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Abstract

In the majority of satellite missions, data is collected onboard and processed on the ground. This

bottlenecks the amount of scientific data that can be downlinked without compression. However, as

computing systems have progressed, missions have begun using high-performance computers onboard for

in-situ computation, reducing the need to downlink raw data. The Multiview Onboard Computational

Imager (MOCI) will house its computer vision pipeline onboard an NVIDIA Jetson TX2i GPU in order

to create digital elevation models from and recognize objects within high-resolution imagery, while only

needing to downlink the final data products. For reliable mission success in a constrained satellite body

and unforgiving environment in space, measures are taken to ensure both that the underlying system

architecture is fault-tolerant in Low Earth Orbit and that the higher level algorithms can operate within

architectural limits and agnostic of sensor noise.
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Chapter 1

Introduction

On February 18, 2021, the Mars 2020 mission’s Perseverance rover touched down on Martian terrain,

equipped with a state-of-the-art imaging system. In supplement to the cameras used to document the

rover’s descent and its collection of samples, the vehicle houses two cameras for navigation and four for

hazard avoidance. Each camera is 20 megapixels, requiring buffered image transmission into the rover’s

flight software, as well as lossy compression for downlinking. However, when coupled with the rover’s

enhanced AutoNav features since NASA’s MSL and MER missions, these imaging subsystems enable

semi-autonomous driving and arm movements, reducing both the amount of computation required by

and the time of transmission to human engineers [1, 2].

Mars 2020 highlights two key points regarding the current and future states of scientific missions in

space. Primarily, due to advances in sensor technology, as well as larger mission scopes, extraterrestrial

endeavors are becoming highly data-intensive, with image and/or raw data transfers becoming a bottleneck

to mission progress. Moreover, Perseverance among its predecessors illustrates the ever-expanding breadth

of humanity’s scientific exploration, requiring vehicles to reach further into space, where response times

to and from Earth become slow and unreliable.

These two factors motivate projects to have a higher capacity for on-board data processing and au-

tonomy. The feasibility of various imminent projects, such as a human mission to Mars, will require a

decreased reliance on spacecraft-to-Earth communication. Accordingly, onboard applications of Artifi-
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cial Intelligence in data analysis, distributed systems, swarm intelligence, and fault tolerance can permit

spacecrafts to autonomously make necessary responses to their environments [3].

1.1 The Advent of CubeSats

As Poghosyan and Golkar (2017) detail, another principal factor in the advancement of space technologies

has been the industry’s expansion into the private sector. Since 1957, conventional satellite missions

have been restricted to government-funded agencies, as the sheer size of the satellites (meant to house

multiple instruments to optimize cost) required both a large team and budget. However, with the technical

challenges of engineering large spacecrafts, as well as the availability and reduced size of commercial-off-

the-shelf (COTS) products in recent decades, the space industry has inclined towards smaller satellites.

With small satellites’ trending popularity, Stanford and California Polytechnic standardized the Cube-

Sat as a composition of 1U volumetric units, each 10 × 10 × 10 cm3 and up to 1.33 kg in mass. Since

their inception in 1999, CubeSats have ranged in application from the original proof-of-concept and edu-

cational technology demonstrations to full-scale scientific discovery missions. Their ease of development

and low cost have enabled smaller countries and even educational institutions to devise and launch space-

crafts with state-of-the-art COTS technology. In particular, CubeSat missions have become a low-risk

avenue for developers to test incremental updates in scientific payload technology [4].

1.2 GPUs and their Applicability in Spacecrafts

Vuduc and Choi (2013) discuss the history of graphics processing units (GPUs) from their earliest appli-

cations, which, as their name suggests, was for 3D graphics modeling, particularly in gaming systems. As

GPUs began to greatly outperform CPUs (by factors of 10–100) in parallel computational tasks required

for graphics rendering, their capabilities captured the interest of developers in other fields. Due to the

difficulty of developing GPUs for tasks outside of the graphics realm, NVIDIA developed the Compute

Unified Device Architecture (CUDA) in the early 2000s as a high-level platform for developers to inter-

face with GPUs. This gave rise to a new software-level paradigm, the general-purpose GPU (GPGPU),
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which allows programmers to utilize GPU hardware to explicitly parallelize tasks of their choosing. In

particular, GPU hardware has proven useful for single instruction multiple data (SIMD) designs, where

one operation can be designed to perform simultaneously over a large set of data values. CUDA has now

grown to include a user base in the millions and is largely used in GPU-based research [5].

GPUs are commonly utilized for AI applications, particularly in deep learning and computer vision,

where intensive linear algebra computations that would heavily bottleneck CPU programs can be refac-

tored into SIMD designs and accelerated via GPGPU programming. Hence, for spacecraft missions

implementing such AI applications, such as those involving large volumes of image data, GPUs are often

used for on-ground processing. However, due to the constraints of data transmission discussed earlier,

teams have recently become motivated to incorporate GPUs onboard. GPUs’ ease of programming and

commercial availability make them suitable low-cost candidates for such missions, but the available hard-

ware is primarily designed for terrestrial operation—that is, agnostic of the radiation environment that

exists outside of Earth’s atmosphere [6].

1.2.1 CUDA-based Architecture

Since the research presented here is conducted on NVIDIA GPUs, an understanding of CUDA-based

architectures is beneficial. The GPU consists of a cluster of streaming multiprocessors (SMs), each con-

taining a collection of cores to which threads can be assigned. Blocks of threads are assigned by the block

scheduler to a specific SM, and then the warp scheduler delegates groups of threads within the block to

specific cores. Finally, the dispatch unit relays the instructions to each core. Memory in L2 cache is shared

among all SMs on the GPU, whereas each SM has its own L1 cache shared among its cores. Each SM also

has one register file, but register scope is restricted to individual cores/threads [7].

1.3 Radiation-Induced Effects

The majority of satellites operate in Low Earth orbit (LEO), where three main sources of radiation are of

relevance:
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1. galactic cosmic radiation (GCR)

2. trapped radiation belts

3. solar energetic particles (SEPs)

GCR includes particles of a wide range of energies originating from beyond the solar system, and

whose flux inversely correlates with solar energy. Trapped radiation belts have minor effects in low altitudes,

except at high inclination (near the poles). SEPs are directly correlated with the solar cycle, as the events

originate from the sun (e.g., solar flares) [8].

Radiation in such an environment has two forms of effects on electronic devices: total ionizing dose

(TID) and single-even effects (SEEs). The former refers to a build up of trapped charges that, over time,

lead to functional hardware shifts. SEEs may take the form of, among others, single-event upsets (SEUs)

such as bit-flips that cause corruption or single-event latch-ups (SELs) that lead to circuitry-level failures.

Radiation mitigation measures, on a physical and hardware level, include device shielding, hardware-

level redundancy, and error detection and correction (EDAC). The latter two tend to carry budgetary

and performance-related overheads, generally creating an inverse relationship between computational

efficiency and reliability [6].

1.4 The Multiview Onboard Computational Imager (MOCI)

The Multiview Onboard Computational Imager (MOCI) is a 6U CubeSat in development by the Uni-

versity of Georgia (UGA) Small Satellite Research Lab (SSRL). The aim of MOCI is to perform onboard

computer vision, namely structure from motion (SfM) and object recognition, to avoid nominally down-

linking full-sized images. The accuracy of the in-house SfM pipeline, which produces digital elevation

models (DEMs) from multiple images of a ground target location, is the primary mission objective. Detec-

tion of objects such as ships and planes using a third-party model trained in-house constitutes a secondary

objective. Both algorithms are described in greater detail in chapter 4.

Figure 1.1 shows simplified CAD diagrams of MOCI with and without its side panel. The CubeSat’s

structure essentially consists of two side-by-side 3U modules. The left side, as shown, houses MOCI’s
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Figure 1.1: MOCI CAD diagrams (simplified).

optical train, containing two camera sensors. The other side consists of the satellite’s avionics stack,

containing the following components, along with custom interface boards:

• Electrical Power System (EPS)

• Onboard Computer (OBC): Command and data handling.

• Payload Computer: Data (image) processing.

• Attitude Determination and Control System: Actuators and sensors for pointing.

• UHF Transceiver: Uplink and downlink.

The payload subsystem, the subject of this research, consists of both the payload computer—an

NVIDIA Jetson TX2i—and the optical train.
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1.4.1 Optical Train

The optical train contains two sensors. The 4k, monochrome imager is intended to be employed for SfM

applications, whereas 2k lower-resolution color imager is intended for object detection. At an assumed

400km altitude, MOCI’s Imperx monochrome imager has a ground sample distance (GSD) of 6.67m

whereas the Blackfly color imager has a GSD of 8.68m.

1.4.2 The NVIDIA Jetson TX2i

The NVIDIA Jetson TX2i is a state-of-the-art System-on-Module (SoM) whose System-on-Chip (SoC)

integrates a 64-bit ARMv8 multi-processor (Dual-Core Denver 2 and Quad-Core Cortex-A57) and a 256-

core CUDA-compatible NVIDIA Pascal GPU. The module also contains a memory controller providing

error-correcting code (ECC) on LPDDR4 SDRAM, as well as an eMMC flash memory card. A block

diagram of the module is shown in figure 1.2 [9].

Figure 1.2: Block diagram of the TX2i module.

Jetson series GPUs have notably been used in various embedded computer vision and robotics tasks,

due to their small form factor and low power consumption, the latter of which is offered by a shared

memory space between the GPU/CPU. Although virtually no commercial GPUs are intended for use in
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space—and such use cases void their warranties—the TX2i contains upgrades over its TX2 counterpart

that permit its use in industrial grade environments, rendering it a relatively suitable candidate for on-

board processing [10].

On MOCI, the custom Core GPU Interface (CORGI) will interface the TX2i to the OBC, with

UART being the main line of communication. In this paradigm, the OBC will act as controller and TX2i

as peripheral, responding to any commands related to data processing or transferring as they arrive. In the

case that the TX2i fails during the mission, MOCI’s Peripheral USB Interface (PUSBI) will reroute the

optical system to the OBC, such that images can still be taken onboard and processed on the ground. This

potential stage of the mission would greatly reduce the rate of scans, as downlinks would take drastically

longer times without onboard processing.

With recent interest in flying a Jetson GPU, various radiation tests have been presented and published

on the TX2i and related modules over the past two years. Slater et. al. tested the Jetson Nano under

various TIDs (around 20 krad) and concluded that, with a 1/10 inch of aluminum shielding, the SoM

could be expected to last through at least a 1.5–2 year mission [6].

Heistand et. al. from the Johns Hopkins Applied Physics Laboratory (APL) conducted both TID

and SEE tests on the TX2i module. The former test revealed that the TX2i could handle moderate

radiation dosage (23 krad) before failure while powered on, a notably higher dose when off (45 krad),

and lower doses (9.7–20 krad) during soft and hard power cycles—the latter of which had extremely high

susceptibility. Proton SEEs caused multiple forced reboots before eventually resulting in board failure

after an average of four runs. From the collected data, the APL team predicts a 57% and 73% survivability

rate in LEO at solar minimum and maximum, respectively, without shielding or mitigation techniques.

Additionally, while the majority of logged software events were CPU and/or memory errors, the majority

of TX2i failures—including all permanent failures—were linked to flash errors (read/write) [11].

In orbit, while many of these issues can be mitigated through physical shielding, the TX2i still remains

a weak point of future missions. This calls for software-level tolerance as a final line of defense against

SEEs.
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1.5 Research Objective

The primary goals of this research are aimed at improving the robustness of MOCI’s payload to ensure

operability, reliability, and survivability in orbit. However, the methods and results presented here extend

outside the scope of MOCI, with general applications to radiation mitigation, computer vision, and

onboard processing. There are two main objectives:

System Reliability: A custom operating system is employed to provide near real-time operation and

software-level radiation mitigation on the payload computer.

Computer Vision Optimization: A handful of optimizations are evaluated and employed to fit MOCI’s

computer vision pipelines into the runtime, power, memory, and pointing constraints of the mission.

The former objective is discussed in chapter 3, where an operating system design is explained and

evaluated. Proton-beam irradiation tests were performed on the TX2i and, along with previous tests per-

formed by other entities, are evaluated in order to justify the radiation mitigation strategy. In opposition

to previous radiation tests on the TX2i, irradiation collimated to the SoC itself—without spallation into

peripherals—showed considerably low estimated error and failure rates in LEO, with zero permanent

device failures. Hence, radiation mitigation for the TX2i should continue to be tailored towards mitigat-

ing effects on peripherals such as flash. Software mitigation can increase reliability, but custom hardware

(circuitry) solutions should be considered for future, longer-lifetime missions.

Onboard computer vision algorithms are discussed in chapter 4, where solutions to in-orbit con-

straints are presented and evaluated, particularly in regard to SfM. General pipeline optimizations reduce

runtime and power usage of an existing pipeline (formulated by [12]) by approximately a factor of four.

Custom pose estimation techniques suited towards MOCI’s pointing constraints allow for orientation

computation within 0.0001 degrees accuracy and offloads much of the computation that is generally

accounted for by bundle adjustment, the final stage in traditional pipelines.
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Chapter 2

Related Works

The increase in data-intensive missions and onboard processing has motivated a variety of novel algorithms

and optimizations to reduce the associated processing and downlinking bottlenecks. In conjunction, state-

of-the-art software and hardware architectures have been theorized and designed in order to give rise to

such computations, particularly through radiation mitigation techniques.

Many of these concepts have been considered and built upon in the design presented here. Others,

although not feasible on MOCI due to various mission constraints, are also acknowledged.

2.1 Embedded Architectures and Radiation Mitigation

George and Wilson (2018) conducted a survey of onboard computing technologies that tackle the prob-

lem of data processing within the constrained and harsh environments of small satellites, particularly by

employing reconfigurable and hybrid computing techniques. Field-programmable gate arrays (FPGAs)

are a common option for a software-reconfigurable architecture, allowing for task-specific parallelization

with minimal power usage. However, FPGAs are especially prone to SEU damage, as their configuration

memory is a single point of failure. Hybrid architectures, including SoCs, may include some combination

of CPUs, GPUs, and FPGAs to optimize performance, or combinations of high-performance COTS pro-

cessors and reliable rad-hard processors for fault-tolerance. In addition to hardware-level fault tolerance,

including rad-hardened circuitry and redundancy, software-level mitigation provides low-cost solutions
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to radiation effects. Such techniques include error encoding, repetition of processes, checkpointing, and

exception handling [13].

NASA provides recommendations for an iterative satellite design process with regard to radiation

effects. This commences with modeling and evaluating the radiation environment (based on inclination,

altitude, shielding, the solar cycle, etc.) in order to create high-level mission radiation requirements. Then,

individual devices may be evaluated through either archival tests on similar parts or novel radiation tests,

and modeling tools are used to characterize circuit degradation and SEE rates in the satellite’s environment.

Finally, results are brought into the design and engineering process in order to either replace unacceptable

parts or perform radiation mitigation techniques [14].

In MOCI’s case, the TX2i has been identified as a semi-critical component. To aid in preventing

immediate failure, shielding and software mitigation techniques are employed, the latter of which is

discussed in the following chapter. However, the satellite’s Peripheral USB Interface (PUSBI) allows

its optical payload to be rerouted directly to the OBC to extend the mission’s lifetime past the TX2i’s

eventual failure.

Sample architectures and mitigation techniques are discussed from low to high level. While lower-level

hardware designs are generally ideal for radiation hardness, higher-level software solutions are often more

efficient and portable with lower costs.

2.1.1 Hardware

Given the topic of this research, the primary hardware paradigms discussed here are GPU-centric archi-

tectures. As discussed in the previous chapter, standard GPU designs are highly susceptible to radiation-

induced effects. This primarily includes SEUs that can corrupt data and in many cases, due to the complex

architecture of the GPU and scheduler, result in single event functional interrupts (SEFIs) [15]. Such

susceptibilities tend to push spacecraft engineers towards heterogeneous architectures that allow for the

reliability of more tolerant devices coupled with the performance gains of GPUs for tasks such as image

processing.
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Adams et al. (2019) theorized a future iteration upon MOCI’s Core GPU Interface (CORGI) called

the Accelerated Flight Computer (AFC). Like CORGI, the AFC is to contain a hybrid architecture

including a SmartFusion2 FPGA SoC as a trusted control node and a payload including one (or more)

Jetson TX2i modules (as shown in figure 2.1) all in a modular design compatible with standard CubeSat

form factors. Improvements upon CORGI include an ethernet line for bulk data transfer and shared

radiation-hardened NOR flash between the devices, as well as radiation shielding. Additionally, software

level mitigation may be applied to the TX2i, and the SmartFusion2—which has been shown to have

relatively high radiation tolerance—may as a watchdog over the GPU system [16].

Figure 2.1: Hardware architecture of the Accelerated Flight Computer [16].

In production, the Unibap e2160 has a similar heterogeneous architecture, shown in figure 2.2. Like

the AFC, the e2160 houses a SmartFusion2 FPGA SoC as a control node for a GPU SoC payload. How-

ever, due to higher radiation tolerance, the module opts for an AMD rather than an NVIDIA chip. Recent

increases in performance, as well as the development of the ROCm software stack (which allows CUDA

code to be compiled for AMD architectures), render AMD GPUs viable options for payload computers

going forward. The e2160 additionally supports the attachment of additional accelerators, as shown on

the left side of the architecture diagram [17].
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Figure 2.2: Architecture of the Unibap e2160 [17].

2.1.2 Middleware

In his 2006 dissertation, Troxel introduced the Comprehensive Approach to Reconfigurable Management

Architecture (CARMA), a middleware designed for heterogeneous and reconfigurable architectures for

space applications, such as those discussed above. CARMA includes a Fault-Tolerance Manager (FTM)

running on a radiation hardened processor to monitor each component and attempt recovery when ap-

plicable [18].

Troxel’s dissertation became the basis for Troxel Aerospace, whose SEE Mitigation Middleware (SMM)

has successfully been deployed to the Unibap e2160. This middleware primarily operates on top of the

operating system, but has extensions within and below the OS to provide system-level fault tolerance. In

tests, Troxel’s SMM was shown to reduce SEFI rates by a factor of 720 [17].

2.1.3 Software

Software mitigation techniques range in application, from process duplication to redundancy to error

encoding methods. While these techniques are generally not as effective as hardware techniques, as lower-

level failures would render software mitigation futile, they carry lower costs and design complexities.

There are a number of ways SEUs can impact GPU performance. While an upset in a single core only

impacts one thread, corruption to L1 or L2 cache or scheduler errors may have more drastic effects. Error
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correcting code (ECC) is common in protecting these memory spaces, but scheduler and logic errors

are left unprotected from SEUs, creating the potential for incorrect data products or control flow errors

leading to kernel panics. In order to mitigate these, two strategies include algorithm-based fault tolerance

(ABFT) and duplication with comparison (DWT). The former is preferred for performance purposes,

but since it is algorithm-specific, it is not applicable in all cases [7].

ABFT strategies generally involve input encoding along with potential algorithmic changes in such

a manner that allows the validity of the output to be checked. Due to high failure rates of Fast Fourier

Transform (FFT) algorithms under neutron radiation, Pilla et al. devised a custom ABFT technique to

make their FFT algorithm fault-tolerant. This enhancement incurred a significantly smaller overhead

than alternative ECC-based methods [19].

Garrett (2021) employed a novel technique called Resilient TensorFlow (RTF), a fault-tolerant iter-

ation upon the TensorFlow backend. Since TensorFlow is the most commonly used machine learning

framework, the implications of Garrett’s improvements span the vast scope of machine learning algo-

rithms, as opposed to ABFT approaches that are algorithm-specific. RTF works by replacing vulnerable

TensorFlow operations with one of two alternative kernels that leverage the GPU’s redundant architecture

for fault tolerance. One of these techniques, the distributed thread blocks approach, allocates operations

across the device to limit dependency on shared resources and results in an 80% decrease of highly vulner-

able operations with minimal performance overhead [20].

2.2 Structure from Motion

2.2.1 History

The techniques used for structure from motion (SfM) stem from earlier developments in the broader

field of photogrammetry, which provides the mathematical basis for perspective and camera geometry.

In the late 1950s, nearly two decades before SfM’s official inception, Thompson formulated an iterative

method for computing the relative orientation of two cameras from five point correspondences to find

the solution to five third-order equations [21].
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Marr and Poggio (1971) formulated a method of 3D construction based on stereo disparity. Similar

to the concept of human depth perception, this technique requires two images with known relative ori-

entation as well as known point correspondences in order to discern depth from relative point translation

differences [22]. Marr additionally introduced the primal sketch, which uses grey level intensity changes

to produce localizations and descriptions of edges, as a method for forming point correspondences [23].

In 1979, Ullman formally introduced the early concept of SfM. A motivating phenomenon was the

two cylinder experiment, pictured in figure 2.3, where 100 points on concentric cylinders were displayed

on a screen as they rotated along a single vertical axis. Since no outlines of the cylinders were present, still

images appeared to contain random noise, but the human visual system was able to perceive the cylinder’s

structure from the moving video.

Figure 2.3: Ullman’s two cylinder demonstration [24].

Under the assumption of rigidity, without which there could be an infinite number of motion paths,

Ullman proved that there is a unique interpretation of structure given 4 non-coplanar points on three

orthographic projections. Moreover, he extended this result to perspective scenes using a polar-parallel

approach, which combines perspective with orthographic geometry. Ullman noticed that each neigh-

borhood of nearby points in the scene could be approximated by a local orthographic approach, with a

single axis of projection. This can be completed for multiple neighborhoods across the scene, but by using

different axes per neighborhood based on perspective geometry—that is, the ray from the camera center
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through the center of the given neighborhood. This approach is less complex and less prone to noise than

a purely perspective approach [24].

The secondary goal of SfM, aside from reconstruction of three-dimensional points, is to recover camera

geometry. In 1981, Longuet-Higgins provided a major contribution to such techniques by showing that

eight point correspondences between two perspective images can simplify the problem of relative camera

geometry to a system of linear equations [25]. This iteration upon Thompson’s 5-point correspondence

technique allows for more feasible computation in SfM pipelines and continues to be used in the modern

day.

An integral aspect of most structure from motion implementations is bundle adjustment, another

photogrammetric concept where both 3D projections and camera structure are refined to minimize a cost

function. The name lends itself to the concept that an individual point is projected to an image by the

three-dimensional ray to its camera center, forming a bundle of such rays for each point. This problem

is generally formulated as a least squares optimization. Despite the high dimensionality of the parameter

space, bundle adjustment is not an overly expensive operation due to the problem’s inherent sparsity [26].

2.2.2 State of the Art

In 2018, Bianco et al. performed an evaluation of the most popular commercial SfM pipelines. Most

pipelines consist of a similar sequence of operations, as follows:

• Feature extraction

• Feature matching

• Geometric verification

• Image registration

• Triangulation

• Bundle adjustment
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Bianco’s evaluation criteria include camera pose accuracy (position and orientation), and comparison

to ground truth (after alignment and iterative registration). Some pipelines also enable exports to MVS

pipelines, which produce denser point clouds that can be evaluated similarly. Bianco tested six pipelines—

both SfM and MVS versions—against Blender-simulated data, and COLMAP had the best overall results.

Another important lesson was that no pipelines could produce adequate reconstructions of a simulated

fire hydrant due to its uniformity [27]. This shows how essential a role the first stage of the pipeline,

feature extraction, plays in producing a feasible reconstruction.

2.2.3 Application to Remote Sensing

SfM-based reconstructions in the 1990s constituted a major breakthrough in digital elevation model

(DEM) generation, which became feasible on low-end computers and without specialized sensors or

knowledge, as SfM software became commercially available. SfM’s speed compared to earlier photogram-

metric methods, and even more so compared to on-site tacheometers, also allows for the automated and

dense monitoring of morphological changes over time [28].

The most notable space-based application of SfM uses imagery from NASA’s Terra satellite. The

mission includes the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER),

which houses two visible and near-infrared sensors for topographic mapping, as shown in the bottom-

right side of figure 2.4 [29].

These two sensors include band 3N (nadir-viewing) and 3B (backward-viewing), at an angle of 27.7

degrees off-nadir. As depicted in figure 2.5, the combination of sensors allows for on-track stereo imag-

ing with a 0.6 base-height ratio without slewing. Imaging targets on-track, rather than re-imaging over

multiple passes, increases the likelihood of cloud-free image pairs. Processing facilities with Japan and the

United States produce DEMs using commercial SfM software with the goal of producing a single, global

DEM. This model provides supplementary topographical data to that supplied by previous approaches,

such as the Shuttle Radar Topography Mission (STRM). Despite being more accurate, interferometric

techniques require more complex sensors, such as synthetic aperture radars (SAR), and processing that is

prone to coordinate localization errors [30].
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Figure 2.4: ASTER’s onboard sensors [29].

2.2.4 Modern Techniques

Simulatenous Localization and Mapping (SLAM) uses similar techniques to SfM in the field of robotics

with the primary goal of localizing the agent within the structure during its reconstruction [31].

More recently, deep learning approaches—most notably neural radiance fields NeRF—have shown

tremendous improvements upon classical reconstruction models. NeRF utilizes multi-layer perceptrons

to parametrize a scene’s emitted radiance as a continuous function of viewing location and orientation

[32].

2.3 Onboard Processing

The architectural improvements for space-based processing discussed earlier in this chapter have allowed

recent missions to perform computer vision and autonomous processing techniques in-situ. Some notable

early examples, particularly in the small satellite realm, are discussed here.
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Figure 2.5: Along-track stereo using ASTER’s 3N and 3B bands [30].

Functioning from 2013 to 2015, the Intelligent Payload Experiment (IPEX) was a 1U CubeSat that

used both AI image processing techniques (random forest classification) and an AI-based scheduler to

determine allocate onboard resources autonomously [33]. Multiple recent small satellite ship-detection

algorithms employ YOLOv4 and similar CNN-based object detection techniques onboard [34, 35]. Ad-

jacent to the satellite realm, at the cross-section of computer vision and autonomous processing, Choi

et al. (2022) proposed the use of YOLOv4 for automated docking of unmanned aerial vehicles (UAVs)

[36].
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Chapter 3

Embedded Software and Radiation

Mitigation

3.1 Operating System Design

Out of the box, the Jetson TX2i runs Linux for Tegra (L4T), a fork of the commercial Linux distribution

Ubuntu 16.04. Space Operating Linux (SOL) is an open-source, space-faring alternative operating system

to L4T to run on future Jetson-bearing missions with a primary focus on TX2i missions. SOL will

first fly on the University of Georgia Small Satellite Research Laboratory’s (SSRL) Multiview Onboard

Computational Imager (MOCI) mission. The SSRL intends for MOCI to be a proof-of-concept for the

feasibility of GPU-based AI and computer vision in space, and the mission is particularly motivated by the

reduction of data downlink that is afforded by onboard data processing. Within the scope of MOCI, the

TX2i is to act as a payload computer that is commanded by a separate onboard computer (OBC), which

is responsible for the satellite’s command and data handling. The mission will provide integral data on

GPU performance in the conditions of LEO and an open-source payload software suite, both of which

may be used in the payload design of future, larger-scope spacecraft missions.

The primary goal of SOL is to increase the payload’s reliability in orbit by providing software-level

radiation mitigation and real-time scheduling, while also maintaining the functionality necessary for
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conducting AI-based missions. In particular, SOL make efforts to decrease reliance on flash eMMC

memory, which has been shown in radiation tests to be the most vulnerable.

3.1.1 Yocto and OS Minimization

SOL is primarily developed under the Yocto framework, an open-source project used to construct custom

embedded Linux distributions from the ground up. The fundamental units for Yocto development are

BitBake recipes, each of which provides instructions on retrieving, patching, building, and installing a

particular software package for the target device [37]. Related recipes are grouped into layers, such as

meta-tegra, which contains L4T-based software recipes intended for Jetson devices.

The meta-sol layer is developed on top of meta-tegra to provide SOL’s custom software packages

and patches. By doing so, SOL contains only the Tegra software packages that are essential in flight, as

well as any necessary modifications to the existing software. Additionally, many existing Unix utilities are

replaced by their alternatives in BusyBox, which provides lightweight implementations of such commands.

These measures inherently minimize the size of the operating system and file system, hence reducing its

usage of flash memory space.

3.1.2 Bootloader Redundancy

While a major goal of SOL is to reduce flash memory usage, the eMMC card is the device’s only form of

non-volatile memory and hence must be used for any permanent storage. Therefore, redundancy measures

are necessary to ensure reliability of essential sectors of flash storage, particularly from corruption caused

by accumulated SEEs such as bit-flips. At the most granular level, NVIDIA provides A/B redundancy,

where all partitions are duplicated so that, on-boot, if the "A" side fails, the "B" side can be loaded instead.

SOL seeks to emulate triple modular redundancy (TMR) on the single eMMC card for the kernel and

root file system. This method was originally proposed by Adams et. al. [16] but was since expanded to

include redundancy measures beyond the kernel, motivated by the fact that corruption to the file system

itself could hinder the kernel image from being accessed altogether. To achieve this, essential files for boot

that are conventionally stored in the root file system—the kernel, device tree, and initial RAM disk image,
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as well as a tarball of the root file system itself—are directly written as binary large objects (BLOBs) into

specified points of the main file partition, which is then triplicated. Each BLOB is stored along with an

associated MD5 checksum to check for corruption easily, and there is a fifth, 60-byte info BLOB at

the start of the partition that lists the exact file sizes of the following four. An example configuration is

outlined in table 3.1, although exact size allocations are dependent on the build and determined within

BitBake configurations. Aside from essential software correction, this partition is intended to be updated

irregularly, as any temporary data or configuration files needed across boots shall be written to other data

partitions.

Table 3.1: Example layout of one of three identical flash partitions for TMR.

File Offset (# Blocks) Max Size (# Blocks)

info 0 1
info (hash) 1 1
kernel image 2 90,000
kernel image (hash) 90,002 1
device tree BLOB 90,003 2,000
device tree BLOB (hash) 92,003 1
initial ram disk 92,004 5,000
initial ram disk (hash) 97,004 1
root file system TAR 97,005 1,500,000
root file system TAR (hash) 1,597,005 1

The final stage bootloader for NVIDIA Jetson devices, U-Boot, is responsible for loading the kernel

and booting into the initial RAM disk. U-Boot is conveniently open-source[38], and patches can be

applied within the Yocto source tree. Hence, SOL is able to apply custom TMR operations on-boot

beginning at this stage of the boot process, with a patch that makes use of the custom partition layout. To

load each BLOB—aside from the root file system, which is not needed at this stage—U-Boot checksums

each of the three versions across the triplicated partition. If any of the checksums match the stored sum,

the BLOB in that partition is assumed not to be corrupted and can be loaded. In the case that all three

checksums are mismatched, bit voting is used to reconstruct the BLOB from the three corrupted versions,

a method that is probabilistically resilient to bit-flips and potentially minor sector failures. A bit voting

logic gate is illustrated in figure 3.1. Note that, in order to speed up the boot process, which as discussed

earlier is a vulnerable state for the SoM [11], the reconstruction is only used in volatile memory in U-Boot—
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Figure 3.1: A simple bit voting logic gate using AND and OR blocks. The output is the majority "vote"
of the three input bits.

not yet written back to flash—for the sake of time. Once this process has been completed for each of the

four BLOBs, U-Boot boots into the initial RAM disk, using the RAM disk image, the device tree, and

the kernel image.

Once booted into the initial RAM disk, the same logic is executed with a few key differences. First,

this uses all five BLOBs, as the root file system is mounted at this stage. Additionally, instead of stopping

checksums once a valid BLOB is found, all three checksums are performed so that any corrupt BLOBs

can be corrected in flash. With the kernel loaded at this stage, this can be sped up via multi-processing.

3.1.3 RAM-based File System

Upon entry to the initial RAM disk, a temporary file system (tmpfs) is initialized in RAM. Then, after

the emulated TMR process detailed above, the root file system is extracted from its tarball into the RAM

disk. Hence, all reads from and writes to the root file system occur in volatile memory, greatly reducing

flash usage post-boot.

To allow for writes back to the persistent hard-disk for essential data products, additional EXT4 file

systems are mounted at /config and /data. While data stored here is not redundant by default, these

partitions give missions ease of access to persistent storage when necessary, leaving it up to the specific

use case how often flash should be used. For instance, for power-heavy software, developers may need

to store the final data products between reboots if data cannot be transferred immediately. In this case,

intermediate data products can be stored within the RAM-based file system, while the final data product

may be copied to /data for downlinking or further processing on the next boot-up. To provide integrity,
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to an extent, to these partitions, fsck (a file system checker) is implemented on boot to correct any

recoverable inode reference issues.

The main downside to using a RAM-based file system is apparent with a large file system. In particular,

including the central NVIDIA CUDA libraries for most GPU programs to be supported generates a file

system of over a gigabyte in size, which uses up a static 15% of available RAM. Hence, software applications

must have a relatively low memory usage in order not to exceed the given RAM availability.

3.1.4 Boot Time Considerations

In addition to the increased RAM usage induced by a large file system, file system size directly influences

boot time. In the nominal boot case, where no corruptions have occurred, a large portion of boot time is

spent hashing each BLOB, and the root file system takes the longest. While parallelization is employed in

the initial ram disk to expedite the boot process, this portion can take over 30 seconds to complete. This

approximately doubles boot time (from about 40 seconds to 80 seconds) in the nominal case for large file

systems, and to a higher extent when there is corruption to be corrected. In most cases, this tradeoff is

worth the increased system reliability, but such a decision is dependent on mission requirements.

3.1.5 Real-Time Linux Patch

In spacecraft processors, real-time scheduling is generally necessary to ensure that tasks are executed when

expected. The meta-sol layer includes the PREEMPT_RT patch that enables the real-time scheduling

paradigm on the Linux kernel. Hence, software commands may be sent over the mission’s payload in-

terface without disrupting the OBC’s real-time operations. Additionally, this allows for predictable and

consistent functionality in the TX2i’s software system.
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3.2 Experimental Design

The following three experiments test the SOL-loaded TX2i’s efficacy on various aspects of providing a

platform for LEO-based computation. In order to do so, three experiments are run to answer the following

questions, respectively:

1. Does the TX2i’s SoC itself perform well enough to reliably function as a payload computer?

2. Can bit flips induced in the file system, assuming eMMC still operates nominally, be corrected

through SOL’s boot scheme?

3. What impact does the real-time patch have on command execution latency and reliability on the

TX2i?

In Experiment 1, a proton beam is used to perform stress tests for a more in-depth analysis of SoC

performance than previous literature generates. Experiment 2 discusses a fault injection procedure for

verification of SOL’s redundant boot scheme. The final experiment compares latency on L4T and SOL.

3.3 Experiment 1: Proton Beam Irradiation

3.3.1 Procedures

Proton beam acceleration tests were completed at TRIUMF’s Proton Irradiation Facility in Vancouver,

BC, on beam line 2C [39]. During the time of testing, the beam line operated at two proton energies: 63

MeV and 105 MeV.

Four TX2i devices under test (DUTs) were used for this experiment. DUTs 1 and 2 were both loaded

with SOL and were in new condition, aside from flashing and preparation for the experiment. DUTs

3 and 5 were L4T devices used as controls/baselines for comparison. Both L4T devices had been used

strenuously beforehand; DUT 5 experienced a few years worth of software/hardware testing at UGA,

and DUT 3 was previously killed and revived after a 50-kRad TID test performed by APL in the same
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Figure 3.2: The 1 cm × 1 cm square beam collimator used for aligning the beam to the SoC.

Figure 3.3: Alignment of one DUT across from the proton beam.
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report as their proton tests [11]. Although brand-new devices would be preferred, availability was severely

limited due to supply chain shortages.

Prior to arriving at the TRIUMF facility, each DUT’s heat sink was removed, and thermal paste was

taken off chip surfaces. Each TX2i was connected to a Connect Tech, Inc. Orbitty carrier board. From

the board ran a serial line for monitoring kernel messages and panics over UART0, an Ethernet cable for

commencing stress tests and additional logging, and a power supply. All three cables ran outside the beam

room into a control room for ease of use during and between beam runs. The collimator, shown in figure

3.2, created a 1 cm × 1 cm square irradiation area that could be aligned to cover the SoC’s die. Alignment

to the center of the beam could be performed via a 3-axis laser system as shown in figure 3.3.

While the test setup was constructed to replicate APL’s tests [11] as closely as possible, beam param-

eters and environmental factors could not all be controlled for. In particular, a narrower collimation at

TRIUMF than that used by APL contributed to less spallation onto peripherals. As flash memory, directly

below the chip, was hypothesized to contribute to the majority of APL’s permanent DUT failures, the

current tests could not be expected to stress such peripherals to the same extent. Although this disparity

did not allow for testing of SOL’s flash memory fault tolerance, it did allow for more thorough tests to be

completed on the chip itself.

A similar, but more extensive software suite to APL’s was loaded onto each device. This software is

open-source in the meta-sol repository and includes mechanisms for logging and four types of stress

tests. The first test, stress-ng is a general stress test on the CPU and memory units. CUDA sample

programs, namely merge sort and bandwidth tests, were used to stress the GPU. In-house computer vision

algorithms were not tested, as the accelerated flux produced by the proton beam is not representative of

what the high-intensity algorithms would experience in LEO. Finally, rt-migrate-test for testing real-

time priority scheduling andmemtester as a more intense memory stressor were both included, although

each was only used once. Time series data regarding power usage, thermals, device activity (including

CPU and memory usage), and test-metadata were logged to an InfluxDB instance running on the laptop

connected to the DUT over Ethernet. A time synchronization command would be run at the start of
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each test, and the time was output to each kernel message log in order to associate times between kernel

panics and Influx data (up to a second).

3.3.2 Results

Table 3.2: Proton test log.

Runtime Energy Avg. Flux Fluence (p/cm2) Dose (kRad Si) Failure Type

DUT Run No. (min:sec) (MeV) (p/cm2/sec) Run Cumulative Run Cumulative Test Type Primary Secondary

L4T: 3

1 1:40 63 5.83E+07 5.83E+09 5.83E+09 7.73E-01 7.73E-01 Stress GPU PMU GPU FIFO
2 4:05 63 3.53E+06 8.65E+08 6.69E+09 1.15E-01 8.88E-01 Stress CPU ROC:CCE
3 0:19 63 3.68E+07 7.00E+08 7.39E+09 9.28E-02 9.81E-01 Stress CPU CPU MEM
4 0:26 63 3.64E+07 9.45E+08 8.34E+09 1.25E-01 1.11E+00 Stress Watchdog CPU MEM
5 0:06 63 4.04E+07 2.42E+08 8.58E+09 3.21E-02 1.14E+00 Stress ROC:CCE CPU MEM
6 0:53 63 3.69E+07 1.96E+09 1.05E+10 2.60E-01 1.40E+00 Stress CPU MEM CPU
7 0:05 63 3.84E+07 1.92E+08 1.07E+10 2.54E-02 1.42E+00 Stress ROC:CCE CPU
8 Reboot

SOL: 1

9 0:22 63 3.48E+07 7.65E+08 7.65E+08 1.01E-01 1.01E-01 Stress CPU MEM CPU
10 0:42 63 3.40E+07 1.43E+09 2.19E+09 1.89E-01 2.91E-01 Stress CPU CPU MEM
11 0:22 63 3.21E+07 7.07E+08 2.90E+09 9.38E-02 3.85E-01 GPU CPU -
12 0:18 63 3.17E+07 5.71E+08 3.47E+09 7.58E-02 4.60E-01 GPU CPU -
13 0:13 63 2.98E+07 3.87E+08 3.86E+09 5.13E-02 5.12E-01 Memory ROC:CCE CPU
14 0:07 63 3.06E+07 2.14E+08 4.07E+09 2.84E-02 5.40E-01 RT ROC:CCE CPU
15 0:11 63 3.21E+07 3.53E+08 4.42E+09 4.68E-02 5.87E-01 Log-only - -
16 0:36 63 1.05E+07 3.77E+08 4.80E+09 5.00E-02 6.37E-01 Log-only CPU -
17 0:23 63 1.11E+07 2.55E+08 5.06E+09 3.38E-02 6.71E-01 Log-only CPU ROC:CCE
18 1:13 63 4.38E+06 3.20E+08 5.38E+09 4.24E-02 7.13E-01 Log-only CPU -
19 3:05 63 4.56E+06 8.44E+08 6.22E+09 1.12E-01 8.25E-01 GPU+Stress - -
20 0:52 63 3.72E+06 1.94E+08 6.41E+09 2.57E-02 8.51E-01 GPU+Stress CPU ROC:CCE
21 Reboot

L4T: 5

22 0:49 105 1.22E+07 5.97E+08 5.97E+08 5.40E-02 5.40E-02 Stress CPU ROC:CCE
23 0:35 105 1.19E+07 4.17E+08 1.01E+09 3.77E-02 9.18E-02 GPU CPU MEM CPU
24 0:40 105 1.20E+07 4.80E+08 1.49E+09 4.35E-02 1.35E-01 Stress CPU -
25 0:27 105 1.19E+07 3.23E+08 1.82E+09 2.92E-02 1.64E-01 Stress ROC:CCE CPU MEM
26 3:12 105 1.18E+07 2.26E+09 4.08E+09 2.05E-01 3.69E-01 Stress ROC:CCE CPU MEM
27 2:43 105 1.20E+07 1.96E+09 6.04E+09 1.77E-01 5.47E-01 Stress ROC:CCE CPU MEM
28 Reboot

SOL: 2

29 0:45 105 1.09E+07 4.93E+08 4.93E+08 4.46E-02 4.46E-02 GPU ROC:CCE CPU
30 0:39 105 1.08E+07 4.22E+08 9.15E+08 3.82E-02 8.28E-02 Stress CPU CPU MEM
31 3:21 105 1.11E+07 2.22E+09 3.14E+09 2.01E-01 2.84E-01 GPU+Stress CPU MEM CPU
32 3:10 105 1.14E+07 2.16E+09 5.30E+09 1.96E-01 4.80E-01 GPU+Stress ROC:CCE CPU
33 0:16 105 1.09E+07 1.74E+08 5.48E+09 1.57E-02 4.96E-01 GPU+Stress - -
34 10:03 105 1.11E+07 6.68E+09 1.22E+10 6.05E-01 1.10E+00 Off None None

Table 3.2 details the characteristics of all 34 runs completed at TRIUMF. Any reboot, whether soft

(automatically forced by the kernel) or hard (where the device froze and a power cycle was necessary)

constituted a new run. Runs 8, 21, and 28 were simply reboots to ensure nominal operations after each

DUT completed its irradiation. In run 34, the DUT was kept powered off to be exposed to a constant

radiation stream for ten minutes, although this did not produce any off-nominal behaviour upon boot-up.

No permanent failure occurred on any DUT, whereas APL’s devices saw permanent failure after an

average of four reboots. This is likely due to the previously mentioned difference in collimator sizes, and
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Figure 3.4: Chronograf visualization of InfluxDB radiation data.

the implications are discussed in the following section. Error types and kernel panics found in the kernel

log are similar to those described by APL, although there were no flash errors logged at TRIUMF. The

most common errors were CPU errors (SError), ROC:CCE machine check errors, and CPU memory

errors. There was also an assortment of GPU errors, including memory management errors and single-bit

upsets. Many of these occurred even when no GPU-specific tests were running.

Figure 3.4 illustrates the ease-of-visualization of InfluxDB time series data through Chronograf. Data

points can be easily correlated with testing instance and type as well as corresponding lines in the associated

kernel logs. No clear degradation occurred to any sensor or component over each DUT’s irradiation runs,

nor did any SEE-induced anomalies appear in the on-chip sensor data. This supports the possibility of

using such sensor data in real-time and over telemetry to characterize onboard anomalies reliably.

SEE cross sections, defined as the number of events per amount fluence, are used for analysis and

comparison to previous tests. For direct comparison with APL’s data, the cross sections for reboot events

are plotted as a function of proton energy in figure 3.5. Cross sections are consistent between SOL and

L4T data captured at TRIUMF, as well as in comparison to APL’s cross sections. Notably, the best-

performing runs in the 60-63 MeV range, indicated by the lowest cross sections, were from DUT 3 at
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TRIUMF, the device that had been previously killed by 50 kRad of ionizing dose. A hypothesis for the

occasional out-performance of L4T devices over SOL devices on similar tests is the potential that the

PREEMPT_RT updates allowed for earlier detection and correction (via reboot) of SOL devices, whereas

L4T devices continued running until hard failure.
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Figure 3.5: Cross sections of reboot events of both SOL (blue) and L4T (orange) devices, in comparison
to data from APL’s radiation tests on L4T devices (grey).

CREME96 [40], an online suite of tools currently hosted by Vanderbilt and often used for various

SEU analysis, was used to further break down cross sections into rate estimates. First, the TRP tool was

used to generate trapped proton calculations for ISS orbit—500 kilometers with 51.6-degree inclination—

in both solar minimum and maximum environments. The Geomagnetic Transmission Routine (GTRN)

then factored in the shielding effects of earth’s magnetic field. Next, the FLUX utility was used to generate

a model of ionizing materials on the satellite’s surface, and the nuclear transport routine (TRANS) was

used to account for a standard 100 mils of aluminum shielding. Finally, the PUP utility could be used to

predict rate estimates of the TX2i under such orbital and shielding conditions. Based on the estimates

shown in table 3.3, less than four reboots are expected per year of up-time on SOL. As discussed in

reference to the cross-section plot, although rates are better for L4T devices, this may be a result of early

detection and fixes done in SOL to prevent the hard system freezes that occurred in most L4T runs.
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Table 3.3: Reboot rate estimates in LEO.

Reboots per Day Reboots per Year
OS Solar Min. Solar Max. Solar Min. Solar Max.

SOL 8.72E-03 5.21E-03 3.18 1.90
L4T 2.80E-03 1.50E-03 1.02 0.55
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Figure 3.6: Cross sections of SOL-loaded DUTs classified by test type.

Cross sections for SOL devices are plotted separately by test type in figure 3.6. Aside from consistent

performance when no stress tests were running—that is, log-only runs—there were not any clear patterns

in terms of performance under a particular test. Surprisingly, there were cases where stress and GPU

tests performed better than log-only runs. Additionally, combinations of stress and GPU tests generally

performed longer than either test alone, even though Chronograf verified that the device was stressed to a

higher extent during combinatory tests.

To analyze specific error types and their number of occurrences, a similar cross sectional analysis as

above was completed using kernel message occurrences as events. These messages were grouped into the

categories of CPU errors (SError), memory errors, ROC:CCE errors, and GPU errors. Since many runs

did not experience every error type, cross sections were calculated by-device based on cumulative fluence

and total errors over all runs. These cross sections were input into the CREME96 PUP tool using the same
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orbital and shielding environment as above. Daily rates are then multiplied by 365 in order to convert to

a yearly rate estimation per error type.

Results for both SOL and L4T devices are shown in figure 3.8. While reboot rate estimates were

higher for SOL devices, error estimates are significantly lower. This further supports the hypothesis that

the real-time patch provides better early detection and correction of such errors. GPU error rate estimates

are slightly higher for SOL devices, but this is likely due to sampling error, as only one L4T run underwent

a GPU test.

CPU Memory ROC:CCE GPU

0

10

20

30

40

50

Error Type

Ex
pe

ct
ed

er
ro

rs
/y

ea
r

SOL
L4T

(a) Solar Minimum

CPU Memory ROC:CCE GPU

0

10

20

30

Error Type

Ex
pe

ct
ed

er
ro

rs
/y

ea
r

SOL
L4T

(b) Solar Maximum

Figure 3.8: Expected error rates within one year of up time at both solar minimum and maximum.

3.4 Experiment 2: TMR Verification

3.4.1 Procedures

This section provides a brief overview of fault injection techniques used to test bit flips within the scope

of the SOL’s redundant boot scheme. The general procedure involved determining where each BLOB

lies in flash memory and directly corrupting bytes of data in specified locations through UNIX utilities
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such as dd. For each test-case, the device would be rebooted, and logs would be checked to ensure that

the expected corrections occurred at boot-time. This was done for all combinations of the three BLOB

copies as well as the five different BLOB files, repeatedly, to verify robust fault tolerance in the expected

cases.

For a more realistic test, random bits were corrupted throughout eMMC to examine bootloader

responses and time to failure.

3.4.2 Results

In the first test, expected corrections occurred on each reboot, and the device could operate after each

boot without issue, even when all BLOBs had been corrupted. For completeness, similar tests were run

on L4T devices, and in any case of corruption to a core file—such as the kernel image—the device would

not reboot.

When corrupting bits through eMMC, both SOL and L4T devices failed after 10,000 bit flips between

boots. The SOL device had multiple detected corruptions that were corrected on previous boots with

lower amounts of bit flips, whereas the L4T device incurred un-recovered damage to libraries in its root file

system. It is important to note that such effects will accumulate on L4T, but be corrected incrementally

(based on how often boots occur) on SOL.

3.5 Experiment 3: Latency Comparisons

3.5.1 Procedures

To test the applicability of the PREEMPT_RT patch in SOL, a latency comparison was assessed across SOL

and L4T devices. The rt-migrate-test schedules tasks with various priorities in parallel to ensure

that higher-priority tasks have low latency. The same test can be run on non-real-time environments for

comparison purposes, although priority cannot be guaranteed on the standard Linux kernel.
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Figure 3.9: Average latency from rt-migrate-test.

Additionally, to test latency in a more realistic scenario, response times to an OBC, using MOCI’s pay-

load communication protocol, were recorded for both devices. The communication occurs over UART,

and a simple ping command was sent by the OBC to be acknowledged by the TX2i. This was repeated

for 50 trials on each device.

3.5.2 Results

Figure 3.9 shows the average latency of tasks at each priority setting. As expected, latency is notably lower

on SOL devices and decreases with increasing priority. There was also notable consistency in terms of

responses; priority 6 tasks ranged from 14-63 microsecond latency on SOL devices compared to 23-31268

microseconds on L4T.

Ping tests from the OBC averaged a 474.26 ms response on the SOL device and 496.98 on L4T, over

50 trials each. However, the logged time is relative to when each debug statement was received from

the OBC rather than the time the packets were actually returned. Since print statements are relatively

low priority, there is likely some noise within the data. For more precise measurements on future tests,
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flight software should be updated to include a reading from the OBC’s real-time clock in such debug

statements.

3.6 Discussion

The following discussion is framed around answering and expanding upon the three questions posed in

the beginning of the experiments section.

3.6.1 Performance of System on Chip (SoC)

With a narrower collimator than that used by APL in their previous report [11], the tests at TRIUMF

allowed for a more thorough investigation of the SoC itself under proton irradiation. Most notable is

the fact that, with less spallation into peripherals, there were no permanent failures. While this does not

conclusively prove that the flash eMMC card is the culprit of APL’s permanent failures, it does confirm that

the issues are off-chip—and hence likely not an issue with the flash memory controller. This lends support

to potential future projects involving hardware level customizations to the SoM, including replacing the

flash memory module with rad-hard storage for future missions.

Also notable is that, without such permanent failures, the DUTs at TRIUMF went through approxi-

mately twice as many radiation runs as those tested by APL, allowing for the more detailed analysis to be

performed above. Rate estimates on both reboot events as well as general errors show that, especially on

SOL, minimal on-chip errors will occur for nominal run times.

These findings partially oppose the general movement in the space computing community towards

other processors such as AMD, as seen in [17], by showing that the TX2i SoC is reliable under radiation.

However, future projects may require support from NVIDIA to decouple the chip from the unreliable

peripherals.
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3.6.2 Correcting Flash Errors

Due to the fact that only the SoC itself was tested on SOL devices and no detected flash errors occurred,

there cannot be a direct assessment of how well the boot redundancy scheme performs after SEUs. How-

ever, some inferences can be made regarding the results from APL’s tests.

Two of APL’s failed DUTs were recoverable through a re-flash, indicating that there were upsets in

the eMMC flash card that could be corrected through a write operation. Since this is the case, software

TMR should theoretically be able to fix the same issue.

The boot redundancy scheme does, however, work in a probabilistic manner. Only essential high-level

binaries in the APP partition (which is reduced to 4 GB) is triplicated, whereas all lower level partitions

rely on NVIDIA’s A/B redundancy. The next largest partition required at boot time is the U-Boot kernel

at 84 MB, significantly less likely to experience SEUs, especially in both A and B slots. However, if

cboot—which loads U-Boot—were modified in a similar manner to apply triple modular redundancy to

the U-Boot binary, which could be a future revision on SOL, all non-triplicated essential partitions would

be under 10 MB each.

3.6.3 Command Execution Time

Results from rt-migrate-test have shown that the real-time patch drastically reduces device latency

on essential tasks, which is especially necessary in the case where the TX2i is implemented as a payload

computer. Untested and unexpected edge cases that occur due to increased latency could be detrimental

in flight.

3.7 Conclusion and Future Work

High performance computation for computer vision and automation tasks are becoming increasingly

more prevalent in the aerospace industry. CubeSats in particular, through short-lifetime missions, are
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accelerating the speed at which new techniques can be tested and evaluated. Many of these missions lean

toward NVIDIA Jetson system on chips due to their form-factor, availability, and ease-of-development.

Proton tests completed by the Applied Physics Laboratory, as well as the Small Satellite Research

Laboratory in this paper, show that while the SoC is fairly resilient to single event effects, peripherals are

significantly more vulnerable on the Jetson TX2i. Moreover, flash memory is the most likely culprit.

Space Operating Linux provides robust software-based solutions to single event upsets in flash as well

as general latency improvements for near real-time processing. The operating system is built through

Yocto and kept open-source so that payload developers may easily adapt the source code for their mission

needs.

Future projects are directed toward further analysis of InfluxDB data retrieved from proton testing

with the eventual goal of creating a model of anomaly detection that can be flown on the TX2i. If this

becomes possible, the TX2i can have a background daemon that decides when to pause/restart processing

due to various environmental factors. On MOCI, such sensor data telemetry will be downlinked with

boot logs, kernel messages/panics, and external radiation sensor data to add to the data-pool. Data from

the TRIUMF radiation tests also further supports the possibility of a future project that realizes a new

board, with rad-hard components, built around the Tegra SoC.
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Chapter 4

Computer Vision Algorithms and

Optimizations

MOCI’s high-level mission objectives are to produce high-accuracy DEMs and recognize ground-level

objects in situ. The former goal is of greater focus in the SSRL and in this research, as it uses an in-house

structure from motion (SfM) framework first developed by previous master’s students [12, 10]. This

chapter discusses limitations of the initial SfM—in regards to onboard constraints and sensor noise—of

the pipeline and presents solutions to make the model space-ready. A similar, but narrower, evaluation is

performed on MOCI’s object detection framework to ensure its operability in a low-memory system.

4.1 Development Operations

In order to allow for reliable team development on the SSRLCV codebase, which houses the SSRL’s com-

puter vision framework, continuous integration and deployment approaches have been enforced. These

methods are discussed here briefly in order to provide context to the development and testing environment

mentioned in further sections.
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4.1.1 CUDA Programming Model

One of the primary reasons NVIDIA GPUs are often preferred for embedded edge computing applications

over other companies—and even other hardwares, such as FPGAs—is their ease of programming. This

can be attributed to CUDA, an API created by NVIDIA to enable a higher-level paradigm of development.

MOCI’s SfM pipeline, SSRLCV, was developed through the CUDA extension to C++. This permits any

developer with a working knowledge of C++ to have a seamless transition to GPGPU programming, with

the addition of a few more concepts.

CUDA code can be compiled for either the host (CPU) or device (GPU), or both. Kernel methods

are those designed to run on the device to carry out a particular—usually single instruction multiple data

(SIMD)—task. The developer specifies the number of threads per block and blocks per grid in the caller

function on the host, and any data accessed by the kernel must be copied into device memory space. Each

thread executes the same kernel on a different core, and threads on the same block are guaranteed to be

dispatched on the same SM, allowing for synchronization across the block within a kernel [41].

4.1.2 Memory Enhancements

A useful feature in modern C++ is the concept of smart pointers. In SSRLCV, they have been extended to

fit the CUDA memory model and automatically allocate, de-allocate, and transfer memory on both the

CPU and GPU in an effort to reduce memory leaks. This wrapper also allows for such memory allocations

to be logged over time to monitor both CPU and GPU usage of shared memory.

4.1.3 Continuous Integration

SSRLCV is primarily hosted on an internal Gitlab instance. Using Gitlab’s built-in continuous integration

features, merge requests deploy automated unit tests to the University’s high performance computing

cluster, Sapelo2, to ensure that intermediate data products and results of component operations only

change when they are expected to. All merge requests must pass every test as well as a human code review
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before its acceptance in order to guarantee only high quality code reaches the main branch (and eventually

flight).

While the majority of tests are run on the computing cluster—which includes higher-end GPUs—for

ease of development, major updates are manually tested on a TX2i to ensure expected operation in-flight.

An important note is that, while optimizations may speed up some operations on one GPU, the speed-up

may not scale linearly to—or even occur at all on—another GPU. This is due to the multiple architectural

factors that impact performance, causing disparities in metrics such as memory bandwidth and floating

point operations per second (FLOPS).

4.2 Perspective Geometry

SfM fundamentally relies on perspective geometry, and implementations generally employ a pinhole

camera model, or variations thereof. The basic assumptions of this model are illustrated in figure 4.1. The

origin of this model is the camera center, and the camera’s principal axis extends out through the lens.

The image plane lies a focal length out from the camera center on the principal axis, and a 3D point X is

projected onto the given image at the location x given by the point of intersection between the ray from

the camera center to that point and the image plane. Conversely, a given pixel location x can correspond

to any 3D point along the given ray [42].

Figure 4.1: The pinhole camera model [42].
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4.2.1 Homogeneous Coordinates

Homogeneous coordinates provide elegant parametrizations to the relationships present in perspective

geometry. Euclidean spaceRn can be extended to the corresponding projective spacePn where coordinates

are represented by an (n+ 1)-vector. A point’s canonical representation is given by appending a 1 to the

end of its Euclidean vector, and nonzero scalar multiples represent the same point. Ideal points are those

whose final coordinate is zero, and these have no correspondence in Rn. This can be visualized using a

similar model to figure 4.1 as P2, where points in projective space can be considered rays from the origin

and correspond to a point in R2 given by the intersection of that ray with the plane z = 0. Note that the

camera center and points at z = 0 are ideal points, as they do not have projections onto the image plane.

However, such points may be visible from other camera perspectives, as can be represented by projective

transformations such as a rotation and translation [42].

In SSRLCV, homogeneous coordinates are not directly used in most cases, and instead ray tracing

techniques are employed for efficiency. However, there are some cases discussed below in regard to relative

camera orientations where the use of homogeneous coordinate representations does prove beneficial.

4.2.2 The Camera Matrix and Fundamental Matrices

Using homogenous coordinates, the correspondence between a 3D pointX and its image correspondence

x can be parametrized as

x = PX = K[R | t]X

where R and t are a Euclidean rotation and translation from the world to camera frame (with camera

center at the origin), respectively. K is a calibration matrix of the form

K =


αx s x0

0 αy y0

0 0 1

 ,
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where αx and αy are the focal length in terms of pixel dimensions, s is a skew parameter, and (x0, y0)

is the location of the principal point on the image (i.e., its intersection with the principal axis, in pixel

coordinates).

In the case of two images, a fundamental matrix F can be derived describing their relative geometry,

called epipolar geometry. Namely,

x′⊤Fx = 0

for corresponding points x and x′ on the two images. Additionally, Fx maps a point on the first image

to a line of potential correspondences on the second, called the epipolar line.

4.3 Structure from Motion Pipeline

MOCI’s SfM pipeline, as originally developed by previous master’s students, contains five main stages [12,

10]. While this research presents and evaluates alternate implementations to solve various constraints and

improve accuracy, the overall pipeline structure generally remains the same. The original implementation

is summarized below:

4.3.1 Feature Generation

The first stage of the pipeline is to extract features and descriptors for both images. MOCI employs

the Scale Invariant Feature Transform (SIFT), which although slower and more power-heavy than other

feature detectors, is tremendously more robust. Accuracy cannot be compromised as this stage, as short-

comings at this stage propagate to errors in the point cloud.

SIFT was originally devised by Lowe in 1999 and is a common, robust feature generator for structure

from motion pipelines [43, 27]. The algorithm convolves images with a Gaussian filter with multiple

values of σ and computes a difference of Gaussians to approximate a Laplacian of Gaussians operation.

In a pyramidal scheme, the images are downsampled, and operations are repeated for scale invariance.

Extrema are detected at each scale by comparing each pixel to its 26 neighbors—eight on the same image
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and nine on each neighboring blur. A histogram of oriented gradients can then be computed at each

extremum as a feature descriptor at that keypoint [44].

4.3.2 Feature Matching

Once features are produced in all images, they can be matched to perform pixel correspondences between

overlapping images. The original implementation compares SIFT descriptors exhaustively across images

by Euclidean Distance to find keypoint’s best match in the next image. This match is discarded if the

Euclidean distance either surpasses a set absolute threshold, or if the ratio of the Euclidean distance to

that of the best match in another unrelated image—called a seed—surpasses a set relative threshold.

4.3.3 Triangulation

Using the pinhole camera model, matches among two or more images can be re-projected into three-

dimensional space. Rays are projected out from each camera center through its corresponding pixel. In

a continuous environment without noise, these rays would intersect at the point’s true 3D location. To

account for imprecision, this point is taken to minimize its distance from each ray.

4.3.4 Filtering

Although filtering is not usually considered a stage in SfM pipelines, it is important in ensuring that

erroneous features (noise) do not obstruct the point cloud. As the next stage is a gradient-descent problem

that is highly susceptible to outliers.

4.3.5 Bundle Adjustment

Bundle adjustment seeks to correct the camera parameters (intrinsic and extrinsic) as well as point locations

in order to correct for the linear error between skew lines. In the initial pipeline, only a minimal version

of bundle adjustment was implemented using Newton’s iterative method for least squares minimization

of re-projection error. The method is highly susceptible to rotational errors, particularly around the x
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and y axes, and only generally converges to a local minimum. This has also only been implemented for

2-view cases.

Bundle adjustment, or some form of iterative estimation, is generally a required aspect of SfM pipelines,

especially as most applications do not have known camera parameters to a high accuracy [27].

4.3.6 Limitations

The obvious limitations in this implementation are that it pushes runtime, memory, and power constraints

of the MOCI mission. Memory is especially limited due to the RAM-based file system present in Space

Operating Linux (see chapter 3).

Other limitations come in terms of accuracy. For complex images, such as those previously simulated

of Mount Rainier, the point cloud is barely visible due to the high noise density.

The three main bottlenecks in the pipeline, as shown in [12], are feature generation, feature matching,

and bundle adjustment. Feature generation has the highest power usage of any stage due to the memory

transfers involved in Gaussian convolutions. Feature matching and bundle adjustment are the longest

stages, in some cases exceeding the maximum given runtime of 45 minutes.

4.4 Pointing Accuracy

Due to its high pointing accuracy and small form factor, the CubeSpace ADCS was chosen for MOCI.

However, its most accurate sensor, the CubeStar star tracker, cannot be used at MOCI’s SfM slew rates,

introducing noise to attitude estimates. This noise is coupled with time synchronization issues on both

the ADCS and TX2i’s end, as there is no direct line of communication between the two, and the ADCS

samples attitudes at only 1 Hz.

4.4.1 SfM Slew

The proposed SfM slew on MOCI starts and ends at 15-degree angles θ from the ground target on either

side. One side of the slew is shown in figure 4.2. However, as previously mentioned, this would exceed the
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Figure 4.2: Proposed SfM slew [12].

star tracker’s maximum angular rate of 0.3 degrees per second. Other slew options have been considered

and are presented below. However, each option brings its own potential issues.

Off-Track Slewing Options

Slew options have also been simulated for targets that do not lie directly in the orbital plane. However,

these only slightly decrease the pointing accuracy and do not approach the 0.3 degree requirement for

accurate pointing.

Non-Slew Options

Adams proposes the option of pointing nadir throughout imaging. However, due to the lowB/H ratio of

this option, accurate results would not be plausible. Existing models like ASTER have used a B/H ratio

of 0.6 [30], and MOCI would achieve a similar result with the proposed 30 degree slew. However, with

the small field of view, nadir pointing only keeps targets within frame for under five seconds (depending

on how much overlap is desired), yielding a fraction of the B/H ratio.

There is also the option of simply taking images of the same target over multiple passes, at different

pre-set track angles relative to nadir. However, this requires high positional accuracy and is less likely to

44



produce a set of unobstructed (cloud-free) images of the target. This problem was also considered by

ASTER, which performed both on-track and repeated imaging but had a longer lifetime [30].

4.4.2 Custom Pose Estimation

As discussed above, the alternatives to on-track slewing are likely to produce undesirable results. Hence,

a custom pose estimation algorithm is employed and evaluated. This has been done successfully in com-

mercial SfM software and is considered a pipeline stage in most implementations, with pose estimation

considered one of the main objectives of SfM [27].

4.5 Adjusted and Optimized Pipeline

An adjusted pipeline is presented below in order to decrease the intensity of bottlenecks on the pipeline

and adjust for noisy sensor data. The next section provides a memory, runtime, power, and accuracy

comparison to the previous iteration.

In addition to architectural differences, the pipeline also has the capability of checkpointing states

at the end of each stage, which can be specified through command-line flags. This serves the purpose of

allowing the pipeline to restart on reboot if runtime limits are exceeded or upon environmentally caused

kernel latch-ups. Ideally, checkpointing should only occur after stages with smaller data products, rather

than those like feature generation with the largest products, in order to reduce writes to the eMMC card.

4.5.1 Feature Generation

The hypothesized reason for the runtime and power bottlenecks seen in feature generation was the size of

bulk memory transfers. Required for parallelizing the algorithm. Optimizations were made in the logic

flow to ensure that memory was only copied and reallocated when needed.

45



Additionally, to reduce runtime and load on the GPU, the Gaussian kernel has been separated as

followed into its one-dimensional parts:

1

2πσ2
e−(x2+y2)/2σ =

(
1

σ
√
2π

e−(x2)/2σ

)(
1

σ
√
2π

e−(y2)/2σ

)
.

This modification can hence be convolved as two, one-dimensional kernels for a decrease in runtime

complexity [43].

4.5.2 Pose Estimation

The goal of this stage is to offload the optimization of camera pose from the bundle adjustment by produc-

ing relatively accurate parameters to start. This is done before feature matching so that relative orientations

may be used for the optimizations in that stage discussed next.

Initial Guess: Random Sample Consensus

An initial estimate of the attitude can be determined through a random sample consensus of matches.

First, pairwise matches are computed with a low threshold so that only matches with highly similar SIFT

descriptors are considered in pose estimation. This is done both to compute the matches at a faster rate

and to reduce the number of outliers.

Next, the matches are randomly split into sets of seven pairs. Labeling each correspondence as xi =

(xi, yi) and x′
i = (x′

i, y
′
i), the equations x′⊤

i Fxi = 0 ∀i can be parametrized as

Af =


x′
1x1 x′

1y1 x′
1 y′1x1 y′1y1 y′1 x1 y1 1

...
...

...
...

...
...

...
...

...

x′
7x7 x′

7y7 x′
7 y′7x7 y′7y7 y′7 x7 y7 1

 f = 0

where f is the column vector containing elements ofF in row-major order. Let f1, f2 span the (rank-2) null

space of A. Then, for some scalar multiple α, f = αf1 + (1− α)f2, with the constraint that detF = 0.

This constraint forms a cubic equation in α, yielding either 1 or 3 real solutions [45].
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For each matrix, the Sampson Cost Function

∑
i

(x′⊤
i Fxi)

2

(Fxi)21 + (Fxi)22 + (F⊤x′
i)
2
1 + (F⊤x′

i)
2
2

is used to compute the number of inliers. The fundamental matrix with the most inliers is then converted

to a relative pose in terms of position and orientation, using known intrinsic camera parameters. Us-

ing a random sample consensus, as well as using 7-point rather than 8-point correspondences, increases

resilience to outliers [42].

Iterative Refinement

Let xi,x
′
i be measured correspondences, specifically the inliers chosen by a random sample consensus. By

triangulating this match into R3 and re-projecting them onto the two images, a pair of estimated matches

x̂i, x̂
′
i is computed. As a function of extrinsic camera parameters p ∈ R6—namely, the second camera’s

translation and rotation components relative to the first’s—the geometric distance between re-projected

points can be parametrized as

f(p) =



x0,1 − x̂0,1

x0,2 − x̂0,2

x′
0,1 − x̂′

0,1

x′
0,2 − x̂′

0,2

...

xN,1 − x̂N,1

xN,2 − x̂N,2

x′
N,1 − x̂′

N,1

x′
N,2 − x̂′

N,2



.

Levenberg-Marquardt (LM) iterations are used to minimize the quantity

||f(p)||2 =
N∑
i=1

(x0,1 − x̂0,1)
2 + (x0,2 − x̂0,2)

2 + (x′
0,1 − x̂′

0,1)
2 + (x′

0,2 − x̂′
0,2)

2
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=
N∑
i=1

d(xi, x̂i)
2 + d(x′

i, x̂
′
i)
2.

LM optimization seeks to find a step-size ∆ for the parameter vector p at each iteration that satisfies

(J⊤J +λI)∆ = −J⊤f(p), where J is the Jacobian matrix of f , J⊤J serves as a Hessian approximation,

and λ is decreased on iterations where the error is reduced but is increased otherwise. Higher values

of λ approach gradient descent, whereas lower values approach Gauss-Newton iteration. This allows

optimization to make progress when distant from a solution, and then rapidly approach the solution once

the parameters lie within its neighborhood [42]. Finite differences are used in this case to approximate

partial derivatives in the Jacobian matrix.

Initial experiments with simulated data showed accuracy within 0.2 degrees and 40 km, which is less

than optimal and produced skewed point clouds. However, supplying positional data and only estimating

orientation caused estimations to reach < 0.0001 degree accuracy, as LM iterations would no longer

converge to local minima or have problems converging on ridges formed by the interdependent parameter

space. Supplying accurate positional data on MOCI should not be an issue, with accurate GPS data

onboard as well as the option for SGP4 propagation [46].

4.5.3 Feature Matching with Strong Epipolar Geometry

With relatively accurate attitude knowledge, epipolar geometry—the relative geometry between images—

can be used to restrict the search space for feature matching for a decrease in both runtime and noise. This

concept uses epipolar geometry to constrain matches to the epipolar line, with an allowance of ±ε, as

shown in figure 4.3. This concept was proposed in [12] but not implemented.

In a doubly constrained version, which the author refers to as strong epipolar geometry, using earth-

centered earth-fixed (ECEF) coordinates, the search space can be restricted along another dimension. The

highest given distance from earth’s center (the origin in ECEF) to the surface is Mt. Chimborazo at 6384.4

km [47], whereas the lowest distance is earth’s semi-minor axis 6356.77 km [48]. Hence, points on the

ray from the camera’s origin through the queried pixel are only valid within this range. This restriction

creates two segments of the ray (in the general case), but the further segment is discarded as it is on the
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Figure 4.3: Matching constrained to the epipolar line [12].

other side of the earth. Hence, its projection onto the second image is simply a line segment, as shown in

figure 4.4.

Figure 4.4: Visualization of strong epipolar geometry constraints.

Command-line flags allow for allowances to be set both in terms of pixels around the line segment

and kilometers out from the original three-dimensional ray before projection. The default values are set

at 25 pixels and 5 kilometers, respectively. A 15 degree view off nadir only changes the distance-to-target

by ∼ 2 km, so MOCI has the option of assuming the first image was always taken from nadir with the

given error allowance.
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4.5.4 Triangulation

There are no changes needed in the original triangulation algorithm, due to its low impact on pipeline

performance. However, initial point clouds can be saved immediately (without filtering) due to the

increase in accuracy.

4.5.5 Filtering

Due to the large decrease in noise afforded by epipolar geometry, the aggressive filtering methods ap-

plied earlier start to filter accurate terrain points. Hence, filtering is decreased due to the advantage of

downlinking data that can easily be hand-filtered over point clouds with lost data.

4.5.6 Bundle Adjustment

For experimentation, bundle adjustment has been removed from the new pipeline. Since it adjusts the

same parameters as done in the pose estimation stage, it is unlikely to find a better solution with more

outliers. With checkpointing, this can be enabled at runtime onboard if positional estimates are seen to

be inaccurate.

4.6 Experiments and Results

The data used in this section was generated in Blender from the Shuttle Radar Topography Mission

(STRM), accurate to 30m [49]. The two targets considered are Mount Everest and Mount Rainier. The

two targets are considered the best and worst case scenarios, respectively, in terms of performance, as

Rainier’s forestry produces over double the features produced by the snow-covered Everest. Most MOCI

targets are expected to fall within this range of features.

Table 4.1 shows the accuracy (compared to ground truth) for 2-view 4k reconstructions of Mount

Everest and Mount Rainier. Rows with asterisks contain results after manual filtering. Notably, the

Everest data produces point clouds with higher accuracy than the original STRM data. Additionally,

50



the table shows a comparison of results based off of feature matching strategies, revealing that the strong

epipolar constraints only leave 9-10 erroneous points, compared to the hundreds produced by a brute

force approach.

Rainier data shows lower accuracy, which is likely due to a combination of a larger amount of noise as

well as the lower base-height ratio employed on this data set. One image was taken from a nadir-pointing

camera on both datasets, whereas the second image was 5 degrees off nadir for Rainier imagery but 10

degrees for Everest imagery.

Table 4.1: Accuracy comparison of 2-view 4096× 4096 reconstructions between the brute force and
constrained matching strategies.

Original Constrained

Dataset Average Distance Std. Deviation Points Average Distance Std. Deviation Points

Everest 263.451 m 3446.65 m 93,883 37.5961 m 128.426 m 93,215
*Everest 19.0908 m 21.5174 m 93,203 18.7601 m 16.6673 m 93,206

Rainier 337.373 m 17631.1 m 244,350 90.8851 m 84.0431 m 243,590
*Rainier 85.5802 m 71.2258 m 243,965 85.0615 m 69.5612 m 243,580

The point cloud producing the 18.76 average distance to ground truth is shown in figure 4.5. A

visual comparison of the noise produced by the two matching strategies is shown in figure 4.6. The outer

yellow box (which goes out of frame) includes all noise from the brute force matching strategy, whereas

the points produced by epipolar matching are contained closer to the terrain within the smaller yellow

box.

Figure 4.5: Reconstruction of Mount Everest from two 4k images.
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Figure 4.6: Visualization of noise induced by brute-force and epipolar matching strategies.

Runtime comparisons between the original and optimized pipelines are shown in table 4.2. Speedups

in feature generation are seen from the separation of the Gaussian kernel, and drastic feature matching

speedups are incurred from epipolar constraints. Bundle adjustment was only run for 3 iterations on

Everest and 2 on Rainier out of a maximum of 10, due to the locations being known. In both cases,

computing pose-estimation for noisy data would be preferred to running a full 10 iterations of bundle

adjustment to solve the same problem.

Table 4.2: Runtime comparison of 2-view 4096× 4096 reconstructions between the original and
optimized pipeline.

Dataset Pipeline Feature Gen. Pose Match Triangulation Filter B.A. Total

Everest Initial 404.522 s — 2193.598 s 0.774 s 4.218 s 1341.276 s 3944.39 s
Optimized 204.32 s 510.6 s 119.276 s 1.159 s 2.676 s — 838.034 s

Rainier Initial 486.438 s — 10460.812 s 1.833 s 10.818 s 2317.871 s 13277.819 s
Optimized 286.892 s 2457.882 s 576.946 s 2.040 s 4.815 s — 3328.579 s

Peak RAM usage for each stage from the same set of runs is shown in table 4.3. There were no major

memory improvements, and in some cases more memory is used in the optimized pipeline. This is likely
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due to the fact that, in cases such as the separated Gaussian convolution, reductions in runtime complexity

resulted in slight memory complexity increases.

Table 4.3: Peak RAM comparison of 2-view 4096× 4096 reconstructions between the original and
optimized pipeline.

Dataset Pipeline Feature Gen. Pose Match Triangulation Filter B.A.

Everest Initial 3.252 GB — 0.35 GB 0.346 GB 0.396 GB 0.711 GB
Optimized 3.2 GB 0.484 GB 0.476 GB 0.507 GB 0.514 GB —

Rainier Initial 3.376 GB — 0.539 GB 0.539 GB 0.656 GB 0.987 GB
Optimized 3.406 GB 0.667 GB 0.623 GB 0.691 GB 0.699 GB —

Finally, the energy consumption in Watt-hours is displayed for the same data in table 4.4. Major

reductions were seen in both feature generation and matching, correlated with the decrease in runtime,

especially for Rainier data. Additionally, note that the initial pipeline’s power consumption totals are

only in the best-case, as bundle adjustment was run for a minimal number of iterations.

Table 4.4: Energy consumption comparison of 2-view 4096× 4096 reconstructions between the
original and optimized pipeline.

Dataset Pipeline Feature Gen. Pose Match Triangulation Filter B.A. Total

Everest Initial 0.623 Wh — 2.61 Wh 0.0007 Wh 0.003 Wh 0.932 Wh 4.169 Wh
Optimized 0.177 Wh 0.627 Wh 0.196 Wh 0.001 Wh 0.002 Wh — 1.004 Wh

Rainier Initial 0.690 Wh — 12.51 Wh 0.001 Wh 0.008 Wh 1.605 Wh 14.814 Wh
Optimized 0.248 Wh 3.13 Wh 0.991 Wh 0.002 Wh 0.004 Wh — 4.374 Wh

4.7 Object Recognition

Object detection is a secondary mission objective on MOCI and uses existing commercial architectures.

4.7.1 YOLOv4 Architecture

You Only Look Once (YOLO) is a state-of-the-art real-time object detection architecture. The third

iteration, YOLOv3, primarily uses a backbone of convolutions to perform feature extraction, along with

skip layers to reduce the diminishing gradient problem. At three different scales along these convolutions,
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a 1 × 1 × [3 ∗ (4 + 1 + 80)] kernel is applied for feature detection, resulting in three bounding box

predictions for every point at that scale, where there are 4 parameters (2-dimensional center and box size),

1 value for the "objectness" of the prediction, and 80 values corresponding to class probabilities on the

original dataset. Moreover, the center coordinates of the object are represented as offsets from the cell

center, and the width and height of each of the three bounding boxes are represented as offsets from

three corresponding anchor dimensions at the given scale. The anchors are priors calculated by k-means

clustering on the dataset [50, 51].

Like previous iterations, YOLOv4 is a one-stage detection model, which consists of three main stages

past input, shown in figure 4.7. YOLOv4 uses a modified backbone to that employed on YOLOv3, con-

sisting of cross-stage partial connections, weighted residual connections, mish activation, and additional

data augmentation. The model’s neck consists of spatial pyramid pooling and a path aggregation network.

YOLOv3’s detector is used for the three prediction stages [52].

Figure 4.7: One-stage and two-stage detectors [52].

4.7.2 Dataset

For onboard detection of bridges, sports fields, storage tanks, ships, planes, and harbors, the dataset

from [10] was used without modification, aside from minor labelling fixes. The dataset includes images

from the DOTA and Airbus Ship datasets with bounding box labels. Images were rescaled to 7 GSD to

approximately match the resolution of MOCI’s color imager.
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4.7.3 Training

Training parameters were set to the default options provided by the YOLOv4 developers [52] over 500,500

epochs and using mosaic data augmentation. Due to the small size of objects in the dataset, a necessary

pre-training step was to resample anchors by k-means sampling [51]. Any attempts to train without this

step led to diverging loss.

4.7.4 Memory, Accuracy, and Runtime Tradeoff

A number of different options were considered for onboard object detection with YOLOv4. The develop-

ers provide two versions of the model: the full-sized version, as well as a YOLOv4-Tiny model. The tiny

version is a lightweight version, often used for embedded applications, with only two detection layers.

Additionally, the darknet executable developed for running YOLOv3, YOLOv4 and similar mod-

els offers multiple compilation options for CPU/GPU versions, as well as support for libraries such as

OpenCV and cuDNN.

In evaluating these architectures, important factors to consider include runtime, memory, and accu-

racy. Memory is especially important in this case, as SOL employs a RAM-based file system. Hence, both

runtime memory and static storage must be considered. For this reason, the cuDNN- and OpenCV- accel-

erated options are not considered, as the associated libraries would constantly fill hundreds of megabytes

in RAM without use for any other applications.

Table 4.5: Runtime, memory, and accuracy comparison of trained YOLO models for MOCI.

Static Storage Performance

Model Size Device Executable Weights Total Runtime Memory Detection Time IOU Recall

Tiny CPU 0.77 MB 23.7 MB 24.5 MB 167 MB 6.0 s 57.87% 64.13%
GPU 4.9 MB 23.7 MB 28.6 MB 284 MB 0.7 s 57.87% 64.13%

Full CPU 0.77 MB 256 MB 257 MB 1161 MB 56.5 s 71.62% 81.98%
GPU 4.9 MB 256 MB 261 MB 1501 MB 1.0 s 71.62% 81.98%

A full comparison of image inference time, memory consumption, and accuracy are shown in table

4.5. While the YOLOv4-Tiny architecture provides the best inference time and memory consumption

for the application, its accuracy is subpar for use on MOCI. This is likely due to a limited data set, and
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low sensor data, which can be improved for future missions. Xu et al., for instance, achieve 91% recall

with YOLOv4-Tiny using SAR imagery [34].

In terms of the full sized model, the GPU-accelerated version provides tremendous runtime and

improvements over the CPU version for minimal additional memory overhead. Within the constraints of

MOCI, the 261 MB of static storage and 1501 MB of runtime memory are a non-issue, and this architecture

will therefore be used on the mission.

Figure 4.8 shows sample detections of ships and sports fields from the custom data set.

Figure 4.8: Sample object detection results.
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Chapter 5

Conclusion

The Multiview Onboard Computational Imager (MOCI), the second CubeSat in development by the

University of Georgia, intends to capture imagery and perform computer vision pipelines onboard. In-

situ computation reduces the amount of data that needs to be downlinked, and hence more accurate

models can be produced at a lower cost. The primary points of failure for MOCI’s payload include

radiation-induced device failure, an overuse of available resources, or sensor inaccuracy.

Both low-level and high-level software techniques are employed to remedy these issues. A custom

operating system, Space Operating Linux (SOL), is designed to provide system-level fault tolerance to

radiation-induced effects and a real-time patch to ensure reliable response to mission-sensitive commands.

Radiation tests on the SoC show promising results for CPU and GPU performance in low earth orbit,

cementing that former issues were related to peripherals such as flash. This supports the use of a redundant

flash scheme and RAM-based file system to reduce flash usage in order to prolong mission lifetime.

On a higher level, optimizations and analyses were conducted in respect to MOCI’s computer vision

pipelines in order to ensure the system can reliably operate with constraints in runtime and power, as well

as memory constraints induced by SOL, and to reduce reliance on potentially faulty sensor data. The

mission’s custom SfM pipeline was modified to reduce both runtime and power usage by nearly a factor of

four. The faster runtime allows for checkpointing to occur at a lower rate, abiding by the practice in SOL

of minimizing flash usage. Memory usage was also monitored and determined not to exceed the afforded
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RAM, and changes to feature matching strategies and iterative pose estimation allow for high-accuracy

models to be produced, regardless of sensor noise. For object recognition, a model was chosen with the

highest accuracy to where it could also run within these constraints.

5.1 Limitations and Future Work

5.1.1 Radiation Mitigation

There are still many avenues for future work in radiation mitigation and determining the radiation tol-

erance of the TX2is. When the modules are shipped back to the SSRL from TRIUMF, the team plans

on de-lidding the chips to analyze the spallation area and confirm assumptions that peripherals were not

affected.

For future tests, if resources permit, the eMMC should be directly irradiated in order to prove that

it is the primary reason for failures seen in previous tests. In such a test, it may be possible to test the

redundant memory scheme in SOL against a control.

Such tests may increase support from NVIDIA or other manufacturers in developing custom circuitry.

Since the SoC has been shown to be more tolerant than expected to radiation, and the peripherals are

especially vulnerable, there has been demand in the space processing community to develop custom boards

with rad-hard components around the SoC. While software mitigation does prove to be beneficial, there

is only so much that can be done without hardware mitigation.

Finally, MOCI’s flight will provide invaluable data to the community on the TX2i’s true performance

in low earth orbit. While radiation tests and models like CREME-96 allow the community to provide a

best estimate of radiation effects, there are some limitations. For instance, the utilities run during radiation

tests are generally lower in performance than what would be used onboard, as the high flux under a

beam is not realistic as to what a full program would experience. MOCI’s flight data will supplement the

radiation test presented here and could potentially be used for autonomous fault detection and mitigation

algorithms on future satellites.
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5.1.2 Pose Estimation

Pose estimation is an essential aspect of the SfM pipeline, as inaccurate relative positioning of the images

will skew and distort the point cloud, at best. It is necessary not only to ensure that the positional data

from the GPS is accurate, but also to perform edge testing to ensure reliability of the estimated angles. It

may be beneficial to provide a geometric ground for the initial estimate, such as the approximate ECEF

location of the target. Additionally, the team may opt to provide ADCS-generated attitudes as a failsafe

mechanism.

5.1.3 Memory Usage

While erroneous memory usage, such as memory leaks, have been corrected in this work, there have been

no attempts to lower the peak memory usage of the pipeline that occurs within feature generation. Future

attempts to do so, without compromising the accuracy of the pipeline, would prove extremely beneficial

to the fields of SfM and photogrammetry as a whole. This can occur as changes in SIFT hyper-parameters

or even a different model, such as FAST or ORB [53, 54].

5.1.4 Scalability

So far, the SfM pipeline has only been tested on simulated satellite imagery of high-relief surfaces. For

future research, scaling to additional data types should be considered:

• Low-relief terrain: terrain without notable elevation changes could pose two major issues in the

current pipeline. The likely possibility is that SIFT will produce a low amount of features, resulting

in a sparser point cloud. Another possibility is that many features are produced, but due to similarity

across the image, the features are mismatched to form incorrect correspondences between images.

• Lower-altitude imagery: future projects within the SSRL call for the use of drone imaging for

SfM computation. While this will produce higher resolution images (with lower GSD), problems

in accuracy could result from a breakdown in pinhole camera geometry due to surface proximity.
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• Distortion and sensor noise: since the data used for this research is simulated, the imagery is not

subject to real-world issues such as camera distortion and sensor noise. Ideally, the design of the

optical train on MOCI should minimize these effects, but they may still occur to a low extent on

MOCI and future missions. One option for correcting these is to account for such errors during

bundle adjustment, which would then separate the computation done at the end of the pipeline

from that done during pose estimation. Hartley and Zisserman also discuss methods to account

for projective distortion within the camera model itself [42].
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