There are six steps in the process: pre-processing
converts the raw text into stemmed, tagged tokens, candidate extraction selects noun phrases or
noun and adjective unigrams to be nodes in the graph, graph construction weights the edges using
semantic similarity, node ranking assigns scores to candidate phrases/unigrams, a recombination
step converts scored unigrams to scored phrases if required, and the final selection step picks the
top p% or top N scored phrases/unigrams as the keyphrases.
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The intuition behind the algorithm is that once abbreviations have been labeled, the sentence tok-

enization task can be solved with high accuracy by simply splitting on punctuation that is known to

end sentences. This statement proves relatively correct for many European languages, as shown by

the empirically validated superiority of this method on sentence tokenization tasks in 11 European

languages.

We then tokenize each sentence with the NLTK TreeBank word tokenizer. The TreeBank word

tokenizer breaks contractions, separates most punctuation marks, separates commas and single

quotes if followed by whitespace, and separates periods at ends of lines.

We part-of-speech tag each sentence. The part-of-speech tagger is a MaxEnt Tagger trained on

the Penn Treebank dataset [33].

Tokens are then also stemmed, but not lemmatized. The stemmer is NLTK’s implementation

of Porter’s Stemmer [43]. Preliminary experiments evaluated both stemmed and unstemmed can-

didate keyphrases, determining stemmed candidates perform better than unstemmed. At this stage,

we also stem the gold standard keyphrases. We want the gold standard keyphrases to represent the

general ideas central to the document, and we do not care about matching their exact morphology.

Most studies on keyphrase extraction use stemmed gold standard keyphrases for evaluation.

3.2 CANDIDATE KEYPHRASE SELECTION

After preprocessing the input text, we must construct a list of words and phrases from the

document which may be keywords and keyphrases. We investigate three different methods for

selecting such keyphrase candidates: selecting all sequences of nouns and adjectives, using a

simple machine-learned noun phrase chunker, or selecting unigrams and combining them into

phrases after selecting key-unigrams.

3.2.1 NOUN AND ADJECTIVE SEQUENCES

The first method is to select candidate keyphrases to be all phrases consisting of nouns and adjec-

tives, following the work of Hulth ([18]) and Justeson and Katz ([21]). The method simply looks
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for all sequences consisting solely of nouns and adjectives, ending in nouns. The caveat that

the noun and adjective sequences must end in nouns is standard in recent keyphrase extraction

literature([28; 13; 9]). Because the tagger uses the Penn Treebank tagset, this means that the

accepted part of speech tags are the JJ tag and any tag starting with NN.

3.2.2 NAÏVE BAYES NOUN PHRASE CHUNKER

NLTK suggests a simple implementation for a simple machine learning (Naïve Bayes) based noun

phrase chunker in chapter 7 of their book Natural Language Processing with Python [7]. The

intuition behind the noun phrase chunks produced by this method is the same intuition as the Noun

and Adjective Sequences approach - extracting non-overlapping sequences of words such that each

sequence represents a single entity in the text. However, the approach described here is data-driven

rather than being directly derived from a priori part-of-speech information. The Naïve Bayes model

is trained on the CONLL-2000 chunked sentences dataset [46]. The training data for this dataset is

WSJ sections 15-18 from the Penn Treebank.

The Naïve Bayes chunker uses a set of seven features to identify noun phrases, including part

of speech, word, previous part of speech, next part of speech, previous part of speech and current

part of speech, next part of speech and current part of speech, and the sequence of parts of speech

since the last determiner. Using these features, the Naïve Bayes model classifies each word in the

corpus with a chunking tag: NP_B for beginning of a NP, or NP_I for middle of a NP. This chunker

is used to find NP chunks, all of which are selected as keyphrase candidates.

3.2.3 UNIGRAMS

The final candidate selection method is to select candidates as all unigrams tagged as a noun or

adjective. This method is the most straightforward, and it results in the smallest-sized graphs. This

method necessitates an additional post-processing step (step 5 in Figure 3.1), which is discussed in

Section 3.5.
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In theory, this method would be implemented by simply selecting all nouns and adjectives

from the document. In practice, due to the post-processing step, we extract all unigrams which are

found in the noun and adjective sequences discussed in Section 3.2.1. This slight deviation allows

us to expect every candidate unigram to appear in a full keyphrase during the post-processing

recombination step.

3.3 WEIGHTING GRAPH EDGES

Following candidate phrase extraction, each distinct candidate phrase or unigram is represented

as a node in the document’s graph. We then draw edges between the nodes, weighted by either

a cooccurrence-based similarity metric or Word2Vec cosine similarity. In both cases, the edge

weights are intended to be a proxy for semantic similarity. In the next two subsections, we discuss

these two edge weighting schemes.

3.3.1 COOCCURRENCE-BASED SIMILARITY METRIC

The cooccurrence similarity metric is defined pairwise for two phrases or unigrams as follows.

Phrases are considered as cooccurring if they appear together within a sliding window of size N.

The basic idea is illustrated in Figure 3.2. This edge weighting metric was first proposed in the

seminal work on graph-based keyphrase extraction, TextRank [39]. To this day, it is the de-facto

edge weighting method. In preliminary experiments comparing all window sizes from N = 2 to

N = 15, we found that window size had very little effect regardless of preprocessing, candidate

extraction method, node ranking algorithm, recombination scheme, or final selection criterion. In

some cases, very low settings of N = 2 or N = 3 resulted in 1 or 2% differences in average F-score,

so we report scores using N = 5 in this work.

We have to do additional processing in order to meaningfully consider cooccurrence of multi-

word phrases. After selecting the candidate keyphrases from the document, we replace each

instance of a multi-word keyphrase in the document with a single uninterrupted token where

spaces have been replaced with underscores. Thus, The present King of France is bald. would

21



Figure 3.2: The sliding window moves across the processed document, adding a single count to
each edge when it encounters a cooccurrence between the edge’s incident nodes.

become The present_King_of_France is bald. if present King of France were identified as the sole

multi-word keyphrase in this sentence. As a consequence of this fact, a sliding window of size N

includes N lexical units, not simply N words. Thus the text sequence The present_King_of_France

is bald. could be considered to be length N = 4, rather than N = 7. In addition, we also remove

stopwords at this stage of processing, which in our example would result in the text sequence

present_King_of_France bald. Noun phrases are often separated by many stopwords, so collapsing

the text by removing stopwords allows for more highly connected graphs while maintaining the

theoretical justification for the edge weights (similar phrases are still close in the text, while

dissimilar phrases are still distant in the text).

We draw complete, weighted graphs with this scheme. The different weights are equal to the

number of times each pair of phrases cooccurs within a sliding window of length N, after applying

the aforementioned processing procedures.

3.3.2 WORD2VEC COSINE SIMILARITY

The Word2Vec semantic word embedding algorithm was originally presented by Mikolov et al.

in 2013 [40]. It is a method of converting words into distributed vector representations, with the

intention that words that are close to each other in the resulting vector space are close to each other

semantically. In addition, the algorithm preserves a degree of compositionality, such that adding
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two vectors roughly corresponds to composing the semantic meanings of the two represented

words. The Word2Vec training algorithm has two common variants, called the Continuous Bag

of Words (CBOW) and Skip-gram models, respectively. In the CBOW model, an artificial neural

network is trained to predict the current word given N preceding words and N future words (the

“context”). The skip-gram model reverses the CBOW model, training an artificial neural network

to predict the context given the current word. Both models are trained using stochastic gradient

descent with backpropagation of derivatives. Once the model is trained, the hidden representation

of an input word can be treated as the vectorized representation of the word. Other work such as

the Sent2Vec algorithm in [42] has searched for more accurate compositional models by extending

the original Word2Vec model, but the Word2Vec authors illustrate a few examples of basic com-

positionality of Word2Vec representations, enough for our purposes in this study.

This neural approach to embedding words and phrases in a semantically motivated vector space

has become immensely popular in recent natural language processing work. Indeed, in the last few

years, Word2Vec has been applied to keyphrase extraction in a variety of ways. A method called

EmbedRank uses the Sent2Vec extension of Word2Vec ([42]) to embed candidate keywords and

keyphrases in a semantic embedding space along with a vectorized representation of the document

from which the candidates are extracted [5]. They compute the cosine distance between the candi-

date phrases and the document in this semantic embedding space, and then select the closest words

and phrases to the document to be the keyphrases. Cosine distance is defined as:

d(x,y) = 1− x•y
||x||||y||

which is derived from the fact that the angle θ between the two vectors x and y satisfies the identity

cos(θ) =
x•y

||x||||y||

Cosine distance measures the degree of collinearity between two vectors, with parallel vectors in

the same direction having a distance of 0, parallel but opposing vectors having a distance of 2, and

orthogonal vectors having a distance of 1.
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In addition to using cosine distance in Word2Vec embedding space directly for keyphrase

extraction, a few recent studies have applied Word2Vec cosine similarity (intuitively, the inverse

of cosine distance) to the problem of weighting edges in a document-derived graph, followed by

a standard node ranking algorithm such as TextRank. One study uses a weighted linear combina-

tion of cooccurrence counts and Word2Vec cosine similarity as the edge weights in the graph of

terms [50]. Another recent method, Key2Vec, also uses Word2Vec cosine similarities to weight

edges in a graph, followed by using PageRank to sort nodes of the graph [32]. They train their

Word2Vec model using papers from various scientific domains on the ArXiv database, as well as

the full training and testing sets from their evaluation datasets. They create a graph with candidate

keyphrases as nodes and edges drawn between keyphrases that cooccur within a sliding window

of length 5. They then weight edges as the product of cosine similarity ( 1
1−cos(wi,w j)

) and pointwise

mutual information of the candidates. Finally, they compute the personalized PageRank score for

each candidate keyphrase, where the personalization factor is equal to the cosine similarity between

the Word2Vec embedding of the candidate and a “thematic vector”. This thematic vector is equal to

the sum of all the word vectors in the first N sentences of the document (where N is dependent on

the dataset). These previous applications of Word2Vec cosine distances to edge weighting motivate

our own usage of this metric for edge weighting.

In this work we use the continuous bag of words model (CBOW) to train word vectors of

dimension 100. α = 0.025 (α is the initial learning rate for gradient descent, which decreases

as training progresses). We combine the context vectors by taking their mean. We use negative

sampling, with 5 “noise words” chosen. We train three Word2Vec models, one for each candidate

extraction algorithm. The set of computer science articles from ArXiv provides a suitable corpus of

scholarly computer science writing for training. We stem every word in the corpus prior to training,

and we concatenate phrases by replacing spaces between tokens with underscores (for instance,

don quixote would become don_quixote). Finally, we remove all stopwords and words with greater

than 40 characters or less than 1 character from the corpus. We input this final, processed corpus

to the Word2Vec training.
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We experiment with one additional extension to this basic notion of Word2Vec embeddings.

We first compute the cooccurrences of the words and phrases in the document, then we com-

pute the Word2Vec embedding of each node in the graph. At this point, we can simply compute

the cosine similarity of two vectors to weight an edge between two nodes. However, we can also

update each node’s Word2Vec representation by adding to it the vector representation of any words

or phrases that cooccur with it within the sliding window size. The summation is partially intended

to decrease the sparsity of the resulting adjacency matrices (if a node’s unigram/phrase is not

contained in the Word2Vec model, cooccurring unigrams/phrases may provide a hint for possible

vector representations of the unigram/phrase). One other motivation for this extension is that it

makes the distance computation much more similar to the distance computations between points

in images. The main question of this work is whether or not a selected inexact graph matching

algorithm for shape matching in images can be applied to keyphrase extraction. Therefore, we feel

it is natural to attempt to treat document-graphs as being similar to image-graphs. In the partic-

ular graph matching algorithm we have adopted, points in images are represented by a vector of

features representing the intensities at multiple nearby points [41]. We consider the summation of

the Word2Vec embeddings of neighboring words and phrases as an analogue of this inclusion of

neighborhood information.

After nodes’ vector representations have been finalized, distance between two words or phrases

is computed as the cosine distance between the words’ or phrases’ embedding vectors wi and w j:

cosine_dist(wi,w j) = 1− wi ·w j

�wi��w j�

In the case where one or both of the embedding vectors is the zero vector, we set the cosine distance

to a very large random value, drawn from the normal distribution N (1000,100). This distribution

was arbitrarily chosen, but based on a handful of preliminary experiments we found that varying µ

and σ2 for this distribution do not change the behavior of the algorithm downstream. Finally, we
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compute the cosine similarity score as

exp(−||cosine_dist(wi,w j)||2)

This equation mirrors a similar equation in the inexact graph matching algorithm we apply [41].

3.4 JOINT GEOMETRIC GRAPH EMBEDDING MATCHING

In this section, we propose a novel node ranking algorithm based on an inexact graph matching

algorithm. The inexact graph matching algorithm uses joint geometric graph embeddings to match

nodes, hence we call our method Joint Geometric Graph Embedding Based Keyphrase Extraction

(JGGE-KE or simply JGGE). We compare this algorithm to a Random node ranking algorithm

(nodes are assigned values drawn from the uniform distribution over the unit interval), the Tex-

tRank algorithm [39], and TFxIDF scores [20].

Given a test document, the JGGE-KE algorithm proceeds as follows:

1. A graph is extracted from the test document, following the general procedure discussed in

the previous section

2. The test graph is combined with a graph extracted from a training document (with the com-

bined graph referred to as the joint graph)

3. The joint graph is embedded in the eigenspace of its adjacency matrix

4. Nodes v in the test subgraph are assigned rankings based on distances from v to nodes wi

labelled as keyphrases in the training subgraph (we explore two methods for assigning scores

here, which are illustrated separately in Algorithms 1 and 2)

5. Steps 2-4 may be repeated with multiple different training graphs

6. Each node v in the test graph is ranked as the sum of the rankings derived from the joint

graphs

The exact number of times steps 2-4 are repeated is a parameter k to be set by the user. We

found that the procedure typically performs well for k >= 5, but at approximately k = 20 the
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algorithm’s accuracy levels off. In addition, the algorithm’s time complexity is linear in k, so it is

wise to limit the number of training graphs to the degree possible. We set k = 10 in this work to

balance computational effort and accuracy.

There is a natural question: how does one select the small subset of the training set to match

against the test graph? We propose using the simple method from [49], whereby TFxIDF document

vectors are computed for each document in the training and testing set. One can quickly compute

the TFxIDF cosine similarity between a given test document and all of the training documents.

The k training documents with the minimum TFxIDF cosine similarities to the testing document

are selected to proceed with matching. This procedure is illustrated in more detail in Algorithm 3.

Algorithm 1 Joint Geometric Graph Embedding Based Keyphrase Extraction (Version 1)
1: procedure JGGE-KE(Dtrain,Gtrain,dtest ,gtest ,k) �

Dtrain = set of training documents
Gtrain = set of training graphs
dtest = a test document
gtest = the graph for dtest
k = number of training documents used per test
document

2: rank ← 0 ∈ IR|Vtest |

3: for dtrain ∈ closest_train_docs(Dtrain,dtest ,k) do
4: gtrain ← Gtrain[dtrain]
5: for vi ∈Vtest do
6: if ∃v j ∈ gold_std_keys(vtrain)|match(vi,v j) then
7: rank[vi]+ = 1
8: else
9: unmatched_nodes+= (vi,minv j∈gold_std_keys(Vtrain) dJGGE(vi,v j))

10: end if
11: end for
12: for vi ∈ sorted(unmatched_nodes) do
13: rank[vi]+ = index[vi]

|unmatched_nodes|
14: end for
15: end for
16: return rank
17: end procedure

The key step of the algorithm is the inexact graph matching algorithm, which can be any inexact

graph matching algorithm that runs on weighted, undirected graphs. Inexact graph matching is

finding an approximate correspondence between the nodes of two graphs. Correspondences can be
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Algorithm 2 Joint Geometric Graph Embedding Based Keyphrase Extraction (Version 2)
1: procedure JGGE-KE(Dtrain,Gtrain,dtest ,gtest ,k) �

Dtrain = set of training documents
Gtrain = set of training graphs
dtest = a test document
gtest = the graph for dtest
k = number of training documents used per test
document

2: rank ← 0 ∈ IR|Vtest |

3: for dtrain ∈ closest_train_docs(Dtrain,dtest ,k) do
4: gtrain ← Gtrain[dtrain]
5: for vi,v j ∈ cartesianproduct(Vtest ,gold_std_keys(vtrain)) do
6: rank[vi]+ = dJGGE(vi,v j)
7: end for
8: end for
9: return rank

10: end procedure

based on similarity of node attributes, existence of edges between each pair of nodes in the two

graphs, or similarity of edge attributes on shared edges. Inexact graph matching algorithms have

been historically mostly used in visual object recognition.

There are three reasons why we wish to use inexact graph matching, as opposed to exact

graph matching algorithms. One is that for graphs with continuous labels on nodes or edges, exact

matches rarely occur. The other is that our graphs are not necessarily the exact same size; so there

will not be an exact match by definition. The third reason is that we expect structural patterns to

follow general rules, but in a noisy and imprecise way. Thus we wish to match patterns that look

similar to each other but not exactly alike.

The most popular type of inexact graph matching algorithm in use today is spectral decompo-

sition algorithms. The basic idea behind these algorithms is taking advantage of properties of the

eigenvalues and eigenvectors of the graphs’ adjacency matrices. These methods use edge weights

instead of node labels, making them particularly well-suited to keyphrase extraction. The feature

space for node labels consists of all of the words in the English language. Thus, using the con-
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Algorithm 3 Closest Training Documents to a Test Document
1: procedure CLOSEST_TRAIN_DOCS(Dtrain,dtest ,k) �

Dtrain = set of training documents
dtest = a test document
k = number of training documents to match

2: for dtrain ∈ Dtrain do
3: sim(dtrain,dtest)← tfidf(dtrain)·tfidf(dtest)

||tfidf(dtrain)||||tfidf(dtest)||
4: end for
5: return {dtrain|sim(dtrain,dtest) ∈ topk}
6: end procedure

tinuous information of the edge weights is much more tractable than using the combinatorially

explosive node labels. Spectral decompositions take into account real-valued edge weights since

those weights can be directly used in the adjacency matrix. In addition, the spectral decomposition

of the adjancency matrix yields holistic information about the entire graph structure. Our hypoth-

esis in this work is that sets of keyphrases roughly obey holistic structural patterns in a semantic

space, so this interpretation of spectral graph matching algorithms is well-aligned with our thesis.

The graph matching algorithm in our experiments follows an algorithm called Joint Geo-

metric Graph Embedding Based Matching [41]. The authors describe matching graphs derived

from images, but we extend the algorithm to the natural language processing domain. This algo-

rithm has a fairly intuitive explanation, and we found it particularly easy to adapt to the keyphrase

extraction problem. The algorithm proceeds by projecting the nodes of both graphs into an inter-

pretable joint space, where matches are computed between nodes that are close to each other in

the joint space. We will see that we can exploit this joint embedding space in other ways, which

will lead both to improved keyphrase extraction scores as well as a deeper understanding of the

variable purposes of assigning keyphrases for different datasets.

The Joint Geometric Graph Embedding algorithm for two graphs G1 = (V1,E1,W1) and G2 =

(V2,E2,W2) is as follows. First, each graph is converted into affinity matrices W1 and W2. The

affinity matrices can be defined in any fashion, as long as they describe a complete graph, with
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Figure 3.3: Two graphs from the Inspec dataset. The training graph, number 658, is on the top in
white. The test graph, number 338, is on the bottom in grey. The graphs are not yet embedded in a
joint eigenspace. They are shown in this figure in an arbitrary layout.

edge weights representing similarity between node labels. We set the affinity function to be the

Word2Vec cosine similarity function described in the previous section. At this point, the graphs are

completely separate, as in Figure 3.3. Then, a matrix must be formed for the inter-graph affinities

as well. This matrix, C, is defined as:

Cvi,v j = exp(−||cosine_dist(vi,v j)||2)

where vi ∈V1 and v j ∈V2.

Once the intra-graph affinity matrices W1 and W2 and the inter-graph affinity matrix C have

been constructed, a joint matrix is created as:

W =


W1 C

CT W2



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Figure 3.4: Edges are drawn between all white training graph nodes and all grey test graph nodes.
These edges are weighted using Word2Vec cosine similarity between the node labels. For example,
compani and busi have a fairly high Word2Vec cosine similarity because they are semantically sim-
ilar, while gloomi and increas have a fairly low Word2Vec cosine similarity because they express
roughly opposing sentiments.

The graphs have been tied together in a basic sense now. A vizualization of this step in the pro-

cess is indicated in Figure 3.4. We could theoretically match nodes directly based on the intergraph

edge weights. However, we have one additional step, which will incorporate broader structural

information into the matching.

We compute the eigenvalues and eigenvectors of this joint matrix. We select the m largest

eigenvalues and their associated eigenvectors. In preliminary experiments, we tried multiple values

of m. We found that though the value of m did not drastically change any results, setting m to be

a quarter of the size of the joint graph was an acceptable setting. Then the Joint Geometric Graph

Embedding Distance is defined between two points vi ∈ G1 and v j ∈ G2 as:

dJGGE(vi,v j)
2 =

m

∑
k=1

(φk(vi)−φk(v j))
2
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Figure 3.5: Nodes of both graphs are projected into a joint embedding space. Here, the number
of eigenvectors (and thus the dimension of the joint embedding space) is m = 2 for visualization
purposes, and edges are removed for clarity. We look for keyphrases in the test graph (grey nodes)
by examining properties of the joint embedding space.

Where φk is the kth eigenvector of W , and φk(vi) represents the dimension of φk corresponding

to the node vi. An intuition for the metric space defined by this distance can be gleaned from

observing Figures 3.5 and 3.6.

After this point, there are a number of possibilities for assigning scores to keyphrases using

the joint geometric embedding space. We explore two opposing ideas. For the first, we honor

the original intuition of using the joint geometric embedding space for matching - we compute

matchings by minimizing the distances between each pair of nodes dJGGE(vi,v j), enforcing the

constraint that matchings must be one-to-one and assigning matches in a greedy fashion. Any node

in the test graph matching with a labeled keyphrase in the training graph has its score incremented

by 1. In addition, all of the nodes in the test graph which do not obtain an exact match with

a labeled keyphrase in the training graph have their scores incremented as well. These leftover

nodes vi are sorted according to minv j∈gold_std_keys(Vtrain) dJGGE(vi,v j). Then the nodes vi that are
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Figure 3.6: We illustrate a zoomed-in portion of the joint embedding space. The only gold standard
keyphrase in the test graph is “project,” which seems to be quite close to the training keyword
“autom” (training keywords are represented by white triangles). Note that this example is not meant
to illustrate exactly which properties of the joint embedding space locate keyphrases, but rather to
give a simple illustration of how nodes tend to be distributed in the joint embedding space. Specific
properties of the joint embedding space will be examined in more detail in Section 4.2.

furthest from a labeled keyphrase v j receive the smallest score increment, and the nodes vi that are

closest to a labeled keyphrase v j receive the largest score increment. These score increments for

the leftover nodes range uniformly over the interval (0,1). The pseudocode for this procedure is

illustrated by Algorithm 1. The second option for assigining scores to candidates is much simpler.

We simply compute a score for each test candidate keyphrase as the sum of the distances between

the candidate keyphrase and every labeled training keyphrase in the joint embedding space. The

pseudocode for this alternative procedure is given by Algorithm 2.

It should be pointed out that these two ranking orders oppose each other. One rewards can-

didate keyphrases for being very close to training keyphrases, while the other rewards candidate

keyphrases for being very far away from training keyphrases. We will explore this difference in
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Section 4.2, and we will also give an indication of which characteristics of datasets lend them-

selves to which of the two ranking orders.

3.5 UNIGRAM RECOMBINATION

This step is only necessary when unigrams are chosen as candidate keyphrases. As previously

mentioned, if unigrams are chosen as candidates, they must be recombined into phrases in order to

be evaluated against the gold standard set of multiword keyphrases. We investigate four methods

of dealing with this discrepancy. For all four methods, once we have obtained unigram scores,

we compile a list of candidate phrases in the document. Then, we score phrases by aggregating the

scores of their component unigrams. We investigate four methods of aggregation. In Score by Sum,

the score of a phrase is the sum of its component unigram scores. This method originates from the

SingleRank algorithm in [49], and has been widely used in the literature. In Score by Average, the

score equals the average of the component unigram scores, though we compute the average with

an extra 1 added to the denominator. The extra 1 rewards longer keyphrases, because it represents

a larger portion of the denominator when the number of words in a phrase is smaller 2. In Score

by Average Times Term Frequency, the score is computed as Score by Average, then multiplied by

the number of times the phrase appears in the document. This recombination scheme outperforms

the Score by Sum and Score by Average schemes in a recent study [14]. In Score by Min, we set

the phrase’s score equal to the minimum score of any of its component unigrams. This method is

intended to mirror the method used in the original TextRank paper ([39]), where first the top p% or

top N unigram keywords are selected, and then a given phrase is chosen from the text if and only if

it contains only top p% or top N unigrams. The scheme used in the TextRank paper is maximally

restrictive, as it requires all of a phrase’s component unigrams to have a top p% or top N score.

We can approximately replicate the scheme by scoring phrases with their minimum component

scores. We do not directly use the original TextRank recombination scheme because it does not

allow us to control the exact number of phrases extracted per document, and it is widely ignored in

2To take an example, 0.5
2 = 0.25, but 0.5+0.5

3 = 0.33.
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the literature. We do not expect the Score by Min recombination method to perform well, but we

include it as a point of comparison because it serves to mirror the original recombination method

proposed by TextRank.

3.6 FINAL SELECTION

Finally, there are two commonly used methods of selecting the top scoring keyphrase candidates

as final keyphrases. One can either select a percentage threshold or a absolute threshold, such that

the top p% or the top N keyphrases (those with the highest positive scores) are selected. Typically,

authors use the top p% method on Inspec, with p=30%. Additionally, SemEval is usually evaluated

at N=5, N=10, N=15 or some combination of the three.
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CHAPTER 4

EXPERIMENTS AND RESULTS

In this chapter, we evaluate the efficacy of the proposed algorithm, Joint Geometric Graph Embed-

ding Based Keyphrase Extraction. For comparison, we implement TextRank, TFxIDF, and a

Random node ranking algorithm. The Random algorithm assigns random scores drawn from the

uniform distribution over the unit interval. The other three node ranking algorithms are determin-

istic in practice. In order to mitigate non-determinism in the scores of the Random algorithm, we

run 20 iterations of every experiment with Random and report average F-scores across these 20

iterations.

As previously mentioned, our keyphrase extraction pipeline consists of text preprocessing, can-

didate extraction, edge weighting, node ranking, unigram recombination if required, and final

selection. We keep text preprocessing constant, but experiment with various settings for each

other step in the pipeline. For candidate extraction, we consider three options: unigrams, noun

and adjective sequences, and the Naïve Bayes noun phrase chunker. For edge weighting, there

are two options, cooccurrence sliding window and Word2Vec cosine similarity, yet we determined

in preliminary experiments that Word2Vec should only be used in conjunction with JGGE, while

cooccurrence sliding window should only be used in conjunction with TextRank. There are four

recombination schemes, Score by Sum, Score by Average, Score by Average Times Term Fre-

quency, and Score by Min. We use either a threshold of p% or an absolute limit of N for final

selection, though the p% threshold is only applied to Inspec, and the absolute limit of N is only

applied to SemEval. Overall, there are 6*4*2=48 experiments in this section - 6 candidate extrac-

tion/unigram recombination combinations, 4 node ranking algorithms (two of which do not use
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edge weighting, and two of which have had their edge weighting methods fixed beforehand), and

2 datasets.

We first discuss the datasets used for evaluation, then discuss the performance of the four node

ranking algorithms when the other elements of the pipeline are selected optimally. We indicate

that all else being equal, the Joint Geometric Graph Embedding Based Keyphrase Extraction algo-

rithm attains scores in line with TextRank and TFxIDF, which all strongly outperform the Random

method. To investigate further, we indicate dataset characteristics which would lead one to choose

Version 1 (in Algorithm 1) or Version 2 (in Algorithm 2) of JGGE. We indicate which subsets of

SemEval lead to the best JGGE performance, and why. Finally, we discuss the optimal candidate

selection/unigram recombination settings for all datasets and node ranking algorithms.

4.1 DATASETS

We evaluate on two datasets, commonly referred to as SemEval [23] and Inspec [18]. Both datasets

consist of text in the domain of computer science research. SemEval contains full conference arti-

cles, while Inspec contains only the abstracts of journal articles. Both datasets are freely available

online1.

Summary statistics for both datasets are listed in Table 4.1. This table shows the train/test split

for each dataset, the average number of tokens per document, the average number of “acceptable

words” per document, the average number of assigned gold standard keyphrases per document,

the distribution in gold standard keyphrases among unigrams, bigrams, trigrams, and higher order

n-grams, as well as the average length of any single word in any gold standard keyphrase. All

statistics are computed across the entire corpus, ignoring the train/test split (except the number of

training and testing documents). We define an “acceptable word” as any token with between 1 and

40 characters (inclusive), which has over 50% of its characters defined as a letter in the Unicode

1https://github.com/snkim/AutomaticKeyphraseExtraction
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Table 4.1: Summary Statistics for Inspec and SemEval Datasets

Inspec SemEval
Statistic
Type Abstracts Full papers
# Training Documents 1000 144
# Testing Documents 500 100
# Tokens/Document 134 9633
# Acceptable Words/Document 76 4283
Acceptable Words/Tokens (%) 56.7 44.5
# Gold Keyphrases/Document 9.8 15.1
U/B/T/O Distribution in Gold Keyphrases (%) 13/53/25/9 21/53/19/7
Length of Words in Gold Keyphrases 6.1 6.4

Character Database2, and is not in NLTK’s list of English stopwords. This list of stopwords is

available in Appendix B.

In order to train the Word2Vec model, we require an external unlabelled dataset. The ArXiv

academic preprint repository is suitable for this purpose. We discuss this dataset after introducing

the other two.

4.1.1 SEMEVAL 2010 TASK 5

The SemEval 2010 Task 5 dataset, compiled by [23], is the most recent and influential dataset under

evaluation. There are many recent research articles which use this dataset, the articles are gram-

matically correct with few spelling errors, and the articles are not too short or long so as to be either

trivial or computationally intractable. In addition, the domain (computer science research articles)

has a well-defined taxonomy, with terminology that is sufficiently different from everyday speech

to require novel models rather than pre-packaged solutions. One final benefit of this dataset is that

documents are labeled as belonging to four distinct sub-domains of computer science, enabling fur-

ther analysis broken down by sub-domain. The training and test sets have an even distribution of

2http://unicode.org/ucd/
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each sub-domain, meaning that an algorithm will not be disproportionately rewarded or penalized

for its performance on any single domain.

Each document is an academic conference article from one of four domains: information search

and retrieval, distributed systems, multiagent systems, or economics. The creators downloaded

the articles from the ACM Digital Library. Thus, the documents were labelled under the 1998

ACM Computing Classification System 3. Under this system, the four categories in this corpus are

labelled H3.3, C2.4, I2.11, and J4, respectively.

The original dataset creators downloaded the articles in PDF format, then converted them to

text with the Linux command-line tool pdftotext 4. They also converted words that had been split

across two lines and hyphenated back to their original uninterrupted form. However, they note they

may have accidentally converted legitimate hyphenated words into a single string of alphabetical

characters during this step.

There are 144 training documents and 100 testing documents. In addition, the authors of this

task provided entrants with a 40-document subset of the training set as “trial data”. We do not con-

cern ourselves with this set in our study, because it is a proper subset of the training set. The authors

ensured an approximately uniform distribution of the four document categories in both the training

and testing data. Although the testing data is exactly balanced among the four categories (25 arti-

cles per category), the training set is slightly skewed. There are 34 distributed systems papers, 39

information search and retrieval papers, 35 multiagent systems papers, and 36 economics papers.

The papers are annotated with author- and reader-assigned keyphrases. The author-assigned

keyphrases may or may not be present in the article text. The author-assigned keyphrases were

already present in the PDF versions of the documents at the time of retrieval from the ACM Digital

Library. The reader-assigned keyphrases came from 50 Computer Science students at the National

University of Singapore, who were hired to annotate 5 papers each. The readers were told to assign

keyphrases that were present word-for-word in the article text, headers or captions, not simply

3More information on this classification system is available online at https://www.acm.org/
publications/computing-classification-system.

4https://linux.die.net/man/1/pdftotext
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semantically equivalent phrases. However, the actual percentage of reader-assigned keyphrases

present in the article text was 85%, thus the ceiling for recall of any keyphrase extraction system

is 85% on this dataset. This percentage is better than the 81% of author-assigned keyphrases that

were present in the text. We will use the combined keyphrases (the union of the reader- and author-

assigned keyphrases) since they allow us to obtain the maximum possible recall. The original task

evaluates systems on both reader-assigned keyphrases and combined keyphrases.

The SemEval creators also discuss the degree of agreement between the reader-assigned

keyphrases and the author-assigned keyphrases. If one takes the author-assigned keyphrases as a

baseline to compute the precision, recall, and F-score of the reader-assigned keyphrases (a kind of

“inter-annotator” precision, recall, and F-score), one obtains a precision of 21.5%, recall of 77.8%,

and F-score of 33.6%. These scores are not directly comparable to any algorithm’s scores on the

combined keyphrase sets. The readers assigned about 12 keyphrases per document on average,

while the authors assigned about 4 keyphrases per document on average. This discrepancy between

reader- and author-assigned keyphrase set sizes artifically inflates the inter-annotator recall and

deflates the inter-annotator precision, making direct comparison to actual keyphrase extraction

algorithms impossible. However, the reasonably high precision, recall, and F-score indicate a

decent amount of agreement between the readers and the authors.

During data exploration, we found that for each SemEval document, almost all of the gold

standard keyphrases are located in the beginning of the document. The histogram of locations of

gold standard unigrams in the training set can be seen in Figure 4.1. It is apparent that most gold

standard unigrams appear in the first 20% of their respective documents, with a heavy concentration

in the first 5-10% of the documents. Indeed, when we gave only the first 6% of each SemEval

document to the keyphrase extraction pipeline, we attained much better results on every algorithm.

This performance improvement persisted despite the fact that we cut away some gold standard

keyphrases when we remove most of the document. Therefore, all of our experiments on SemEval

cut out the latter 94% of each training and testing document as part of the preprocessing stage.
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Figure 4.1: Frequencies of gold standard unigrams at various percentages through their respective
SemEval documents, binned in increments of 5%.

The performance improvement from cutting out the latter 94% of all documents derives from

the fact that keyphrases tend to be concentrated in certain sections of technical literature [44],

which we have empirically determined to consist mostly of the abstract and introduction in the

SemEval dataset. However, some authors have applied more sophisticated filtering techniques on

SemEval, such as using only the title, abstract, introduction, related work, conclusions, and future

work [34] or including section-based features in their keyphrase extraction algorithm [30]. In this

work, we are mostly concerned with the general applicability of the Joint Geometric Graph Embed-

ding framework across different datasets. Therefore we consider the simpler solution of selecting

the first 6% of each document to be sufficient given the focus of this work.
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4.1.2 INSPEC

The Inspec corpus was originally introduced by Hulth in 2003, and it has been used in numerous

studies since, becoming a classic dataset in keyphrase extraction [18]. We evaluate on this dataset to

determine how well different algorithms work on very small documents. This dataset is also very

commonly reported in the literature, enabling us to compare our results to others quite readily.

Hulth claims that “many journal papers are not available as full-length texts, but as abstracts only,

as is the case for example on the Internet.” Yet it still would be restrictive for humans to read every

abstract for thousands of papers. We must assign keywords to the abstracts to manage and filter

them before presenting them to humans interested in specific topics.

The documents in the corpus are composed of only the abstracts of computer science papers

from journals in the domains of Computers and Control and Information Technology during the

years 1998 to 2002. There are 2,000 documents, though Hulth has already arbitrarily separated

the dataset into 1,000 training documents, 500 validation documents, and 500 testing docu-

ments. We follow the same train/test split, though we dispose of the validation documents. Hulth

obtained these journal articles from the Inspec database, which includes a taxonomy of controlled

keyphrases for tagging documents.

Hulth includes with each abstract a set of controlled and uncontrolled keyphrases, both assigned

by a professional indexer. The controlled terms were selected from the Inspec thesaurus, while the

uncontrolled terms could consist of any phrase in the English language. The indexers had access

to the full text of the documents when assigning the terms. Neither the controlled or uncontrolled

terms were required to be present in the abstract. Interestingly, 76.2% of the uncontrolled terms

are present in the abstract of the document, while only 18.1% of the controlled terms are present

in the abstracts. Thus most studies using this dataset use the uncontrolled terms as the ground

truth. However, the fact that nearly three-fourths of the uncontrolled terms appear in the abstract

despite the ability of the indexers to choose any terms from the entire article is a further indication

of the relevance of this dataset. If most of a document’s keyphrases appear in the abstract, we can
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construct adequate search and retrieval systems for full documents using only keyphrases extracted

from abstracts. Therefore, extracting keyphrases from abstracts is a valuable task.

Some studies have additionally taken the liberty of removing any gold standard keyphrases that

do not appear in the abstract of the document to which they are assigned [29; 15]. Because such

ground truth terms are not extractable from the abstracts, they result in a ceiling on the recall of

any keyphrase extraction algorithm. We do not take this corrective step of removing unextractable

keyphrases, as we feel it would be misleading to compare the resulting scores to scores which have

been computed directly against the original gold standard keyphrases.

4.1.3 ARXIV

Word2Vec requires a large secondary corpus for training. The domain of the documents in the

corpus ought to be as similar to the test documents as possible, to maximize the likelihood that

specific technical terms will appear in the corpus. One other reason we need our secondary corpus

to be in a similar domain to the test corpus is that within a domain rare words may have different

meanings than they do in normal contexts. Thus it is important to have them appear in the correct

context in the secondary corpus.

Most papers that seek semantic similarity metrics based on external knowledge sources have

used either Wikipedia5 or WordNet6 as their sources. However, these sources are not useful for

this thesis because they are not specific enough to the domains under consideration. However, the

online research preprint repository ArXiv7 does have numerous scientific articles with categories

labelled. We use the set of computer science articles on ArXiv as our secondary corpus.

ArXiv labels papers at two levels. The first level is the high-level domain. It includes physics,

mathematics, computer science, nonlinear sciences, quantitative biology, quantitative finance,

statistics, and electrical engineering and systems science. The second level classifies sub-domain.

Computer science articles are provided on ArXiv under a related site called the Computing

5www.wikipedia.com
6https://wordnet.princeton.edu/
7https://www.arxiv.org
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Table 4.2: Equivalencies of Computing Research Repository Classes to 1998 ACM Computing
Classification System Classes

CoRR ACM
Information Retrieval H3.0, H3.1, H3.2, H3.3, H3.4

Distributed, Parallel, and Cluster
Computing

C1.2, C1.4, C2.4, D1.3, D4.5, D4.7,
E1

Artificial Intelligence I2.0, I2.1, I2.3, I2.4, I2.8, I2.11
Computational Engineering,

Finance, and Science
J2, J3, J4

Research Repository (CoRR). CoRR lists computer science articles belonging to 40 sub-domains.

A full list of all 40 can be found in Appendix C. These sub-domains have been decided upon by

the curators of CoRR. In addition to this categorization scheme, CoRR also categorizes articles

according to the 1998 ACM Computing Classification System. To compare to the ACM classes

included in SemEval 2010 Task 5, we list the equivalencies for the 4 classes used in SemEval in

Table 4.2. The ACM classes which appear in the SemEval corpus are bolded.

ArXiv papers are available for bulk download from an Amazon S3 requester-pays bucket8,

in both PDF and source LaTeX format. We downloaded all PDF’s from July 1991 to December

2016, then selected exactly the computer science articles from that set of papers. Computer science

articles were identified via a stamp added to the side of the PDF which lists the file name and

then a tag indicating the subject and subdiscipline as [XX.XX], for example [CS.AI]. We used this

information to only select the computer science articles, and to sort them into the 40 subdisciplines.

We then converted all PDF’s to text using pdftotext 9, a Linux command-line tool. Although the

pdftotext converter does not handle equations or figures very elegantly, we suspect that this tool

can convert a reasonable fraction of full sentences to text, enabling our semantic model parameters

to be calculated to a useful degree of accuracy.

8https://arxiv.org/help/bulk_data_s3
9https://linux.die.net/man/1/pdftotext
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The amount of articles in each subject is displayed in Figure 4.2. The total number of articles

is 76,160. The average length of an article is 11,121 tokens. The average number of “acceptable

words” per article is 4,534. Thus, the fraction of “acceptable words” to total tokens is approxi-

mately 40.8%, which is comparable to the other 2 datasets. This is a soft indication that the pdfto-

text conversion to text was successful, an indication which is considerably strengthened by our

subjective evaluation of some random documents.

4.2 PERFORMANCE OF JOINT GEOMETRIC GRAPH EMBEDDING BASED KEYPHRASE

EXTRACTION

We performed experiments for various candidate extraction methods, edge weighting methods,

node ranking algorithms, and unigram recombination procedures. We optimized the keyphrase

extraction pipeline for each of four algorithms under consideration: Random, TFxIDF, TextRank,

and Joint Geometric Graph Embedding Based Keyphrase Extraction (JGGE-KE or simply JGGE),

and fixed the optimal settings of the other steps in the pipeline for each algorithm. We found that

across all four algorithms, for SemEval the best candidate extraction algorithm was Unigrams

with Score by Average Times Term Frequency recombination, while for Inspec the best candidate

extraction algorithm was Unigrams with Score by Sum recombination. In addition, preliminary

experiments showed that Word2Vec edge weighting performed rather well when combined with

the proposed JGGE keyphrase extraction algorithm, but did not perform very well for TextRank.

Therefore, we only report results using cooccurrence-based edge weighting with TextRank and

Word2Vec based edge weighting with JGGE. The alternative candidate extraction and unigram

recombination schemes are explored in the next section, but here we are only concerned with the

performance of each algorithm given the optimal candidate extraction, edge weighting, and uni-

gram recombination scheme. The results of the four algorithms with optimal settings for the rest of

the pipeline are indicated in Table 4.3. Overall, we see that the JGGE algorithm performs similarly

to TFxIDF and TextRank on SemEval and Inspec, outperforming the other two on Inspec at the
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Figure 4.2: Article Counts for ArXiv’s CoRR
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p=0.05 significance level based on a two-way Wilcoxon signed ranks test with Bonferroni correc-

tion. In addition, we found that all three non-Random algorithms outperform the Random algorithm

at p=1e-7 significance level, indicating very strongly that the intuition behind these algorithms are

correct. In particular, we take this result to mean that the joint geometric embedding space does

indeed encode information related to the “keyphraseness” of words in text, and is worthy of further

exploration in other NLP tasks.

Table 4.3: F-scores (for Full Phrases) of Random, TFxIDF, TextRank, JGGE, and State-of-the-art
Methods on Inspec and SemEval 2010 Task 5. F-scores for Inspec are computed by selecting the
top 30% of the ranked candidate keyphrases for each algorithm. F-scores for SemEval are com-
puted by selecting the top 10 and top 15 ranked candidate keyphrases for each algorithm. All
non-Random algorithms outperform Random at the p=1e-7 significance level. † indicates signif-
icance over other non-Random algorithms at the p=0.05 level. Statistical significance computed
using paired Wilcoxon signed ranks tests with Bonferroni correction.

Algorithm Inspec (p=30%) SemEval (N=10) SemEval (N=15)

Random 25.2 8.8 9.1
TFxIDF 34.8 14.3 15.3

TextRank 35.7 13.8 15.3
JGGE 37.1† 12.8 14.6

RankUp 46.6 – –
MultipartiteRank – 14.5 –

HUMB – 25.9 27.5
SemGraph – – 30.8

Our results are not directly comparable to the four algorithms from the literature without some

additional discussion. One difference is the level of supervision. TextRank is completely unsu-

pervised, JGGE-KE requires slightly more supervision, and TFxIDF requires an entire corpus for

comparison. HUMB is a supervised method, which means that it requires more resources to train

than TextRank or JGGE-KE [30]. RankUp, MultipartiteRank, and SemGraph are unsupervised,

but the studies reporting on their effectiveness use different settings of the rest of the keyphrase

extraction pipeline than what has been used in our implementations of the four algorithms studied

in this work [13; 9; 34].
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For example, the RankUp study’s reimplementation of the basic TextRank algorithm achieves

an F-score of 42.8, so the additional improvement of their novel method over TextRank is 3.8

points in terms of F-score, rather than the 10.9 point difference between our implementation of

TextRank and their novel algorithm. In a personal correspondence with the authors, they claimed

that the improvement in the score for their implementation of TextRank came from using noun

phrases as candidate keyphrases (the original TextRank implementation used unigrams), and set-

ting their thresold p% as a percentage of the number of words in the document, rather than the

number of candidate keyphrases chosen. They noted that p=10% was selected for Inspec. How-

ever, the description of the candidate selection in the RankUp paper appears to be the same as our

implementation of the Noun and Adjective Sequences candidate selection, and none of our exper-

iments showed TextRank exceeding an F-score of approximately 36 no matter what the threshold.

We relate this discussion here in order to indicate that the substantially higher scores of the RankUp

algorithm are likely due in part to optimized settings in other parts of the pipeline - settings which

would boost the scores of any node ranking algorithm.

The results of the MultipartiteRank algorithm in [9] are likely directly comparable to the results

of the current study. One interesting difference between our keyphrase extraction pipeline and

theirs is that we cut off the SemEval documents at 6% mark from the very start of the pipeline,

restricting even the candidate extraction step to selecting only words in the first 6% of the doc-

uments. In the MultipartiteRank study, the authors use the entire SemEval documents, but add

a factor to each edge weight in the graph inversely related to the position of the incident nodes

in the document. Thus words appearing early in the document have higher in-degree than words

appearing later in the document, which leads to a higher score for the early words in the docu-

ments since MultipartiteRank’s core algorithm is the PageRank centrality computation. We do not

explore this more subtle approach to incorporating position information on SemEval, as our main

aim in this study is to demonstrate the basic utility of the joint geometric embedding space in the

keyphrase extraction task. However, the weighting approach is an obvious extension which could

increase SemEval recall of all four algorithms under consideration in this study (if the position-
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biased weighting were applied after node ranking). The study presenting SemGraph indicates a

similar benefit, and their usage of position information on SemEval is even more advanced [34].

They use a conditional random field to label sections of the documents, then extract candidates only

from the “title, abstract, introduction, related work, future work, and conclusion” of the papers [34].

Indeed, they report a TextRank F-score of 22.1 on SemEval, compared to the score of 15.3 indi-

cated by our own implementation. We suspect therefore that some of their improvement in F-score

derives from their choice to select candidates from very specific portions of the documents, which

we have not done in as much detail.

4.2.1 MAXIMIZING OR MINIMIZING JGGE DISTANCE

Interestingly, we found that when we compute JGGE scores as the sum of distances to keyphrases

(Version 2 as shown in Algorithm 2 in Section 3.4), the scores in Inspec are maximized. However,

on SemEval, the F-score is maximized by computing JGGE scores so as to minimize distance

to training keyphrases (Version 1 as shown in Algorithm 1 in Section 3.4). We hypothesize that

SemEval gold standard keyphrases serve more to broadly cover the document topics (they empha-

size within-document diversity of keyphrases) while Inspec gold standard keyphrases serve more to

differentiate documents from each other (emphasizing cross-document differentiation). Emphasis

on within-document diversity intuitively corresponds with minimizing the JGGE distance, while

emphasis on cross-document differentiation corresponds with maximizing the JGGE distance. This

difference in emphasis results in the difference in optimal ordering behavior on the two datasets.

To further explore this hypothesis, we use the metric of lexical diversity to measure the diversity

of gold standard keywords for Inspec and SemEval. Lexical diversity can be computed as the

number of types divided by the number of tokens (the so-called type-token ratio). However, it

has been found that, ceteris paribus, longer sequences of text have lower type-token ratios [19].

Broadly speaking, when authors use more tokens, they are forced to repeat the most important

tokens. Thus we must measure lexical diversity as type-token ratio corrected for differences in

total number of tokens. We can compute both the “cross-document” lexical diversity, as well as
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the “within-document” lexical diversity. We expect that Inspec gold standard keyphrases will have

higher cross-document diversity (favoring greater JGGE distance), while SemEval will have higher

within-document diversity (favoring lesser JGGE distance).

To compute “cross-document” lexical diversity for a dataset, we randomly select 3,000 tokens

from the list of unigrams contained in all training documents’ gold standard keyphrase sets (we

choose 3,000 because there are approximately 5,000 tokens across SemEval’s training set and

approximately 23,000 tokens across Inspec’s training set, and we would like to choose a large

number of tokens while still allowing for randomness on both datasets). We then can compute the

number of unique types across these 3,000 tokens, and divide by 3,000. We repeat this procedure

100 times for both datasets, obtaining a list of 100 cross-document lexical diversity measurements

each. We find the average lexical diversity on SemEval to be 30.50% with 0.002% variance, and

the average lexical diversity on Inspec is 47.50% with 0.006% variance. The two lexical diver-

sity distributions differ to a degree that is statistically significant at p<0.001. The gold standard

keyphrases seem to be more diverse on Inspec’s training set, indicating that the keyphrases might

be a bit more focused on differentiating the documents than in SemEval.

Conversely, we can compute the within-document lexical diversity for each document of both

training sets, then compare the distributions of lexical diversities. In this case, we must control for

differing numbers of unigrams in the gold standard sets for individual documents. We compute

the average number of gold standard tokens for a single document to be approximately 18 in the

Inspec training set, and approximately 25 on SemEval. Therefore, we consider only documents

that have at least 18 tokens in their gold standard keyphrases. For each document, we randomly

select 18 tokens and compute the type-token ratio over those 18 tokens. On Inspec’s training set,

we find within-document lexical diversity computed in this manner to have an average of 67.2%,

and a variance of 1.20%. SemEval’s training set documents have an average within-document

lexical diversity of 66.4% with a variance of 1.07%. Using a paired t-test, we determine these 2

sets of lexical diversities to be not significantly different at the p=0.1 level. The implication is
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that neither dataset has more lexical diversity within documents, indicating that topic coverage is

roughly equally important in both datasets.

We conclude that one half of our original hypothesis is statistically validated - that is, Inspec

annotators focused more on differentiating documents than SemEval annotators did. Annotators

of both datasets focused on broad topic coverage. As a result, the JGGE keyphrase extraction

algorithm based on maximizing distance between documents boosted scores on Inspec, but max-

imizing distance between documents had much less positive influence on SemEval. On SemEval,

the dominant effect is that of emulating common patterns in the joint geometric embedding space

(minimizing distance in the embedding space).

4.2.2 JGGE F-SCORES ON THE 4 SUBSETS OF SEMEVAL

Figure 4.3: F-scores on Different Subsets of SemEval 2010 Task 5 Combined Keyphrases (N=15).
The subsets are labeled with their ACM 1995 Classification System abbreviations: Information
Retrieval (H), Distributed Systems (C), Artificial Intelligence (I), and Computational Finance/E-
conomics (J).

In order to better understand the performance of JGGE, we can also consider its performance

across multiple known domains. In Figure 4.3, we see that the JGGE algorithm performs rather
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well on the Information Retrieval subset of the SemEval dataset, while performing adequately but

less well than TextRank and TFxIDF on the other three subsets. We suspect this is due to the

Word2Vec edge weighting model having more training data on the vocabulary used in Information

Retrieval research. If we briefly examine the Word2Vec model, we find that 5.7% (179/2973) of the

candidate unigrams in the Information Retrieval (H) test set are not found in the Word2Vec model.

In comparison, the Distributed Systems (C) subset has 6.4% (200/2946) of its unigrams out-of-

model, the Artificial Intelligence (I) subset has 6.2% (203/3090) of its unigrams out-of-model,

and the Computational Finance/Economics (J) subset has 6.0% (222/3484) of its unigrams out-of-

model. These out-of-model fractions line up perfectly with the differences in JGGE performance

on the subsets - H has the highest F-score for JGGE, and the lowest out-of-model fraction. J, I, and

C see increasing out-of-model fractions, and correspondingly decreasing JGGE F-scores. Though

not conclusive proof that the differences in JGGE F-scores are expressly caused by differences

in the out-of-model fraction for each subset, this analysis does implicate lack of coverage in the

Word2Vec model as a primary suspect for differentiating JGGE F-scores.

4.3 VARIATION OF CANDIDATE KEYPHRASE SELECTION

It is rather informative to consider the effect of the various candidate selection methods. In this

section, we look at the top scoring candidate selection methods across the two datasets and the

four node ranking algorithms. As mentioned previously, preliminary experiments showed that

Word2Vec edge weighting performed well with JGGE, but did not perform very well for Tex-

tRank, so we use only cooccurrence-based edge weighting with TextRank and Word2Vec based

edge weighting with JGGE.

Figure 4.4 indicates the F-scores attained using the four node-ranking algorithms when com-

bined with the three candidate extraction methods on Inspec. In the case of extraction of unigram

candidates, there are four schemes for recombination of unigrams into full phrases. It is plain to

see that on the Inspec data, the Unigrams with Score by Sum Recombination scheme maximizes

F-scores. We suspect that this is likely due to the fact that this recombination promotes longer
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Figure 4.4: F-scores with Various Candidate Selection Methods and Node Ranking Algorithms on
Inspec Reader-Assigned Keyphrases (p=30%)

candidate keyphrases. If we consider the percentages of unigrams, bigrams, trigrams, and higher

order n-grams in Inspec’s gold standard, we see approximately 13% unigrams, 53% bigrams, 25%

trigrams, and 9% higher order n-grams. However, the candidate keyphrases (the Noun and Adjec-

tive Sequences, which are the phrases which the unigram methods recombine into) have approxi-

mately 43% unigrams, 37% bigrams, 14% trigrams, and 6% higher order n-grams. Thus, it appears

that any keyphrase extraction pipeline which ultimately promotes longer keyphrases will serve to

convert the candidate distribution, which is more heavily centered around unigrams and bigrams,

into a distribution more heavily centered around bigrams and trigrams such as the gold standard

keyphrases. The Unigrams with Score by Average Recombination scheme also promotes longer

keyphrases to a lesser degree, due to the addition of an extra 1 to the denominator when computing

the average. Thus, this scheme seems to be the second best of the 4. The Score by Average Times

Term Frequency recombination method is neutral in this regard (it neither promotes nor demotes
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longer keyphrase candidates), while the Score by Min recombination method actually punishes

longer keyphrases (more component unigrams means more opportunity for a low score, all else

being equal).

Figure 4.5: F-scores with Various Candidate Selection Methods on SemEval 2010 Task 5 Com-
bined Keyphrases (N=15)

Figure 4.5 demonstrates the effectiveness of the various candidate extraction and node-ranking

algorithm combinations on the SemEval dataset. We find that the Score by Average Times Term

Frequency recombination method outperforms the other candidate selection methods. However,

the Score by Sum, Average, and Average Times Term Frequency methods all seem to perform

rather well on this dataset, and we do not see the same pronounced differences that we do on the

Inspec dataset. Again, we see that the Noun and Adjective Sequences, Naïve Bayes noun phrase

chunker, and Unigrams with Recombination by Min methods perform comparatively poorly, which

is to be expected.

In both the Inspec and SemEval experiments, we see that although JGGE performs quite well

for the Unigrams with Recombination candidate selection scheme, performance of JGGE is dis-

proportionately poor (compared to TextRank and TFxIDF) when the Naïve Bayes noun phrase
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chunker or the Noun and Adjective Sequences candidate extraction schemes are used. We contend

that this is due to poor quality of the Word2Vec models used for those two candidate extraction

schemes. Recall we trained three Word2Vec models on the ArXiv corpus, one model where we

identified phrases using the Naïve Bayes noun phrase chunker, one with phrases identified using the

Noun and Adjective Sequences method, and one where we simply trained directly against the uni-

grams. We computed the number of test document candidate keyphrases in each Word2Vec model

vs. the number of test document candidate keyphrases not contained in each Word2Vec model. We

found that for unigram candidates, the Word2Vec model has vectors for 19,983 candidate unigrams,

while it is missing only 609 (out-of-model fraction is 2.0%). In the case of the Naïve Bayes noun

phrase chunker, the Word2Vec model has vectors for 6,419 candidate keyphrases, but is missing

10,267 candidate keyphrases (out-of-model fraction is 62.5%). Likewise, for Noun and Adjective

Sequences, the Word2Vec model has vectors for 9,564 candidate keyphrases, and it is missing

5,051 candidate keyphrases (out-of-model fraction is 34.6%). The discrepancy in Word2Vec cov-

erage is only natural - as phrases get longer, their frequencies decrease drastically. Therefore, it is

reasonable to expect that a Word2Vec model trained on longer phrases would have lower recall than

a Word2Vec model trained on the same corpus with only unigrams. We take this result to mean

that the Naïve Bayes chunker and Noun and Adjective Sequences candidate extraction schemes

are poor choices as preprocessing steps, rather than an indication that our JGGE algorithm per-

forms poorly. This interpretation is supported by the fact that TFxIDF and TextRank also perform

relatively poorly when paired with these two candidate extraction methods.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Overall, we find that embedding training and testing graphs in a joint spectral embedding space

encodes vital semantic and graph theoretic information for keyphrase extraction. However, the

quality of the embedding space is highly dependent on the quality of the edge weighting used

during graph construction. Though we have indicated that joint geometric graph embedding can

be successfully used in keyphrase extraction, more research is necessary to develop improved edge

weighting methods.

In light of the success of spectral graph embedding on this problem, we suggest that other

problems be cast as object recognition in weighted graphs (the traditional domain in which

inexact graph matching is applied). Document summarization is obvious because the transition

from keyphrase extraction to document summarization is already done in many previous research

papers (most notably, TextRank [39]). It may also be quite useful for relation extraction. If two

nodes match with nodes in some ordered relation in a certain proportion of the training set, they

may be said to hold that ordered relationship with each other.

Despite any limitations of the current study, we have demonstrated that there is much to gain

in recasting keyphrase extraction as a structural pattern recognition problem. We hope that this

research will spur further applications of structural pattern recognition algorithms to areas of infor-

mation extraction.
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APPENDIX A

EXAMPLE DOCUMENTS FROM EACH DATASET

A.1 INSPEC

Sensorless control of induction motor drives.

Controlled induction motor drives without mechanical speed sensors at the motor

shaft have the attractions of low cost and high reliability. To replace

the sensor the information on the rotor speed is extracted from

measured stator voltages and currents at the motor terminals.

Vector-controlled drives require estimating the magnitude and spatial

orientation of the fundamental magnetic flux waves in the stator or in

the rotor. Open-loop estimators or closed-loop observers are used for

this purpose. They differ with respect to accuracy, robustness, and

sensitivity against model parameter variations. Dynamic performance and

steady-state speed accuracy in the low-speed range can be achieved by

exploiting parasitic effects of the machine. The overview in this paper

uses signal flow graphs of complex space vector quantities to provide

an insightful description of the systems used in sensorless control of

induction motors.

The gold-standard keyphrases are:

sensorless control

induction motor drives

reliability

stator voltages
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stator currents

vector-controlled drives

magnitude

spatial orientation

fundamental magnetic flux waves

open-loop estimators

closed-loop observers

robustness

sensitivity

model parameter variations

steady-state speed accuracy

parasitic effects

signal flow graphs

space vector quantities

A.2 SEMEVAL

The following is one page of a document in the training partition of the SemEval corpus.

A Framework for Agent-Based Distributed Machine

Learning and Data Mining

Jan Tozicka

Gerstner Laboratory

Czech Technical University

TechnickÂńa 2, Prague, 166 27

Czech Republic

tozicka@labe.felk.cvut.cz

Michael Rovatsos

School of Informatics

The University of Edinburgh

Edinburgh EH8 9LE

United Kingdom

mrovatso@inf.ed.ac.uk

Michal Pechoucek

Gerstner Laboratory

Czech Technical University

TechnickÂńa 2, Prague, 166 27
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Czech Republic

pechouc@labe.felk.cvut.cz

ABSTRACT

This paper proposes a framework for agent-based

distributed machine learning and data mining based on (i)

the exchange of meta-level descriptions of individual

learning processes among agents and (ii) online reasoning about

learning success and learning progress by learning agents.

We present an abstract architecture that enables agents to

exchange models of their local learning processes and

introduces a number of different methods for integrating these

processes. This allows us to apply existing agent

interaction mechanisms to distributed machine learning tasks,

thus leveraging the powerful coordination methods available

in agent-based computing, and enables agents to engage in

meta-reasoning about their own learning decisions. We

apply this architecture to a real-world distributed clustering

application to illustrate how the conceptual framework can

be used in practical systems in which different learners may

be using different datasets, hypotheses and learning

algorithms. We report on experimental results obtained using

this system, review related work on the subject, and discuss

potential future extensions to the framework.

General Terms

Theory

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial

Intelligence-Multiagent Systems

1. INTRODUCTION
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In the areas of machine learning and data mining (cf. [14,

17] for overviews), it has long been recognised that

parallelisation and distribution can be used to improve learning

performance. Various techniques have been suggested in

this respect, ranging from the low-level integration of

independently derived learning hypotheses (e.g. combining

different classifiers to make optimal classification decisions [4,

7], model averaging of Bayesian classifiers [8], or

consensusbased methods for integrating different clusterings [11]), to

the high-level combination of learning results obtained by

heterogeneous learning agents using meta-learning (e.g. [3,

10, 21]).

All of these approaches assume homogeneity of agent

design (all agents apply the same learning algorithm) and/or

agent objectives (all agents are trying to cooperatively solve

a single, global learning problem). Therefore, the techniques

they suggest are not applicable in societies of autonomous

learners interacting in open systems. In such systems,

learners (agents) may not be able to integrate their datasets or

learning results (because of different data formats and

representations, learning algorithms, or legal restrictions that

prohibit such integration [11]) and cannot always be

guaranteed to interact in a strictly cooperative fashion (discovered

knowledge and collected data might be economic assets that

should only be shared when this is deemed profitable;

malicious agents might attempt to adversely influence others"

learning results, etc.).

Examples for applications of this kind abound. Many

distributed learning domains involve the use of sensitive data
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and prohibit the exchange of this data (e.g. exchange of

patient data in distributed brain tumour diagnosis [2]) -

however, they may permit the exchange of local learning

hypotheses among different learners. In other areas, training

data might be commercially valuable, so that agents would

only make it available to others if those agents could

provide something in return (e.g. in remote ship surveillance

and tracking, where the different agencies involved are

commercial service providers [1]). Furthermore, agents might

have a vested interest in negatively affecting other agents"

learning performance. An example for this is that of

fraudulent agents on eBay which may try to prevent

reputationlearning agents from the construction of useful models for

detecting fraud.

Viewing learners as autonomous, self-directed agents is

the only appropriate view one can take in modelling these

distributed learning environments: the agent metaphor

becomes a necessity as oppossed to preferences for scalability,

dynamic data selection, interactivity [13], which can also

be achieved through (non-agent) distribution and

parallelisation in principle.

Despite the autonomy and self-directedness of learning

agents, many of these systems exhibit a sufficient overlap

in terms of individual learning goals so that beneficial

cooperation might be possible if a model for flexible

interaction between autonomous learners was available that allowed

agents to

1. exchange information about different aspects of their

own learning mechanism at different levels of detail
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without being forced to reveal private information that

should not be disclosed,

2. decide to what extent they want to share information

about their own learning processes and utilise

information provided by other learners, and

3. reason about how this information can best be used to

improve their own learning performance.

Our model is based on the simple idea that autonomous

learners should maintain meta-descriptions of their own

learning processes (see also [3]) in order to be able to

exchange information and reason about them in a rational way

(i.e. with the overall objective of improving their own

learning results). Our hypothesis is a very simple one:

If we can devise a sufficiently general, abstract

view of describing learning processes, we will be

able to utilise the whole range of methods for (i)

rational reasoning and (ii) communication and

coordination offered by agent technology so as to

build effective autonomous learning agents.

To test this hypothesis, we introduce such an abstract

architecture (section 2) and implement a simple, concrete

instance of it in a real-world domain (section 3). We report

on empirical results obtained with this implemented system

that demonstrate the viability of our approach (section 4).

Finally, we review related work (section 5) and conclude

with a summary, discussion of our approach and outlook to

future work on the subject (section 6).

2. ABSTRACT ARCHITECTURE

Our framework is based on providing formal (meta-level)
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descriptions of learning processes, i.e. representations of all

relevant components of the learning machinery used by a

learning agent, together with information about the state of

the learning process.

To ensure that this framework is sufficiently general, we

consider the following general description of a learning

problem:

Given data D âŁĘ D taken from an instance space

D, a hypothesis space H and an (unknown)

target function c âĹĹ H1

, derive a function h âĹĹ H that

approximates c as well as possible according to

some performance measure g : H âĘŠ Q where Q

is a set of possible levels of learning performance.

These are the gold-standard keyphrases:

agent

machine learning

datum mining

individual learning process

meta-reasoning

distributed clustering application

frameworks and architecture

unsupervised clustering

bayesian classifier

consensusbased method

communication and coordination

autonomous learning agent

historical information
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APPENDIX B

LIST OF ENGLISH STOPWORDS ACCORDING TO NLTK

a

about

above

after

again

against

ain

all

am

an

and

any

are

aren

as

at

be

because

been

before

being

below

between

both

but

by

can

couldn

d

did

didn

do

does

doesn

doing

don

down

during

each

few

for

from

further

had

hadn

has

hasn

have

haven

having

he

her

here

hers

herself

him

himself

his

how

i

if

in

into

is

isn

it

its

itself

just

ll

m

ma

me

mightn

more

most

mustn

my

myself

needn

no

nor

not

now

o

of

off

on

once

only

or

other

our

ours

ourselves

out

over

own

re

s

same

shan

she

should

shouldn

so

some

such

t

than

that

the

their

theirs

them

themselves

then

there

these

they
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this

those

through

to

too

under

until

up

ve

very

was

wasn

we

were

weren

what

when

where

which

while

who

whom

why

will

with

won

wouldn

y

you

your

yours

yourself

yourselves
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APPENDIX C

LIST OF SUBJECTS IN ARXIV COMPUTING RESEARCH REPOSITORY

Artificial Intelligence (cs.AI)

Computation and Language (cs.CL)

Computational Complexity (cs.CC)

Computational Engineering, Finance, and Science (cs.CE)

Computational Geometry (cs.CG)

Computer Science and Game Theory (cs.GT)

Computer Vision and Pattern Recognition (cs.CV)

Computers and Society (cs.CY)

Cryptography and Security (cs.CR)

Data Structures and Algorithms (cs.DS)

Databases (cs.DB)

Digital Libraries (cs.DL)

Discrete Mathematics (cs.DM)

Distributed, Parallel, and Cluster Computing (cs.DC)

Emerging Technologies (cs.ET)

Formal Languages and Automata Theory (cs.FL)

General Literature (cs.GL)

Graphics (cs.GR)

Hardware Architecture (cs.AR)

Human-Computer Interaction (cs.HC)

Information Retrieval (cs.IR)
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Information Theory (cs.IT)

Machine Learning (cs.LG)

Logic in Computer Science (cs.LO)

Mathematical Software (cs.MS)

Multiagent Systems (cs.MA)

Multimedia (cs.MM)

Networking and Internet Architecture (cs.NI)

Neural and Evolutionary Computing (cs.NE)

Numerical Analysis (cs.NA)

Operating Systems (cs.OS)

Other (cs.OH)

Performance (cs.PF)

Programming Languages (cs.PL)

Robotics (cs.RO)

Social and Information Networks (cs.SI)

Software Engineering (cs.SE)

Sound (cs.SD)

Symbolic Computation (cs.SC)

Systems and Control (cs.SY)
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