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and find that this encoding is also faithful to their original presentations. Given the loss of desirable de-
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Priest’s Minimally Inconsistent Logic of Paradox, which recovers essential properties that allow one to
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suggesting that next steps should investigate extensions to predicate and modal logics.

INDEX WORDS: [Artificial Intelligence, Paraconsistent Logic, Restricted Boltzmann Machine,

Multivalued Logic, Artificial Neural Networks, Logic Programming, Variational

Principle, Unsupervised Learning]



PARACONSISTENT PROPOSITIONAL INFERENCE

USING RESTRICTED BOLTZMANN MACHINES

by

RYAN T. MCARDLE

B.S., University of Georgia, 2018

B.A., University of Georgia, 2018

A Thesis Submitted to the Graduate Faculty of the

University of Georgia in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2021



©2021

Ryan T. McArdle

All Rights Reserved



PARACONSISTENT PROPOSITIONAL INFERENCE

USING RESTRICTED BOLTZMANN MACHINES

by

RYAN T. MCARDLE

Major Professor: O. Bradley Bassler

Committee: Frederick Maier

Sarah Wright

Electronic Version Approved:

Ron Walcott

Dean of the Graduate School

The University of Georgia

May 2021



DEDICATION

For Banksy and Aurora, so that you can eat all the house plants and sticks that your hearts desire.

iv



ACKNOWLEDGMENTS

I’d first like to thank the members of this project’s committee, without whom it never would have become

a reality. Dr. Sarah Wright was my first philosophy professor at The University of Georgia and sparked

interests that ultimately drove my study of artificial intelligence. This project was conceived as a semester

project assigned by Dr. Fred Maier, who directed me towards the concept of neuralsymbolic computing

and the need for a bridge between connectionist and symbolic representations of knowledge. Finally, Dr.

Brad Bassler’s years of instruction and mentorship prepared me to complete the necessary work for this

project, and his numerous editorial comments have improved the final product significantly. Thank you

all for your contributions as instructors, advisors, and friends.

I’d also like to thank all of the friends and family who have been a support system that helped me

truly enjoy my time at The University of Georgia. You’ve provided the critical balance necessary to keep

me sane through this whole process, and I appreciate all of your support and friendship over the years. I

couldn’t have done it without you.

v



TABLE OF CONTENTS

Acknowledgments v

List of Tables vii

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background and Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Summary of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Propositional Logic 6
2.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Strict Disjunctive Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Equivalence of an SDNF and an RBM . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Analysis of RBM Logic Representation . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Paraconsistent Logic 22
3.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Paraconsistent Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Paraconsistent Logics in RBMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Analysis of Paraconsistent Logics in RBMs . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Minimally Inconsistent Logic 54
4.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 LPm : Minimally Inconsistent LP . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Minimally Inconsistent LP in RBMs . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Analysis of Minimally Inconsistent LP in RBMs . . . . . . . . . . . . . . . . . . . . 58

4.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Conclusion and Future Work 71

Bibliography 73

vi



LIST OF TABLES

1.1 The status of each property explored in this paper for each of the relevant logics. . . . . 5

2.1 The Transitivity energy function (2.4.6) for each valuation xi. . . . . . . . . . . . . . 12

2.2 The Ex Falso energy function (2.4.9) for each valuation xi. . . . . . . . . . . . . . . . 14

2.3 The Disjunctive Syllogism energy function (2.4.11) for each valuation xi. . . . . . . . . 16

2.4 The Resolution energy function (2.4.15) for each valuation xi. . . . . . . . . . . . . . 17

2.5 The inconsistent Refutation energy function (2.4.17) for each valuation xi. . . . . . . 19

2.6 The consistent Refutation energy function (2.4.19) for each valuation xi . . . . . . . . 20

3.1 The negation connective in K3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The conjunction connective in K3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 The disjunction connective in K3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 The implication connective in K3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 The negation connective in LP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 The conjunction connective in LP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7 The disjunction connective in LP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 The implication connective in LP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.9 The Heaviside connective in LPS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 The Dual Heaviside connective in LPS
. . . . . . . . . . . . . . . . . . . . . . . . . 33

3.11 The K3 Transitivity energy function (3.4.16) for each valuation xi. . . . . . . . . . . . 38

3.12 The K3 Ex Falso energy function (3.4.20) for each valuation xi. . . . . . . . . . . . . . 41

3.13 The K3 Disjunctive Syllogism energy function (3.4.24) for each valuation xi. . . . . . . 43

3.14 The K3 Resolution energy function (3.4.27) for each valuation xi. . . . . . . . . . . . 45

3.15 The K3 Resolution Refutation energy function (3.4.30) for each valuation xi. . . . . . 47

3.16 The LP Transitivity energy function (3.4.33) for each valuation xi. . . . . . . . . . . . 49

3.17 The LP Ex Falso energy function (3.4.36) for each valuation xi. . . . . . . . . . . . . . 51

3.18 The LP Disjunctive Syllogism energy function (3.4.39) for each valuation xi. . . . . . . 52

4.1 The LPm Transitivity energy function (4.4.5) for each valuation xi. . . . . . . . . . . 60

4.2 The LPm Ex Falso energy function (4.4.7) for each valuation xi. . . . . . . . . . . . . 62

4.3 The LPm Disjunctive Syllogism energy function (4.4.9) for each valuation xi. . . . . . 64

4.4 The LPm Resolution energy function (4.4.12) for each valuation xi. . . . . . . . . . . 66

4.5 The LPm Resolution Refutation energy function (4.4.15) for each valuation xi. . . . . 68

4.6 The LPm Resolution Refutation energy function (4.4.18) for each valuation xi. . . . . 70

vii



CHAPTER 1

INTRODUCTION

§ 1.1 Introduction

The current zeitgeist in artificial intelligence is one dominated by the application of artificial neural net-

works (ANNs) to solve a wide range of problems. The amount of data and large-scale parallel processing

power recently made widely available makes the training of these networks quite efficient compared to any

attempts of previous decades. However, their proliferation has brought to the forefront many concerns

regarding our ability to understand and ultimately trust these networks that we so often employ in our

decision making processes. These networks, due to their complicated structure modeling a massively

high-dimensional space, are quite opaque to human interpretation and audit.

There have been advancements made in recent years to address this issue, however correcting our lack

of understanding regarding a deep network’s inner workings is still a major concern for the field [5], [10].

In general, it is quite difficult for a human to interpret how a trained ANN processes the provided data in

the way that it does, or to construct one that will process data via some intended methodology. This can

make it difficult to understand what metrics the ANN might be using in its decision process and, when

trained on historical data that has been shown to be discriminatory, the ANN will simply replicate these

human metrics that can have major impacts on people’s lives [2]. As the field continues to apply ANNs,

we must develop methods which allow us to faithfully and efficiently audit our ANNs to ensure that their

operation remains both under our control and within our approval. It appears that such an approach may

be feasible within Restricted Boltzmann Machines (RBMs) and their deep learning counterpart Deep

Belief Networks (DBNs).
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§ 1.2 Background and Related Works

§ 1.2.1 Restricted Boltzmann Machines

An RBM is a statistical, energy based ANN architecture which, following an unsupervised training process,

represents a joint probability distribution over the training data. This distribution can then be used to

infer likely values for data that are missing or undefined in the training set [4].

The graphical structure of a Boltzmann Machine consists of two layers of nodes, a “visible" layer and

a “hidden" layer. In the Restricted Boltzmann Machine, nodes contained in one layer can be connected

only with the nodes contained in the other layer, and all connections between nodes are bidirectional [4].

This restriction offers a significant advantage with regards to the overall computational complexity of the

structure, while still allowing one to create faithful models of the input data [16].

We can formally define an RBM in the following way:

Definition 1.2.1. A Restricted Boltzmann Machine (RBM) is a quadrupleN = (X,H,W,E), whereX

is a set of n visible nodes taking values x,H is a set ofm hidden nodes taking values h,W is the set of n×m

connection weights between each visible node xi and each hidden node hj , andE is the energy function:

E(x,h) = −
∑
i,j

wijxihj −
∑
i

aixi −
∑
j

bjhj, (1.2.1)

where ai and bj are the biases of visible and hidden nodes xi and hj respectively, andwij is the connection

weight between nodes xi and hj .

In general, x ∈ Rn
and h ∈ Rm

, and these values are often scaled into the range [0, 1]. However,

for the purposes of this thesis, we constrain ourselves to the binary case for which x ∈ {0, 1}n and

h ∈ {0, 1}m.

From this energy function, we can determine the joint probability distribution of assignment (x,h):

p(x,h) =
1

Z
e−

1
τ
E(x,h)

(1.2.2)
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where

Z =
∑
x,h

e−
1
τ
E(x,h)

(1.2.3)

represents the partition function over all distributions, with ‘temperature’ τ , which is gradually reduced

during the training process in order to minimize the value of the energy function [16][13].

This partition function in general can be quite expensive to compute explicitly. However, given any

initial state of the nodes, the minimized energy function of an RBM can be approximated arbitrarily well

through a tractable Markov chain Monte Carlo process of alternatively resampling the values of both

hidden and visible nodes in an iterative process known as Gibbs Sampling [3]. As real-valued RBMs and

the necessary computational methods for minimizing intractible partition functions are outside of the

scope of this work, the reader is directed towards [4] and [3] for an introduction to the Gibbs Sampling

process and its use in training RBMs.

A standard use of the RBM structure interprets visible nodes as corresponding with training data

while the hidden layer would express a level of abstraction corresponding to some shared feature of el-

ements of the input data. Once trained, the architecture will represent a joint probability distribution

over a potentially incomplete data set and can then fill in the data set by sampling from the probability

distribution [4].

This application has gained attention in recent years when used with the Netflix data set to predict

user’s movie ratings better than Netflix’s own algorithm [12]. This application created visible nodes whose

values represented a user’s ratings for movies, both known and unknown, and hidden nodes which would

represent hidden features shared by movies (inclusion in certain genres, sharing directors or actors, etc.).

The algorithm could then predict the user’s ratings for unrated movies, filling in the values of missing

data points in the input set.

§ 1.2.2 Deep Belief Networks

A Deep Belief Net (DBN) is a neural network architecture in which multiple RBMs are stacked onto

one another such that the hidden nodes of one RBM act as the visible nodes of the next. While DBNs

do suffer from being more computationally complex and their conditional probabilities may be more

3



difficult to compute exactly, they benefit from being able to leverage the multiple levels of RBMs in order

to model the data at higher levels of abstraction [14]. This makes this structure particularly effective and

robust in classification problems, in which it can leverage ontological classification information which

can even be transfered between networks [7], [17]. This ontological approach allows for great modularity

in the application of these networks and an ability to benefit from prior training for a range of problems,

rather than needing to fully retrain each time the problem is adjusted. It is therefore the author’s hope

that a proof of concept for a faithful representation of propositional logic in a single RBM layer could

prompt work with deeper networks, potentially representing logics with a higher potential for abstraction

and expression.

§ 1.2.3 Knowledge Representation in RBMs and DBNs

It has been shown in [16] that a knowledge base expressed in propositional logic, when decomposed

into a ‘Strict Disjunctive Normal Form’ (SDNF) in which at most one conjunctive clause holds given

an assignment, can be associated with an RBM whose visible nodes correspond to the literals of the

knowledge base, whose hidden nodes correspond to the clauses of the SDNF, and whose energy function

is determined by the SDNF. The states of the RBM which minimze the energy function are shown to

correspond to valuations which will satisfy the knowledge base if it is consistent or provide a maximum

satisfiability in the case of weighted logics. It has further been shown that this process can be implemented

in reverse in a DBN, isolating a single RBM layer and reverse engineering a logical expression which

represents the nodal relationships in said layer and allowing for a process of knowledge extraction from

the DBN [14].

The author of [16] points out that while SDNF is more complex and demanding to compute than the

normal DNF, which is already quite expensive, this process is efficient for logical implications. As many

knowledge bases are already presented in the form of facts and logical implication rules, there is promise

that this method could be tractable for real-world knowledge bases. Further, the number of nodes in the

RBM associated with a logical implication grows linearly with the number of literals in the implication,

so the entire process, including conversion to SDNF, representation as RBM, and Gibbs Sampling to

train the RBM, should be tractably efficient in the case of real-world knowledge bases.
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§ 1.3 Summary of This Work

In this work, we explore and expand the method for representing propositional statements in RBMs

referenced in Sect. 1.2.3.

In Chapter 2, we reproduce the central theorems that allow for the conversion of a sentence into an

RBM. We then explore a number of logical properties relevant for deduction in order to ensure that this

formalism remains faithful to these properties.

In Chapter 3, we expand the original formalism to encode the three-valued logics Kleene’s Strong

Logic of Indeterminacy, K3 , and Priest’s Logic of Paradox, LP . We again analyze the logical properties

and find that they hold as expected.

Given the loss of many desirable deductive properties when one embraces LP , in Chapter 4, we

further expand the formalism to represent Priest’s Minimally Inconsistent Logic of Paradox, LPm . This

extension’s restoration of the deductives properties enables one to perform paraconsistent inference within

a statistical connectionist network.

Table 1.1 briefly summarizes the properties which are explored and their status in each of the relevant

logics, both as we expect them to hold from their original presentation and as they hold under the RBM

formalism.
1

Table 1.1: The status of each property explored in this paper for each of the relevant logics.

Properties in the Relevant Logics

Property

Propositional K3 LP LPm

Expect RBM Expect RBM Expect RBM Expect RBM

Transitivity ✓ ✓ ✓ ✓ × × ✓ ✓
Ex Falso Quodlibet ✓ ∼ ✓ ∼ × × × ×

Disjunctive Syllogism ✓ ✓ ✓ ✓ × × ✓ ✓
Resolution ✓ ✓ ✓ ✓ × × ✓ ✓

Resolution Refutation ✓ ✓ ✓ ✓ × × ✓ ✓

1
The marking ‘∼’ indicates that the property holds in a degenerate but philosophically similar sense. For further discussion,

see Sect. 2.4.2

5



CHAPTER 2

PROPOSITIONAL LOGIC

§ 2.1 Chapter Introduction

We reproduce in Sect.2.2 - 2.3 the important defintions and theorems of Tran [16] with minor edits, which

will be the basis for our analysis of the RBM encoded propositional logic in Sect. 2.4. Readers who wish to

confirm the validity of these theorems are directed towards the proofs contained in the referenced source

material.

§ 2.2 Strict Disjunctive Normal Form

We establish some preliminary definitions.

Definition 2.2.1. A conjunctive clause is a conjunction of literals, i.e., a sentence ψ such that:

ψ = x1 ∧ . . . ∧ xn (2.2.1)

Definition 2.2.2. [11] A sentenceψ is in disjunctive normal form (DNF) if it is a disjunction of conjunctive

clauses:

ψ = (xa ∧ . . . ∧ xb) ∨ . . . ∨ (xy ∧ . . . ∧ xz) . (2.2.2)

Definition 2.2.3. [16]

• A “strict DNF" (SDNF) is a DNF where at most one single conjunctive clause is True at a time.

• A “full DNF" is a DNF where each variable must appear at least once in every conjunctive clause.

6



Tran claims that any propositional well-formed formula can be presented as a full DNF which is also

an SDNF and further provides a proof of and process for converting a general logical implication into this

form.

Theorem 2.2.4. [16] A logical implication y ←
∧

t∈ST

xt ∧
∧

k∈SK

¬xk where ST , SK respectively are the sets

of positive and negative propositions’ indices, can be represented as an SDNF having the form:

(
y ∧

∧
t∈ST

xt ∧
∧

k∈SK

¬xk

)
∨

∨
p∈ST∪SK

 ∧
t∈ST .\p

xt ∧
∧

k∈SK .\p

¬xk ∧ x′p


where S.\p denotes a set S where p has been removed, and x′p ≡ ¬xp if p ∈ ST else x′p ≡ xp.

§ 2.3 Equivalence of an SDNF and an RBM

In order to represent some WFF φ as an RBM, we must first define what will be considered to be an

equivalence between the two structures:

Definition 2.3.1. [16] A WFF φ is equivalent to an RBMN if and only if for any truth assignment over

the visible nodes x, sφ (x) = −AErank (x) + B, where sφ (x) ∈ {0, 1} is the truth value of φ given x

with True ≡ 1 and False ≡ 0; A > 0 and B are constants; Erank (x) = minhE (x,h) is the energy

ranking function ofN minimised over all hidden units.

Definition 2.3.2. We define preferred valuations of an RBMN = (X,H,W,E) to be any truth assign-

ment x0 such that:

min
h
E (x0,h) = min

x,h
E (x,h) . (2.3.3)

These valuations are those which minimize the energy functionE over all node values.

We can rely on the existence of a preferred valuation for any RBM with fixed weightsW and energy

function E since minx,hE (x,h) only has a finite set of input states—both the number of nodes and

the possible values for each of these nodes are finite. As such, we can identify some non-empty set of

7



input valuationsxi which result in the minimized value. This non-empty set is exactly the set of preferred

valuations.

One can see from the proof of Theorem 1 in Tran [16] that we can identify a form for the energy

function such that it is minimized to a value of 0.0whenx is not a model of the sentenceφ and minimized

to a chosen value−ϵ if and only if x is a model of the sentence φ.

Definition 2.3.3. A truth assignment x is called a model of the sentence φ if and only if the truth value of

φ given x, sφ (x) is equal to one. We say that a model x of φ satisfies φ, or symbolically ⊨x φ.

We will see that A = 1
ϵ

and B = 0 satisfy this mapping for the propositional case, i.e., models will

map to 1 and non-models will map to 0. When we expand into the minimally inconsistent paraconsistent

cases, we will employ the value ofB to correct for the penalty imposed on inconsistent models.

We can naturally extend the idea of a model to a set of sentences, which we will call a knowledge base:

Definition 2.3.4. A truth assignment x satisfies a set of sentencesK if and only if x satisfies all φ ∈ K.

We further note that ⊨x K if and only if ⊨x

∧
φ∈K φ. As such, there is an equivalence between any

set of sentences and a single conjunctive sentences which represents it, and we can therefore encode any

knowledge baseK into a single RBM by encoding this conjunction.

We now show that, given some WFFφ, it is possible to generate a Symmetric Connectionist Network

(SCN)NSCN = (X,H,W ) and energy functionE which will satisfy the definition of equivalence with

φ. Combining these two generative processes, we will have a process for converting any formula into an

RBMN = (X,H,W,E).

Lemma 2.3.5. [16] LetX,H be a set of visible and hidden nodes, respectively. Any SDNF

φ ≡
∨

j

( ∧
t∈STj

xt ∧
∧

k∈SKj

¬xk

)
can be mapped onto an energy function

E = −
∑
j

∏
t∈STj

xt
∏

k∈SKj

(1− xk)

8



whereSTj
andSKj

are respectively the set ofTj indices of positive literals and the set ofKj indices of negative

literals.

We are now prepared to convert any formula φ into an RBM using its SDNF.

Theorem 2.3.6. [16] Any SDNF φ ≡
∨

j

( ∧
t∈STj

xt ∧
∧

k∈SKj

¬xk

)
can be mapped onto an equivalent

RBM with energy function

E = −
∑
j

hj

∑
t∈STj

xt −
∑

k∈SKj

xk − Tj + ϵ

 ,

where 0 < ϵ < 1 and STj
and SKj

are respectively the set of Tj indices of positive literals and the set ofKj

indices of negative literals.

In particular, we can now present the core result that the logical implication studied above can be

represented by an RBM.

Theorem 2.3.7. [16] A logical implication y ←
∧

t∈ST

xt ∧
∧

k∈SK

¬xk can be represented by an RBM with

the energy function:

E = −hy

(∑
t∈ST

xt −
∑
k∈SK

xk + y − T − 1 + ϵ

)

−
∑

p∈ST∪SK

hp

( ∑
t∈ST .\p

xt −
∑

k∈SK .\p

xk + x′p − |ST .\p| − Ip∈SK
+ ϵ

)

where |ST .\p| is the cardinality of the set ST .\p; if p ∈ ST , then x′p = −xp and Ip∈SK
= 0, else x′p = xp

and Ip∈SK
= 1.

The reader should take a moment to convince themselves that the above theorem is a direct conse-

quence of Theorems 2.2.4 and 2.3.6. For a full proof of the above, please see Section 3 of Tran [16].
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§ 2.4 Analysis of RBM Logic Representation

Here, we extend the analysis of Tran [16] and explore some properties of classical propositional logic

semantics, namely Transitivity, Ex Falso Quodlibet (the “Principle of Explosion"), Disjunctive Syllogism,

Resolution, and a modified Resolution Refutation, to see whether they are faithfully recreated in toy

models of the method shown above, which we will henceforth refer to as RBM Logic. We will encode

preconditions for each of these properties into RBM Logic, analyze the mathematical behavior of their

energy functions, and interpret the logical consequences of the preferred valuations appropriately.

§ 2.4.1 Transitivity

The property of Transitivity is foundational to making chains of arguments beginning with premises and

inferring towards conclusions. With respect to material implication→, Transitivity is defined:

Definition 2.4.1. The logical implication→ is said to be transitive if and only if:

K ⊨ (P→Q) ∧ (Q→R)⇒ K ⊨ P→R

for any knowledge baseK and sentences P ,Q, andR. This rule can be expressed syntactically as

P→Q, Q→R

P→R

It can be shown that when represented in RBM Logic, the property of Transitivity for logical impli-

cation does hold.

Theorem 2.4.2. When two logical implications are encoded into RBM Logic using Theorem 2.3.6, the

defined RBM and corresponding energy function behave such that the property of Transitivity holds.

Justification. First, we will define ourK to prime the system for Transitivity.

K ≡ (P→Q) ∧ (Q→R) (2.4.4)

10



We now must show that, using the RBM energy function, any model ofK is also a model of P→R.

First, we convert (2.4.4) to SDNF:

K ≡ (P ∧Q ∧R) ∨ (¬P ∧Q ∧R) ∨ (¬P ∧ ¬Q) (2.4.5)

Using Theorem 2.3.6 and defining ϵ = 0.51
, we are able to define an RBM and energy function from

(2.4.5):

E = −h1 (P +Q+R− 2.5)− h2 (−P +Q+R− 1.5)− h3 (−P −Q+ 0.5) (2.4.6)

We note here that we make use of the more general Theorem 2.3.6 rather than the more complex

2.3.7, which does deal explicitly with logical implications. This choice has been made primarily for a

consistent application of 2.3.6 throughout, which is more naturally employed in the remainder of our

proofs. It is expected that a simple summation of implication energy functions should serve to represent

the conjunction of implications in a knowledge base, but further analysis is desired to confirm this.

We now consider the truth value assignments xi which minimize (2.4.6). We reiterate that we have

restricted ourselves to the discrete case in this work, i.e. non-real valued logics. We conjecture that this

property (and others explored in this way) can be shown to hold in real-valued cases as well, but that there

may be more restrictions on the appropriate value of ϵ. For further work exploring the application of

RBMs and DBNs to real-valued logics and weighted knowledge bases, see [14],[15] and [16].

In Table 2.1, we express the energy functions of each possible truth value assignment xi. This cor-

responds to setting each of the visible nodes of the RBM to a fixed value, and we then assign values for

each hj such that the energy function for that valuation is minimized. In practice, the range of each of

these functions is a subset of the range of values for the energy function (2.4.6) that will be minimized

by sampling for both the hidden and visible node values through Gibbs Sampling. Presenting the energy

1
We will use this value for ϵ implicitly throughout this work. Any value 0 < ϵ < 1 will be unable to change the results of

our machine by swapping a preferred valuation to a non-preferred valuation or vice versa, so we fix ϵ = 0.5 throughout for

ease of calculation.
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Table 2.1: The Transitivity energy function (2.4.6) for each valuation xi.

Transitivity Energy Function

xi P Q R Energy Function Minimized Model Transitivity

Energy ofK (P→R)
x1 0 0 0 2.5h1 + 1.5h2 − 0.5h3 −0.5 Yes Yes
x2 0 0 1 1.5h1 + 0.5h2 − 0.5h3 −0.5 Yes Yes
x3 0 1 0 1.5h1 + 0.5h2 + 0.5h3 0.0 No Yes
x4 0 1 1 0.5h1 − 0.5h2 + 0.5h3 −0.5 Yes Yes
x5 1 0 0 1.5h1 + 2.5h2 + 0.5h3 0.0 No No

x6 1 0 1 0.5h1 + 1.5h2 + 0.5h3 0.0 No Yes
x7 1 1 0 0.5h1 + 1.5h2 + 1.5h3 0.0 No No

x8 1 1 1 −0.5h1 + 0.5h2 + 1.5h3 −0.5 Yes Yes

functions for fixed assignments xi allows us to explore more thoroughly the behaviors of this method

with respect to possible valuations, while still being able to identify the models associated with global

minima.

Once we identify the set of valuations which minimize to the lowest energy values, the method claims

that we have identified the set of models ofK. In order to prove our theorem, we must show that Transi-

tivity holds in each of these identified models ofK, i.e. P→R.

Observing Table 2.1, we see that the truth assignments x1, x2, x4, and x8 all have a minimized energy

function value of −0.5, the lowest of any assignments (note also that this value is −ϵ). Thus, these

assignments would be preferred in the Gibbs Sampling minimization training process for the RBM. We

also see that these four assignments are the only assignments which are models ofK, so the minimization

process has properly isolated exactly those truth assignments which satisfyK. Finally, we note that for

each of these four assignments Transitivity holds, as the sentenceP→R is semantically entailed. We have

therefore shown through the RBM energy function method thatK ⊨ (P→Q) ∧ (Q→R) ⇒ K ⊨

P→R. ■

§ 2.4.2 Ex Falso Quodlibet

The property Ex Falso Quodlibet, also known as the “Principle of Explosion", states that from a contra-

diction, anything can be derived. Formally:
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Definition 2.4.3 (Ex Falso Quodlibet). The rule of Ex Falso Quodlibet holds in a logic if and only if:

K ⊨ (P ∧ ¬P )⇒ K ⊨ Q

for any knowledge baseK and sentences P andQ. This rule can be expressed syntactically as

P, ¬P
Q

Theorem 2.4.4. When a contradiction is encoded into RBM Logic, the formalism will degenerate into

triviality, identifying all possible valuations as preferred valuations, yet none will be models.

Justification. We first define a contradictory knowledge base:

K ≡ P ∧ ¬P ∧R ∧ (Q ∨ ¬Q) . (2.4.7)

We include the literal R to explore the systems response to literals of our knowledge base well-founded

despite the contradiction. We include the tautologyQ ∨ ¬Q to explicitly includeQ as literal of concern

and a visible node in our RBM in order to analyze the system’s response to literals with an otherwise

unestablished truth value.

We now express (2.4.7) in SDNF:

K ≡ (P ∧ ¬P ∧R ∧Q) ∨ (P ∧ ¬P ∧R ∧ ¬Q) (2.4.8)

and define our energy function:

E = −h1 (P − P +R +Q− 2.5)− h2 (P − P +R−Q− 1.5) .

As we can see, each clause of the SDNF in which the contradiction holds has the expression P − P

included. These terms will consistently cancel each other out, and our energy function can therefore be
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simplified to:

E = −h1 (R +Q− 2.5)− h2 (R−Q− 1.5) . (2.4.9)

We now consider the truth value assignments xi which minimize (2.4.9). Note that because P and

−P have cancelled out of our energy function, the only relevant variable assignments are onQ andR.

Table 2.2: The Ex Falso energy function (2.4.9) for each valuation xi.

Ex Falso Quodlibet Energy Function

xi Q R Energy Minimized Model Ex Falso
Function Energy ofK (Q)

x1 0 0 2.5h1 + 1.5h2 0.0 No No

x2 0 1 1.5h1 + 0.5h2 0.0 No No

x3 1 0 1.5h1 + 2.5h2 0.0 No Yes
x4 1 1 0.5h1 + 1.5h2 0.0 No Yes

Observing Table 2.2, we note that any valuations overQ andRwill provide a minimized energy value

of 0.0, i.e. all valuations are preferred valuations, yet none are models. By our standard approach, viz.,

identifying the models of a knowledge base and checking that the property holds in every model, the

property vacuously holds (as there are no models). However, one must also acknowledge that this analysis

is founded upon the assumption that both P and ¬P must be encoded into our knowledge base. Since

the node xi associated with P can only have a value of 0 or 1, this case is prima facie non-sensical. We

therefore interpret these results as the RBM formalism degerating into triviality in the case of contradictory

assertion. ■

We note that while the explicit property of Ex Falso does not hold, i.e., one cannot derive any propo-

sition that they wish from a contradiction, the philosophical flavor of the property remains, in that the

entire logical structure is reduced to trivial non-sense, preventing any form of satisfaction or inference.

One could even argue that this method is preferable to the classical case of contradiction, in that the

association of the proposition P with a “physical” node that must have a set value prevents the possi-

bility of P ∧ ¬P holding not just in a syntactic sense, but in something akin to a semantic sense. The

node cannot hold both values at once, and we conjecture that at best, the node would oscillate between

values, preventing the machine from ever stabilizing into a minimal state. This structure seems then to
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prefer consistency above all else, preventing every valuation from being a model, rather than allowing any

proposition to be derived.

We will explore in Ch. 3 an extension of this formalism that enables one to robustly handle the case

of contradictory assertions.

§ 2.4.3 Disjunctive Syllogism

An important rule of inference used in classical logic is that of Disjunctive Syllogism.

Definition 2.4.5 (Disjunctive Syllogism). The rule of Disjunctive Syllogism holds in a logic if and only if

K ⊨ (P ∨Q) ∧ ¬P ⇒ K ⊨ Q

for any knowledge baseK and sentences P andQ. This rule can be expressed syntactically as

(P ∨Q) , ¬P
Q

.

Theorem 2.4.6. Disjunctive Syllogism holds in RBM Logic.

Justification. We begin by defining a knowledge base

K ≡ (P ∨Q) ∧ ¬P

and converting it into SDNF

K ≡ (P ∧ ¬P ) ∨ (Q ∧ ¬P ) . (2.4.10)

Using Theorem 2.3.6, we create an energy function from (2.4.10)

E = −h1 (P − P − 0.5)− h2 (Q− P − 0.5)
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and cancel out P − P to get

E = −h1 (−0.5)− h2 (Q− P − 0.5) . (2.4.11)

We now consider possible truth value assignments xi and identify the valuations which minimize (2.4.11).

Table 2.3: The Disjunctive Syllogism energy function (2.4.11) for each valuation xi.

Disjunctive Syllogism Energy Function

xi P Q Energy Minimized Model Disjunctive

Function Energy ofK Syllogism (Q)
x1 0 0 0.5h1 + 0.5h2 0.0 No No

x2 0 1 0.5h1 − 0.5h2 −0.5 Yes Yes
x3 1 0 0.5h1 + 1.5h2 0.0 No No

x4 1 1 0.5h1 + 0.5h2 0.0 No Yes

Observing Table 2.3, we see that x2 is the only valuation with minimial energy, and it is both a model

ofK and assignsQ a value of True, i.e. Disjunctive Syllogism holds. ■

§ 2.4.4 Resolution

One of the central tools of logic programming is the method of Resolution, which is a process of elimi-

nating complementary literals from conjoined disjunctive clauses through Disjunctive Syllogism.

Definition 2.4.7. [11] The generalized Resolution rule can be stated as

l1 ∨ . . . ∨ lk, m1 ∨ . . . ∨mn

l1 ∨ . . . ∨ li−1 ∨ li+1 ∨ . . . ∨ lk ∨m1 ∨ . . . ∨mj−1 ∨mj+1 ∨ . . . ∨mn

, (2.4.12)

where li andmj are complementary literals, i.e. li ≡ ¬mj .

Theorem 2.4.8. [11] The generalized rule of Resolution holds in RBM Logic for resolvents of the form

(P ∨Q) ∧ (¬P ∨R). That is:

K ⊨ (P ∨Q) ∧ (¬P ∨R)⇒ K ⊨ (Q ∨R) (2.4.13)

16



Justification. For compactness and simplicity’s sake, we only show this for short resolvents, as this can be

expanded to the generalized rule.

We begin by defining a knowledge base on which to test the validity of the Resolution rule

K ≡ (P ∨Q) ∧ (¬P ∨R) ,

and express it in SDNF:

K ≡ (¬P ∧Q ∧ ¬R) ∨ (¬P ∧Q ∧R) ∨ (P ∧ ¬Q ∧R) ∨ (P ∧Q ∧R) . (2.4.14)

Using Theorem 2.3.6, we define an energy function to represent (2.4.14):

E = −h1 (−P +Q−R− 0.5)− h2 (−P +Q+R− 1.5)

− h3 (P −Q+R− 1.5)− h4 (P +Q+R− 2.5) (2.4.15)

and identify the valuations xi which minimize (2.4.15).

Table 2.4: The Resolution energy function (2.4.15) for each valuation xi.

Resolution Energy Function

xi P Q R Energy Minimized Model Resolution

Function Energy ofK (Q ∨R)
x1 0 0 0 0.5h1 + 1.5h2 + 1.5h3 + 2.5h4 0.0 No No

x2 0 0 1 1.5h1 + 0.5h2 + 0.5h3 + 1.5h4 0.0 No Yes
x3 0 1 0 −0.5h1 + 0.5h2 + 2.5h3 + 1.5h4 −0.5 Yes Yes
x4 0 1 1 0.5h1 − 0.5h2 + 1.5h3 + 0.5h4 −0.5 Yes Yes
x5 1 0 0 1.5h1 + 2.5h2 + 0.5h3 + 1.5h4 0.0 No No

x6 1 0 1 2.5h1 + 1.5h2 − 0.5h3 + 0.5h4 −0.5 Yes Yes
x7 1 1 0 0.5h1 + 1.5h2 + 1.5h3 + 0.5h4 0.0 No Yes
x8 1 1 1 1.5h1 + 0.5h2 + 0.5h3 − 0.5h4 −0.5 Yes Yes

Observing Table 2.4, we see that x3, x4, x6, and x8 are the preferred valuations with minimized

energy value−0.5. We also note that each of these valuations is a model ofK and that the generalized

Resolution rule holds for each one. ■
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§ 2.4.5 Resolution Refutation

A standard method of checking for entailment or consistency in logic programming is Resolution Refuta-

tion. This process takes a knowledge baseK and a queryQ, creates a new knowledge baseK′ ≡ K∪{¬Q}

and repeatedly applies Resolution to the sentences of the new knowledge baseK′
. If the empty clause is

derived through this process, thenK′
is shown to be inconsistent, and thusK ⊨ Q is proven. Because this

refutation can be made for any knowledge base and query, Resolution is considered a refutation-complete

inference technique [1].

We now consider a similar process in the RBM Logic. We first define our idea of Resolution Refutation

within this method.

Definition 2.4.9. Resolution Refutation in the RBM Logic will be defined as the process of adding the

queryQ to the knowledge baseK, then creating and minimizing the resulting energy function based upon

K ∪ {Q}.

Notice that this does differ from the standard Resolution Refutation process in that Q is added to

K, rather than ¬Q. This convention of definition allows the following resulting theorem to be more

intuitive.

Theorem 2.4.10. Given a knowledge baseK and a queryQ, the RBM Logic will prefer no valuations if

K ∪ {Q} is inconsistent and will prefer models in whichQ ≡xi
True ifK ∪ {Q} is consistent.

Justification.

Claim 1: The RBM Logic will prefer no models ifK ∪ {Q} is inconsistent

Subproof. We define a simple knowledge base:

K ≡ P ∧ (P → Q)

and inconsistent query:

¬Q.
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We add our query to our knowledge base and get

K′ ≡ P ∧ (P → Q) ∧ ¬Q,

which we then convert into SDNF

K′ ≡ (P ∧ ¬P ∧ ¬Q) ∨ (P ∧Q ∧ ¬Q) . (2.4.16)

We note here that each of our conjunctive clauses contains an explicit contradiction, i.e. P ∧ ¬P and

Q ∧ ¬Q. As such, none of the clauses in (2.4.16) can actually be satisfied, as is to be expected in the

inconsistent case. Further, the SDNF ofK′
amounts to conjoining the query into each of our conjunctive

clauses in the SDNF ofK.

We now use (2.4.16) to define our energy function:

E = −h1 (P − P −Q− 1 + 0.5)− h2 (P +Q−Q− 2 + 0.5) ,

from which we cancel out contradictions and simplify to:

E = −h1 (−Q− 0.5)− h2 (P − 1.5) . (2.4.17)

We now consider the possible valuations xi and identify those which minimize the energy function

(2.4.17).

Table 2.5: The inconsistent Refutation energy function (2.4.17) for each valuation xi.

Inconsistent Refutation Energy Function

xi P Q Energy Minimized Model Model of

Function Energy ofK′ K
x1 0 0 0.5h1 + 1.5h2 0.0 No No

x2 0 1 1.5h1 + 1.5h2 0.0 No No

x3 1 0 0.5h1 + 0.5h2 0.0 No No

x4 1 1 1.5h1 + 0.5h2 0.0 No Yes
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As we expected, there are no assignments which would serve as a model of K ∪ {Q}. We can also

see from Table 2.5 that all assignments have the same minimized energy, and as such none are selected as

preferred assignments. □

Claim 2: The RBM Logic will prefer valuations xi in whichQ ≡xi
True ifK ∪ {Q} is consistent.

Subproof. We use the same knowledge base as before, but instead now offerQ as our query. Therefore,

K′ ≡ P ∧ (P → Q) ∧Q,

and when converted into SDNF:

K′ ≡ (P ∧ ¬P ∧Q) ∨ (P ∧Q ∧Q) . (2.4.18)

We now define our energy function to represent (2.4.18)

E = −h1 (P − P +Q− 2 + 0.5)− h2 (P +Q+Q− 3 + 0.5)

and simplify it to

E = −h1 (Q− 1.5)− h2 (P + 2Q− 2.5) . (2.4.19)

We now consider possible evaluations xi and identify those which minimize energy function (2.4.19).

Table 2.6: The consistent Refutation energy function (2.4.19) for each valuation xi

Consistent Refutation Energy Function

xi P Q Energy Minimized Model Model of

Function Energy ofK′ K
x1 0 0 1.5h1 + 2.5h2 0.0 No No

x2 0 1 0.5h1 + 0.5h2 0.0 No No

x3 1 0 1.5h1 + 1.5h2 0.0 No No

x4 1 1 0.5h1 − 0.5h2 −0.5 Yes Yes

We see then that x4 is the valuation with minimum energy and the only valuation which serves as a

model forK ∪ {Q}. □
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■

§ 2.5 Chapter Conclusion

We have therefore seen that each of the studied properties either hold exactly as they would be expected

to hold in standard propositional logic, or (as in the case of Resolution Refutation) hold in a slightly

modified but similar fashion.

Study of these properties has also yielded insight into the function of the RBM formalism. In partic-

ular, in the case of contradictions, one may note that the inclusion of a complementary pair of literals in a

single conjunctive clause of the SDNF leads to the associated hidden node never activating. In the energy

function term for such an hj , the canceling out of a positive literal xi, which initially contributed to an

increased |Tj|, forces the coefficient of hj to remain negative regardless of any possible binary assignment

xi. As such, hj must always receive a value of 0 in order to minimize the energy function. Since this value

never varies, its assignment will have no influence on the value of the energy function, and no valuation

can be preferred by this term. In the case of a necessarily contradictory knowledge base, every potential

model forKmust include a pair of these contradictory literals, and the result is that every term associated

with some hj will contain the complementary pair, forcing hj = 0 for all j. In this situation, no truth

assignment will be preferred, and none could be considered a viable model.

The inability to robustly respond to contradictory assertions is undesirable when one considers repre-

senting real-world knowledge bases, and we will focus in the coming chapters on extending the capabilities

of the formalism to address contradiction.
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CHAPTER 3

PARACONSISTENT LOGIC

§ 3.1 Chapter Introduction

While an encoding of propositional logic into a connectionist method is powerful, there have also been

many extensions of propositional logic which are also worth considering. One such extension is into three-

valued so-call paraconsistent logics. These logics seek to address issues that may arise within propositional

logic if one were to allow the possibility of contradictory values for a given sentence.

§ 3.2 Paraconsistent Logics

Recall our exploration of Ex Falso Quodlibet, “The Principle of Explosion.” If one were to come across

a situation in which they were applying propositional logic to a given domain and encounter a situation

in which their system derives both a sentence and its negation, suddenly every possibly sentence (and its

negation!) could become True . In practical applications, this is obviously far from ideal. The contradic-

tory values most likely speak to some error in the knowledge base or representation of the domain, rather

than that all of possibility is actively True .

The paraconsistent logics are a method of addressing exactly this sort of issue. The simplest approach

is to introduce a third truth value which corresponds neither with True nor False , but the status of this

value depends upon the system which is in use.

We establish our definiton of a logic and designated values.

Definition 3.2.1. A logic is a triple L = ⟨L, V,D⟩ where L is a langauge consisting of an alphabet and

formation rules (which leads to a set of well-formed formulasW of the language), V is a set of values which

can be assigned to the well-formed formulas of L by a valuation function ν : W → V , and D ⊆ V are
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the designated values. We say a well-formed formula φ ∈ W is satisfied by a valuation ν if and only if

ν (φ) ∈ D.

In the classical two-valued case, the set V = {True,False} and the set D = {True}, i.e., True is

the only value that can be used to satisfy any sentence. When we introduce new values v ∈ V , we must

determine whether or not they will also be inserted into our setD and count as designated values.

§ 3.2.1 K3

One way to understand a sentence that is assigned this additional value would be that the sentence is

neither True nor False . It would represent a gap in our knowledge such that we cannot confirm that

the sentence is either. This is the approach taken for the system K3, also known as Kleene’s Strong Logic

of Indeterminacy, which does not include the new valuation, which we will call Neither or N , in the

designated valuesD.

Definition 3.2.2. K3 is a three-valued logic in which a sentence s can have a valuation ν (s) ∈ {−1, 0, 1},

where ν (s) = −1 corresponds with “s is False”, ν (s) = 1 corresponds with “s is True”, and ν (s) = 0

corresponds with “s is Neither (True nor False).” In this logic, the designated valuesD = {True}.

Because the value Neither or N is not given the designated status, while contradictory values are

allowed to exist without resulting in the explosion of the entire system, a contradictory valuation is not

permitted for satisfaction of a sentence.

Because of this additional value, we must reconsider the truth tables for each of our standard logical

connectives and how they function under K3. To ease reading, we will use the notation that F = −1,

T = 1, andN = 0, as well as bolding the designated values for the connective.

Table 3.1: The negation connective in K3.

A ¬A
F T
N N
T F
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Table 3.2: The conjunction connective in K3.

A ∧B B
F N T

A
F F F F
N F N N
T F N T

Table 3.3: The disjunction connective in K3.

A ∨B B
F N T

A
F F N T
N N N T
T T T T

Table 3.4: The implication connective in K3.

A→ B
B

F N T

A
F T T T
N N N T
T F N T

§ 3.2.2 LP

A different approach to understanding a sentence that is assigned this additional value would be that the

sentence is bothTrue andFalse . It would represent a glut in our knowledge such that we can confirm that

the sentence is both. This is the approach taken for the system LP, or Graham Priest’s Logic of Paradox,

which does include the new valuation, which we will call Both orB, in the designated valuesD.

Definition 3.2.3. LP is a three-valued logic in which a sentence s can have a valuation ν (s) ∈ {−1, 0, 1},

where ν (s) = −1 corresponds with “s is False”, ν (s) = 1 corresponds with “s is True”, and ν (s) = 0

corresponds with “s is Both (True and False).” In this logic, the designated valuesD = {True,Both}.
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Because the value Both or B is given the designated status, contradictory values are allow to exist

without resulting in the explosion of the entire system, and a contradictory valuation is permitted for

satisfaction of a sentence.

We now reconsider the truth tables for each of our standard logical connectives and how they function

under LP. To ease reading, we again use the notation that F = −1, T = 1, andB = 0, and continue to

bold the designated valuations of each connective.

Table 3.5: The negation connective in LP.

A ¬A
F T
B B
T F

Table 3.6: The conjunction connective in LP.

A ∧B B
F B T

A
F F F F
B F B B
T F B T

Table 3.7: The disjunction connective in LP.

A ∨B B
F B T

A
F F B T
B B B T
T T T T

Table 3.8: The implication connective in LP.

A→ B
B

F B T

A
F T T T
B B B T
T F B T

We note that these tables are structurally identical to Tables 3.1-3.4 discussed for the logic K3 , noting

that the valueB is substituted for the valueN in each place. The difference between these logics is founded
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in whether or not the third value is designated and the consequences that this has on inference in either

system.

§ 3.3 Paraconsistent Logics in RBMs

We now turn our attention to encoding the two discussed paraconsistent logics into our RBM method

for representing logic. The core of our focus will be in modifying the energy function that is defined for

the network, in particular the valuation function that is used within that energy function and identifying

the proper SDNF in each context.

In general, K3 and LP are defined as predicate logics, including both predicates and quantifiers. The

encoding of these features into RBM remains an open question, and as such, we limit ourselves in this

thesis to the propositional logic analogues of the more general languages.

We will first address K3 , as it requires simpler modifications than the LP case. We will then use the

intuition gained in the simpler case to address LP .

§ 3.3.1 K3 in RBMs

In order to represent K3 in an RBM, we must expand the domain of our valuation function to include

the value Neither and ensure that literals with this value are not used to satisfy any sentences. Since the

only addition is the value Neither , which cannot be used to satisfy any of the disjuncts in the SDNF, we

simply must account for the presence of this new value when defining our energy function. We will do

this by passing the valuation of each atom through a function which assigns 1 to designated values and 0

to non-designated values.

K3 Strict Disjunctive Normal Form

In order to present a K3 sentence φ in SDNF, no change is needed from the propositional case. True

remains the only value which can satisfy a clause of the SDNF, and as such we have simply introduced

more ways in which the valuation can fail to satisfy the sentence. These do not need to be represented in

our SDNF form, and as such the SDNF of a sentence will be identical in the classical propositional logic

and in K3 .
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K3 Energy Function

We first recall the Heaviside Function:

Definition 3.3.1. The Heaviside Function is a functionH : R→ {0, 1} such that

H (x) :=


0 if x < 0

1 if x ≥ 0

(3.3.1)

and define a useful function which we shall refer to as the Dual Heaviside Function:

Definition 3.3.2. The Dual Heaviside Function is a functionH∗ : R→ {0, 1} such that

H∗ (x) :=


0 if x ≤ 0

1 if x > 0

. (3.3.2)

This Dual Heaviside Function has the property that H∗ (0) = 0, where H (0) = 1. We note

that this function has the property of mapping the valuations in K3 to their designated value status, i.e.,

H∗ (ν (x)) = 1 if and only if ν (x) = 1 or True .

We must now convert our SDNF representation of a K3 WFF φ into an energy function. In order to

do so, we now define the K3 Designated Value Function:

Definition 3.3.3. The Designated Values Function for a K3 valuation ν is a functionDK3
v : {−1, 0, 1} →

{0, 1} where:

DK3
v (x) :=


0 if ν (x) = −1 or ν (x) = 0

1 if ν (x) = 1

(3.3.3)
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This function has the property of mapping a sentence of K3 to its truth assignment’s status as a

designated value, i.e., whether it can be used to satisfy a model. We now show:

Lemma 3.3.4.

DK3
v (x) = H∗ (νK3 (x)) , (3.3.4)

where we use νK3 (x) to indicate the valuation of a formula x in K3 .

Proof. If we consider the K3 truth values νK3 (x) ∈ {−1, 0, 1} and apply the Dual Heaviside Function

to them, we see thatH∗ (νK3 (x)) = 1 if and only if x = True and equals 0 otherwise. ■

We recall our mapping of a sentence presented in SDNF to an RBM for the propositional logic case:

Theorem 2.3.6. [16] Any SDNF φ ≡
∨

j

( ∧
t∈STj

xt ∧
∧

k∈SKj

¬xk

)
can be mapped onto an equivalent

RBM with energy function

E = −
∑
j

hj

∑
t∈STj

xt −
∑

k∈SKj

xk − Tj + ϵ

 ,

where 0 < ϵ < 1 and STj
and SKj

are respectively the set of Tj indices of positive literals and the set ofKj

indices of negative literals.

Implicit in this definition of the energy function is that the summations

∑
t∈STj

xt and

∑
k∈SKj

xk

are over the values of each literal, i.e. ν (xt) and ν (xk).

In order to adjust this energy function so that it will continue to function in the K3 context, we must

transform this process of valuation to align with the designated values of K3 . Our Designated Values

Function, Def. 3.3.3, does just that.

We are now prepared to define our energy function for the K3 context.
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Theorem 3.3.6. Any K3 SDNFφ ≡
∨

j

( ∧
t∈STj

xt ∧
∧

k∈SKj

¬xk

)
can be mapped onto an equivalent RBM

with energy function

E = −
∑
j

hj

∑
t∈STj

DK3
v (xt)−

∑
k∈SKj

DK3
v (xk)− Tj + ϵ

 ,

where 0 < ϵ < 1 and STj
and SKj

are respectively the set of Tj indices of positive literals and the set of

Kj indices of negative literals.

By replacing the implicit valuation function ν with the Designated Values Function, we expand the

domain of values to include the tertiary Neither value and map it to the same value as False , putting the

two non-designated values on equal footing while leaving the True value to behave normally. Both non-

designated values will fail to satisfy the positive literals in

∑
t∈STj

DK3
v (xt), and the designated value will

fail to satisfy the negative literals in−
∑

k∈SKj
DK3

v (xk), acting against the satisfaction of the conjunctive

clause associated with node hj .

Some reflection should convince the reader that the proof of this theorem follows that given by Tran

[16] for the analogous Thm. 2.3.6. Notice, however, that the function sφ (x) is now defined as the

designated status of the sentence x, rather than the strict truth status.

One must also convince oneself that the notions of a model and a preferred valuation of a formula

carries over into the current context, since this is what allows the energy function analagous to that in

Lemma 2.3.5 to be defined here.

Rather than spell out all of the details of a proof here, we rather look at properties of the RBM model

of K3 in Sect. 3.4 and confirm these properties as evidence supporting the validity of this theorem.

§ 3.3.2 LP in RBMs

We now turn our attention to the LP case.
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LP Strict Disjunctive Normal Form

In order to represent LP in an RBM, we must take a dual approach to the one outlined in Sect. 3.3.1, i.e.,

atoms with the new value of Both should be permitted to satisfy any clauses and qualify the valuation as

a model. However, we must now put the tertiary valuation on an equal footing with the value True , as it

is also a designated value.

In the same spirit as Defn. 3.3.3, we therefore define the LP designated value function:

Definition 3.3.7. The Designated Values Function for an LP valuation ν is a function

DLP
v : {−1, 0, 1} → {0, 1} where:

DLP
v (x) :=


0 if ν (x) = −1

1 if ν (x) = 1 or ν (x) = 0

(3.3.5)

This function has the property of mapping a sentence of LP to its truth assignment’s status as a

designated value, i.e., whether it can be used to satisfy a model. We now show:

Lemma 3.3.8.

DLP
v (x) = H (νLP (x)) (3.3.6)

Proof. If we consider the LP truth values νLP (x) ∈ {−1, 0, 1} and apply the Heaviside Function to

them, we see thatH (νLP (x)) = 0 if and only if x = False and equals 1 otherwise. ■

We next extend the definition of SDNF naturally to the case of LP .

Definition 3.3.9. A “strict DNF" (SDNF) is a DNF where at most one single conjunctive clause has a

designated value at a time.

It is no longer sufficient for only one clause to simply be True , but rather only one clause can receive

a designated value. We conjecture that this extension to the LP case works as a general extension of SDNF
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that could be used to apply this formalism to any desired logic, providing other appropriate extensions

are made.

However, this extensions brings additional complications. Consider LP in relation to K3 . Both

logics introduce an additional valuation over the classical two-valued case, but in LP this additional value

is also designated. As such, while a valuation could have resulted in a conjunctive clause in an SDNF

being evaluated asNeither (and consequentially unsatisfied) in the K3 case without affecting that clause’s

satisfaction of the SDNF condition, in the LP case a conjunctive clause could receive the value Both ,

resulting in the satisfaction of an additional conjunct and thus violating the SDNF condition. Because

the SDNF condition is more restrictive on acceptable forms in the LP case than in our prior cases, special

care must be taken to represent a sentence in the LP SDNF. We now construct a formalism that will allow

this.

We claim that LP as defined lacks the expressive capability of presenting an arbitrary sentence in SDNF.

We explore an example to develop the reader’s intuition and highlight the expressive failings.

Consider the sentence Ψ = (P ∨Q). Ψ is in standard DNF, and we wish to present it in SDNF. We

must create an equivalent disjunction of conjunctive clauses that partitions models of Ψ such that any

model satisfies only one of the conjunctive clauses.

Consider the approach in the classical two-valued case. To begin constructing our SDNF, we propose

that SDNF (Ψ) have the form (P ∨ . . .), i.e., this first disjunct will be the (trivially conjunctive) clauseP ,

which captues all models of Ψ for which P = True . When we construct our next clause, we must find

a sentence that will be satisfied by models of Ψ but not by models of the first clause. So, the form of our

second clause will be (¬P ∧ . . .) to satisfy this condition. We then move on to satisfying Ψ by extending

this second clause to be (¬P ∧Q). This clause captures the remainder of the models of Ψ , so we have

constructed SDNF (Ψ) = (P ∨ (¬P ∧Q)), which can be read in English as ‘Either P is True , or P is

not True andQ is True .’

Now consider the same process in LP . We propose the same form of the SDNF, i.e. the first clause of

the sentence will be the clauseP , which captures all models ofΨ for whichP = True or Both , or where

P is satisfied. When constructing our second clause, the first conjunct must now capture the idea that
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‘P is not satisfied,’ rather than the classical ‘P is not True .’ In the classical case, ¬P sufficed; whenever

¬P was designated, P was non-designated. This is not the case in LP . Consider the case for which

ν (P ) = Both . ν (¬P ) = Both as well, so¬ no longer captures the necessary expression ‘is not satisfied’

or ‘is strictly False ’.

We conjecture that no combination of LP connectives can be used to express the sentiment that a

sentence is not satisfied, and LP is therefore incapable of expressing an arbitrary sentence in SDNF. We

therefore develop an extended language to handle this issue, and it is important to note that although this

approach is motivated by the previous conjecture, it does not depend on it being true.

Since we still wish to transform sentences of LP into SDNF so that they can be encoded using the RBM

formalism, we use the Heaviside function and its dual as inspiration to introduce additional connectives,

extending the language in such a way that we can generate an SDNF representation of sentences. Since we

have now extended the language LP by introducing additional connectives into the alphabet, the SDNFs

are formulas in the extended language, and valuations will also have to be extended accordingly. However,

the original LP WFFs will be logically equivalent to the sentences in the new language, which we will

refer to as LPS
, and this process of translation into a new language does not change the fact that it is the

original LP WFF (as well as the LPS
WFF!) which is encoded into the RBM

1
.

We now introduce our additional connectives.

Table 3.9: The Heaviside connective in LPS
.

A H (A)

F F
B T
T T

We allow these connectives to operate quite similarly to the unary negation connective ¬, noting

however, that while the negation connective does not require us to extend the valuations for our language,

the unary connectivesH andH∗
are in an extended language, and so require extension of the LP valuations.

1
Note that the necessity of this new language relies upon the truth of our conjecture that LP lacks the ability to express the

sentiment ‘is not satisfied’ or its negation ‘is strictly True .’ In the case that this conjecture is disproven, one can take the new

primitive connectives introduced in this section to simply be short-hand for the appropriate sentences which capture their

truth tables. As this would allow one to contain the SDNF within LP without translating into a new language and improve

the elegance of this formalism, disproof of the conjecture is most welcome.
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Table 3.10: The Dual Heaviside connective in LPS
.

A H∗ (A)

F F
B F
T T

Tables 3.9 and 3.10 should be read as rules for these extensions of valuations. The most crucial point is

that a sentence of the form H (P ) or H∗ (P ) will qualify as a literal and as such a conjunction of such

sentences will qualify as a conjunctive clause as defined in Defn. 2.2.1.

We return now to our goal of expressing the LP sentence Ψ = (P ∨Q) in SDNF. We have so far

constructed SDNF (Ψ) = (P ∨ (. . .)) and now must insert a sentence which captures ‘P is not satisfied’

or ‘P is strictly False ’ into our second clause. We propose the sentence¬H (P ), which is only satisfied

in the case that P = False ! This is the exact behavior we desired, and we can then continue to construct

our second clause by including the conjunct Q to satisfy Ψ , just as we did in the classical case. We have

therefore successfully constructed the sentence SDNF (Ψ) = (P ∨ (¬H (P ) ∧Q)). In English, ‘Either

P is satisfied, or P is not satisfied andQ is satisfied.’

Employing our new connectives, we now present an SDNF form for each of the connectives of LP

in order to give the reader an intuition about this process. We assume here that each of the sentencesA

and B are atomic, so these examples should not be taken as a definition of a general recursive method

for converting an arbitrary sentence to SDNF. As a result of the fact that it is easier for paraconsistent

sentences to satisfy the SDNF criterion than it is in the two-valued case that SDNF representations exist

for all paraconsistent sentences, as it turns out, a general algorithmic process—particularly an efficient

one—for converting paraconsistent sentences to SDNF remains an open problem. As such, we will

propose SDNF forms for the paraconsistent statements throughout and invite the reader to confirm their

validity for themselves
2
. The reader can check the claims made below against the truth tables in Sect. 3.2.2.

2
Recall that the SDNF for a given sentence is, in general, non-unique. As such, one could define other representations for

the connectives which would be logically equivalent.
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SDNF (A) = A (3.3.7)

SDNF (¬A) = ¬A (3.3.8)

SDNF (A ∧B) = A ∧B (3.3.9)

SDNF (A ∨B) = A ∨ (¬H (A) ∧B) (3.3.10)

SDNF (A→ B) = ¬A ∨ (H∗ (A) ∧B) (3.3.11)

We note useful identities:

H (¬x) = ¬H∗ (x) (3.3.12)

and

H∗ (¬x) = ¬H (x) , (3.3.13)

and require of our LP SDNFs that any negations be moved outside ofH orH∗
. This will allow for

an easier conversion to the energy function.

We will often seeH∗ (x) make an appearence in the the SDNF of sentences where a model requires

that a literal be assigned specifically either the valueBoth or the classicalTrue , rather than accepting either

equally. For example, consider the presence of the following in an SDNF:

H (x) ∧ ¬H∗ (x) .

One can check that this expression will only be satisfied by a valuation ν in the event that ν (x) =

Both .
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LP Energy Function

We now assume we have an SDNF representation of an LP WFFφ and convert it into an energy function.

We again recall our mapping of a sentence presented in SDNF to an RBM for the propositional logic

case:

Theorem 2.3.6. [16] Any SDNF φ ≡
∨

j

( ∧
t∈STj

xt ∧
∧

k∈SKj

¬xk

)
can be mapped onto an equivalent

RBM with energy function

E = −
∑
j

hj

∑
t∈STj

xt −
∑

k∈SKj

xk − Tj + ϵ

 ,

where 0 < ϵ < 1 and STj
and SKj

are respectively the set of Tj indices of positive literals and the set ofKj

indices of negative literals.

Just as before, we must transform this process of valuation to align with the designated values for

LP . We use our LP Designated Values Function, Def. 3.3.7, and are now prepared to define our energy

function for the LP context.

Theorem 3.3.11. Any LPS SDNF

φ ≡
∨
j

 ∧
t∈STj

xt ∧
∧

u∈SUj

H∗ (xu) ∧
∧

k∈SLj

¬H (xl) ∧
∧

l∈SKj

¬xk


can be mapped onto an equivalent RBM with energy function

E = −
∑
j

hj

∑
t∈STj

DLP
v (xt) +

∑
u∈SUj

DK3
v (xu)

−
∑

k∈SKj

DLP
v (xk)−

∑
l∈SLj

DK3
v (xl)− Tj − Uj + ϵ

 ,
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where 0 < ϵ < 1 and STj
and SKj

are respectively the set of Tj indices of positive literals and the set ofKj

indices of negative literals acted upon byH , and SUj
and SLj

are respectively the set of Uj indices of literals

acted upon byH∗ and the set of Lj indices of literals acted upon by¬H .

The reader may wish to convince themselves that the SDNF general form does in fact capture the full

range of expressions which may appear in the LPS
SDNF by seeing that other representations can be

reduced to those included in the general SDNF expression by employing the identities described above.

We have again expanded the domain of values to include the tertiaryBoth value and map it to the same

value as True , putting the two designated values on equal footing while leaving the False value to behave

normally. Both count towards satisfying the positive literals in

∑
t∈STj

DLP
v (xt) +

∑
u∈SUj

DK3
v (xu),

and both count against satisfying the negative literals in−
∑

k∈SKj
DLP

v (xk)−
∑

l∈SLj
DK3

v (xl).

We note that the use of the termDK3
v (x) may seem somewhat odd, as ν is an LP valuation, and we

are applying the K3 valuation function. Note, however, that the values in both LP and K3 are the set

{−1, 0, 1}. As such, the values for each logic are the domain of the designated value functions, so the

functionDK3
v (x) can be applied to values of LP ; it simply returns 1 only in the case that ν (x) = 1.

As in the previous section, we omit explicit proof of this theorem and instead will further explore and

confirm the validity of this defintion in Sect. 3.4.

§ 3.4 Analysis of Paraconsistent Logics in RBMs

We now explore our defined methods of converting paraconsistent logical sentences into RBM form in

order to ensure that the representations behave as expected for each logic. To do this, we will follow the

same process executed in Sect. 2.4, in which we represent the antecedents for various logical properties as

an RBM-encoded knowledge base and ensure that the consequences are as expected.

§ 3.4.1 K3

We first attend to the K3 case.
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Transitivity

We recall Defn. 2.4.1:

Definition 2.4.1. The logical implication→ is said to be transitive if and only if:

K ⊨ (P→Q) ∧ (Q→R)⇒ K ⊨ P→R

for any knowledge baseK and sentences P ,Q, andR. This rule can be expressed syntactically as

P→Q, Q→R

P→R

Theorem 3.4.2. When two K3 implications are encoded into an RBM, the property of Transitivity holds.

Justification. We will follow the same method used to prove Thm. 2.4.2, i.e., define a knowledge base with

two implications, represent it using an RBM and energy function, and show that for all models which

result in minimal energy, Transitivity holds.

We define our knowledge baseK:

K ≡ (P→Q) ∧ (Q→R) . (3.4.14)

We then convertK into SDNF:

K ≡ (P ∧Q ∧R) ∨ (¬P ∧Q ∧R) ∨ (¬P ∧ ¬Q) . (3.4.15)

Using our new K3 context energy function in Thm. 3.3.6, we transform (3.4.15) to an energy function.

E = −h1
(
DK3

v (P ) +DK3
v (Q) +DK3

v (R)− 2.5
)

− h2
(
−DK3

v (P ) +DK3
v (Q) +DK3

v (R)− 1.5
)

− h3
(
−DK3

v (P )−DK3
v (Q) + 0.5

)
(3.4.16)
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We now consider the truth value assignments xi which minimize (3.4.16) in Table 3.11.

Table 3.11: The K3 Transitivity energy function (3.4.16) for each valuation xi.

K3 Transitivity Energy Function

xi P Q R Energy Function Minimized Model Transitivity

Energy ofK (P→ R)
x1 −1 −1 −1 2.5h1 + 1.5h2 − 0.5h3 −0.5 Yes Yes
x2 −1 −1 0 2.5h1 + 1.5h2 − 0.5h3 −0.5 Yes Yes
x3 −1 −1 1 1.5h1 + 0.5h2 − 0.5h3 −0.5 Yes Yes
x4 −1 0 −1 2.5h1 + 1.5h2 − 0.5h3 −0.5 Yes Yes
x5 −1 0 0 2.5h1 + 1.5h2 − 0.5h3 −0.5 Yes Yes
x6 −1 0 1 1.5h1 + 0.5h2 − 0.5h3 −0.5 Yes Yes
x7 −1 1 −1 1.5h1 + 0.5h2 + 0.5h3 0.0 No Yes
x8 −1 1 0 1.5h1 + 0.5h2 + 0.5h3 0.0 No Yes
x9 −1 1 1 0.5h1 − 0.5h2 + 0.5h3 −0.5 Yes Yes
x10 0 −1 −1 2.5h1 + 1.5h2 − 0.5h3 −0.5 Yes Yes
x11 0 −1 0 2.5h1 + 1.5h2 − 0.5h3 −0.5 Yes Yes
x12 0 −1 1 1.5h1 + 0.5h2 − 0.5h3 −0.5 Yes Yes
x13 0 0 −1 2.5h1 + 1.5h2 − 0.5h3 −0.5 Yes Yes
x14 0 0 0 2.5h1 + 1.5h2 − 0.5h3 −0.5 Yes Yes
x15 0 0 1 1.5h1 + 0.5h2 − 0.5h3 −0.5 Yes Yes
x16 0 1 −1 1.5h1 + 0.5h2 + 0.5h3 0.0 No Yes
x17 0 1 0 1.5h1 + 0.5h2 + 0.5h3 0.0 No Yes
x18 0 1 1 0.5h1 − 0.5h2 + 0.5h3 −0.5 Yes Yes
x19 1 −1 −1 1.5h1 + 2.5h2 + 0.5h3 0.0 No No

x20 1 −1 0 1.5h1 + 2.5h2 + 0.5h3 0.0 No No

x21 1 −1 1 0.5h1 + 1.5h2 + 0.5h3 0.0 No Yes
x22 1 0 −1 1.5h1 + 2.5h2 + 0.5h3 0.0 No No

x23 1 0 0 1.5h1 + 2.5h2 + 0.5h3 0.0 No No

x24 1 0 1 0.5h1 + 1.5h2 + 0.5h3 0.0 No Yes
x25 1 1 −1 0.5h1 + 2.5h2 + 1.5h3 0.0 No No

x26 1 1 0 0.5h1 + 2.5h2 + 1.5h3 0.0 No No

x27 1 1 1 −0.5h1 + 0.5h2 + 1.5h3 −0.5 Yes Yes

Observing the possible valuations xi, we recognize that the set of valuations which minimize the

energy function (to −ϵ) is exactly the set of valuations which satisfy K. Further, this set is a subset of

those models for which (P→ R) holds. We have therefore shown that Transitivity holds in each of the

models identified by this method.

■

38



Ex Falso Quodlibet

We recall Defn. 2.4.3:

Definition 2.4.3. The rule of Ex Falso Quodlibet holds in a logic if and only if:

K ⊨ (P ∧ ¬P )⇒ K ⊨ Q

for any knowledge baseK and sentences P andQ. This rule can be expressed syntactically as

P, ¬P
Q

A motivation for the development of the K3 system was to be able to work with sentences that can

neither be proven True norFalse without reducing the system into trivial nonsense. It is crucial that our

method reproduce this quality as well by failing to satisfy Ex Falso as a rule.

Further, as K3 is inspired by the intuitionistic approach, one should expect that contradictory sen-

tences are never derived. As such, the system should not accept any positive, contradictory valuation as a

model. The value of the knowledge base could be at best underdetermined or Neither , and there would

therefore be no models.

Theorem 3.4.4. When a K3 knowledge base is encoded into an RBM, the formalism will degenerate into

triviality, identifying all possible valuations as preferred valuations, yet none will be models.

Justification. We must show that if contradictory literals P and ¬P are satisfied in the same knowledge

base, there will be no selected models of the knowledge base. We follow the same procedure from Thm.

2.4.4.

We first define a contradictory knowledge base:

K ≡ P ∧ ¬P ∧R. (3.4.17)

39



Because there exist no tautologies in the K3 system, we are unable to take our previous approach of

introducing a tautology to the knowledge base in order to include an otherwise undefined atom to our

RBM. While less elegant, one can instead introduce an additional visible node to the RBM which does

not factor into the value of the energy function. We will see that consequently the additional node is not

influenced by the contradiction into exemplifying Ex Falso Quodlibet. We are still able to include the atom

R to evaluate the entailment of non-contradictory subsets of the knowledge base while failing to entail

the knowledge base in total.

We convert (3.4.17) into SDNF:

K ≡ P ∧ ¬P ∧R, (3.4.18)

and then define our energy function:

E = −h1
(
DK3

v (P )−DK3
v (P ) +DK3

v (R)− 1.5
)
, (3.4.19)

which can be simplified to the representation:

E = −h1
(
DK3

v (R)− 1.5
)
. (3.4.20)

We now consider all possible truth valuations xi and identify those that minimize (3.4.20). As the

energy function is a function of only the atom R, much of this table will be redundant. However, this

redundancy reinforces that no possible valuations over the literals will satisfy the knowledge base.

Studying Table 3.12, we note that this is analgous to the behavior of the classical RBM to a contra-

diction studied in Sect. 2.4.2, i.e., all valuations are preferred yet none are models. We similarly interpret

these results as the formalism degenerating to triviality, while reiterating the formalism’s inability to en-

code the contradictory values a priori. While there is a tertiary value, it encodes that the sentence is

Neither True nor False , not Both .

■
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Table 3.12: The K3 Ex Falso energy function (3.4.20) for each valuation xi.

K3 Ex Falso Quodlibet Energy Function

xi P Q R Energy Function Minimized Model Ex Falso
Energy ofK (Q)

x1 −1 −1 −1 1.5h1 0.0 No No

x2 −1 −1 0 1.5h1 0.0 No No

x3 −1 −1 1 0.5h1 0.0 No No

x4 −1 0 −1 1.5h1 0.0 No No

x5 −1 0 0 1.5h1 0.0 No No

x6 −1 0 1 0.5h1 0.0 No No

x7 −1 1 −1 1.5h1 0.0 No Yes
x8 −1 1 0 1.5h1 0.0 No Yes
x9 −1 1 1 0.5h1 0.0 No Yes
x10 0 −1 −1 1.5h1 0.0 No No

x11 0 −1 0 1.5h1 0.0 No No

x12 0 −1 1 0.5h1 0.0 No No

x13 0 0 −1 1.5h1 0.0 No No

x14 0 0 0 1.5h1 0.0 No No

x15 0 0 1 0.5h1 0.0 No No

x16 0 1 −1 1.5h1 0.0 No Yes
x17 0 1 0 1.5h1 0.0 No Yes
x18 0 1 1 0.5h1 0.0 No Yes
x19 1 −1 −1 1.5h1 0.0 No No

x20 1 −1 0 1.5h1 0.0 No No

x21 1 −1 1 0.5h1 0.0 No No

x22 1 0 −1 1.5h1 0.0 No No

x23 1 0 0 1.5h1 0.0 No No

x24 1 0 1 0.5h1 0.0 No No

x25 1 1 −1 1.5h1 0.0 No Yes
x26 1 1 0 1.5h1 0.0 No Yes
x27 1 1 1 0.5h1 0.0 No Yes

Disjunctive Syllogism

We recall Defn. 2.4.5:

Definition 2.4.5. The rule of Disjunctive Syllogism holds in a logic if and only if

K ⊨ (P ∨Q) ∧ ¬P ⇒ K ⊨ Q
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for any knowledge baseK and sentences P andQ. This rule can be expressed syntactically as

(P ∨Q) , ¬P
Q

.

We note that by Kleene’s defintion of the disjunction in K3, Disjunctive Syllogism does hold, and we

seek now to show that this property does hold in our logic [6].

Theorem 3.4.6. When an K3 knowledge base is encoded into an RBM, Disjunctive Syllogism holds.

Justification. We must show that when both statements (P ∨Q) and¬P are satisfied in the same knowl-

edge base, the sentenceQ is also satisfied. We follow the same procedure from Thm. 2.4.6.

We first define a knowledge base to represent our situation:

K ≡ (P ∨Q) ∧ ¬P. (3.4.21)

We then express (3.4.21) in SDNF:

K ≡ (P ∧ ¬P ) ∨ (Q ∧ ¬P ) . (3.4.22)

and define our energy function:

E = −h1
(
DK3

v (P )−DK3
v (P )− 0.5

)
− h2

(
DK3

v (Q)−DK3
v (P )− 0.5

)
, (3.4.23)

which can be simplified to the expression:

E = −h1 (−0.5)− h2
(
DK3

v (Q)−DK3
v (P )− 0.5

)
, (3.4.24)

We now consider all possible truth valuations xi and identify those that minimize (3.4.24).
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Table 3.13: The K3 Disjunctive Syllogism energy function (3.4.24) for each valuation xi.

K3 Disjunctive Syllogism Energy Function

xi P Q Energy Function Minimized Model Disjunctive

Energy ofK Syllogism (Q)

x1 −1 −1 0.5h1 + 0.5h2 0.0 No No

x2 −1 0 0.5h1 + 0.5h2 0.0 No No

x3 −1 1 0.5h1 − 0.5h2 −0.5 Yes Yes
x4 0 −1 0.5h1 + 0.5h2 0.0 No No

x5 0 0 0.5h1 + 0.5h2 0.0 No No

x6 0 1 0.5h1 − 0.5h2 −0.5 Yes Yes
x7 1 −1 0.5h1 + 0.5h2 0.0 No No

x8 1 0 0.5h1 + 0.5h2 0.0 No No

x9 1 1 0.5h1 + 0.5h2 0.0 No Yes

Studying Table 3.13, we see that the subset of valuations xi which are selected by the minimization

process is the same subset of valuations which model the knowledge base. Futher, in each of these models,

Q is assigned the value True , and as such, Disjunctive Syllogism holds.

■

Resolution

We recall the defintion of Resolution.

Definition 2.4.7. [11] The generalized Resolution rule can be stated as

l1 ∨ . . . ∨ lk, m1 ∨ . . . ∨mn

l1 ∨ . . . ∨ li−1 ∨ li+1 ∨ . . . ∨ lk ∨m1 ∨ . . . ∨mj−1 ∨mj+1 ∨ . . . ∨mn

,

where li andmj are complementary literals, i.e. li ≡ ¬mj .

We again will prove that Resolution holds only in the case of short resolvents and claim that the

argument will generalize for longer resolvents as well.
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Theorem 3.4.8. In the K3 context of RBM Logic, the rule of Resolution holds for resolvents of the form

(P ∨Q) ∧ (¬P ∨R). That is:

K ⊨ (P ∨Q) ∧ (¬P ∨R)⇒ K ⊨ (Q ∨R)

Justification. We begin our proof by defining the relevant knowledge base,

K ≡ (P ∨Q) ∧ (¬P ∨R) , (3.4.25)

and presentingK in SDNF:

K ≡ (¬P ∧Q ∧ ¬R) ∨ (¬P ∧Q ∧R) ∨ (P ∧ ¬Q ∧R) ∨ (P ∧Q ∧R) . (3.4.26)

Using Thm. 3.3.6, we transform (3.4.26) into an energy function:

E = −h1
(
−DK3

v (P ) +DK3
v (Q)−DK3

v (R)− 0.5
)

− h2
(
−DK3

v (P ) +DK3
v (Q) +DK3

v (R)− 1.5
)

− h3
(
DK3

v (P )−DK3
v (Q) +DK3

v (R)− 1.5
)

− h4
(
DK3

v (P ) +DK3
v (Q) +DK3

v (R)− 2.5
)
. (3.4.27)

We now calculate the value of (3.4.27) for all possible valuations over the atoms.

From Table 3.14, we see that the valuations which minimize the energy are those which modelK, and

also that these models are a subset of those valuations which entailQ∨R, i.e., which entail Resolution. ■

§ 3.4.2 Resolution Refutation

We recall our defintion of Resolution Refutation in the context of RBM Logic.
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Table 3.14: The K3 Resolution energy function (3.4.27) for each valuation xi.

K3 Resolution Energy Function

xi P Q R Energy Function Minimized Model Resolution

Energy ofK (Q ∨R)

x1 −1 −1 −1 0.5h1 + 1.5h2 + 1.5h3 + 2.5h4 0.0 No No

x2 −1 −1 0 0.5h1 + 1.5h2 + 1.5h3 + 2.5h4 0.0 No No

x3 −1 −1 1 1.5h1 + 0.5h2 + 0.5h3 + 1.5h4 0.0 No Yes
x4 −1 0 −1 0.5h1 + 1.5h2 + 1.5h3 + 2.5h4 0.0 No No

x5 −1 0 0 0.5h1 + 1.5h2 + 1.5h3 + 2.5h4 0.0 No No

x6 −1 0 1 1.5h1 + 0.5h2 + 0.5h3 + 1.5h4 0.0 No Yes
x7 −1 1 −1 −0.5h1 + 0.5h2 + 2.5h3 + 1.5h4 −0.5 Yes Yes
x8 −1 1 0 −0.5h1 + 0.5h2 + 2.5h3 + 1.5h4 −0.5 Yes Yes
x9 −1 1 1 0.5h1 − 0.5h2 + 1.5h3 + 0.5h4 −0.5 Yes Yes
x10 0 −1 −1 0.5h1 + 1.5h2 + 1.5h3 + 2.5h4 0.0 No No

x11 0 −1 0 0.5h1 + 1.5h2 + 1.5h3 + 2.5h4 0.0 No No

x12 0 −1 1 1.5h1 + 0.5h2 + 0.5h3 + 1.5h4 0.0 No Yes
x13 0 0 −1 0.5h1 + 1.5h2 + 1.5h3 + 2.5h4 0.0 No No

x14 0 0 0 0.5h1 + 1.5h2 + 1.5h3 + 2.5h4 0.0 No No

x15 0 0 1 1.5h1 + 0.5h2 + 0.5h3 + 1.5h4 0.0 No Yes
x16 0 1 −1 −0.5h1 + 0.5h2 + 2.5h3 + 1.5h4 −0.5 Yes Yes
x17 0 1 0 −0.5h1 + 0.5h2 + 2.5h3 + 1.5h4 −0.5 Yes Yes
x18 0 1 1 0.5h1 − 0.5h2 + 1.5h3 + 0.5h4 −0.5 Yes Yes
x19 1 −1 −1 1.5h1 + 2.5h2 + 0.5h3 + 1.5h4 0.0 No No

x20 1 −1 0 1.5h1 + 2.5h2 + 0.5h3 + 1.5h4 0.0 No No

x21 1 −1 1 2.5h1 + 1.5h2 − 0.5h3 + 0.5h4 −0.5 Yes Yes
x22 1 0 −1 1.5h1 + 2.5h2 + 0.5h3 + 1.5h4 0.0 No No

x23 1 0 0 1.5h1 + 2.5h2 + 0.5h3 + 1.5h4 0.0 No No

x24 1 0 1 2.5h1 + 1.5h2 − 0.5h3 + 0.5h4 −0.5 Yes Yes
x25 1 1 −1 0.5h1 + 1.5h2 + 1.5h3 + 0.5h4 0.0 No Yes
x26 1 1 0 0.5h1 + 1.5h2 + 1.5h3 + 0.5h4 0.0 No Yes
x27 1 1 1 1.5h1 + 0.5h2 + 0.5h3 − 0.5h4 −0.5 Yes Yes

Definition 2.4.9. Resolution Refutation in the RBM Logic will be defined as the process of adding the

queryQ to the knowledge baseK, then creating and minimizing the resulting energy function based upon

K ∪ {Q}.

We now present our theorem and prove it using the same method as Thm. 2.4.10.
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Theorem 3.4.10. Given a knowledge baseK and a queryQ, the RBM Logic in the K3 context will prefer no

valuations ifK ∪ {Q} is inconsistent and will prefer models in whichQ ≡ True ifK ∪ {Q} is consistent.

Justification.

Claim 1: The RBM Logic will prefer no models ifK ∪ {Q} is inconsistent

Subproof. We recall the system’s response to an inconsistent knowledge base explored in Thm. 3.4.4, i.e.,

the system’s inability to select for any valuation as a model of the knowledge base. Invoking that property

here, we see that this claim is trivial. □

Claim 2: The RBM Logic will prefer valuations xi in whichQ ≡xi
True ifK ∪ {Q} is consistent.

Subproof. We define a simple knowledge base:

K ≡ P ∧ (P→Q) , (3.4.28)

and offer the sentenceQ as our query:

K′ ≡ P ∧ (P → Q) ∧Q,

We convertK′
into SDNF:

K′ ≡ (P ∧ ¬P ∧Q) ∨ (P ∧Q ∧Q) . (3.4.29)

and define our energy function to represent (3.4.29)

E = −h1
(
DK3

v (P )−DK3
v (P ) +DK3

v (Q)− 2 + 0.5
)

− h2
(
DK3

v (P ) +DK3
v (Q) +DK3

v (Q)− 3 + 0.5
)
,
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which simplifies to

E = −h1
(
DK3

v (Q)− 1.5
)
− h2

(
DK3

v (P ) + 2DK3
v (Q)− 2.5

)
. (3.4.30)

We now consider possible evaluations xi and identify those which minimize energy function (3.4.30).

We see then that x9 is the sole valuation which minimizes the energy and the only valuation which serves

Table 3.15: The K3 Resolution Refutation energy function (3.4.30) for each valuation xi.

K3 Resolution Refutation Energy Function

xi P Q Energy Function Minimized Model Model of

Energy ofK K ∪Q)

x1 −1 −1 1.5h1 + 2.5h2 0.0 No No

x2 −1 0 1.5h1 + 2.5h2 0.0 No No

x3 −1 1 0.5h1 + 0.5h2 0.0 No No

x4 0 −1 1.5h1 + 2.5h2 0.0 No No

x5 0 0 1.5h1 + 2.5h2 0.0 No No

x6 0 1 0.5h1 + 0.5h2 0.0 No No

x7 1 −1 1.5h1 + 1.5h2 0.0 No No

x8 1 0 1.5h1 + 1.5h2 0.0 No No

x9 1 1 0.5h1 − 0.5h2 −0.5 Yes Yes

as a model for bothK andK ∪ {Q}. □

■

§ 3.4.3 LP

We next attend to the LP case.

Transitivity

See Sect. 3.4.1 for the recollection of Transitivity.

Theorem 3.4.11. When two LP implications are encoded into an RBM, the property of Transitivity does

not hold.
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Proof. We will follow the same method used to prove Thm. 3.4.2, i.e., define a knowledge base with two

implications and represent it using an RBM and energy function . We then show that there exists some

model which results in minimal energy for which Transitivity fails to hold.

We define our knowledge base,

K ≡ (P→Q) ∧ (Q→R) . (3.4.31)

We then convertK into SDNF,

K ≡ (¬P ∧ ¬Q) ∨ (¬P ∧H∗ (Q) ∧R)

∨ (H∗ (P ) ∧Q ∧ ¬Q) ∨ (H∗ (P ) ∧Q ∧H∗ (Q) ∧R) . (3.4.32)

Using our new LP context energy function in Thm. 3.3.11, we transform (3.4.32) to an energy function.

E = −h1
(
−DK3

v (P )−DK3
v (Q) + 0.5

)
− h2

(
−DK3

v (P ) +DK3
v (Q) +DLP

v (R)− 1.5
)

− h3
(
DK3

v (P ) +DLP
v (Q)−DK3

v (Q)− 1.5
)

− h4
(
DK3

v (P ) +DLP
v (Q) +DK3

v (Q) +DLP
v (R)− 3.5

)
. (3.4.33)

We now consider the truth value assignments xi which minimize (3.4.33) in Table 3.16.

Observing the possible valuations xi, we direct the reader towards valuation x22. We note that the

minimzed energy is −0.5, which is both −ϵ and the minimal energy over all valuations. As such, it is

a preferred valuation and also a model of K. However, (P→ Q) fails to hold, and we have therefore

identified a model ofK for which Transitivity fails.

■
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Table 3.16: The LP Transitivity energy function (3.4.33) for each valuation xi.

LP Transitivity Energy Function

xi P Q R Energy Function Minimized Model Transitivity

Energy ofK (P→ R)
x1 −1 −1 −1 −0.5h1 + 1.5h2 + 1.5h3 + 3.5h4 −0.5 Yes Yes
x2 −1 −1 0 −0.5h1 + 0.5h2 + 1.5h3 + 2.5h4 −0.5 Yes Yes
x3 −1 −1 1 −0.5h1 + 0.5h2 + 1.5h3 + 2.5h4 −0.5 Yes Yes
x4 −1 0 −1 −0.5h1 + 1.5h2 + 0.5h3 + 2.5h4 −0.5 Yes Yes
x5 −1 0 0 −0.5h1 + 0.5h2 + 0.5h3 + 1.5h4 −0.5 Yes Yes
x6 −1 0 1 −0.5h1 + 0.5h2 + 0.5h3 + 1.5h4 −0.5 Yes Yes
x7 −1 1 −1 0.5h1 + 0.5h2 + 1.5h3 + 1.5h4 0.0 No Yes
x8 −1 1 0 0.5h1 − 0.5h2 + 1.5h3 + 0.5h4 −0.5 Yes Yes
x9 −1 1 1 0.5h1 − 0.5h2 + 1.5h3 + 0.5h4 −0.5 Yes Yes
x10 0 −1 −1 −0.5h1 + 1.5h2 + 1.5h3 + 3.5h4 −0.5 Yes Yes
x11 0 −1 0 −0.5h1 + 0.5h2 + 1.5h3 + 2.5h4 −0.5 Yes Yes
x12 0 −1 1 −0.5h1 + 0.5h2 + 1.5h3 + 2.5h4 −0.5 Yes Yes
x13 0 0 −1 −0.5h1 + 1.5h2 + 0.5h3 + 2.5h4 −0.5 Yes Yes
x14 0 0 0 −0.5h1 + 0.5h2 + 0.5h3 + 1.5h4 −0.5 Yes Yes
x15 0 0 1 −0.5h1 + 0.5h2 + 0.5h3 + 1.5h4 −0.5 Yes Yes
x16 0 1 −1 0.5h1 + 0.5h2 + 1.5h3 + 1.5h4 0.0 No Yes
x17 0 1 0 0.5h1 − 0.5h2 + 1.5h3 + 0.5h4 −0.5 Yes Yes
x18 0 1 1 0.5h1 − 0.5h2 + 1.5h3 + 0.5h4 −0.5 Yes Yes
x19 1 −1 −1 0.5h1 + 2.5h2 + 0.5h3 + 2.5h4 0.0 No No

x20 1 −1 0 0.5h1 + 1.5h2 + 0.5h3 + 1.5h4 0.0 No Yes
x21 1 −1 1 0.5h1 + 1.5h2 + 0.5h3 + 1.5h4 0.0 No Yes
x22 1 0 −1 0.5h1 + 2.5h2 − 0.5h3 + 1.5h4 −0.5 Yes No

x23 1 0 0 0.5h1 + 1.5h2 − 0.5h3 + 0.5h4 −0.5 Yes Yes
x24 1 0 1 0.5h1 + 1.5h2 − 0.5h3 + 0.5h4 −0.5 Yes Yes
x25 1 1 −1 1.5h1 + 1.5h2 + 0.5h3 + 0.5h4 0.0 No No

x26 1 1 0 1.5h1 + 0.5h2 + 0.5h3 − 0.5h4 −0.5 Yes Yes
x27 1 1 1 1.5h1 + 0.5h2 + 0.5h3 − 0.5h4 −0.5 Yes Yes

Ex Falso Quodlibet

See Sect. 3.4.1 for our recollection of the property Ex Falso Quodlibet.

Similarly to K3 , a motivation for LP is to be able to work with sentences which have been identified

as both True and False , without the reduction to triviality. This is a critical property for modeling LP

using RBMs.
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Theorem 3.4.12. When an LP knowledge base is encoded into an RBM, Ex Falso Quodlibet does not hold.

Proof. We must show that if contradictory literals P and ¬P are satisfied in the same knowledge base,

one is not able to derive an arbitrary sentenceQ. We follow the same procedure from Thm. 2.4.4.

We first define a contradictory knowledge base:

K ≡ P ∧ ¬P ∧R ∧ (Q ∨ ¬Q) . (3.4.34)

We again include the literal R to explore the systems response to literals of our knowledge base well-

founded despite the contradiction. We include the tautologyQ ∨ ¬Q to explicitly include Q as literal of

concern and a visible node in our RBM in order to analyze the systems response to otherwise unfounded

literals.

We then express (3.4.34) in SDNF:

K ≡ (P ∧ ¬P ∧R ∧Q) ∨ (P ∧ ¬P ∧R ∧ ¬H (Q) ∧ ¬Q) (3.4.35)

and define our energy function:

E = −h1
(
DLP

v (P )−DK3
v (P ) +DLP

v (R) +DLP
v (Q)− 2.5

)
− h2

(
DLP

v (P )−DK3
v (P ) +DLP

v (R)−DLP
v (Q)−DK3

v (Q)− 1.5
)
, (3.4.36)

We now consider all possible truth valuations xi and identify those that minimize (3.4.36).

Studying Table 3.17, we see that those valuations xi which minimize the energy function are not only

those same valuations which model (3.4.34), but also that in each of these models,Rmust have the value 0

or 1, restricting it to designated values, whileQ can take on the values−1, 0, or 1, i.e., we have maintained

the knowledge that we have outside of our contradiction, while not restricting the values of other possible

sentences. Thus, Ex Falso Quodlibet does not hold for LP in RBM Logic. Further, we do not have the

same degeneracy witnessed in the classical and K3 cases; the property fails in a robust and nondegenerate

sense.
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Table 3.17: The LP Ex Falso energy function (3.4.36) for each valuation xi.

LP Ex Falso Quodlibet Energy Function

xi P Q R Energy Function Min. Model Ex Falso
Energy ofK (Q)

x1 −1 −1 −1 2.5h1 + 1.5h2 0.0 No No

x2 −1 −1 0 1.5h1 + 0.5h2 0.0 No No

x3 −1 −1 1 1.5h1 + 0.5h2 0.0 No No

x4 −1 0 −1 1.5h1 + 2.5h2 0.0 No Yes
x5 −1 0 0 0.5h1 + 1.5h2 0.0 No Yes
x6 −1 0 1 0.5h1 + 1.5h2 0.0 No Yes
x7 −1 1 −1 1.5h1 + 3.5h2 0.0 No Yes
x8 −1 1 0 0.5h1 + 2.5h2 0.0 No Yes
x9 −1 1 1 0.5h1 + 2.5h2 0.0 No Yes
x10 0 −1 −1 1.5h1 + 0.5h2 0.0 No No

x11 0 −1 0 0.5h1 − 0.5h2 −0.5 Yes No

x12 0 −1 1 0.5h1 − 0.5h2 −0.5 Yes No

x13 0 0 −1 0.5h1 + 1.5h2 0.0 No Yes
x14 0 0 0 −0.5h1 + 0.5h2 −0.5 Yes Yes
x15 0 0 1 −0.5h1 + 0.5h2 −0.5 Yes Yes
x16 0 1 −1 0.5h1 + 2.5h2 0.0 No Yes
x17 0 1 0 −0.5h1 + 0.5h2 −0.5 Yes Yes
x18 0 1 1 −0.5h1 + 0.5h2 −0.5 Yes Yes
x19 1 −1 −1 2.5h1 + 1.5h2 0.0 No No

x20 1 −1 0 1.5h1 + 0.5h2 0.0 No No

x21 1 −1 1 1.5h1 + 0.5h2 0.0 No No

x22 1 0 −1 1.5h1 + 2.5h2 0.0 No Yes
x23 1 0 0 0.5h1 + 1.5h2 0.0 No Yes
x24 1 0 1 0.5h1 + 1.5h2 0.0 No Yes
x25 1 1 −1 1.5h1 + 3.5h2 0.0 No Yes
x26 1 1 0 0.5h1 + 1.5h2 0.0 No Yes
x27 1 1 1 0.5h1 + 1.5h2 0.0 No Yes

■

Disjunctive Syllogism

See Sect. 3.4.1 for our recollection of Disjunctive Syllogism.

Priest has claimed that this property does not hold in LP [8]. We seek now to prove that this property

does not hold in our logic.
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Theorem 3.4.13. When an LP knowledge base is encoded into an RBM, Disjunctive Syllogism does not

hold.

Proof. We must show that when both statements (P ∨Q) and ¬P are satisfied in the same knowledge

base, one is not able to derive the sentenceQ. We follow the same procedure from Thm. 2.4.6.

We first define a knowledge base to represent our situation:

K ≡ (P ∨Q) ∧ ¬P. (3.4.37)

We then express (3.4.37) in SDNF:

K ≡ (P ∧ ¬P ) ∨ (¬H (P ) ∧Q ∧ ¬P ) . (3.4.38)

and define our energy function:

E = −h1
(
DLP

v (P )−DK3
v (P )− 0.5

)
− h2

(
−DLP

v (P ) +DLP
v (Q)−DK3

v (P )− 0.5
)
,

(3.4.39)

We now consider all possible truth valuations xi and identify those that minimize (3.4.39).

Table 3.18: The LP Disjunctive Syllogism energy function (3.4.39) for each valuation xi.

LP Disjunctive Syllogism Energy Function

xi P Q Energy Function Minimized Model Disjunctive

Energy ofK Syllogism (Q)

x1 −1 −1 0.5h1 + 0.5h2 0.0 No No

x2 −1 0 0.5h1 − 0.5h2 −0.5 Yes Yes
x3 −1 1 0.5h1 − 0.5h2 −0.5 Yes Yes
x4 0 −1 −0.5h1 + 1.5h2 −0.5 Yes No

x5 0 0 −0.5h1 + 0.5h2 −0.5 Yes Yes
x6 0 1 −0.5h1 + 0.5h2 −0.5 Yes Yes
x7 1 −1 0.5h1 + 2.5h2 0.0 No No

x8 1 0 0.5h1 + 1.5h2 0.0 No Yes
x9 1 1 0.5h1 + 1.5h2 0.0 No Yes
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Studying Table 3.18, we see that valuationsx4 is a model of 3.4.37 which is selected by the minimization

process, however this valuation does not entailQ, and as such the rule of Disjunctive Syllogism does not

hold for all models of our knowledge base.

■

Resolution and Resolution Refutation

Because the properties of Defn. 2.4.7 Resolution and Defn. 2.4.9 Resolution Refutation require as a

foundation the rule of Disjunctive Syllogism to hold, it is trivial to show that they will not hold in the

RBM Logic representation of LP.

§ 3.5 Chapter Conclusion

We have seen a viable extension of the classical RBM Logic case into the two paraconsistent logics K3 and

LP . These extensions required not only that we introduce additional possible values for each of the nodes,

but also additional designated values which could satisfy clauses and knowledge bases in the case of LP .

We further identified that one may have to extend an arbitrary language in order to represent sentences

of that language in SDNF. We have presented an approach that could serve as inspiration for a generalized

method for addressing this problem in other languages, i.e., introducing additional connectives that allow

one to express the satisfiability of a sentence.

We note that while K3 maintains the properties that were explored in Sect. 2.4, the encoding of

LP —faithful to its original presentation—loses the properties of Transitivity, Disjunctive Syllogism,

Resolution, and Resolution Refutation. As these properties are all central to our ability to use logic for

deductive purposes, especially in a computational context, one hopes that the introduction of a robust

response to contradiction could maintain these properties. In the next chapter, we seek to restore these

deductive qualities within our formalism.
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CHAPTER 4

MINIMALLY INCONSISTENT LOGIC

§ 4.1 Chapter Introduction

While the paraconsistent logic LP is interesting in its own right and enables one to consider paraconsistent

knowledge bases, its loss of classical results, most notably Disjunctive Syllogism, is unappealing. As such,

Priest introduced his Minimally Inconsistent Logic of Paradox LPm to help address this issue. In short,

LPm imposes an ordering onto the valuations which corresponds to their degree of inconsistency and

accepts as models only those valuations which are minimally inconsistent [9]. In this language, so long

as a knowledge base can be satisfied fully within the domain of consistency, the langauge acts exactly as

classical logic; the language otherwise prefers models which minimize the inconsistencies (and therefore

deductive casualites).

§ 4.2 LPm : Minimally Inconsistent LP

As we are concerned with only the propositional subset of LPm and have elsewhere used a notation that

differs from Priest’s, we here use Priest’s presentation as a guide for our own presentation of LPm , rather

than following it exactly. The structure and consequential properties of the logic will remain. We also note

that we will only define the notion of inconsistency as it relates to the atomic sentences, rather than those

of higher rank. In future work, the author hopes to expand this method of RBM Logic representation

in such a way that sentences of higher rank can act functionally as atomic sentences at higher levels of

abstraction, and as such we feel this will not be a limitation on the system, though additional work may

be required to formalize the more general approach.

Given the language LP , we extend the langauge to LPm via the following.
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We first define the notion of an atomic subformula. Although the general definition of this concept

requires more explication, the following will suffice for this thesis.

Definition 4.2.1. A sentence Ψ is called an atomic subformula of the sentence φ if and only if Ψ occurs in

the sentenceφ and Ψ does not itself contain any connectives. We will callφA the set of atomic subformulas of

the sentence φ.

We define a new helper function over a sentence φ and an LP valuation ν:

Definition 4.2.2.

Bν (φ) ≡


1 if ν (φ) = 0

0 else
(4.2.1)

This equation has the property of evaluating whether the sentence has been assigned the paraconsistent

value Both in the given valuation.

Now, given a knowledge baseK and associated valuation ν, we define:

Definition 4.2.3.

B (⟨K, ν⟩) ≡
∑
α∈KA

Bν (α) , (4.2.2)

whereK is the conjunction which encodes the knowledge baseK into a single sentence.

We note that this helper function has the property of counting the total number of atoms α in the

sentenceK which are assigned the Both or inconsistent value by the given valuation. When applied to a

knowledge base and valuation for a given interpretation, this function will allow the ordering of models.

If there are no atoms which are shown to be inconsistent, then B (⟨K, ν⟩) will have its minimal value of

0. If every atom is inconsistent, B (⟨K, ν⟩) will return a maximal value for the knowledge base.

We now refine our definition of a model to incorporate our ordering by inconsistency:
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Definition 4.2.4. A = ⟨K, ν⟩ is a minimally inconsistent (mi) model of Σ (A |=m Σ) iff A |= Σ and if

B (A′) < B (A) andK = K′, then A′ ⊭ Σ.

We further refine our notion of satisfaction:

Definition 4.2.5. A knowledge baseK is satisfied by a valuation ν if and only if A = ⟨K, ν⟩ is an mi

model ofK.

§ 4.3 Minimally Inconsistent LP in RBMs

We now turn our attention to encoding this new definition of satisfaction into our RBM Logic energy

function. To do so, we must introduce a penalty on those valuations which increase the inconsistency of

the model.

§ 4.3.1 Extension from LP in RBMs

We note that the function Defn. 4.2.3 functions as a count of inconsistency for a givenK and ν. We must

now modify this measure so that it can be added to our energy function such that it penalizes non-minimal

models without increasing the energy so much that the valuation is no longer recognized as a model.

We note that in non-degenerate cases, models have their energy function minimized to a value of−ϵ,

while non-models receive an energy value of 0.0. Therefore, we must define our penalty pK (ν) for a given

valuation ν on a knowledge baseK such that pK (ν) < ϵ. We propose:

Definition 4.3.1. The penalty for inconsistency pK (ν) for a valuation will be defined:

pK (ν) ≡ B (⟨K, ν⟩)
|KA|+ 1

ϵ, (4.3.3)

whereKA represents the set of atomic formulas in the finite conjunction that represents the knoweledge base

K.

Consider a maximally inconsistent interpretation ofK, such that every atom is overdetermined. In this

case, B (⟨K, ν⟩) = |KA|, and thus pK (ν) = |KA|
|KA|+1

ϵ. While close to ϵ (closer than any non-maximally
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inconsistent interpretation), this added penalty is not greater than ϵ and the energy for a model penalized by

this amount would still be negative. In the case of a consistent interpretation, B (⟨K, ν⟩) = 0 = pK (ν),

and there is no penalty, reducing to our classical case, as desired.

We note that SDNFs can be handled in this context in exactly the same way as in Sect. 3.3.2, extending

the language LPm to a new language LPS
m . We also note that an adjustment must be made to Defn. 2.3.1

regarding the equivalence of an SDNF and an RBM to properly handle this case.

Definition 4.3.2. A WFF φ is equivalent to an RBMN if and only if for any truth assignment over the

visible nodes x, sφ (x) = −AErank (x) +B, where sφ (x) ∈ (−1, 1] is the inconsistency-penalized truth

value of φ given x with True ≡ 1 and False ≡ 0, and each truth value is reduced by pφ (x);A > 0 andB

are constants;Erank (x) = minhE (x,h) is the energy ranking function ofN minimised over all hidden

units.

The increased range of sφ (x) allows us to capture both whether the valuation ν is a (non-minimally

inconsistent) model of φ and also how inconsistent of a valuation it is. sφ (x) > 0 corresponds to (non-

mi) models, while sφ (x) < 0 corresponds to non-models. sφ (x) = 1 corresponds to fully consistent

models, while sφ (x) ≈ −1 corresponds to fully inconsistent models.

We are now prepared to present our LPm energy function defintion.

Theorem 4.3.3. Any LPS
m SDNF

φ ≡
∨
j

 ∧
t∈STj

xt ∧
∧

u∈SUj

H∗ (xu) ∧
∧

k∈SLj

¬H (xl) ∧
∧

l∈SKj

¬xk


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can be mapped onto an equivalent RBM with energy function

E = −
∑
j

hj

∑
t∈STj

DLP
v (xt) +

∑
u∈SUj

DK3
v (xu)

−
∑

k∈SKj

DLP
v (xk)−

∑
l∈SLj

DK3
v (xl)− Tj − Uj + ϵ

+ pφ (ν) ,

where 0 < ϵ < 1 and STj
and SKj

are respectively the set of Tj indices of positive literals and the set ofKj

indices of negative literals, and SUj
and SLj

are respectively the set ofUj indices of literals acted upon byH∗

and the set of Lj indices of literals acted upon by¬H .

As before, we omit explicit proof and explore the behavior of this formalism below.

§ 4.4 Analysis of Minimally Inconsistent LP in RBMs

We now explore the RBM Logic encoding of LPm by analyzing the same properties earlier explored.

§ 4.4.1 Transitivity

We recall Defn. 2.4.1:

Definition 2.4.1. The logical implication→ is said to be transitive if and only if:

K ⊨ (P→Q) ∧ (Q→R)⇒ K ⊨ P→R

for any knowledge baseK and sentences P ,Q, andR. This rule can be expressed syntactically as

P→Q, Q→R

P→R

Theorem 4.4.2. When twoLPm implications are encoded into an RBM, the property of Transitivity holds.

Justification. We will follow the same method used to prove Thm. 2.4.2, i.e., define a knowledge base with

two implications, represent it using an RBM and energy function, and show that for all models which
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result in a negative minimized energy, Transitivity holds. Further, we will see that those valuations with

minimal energy are the minimally inconsistent models.

We recall our LP Transitivity SDNF:

K ≡ (¬P ∧ ¬Q) ∨ (¬P ∧H∗ (Q) ∧R) ∨ (H∗ (P ) ∧Q ∧ ¬Q) ∨ (H∗ (P ) ∧Q ∧H∗ (Q) ∧R) .

(3.4.32)

and transform our SDNF into an energy function,

E = −h1
(
−DK3

v (P )−DK3
v (Q) + 0.5

)
− h2

(
−DK3

v (P ) +DK3
v (Q) +DLP

v (R)− 1.5
)

− h3
(
DK3

v (P ) +DLP
v (Q)−DK3

v (Q)− 1.5
)

− h4
(
DK3

v (P ) +DLP
v (Q) +DK3

v (Q) +DLP
v (R)− 3.5

)
+ pK (ν) . (4.4.5)

We now consider the truth value assignments xi which minimize (4.4.5).

Observing the possible valuationsxi in Table 4.1, we identify that−0.5 (our chosen ϵ) is the minimum

energy value for any valuation. We consider the set of valuations which minimize the function to this

value and recognize that this is exactly the set of minimally consistent models. This set is a subset of models

ofKB, which all have a negative minimized energy value. This is further a subset of those valuations for

which (P→ Q) holds. We have therefore shown that this method picks out the minimally inconsistent

models of the knowledge base and that Transitivity holds in each of these models.

■

§ 4.4.2 Ex Falso Quodlibet

We recall Defn. 2.4.3:
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Table 4.1: The LPm Transitivity energy function (4.4.5) for each valuation xi.

LPm Transitivity Energy Function

xi P Q R Energy Min. mi Model Trans.

Function Energy Model ofK (P→R)

x1 −1 −1 −1 −0.5h1 + 1.5h2 + 1.5h3 + 3.5h4 −0.5 Yes Yes Yes
x2 −1 −1 0 −0.5h1+0.5h2+1.5h3+2.5h4+

1
8
−0.375 No Yes Yes

x3 −1 −1 1 −0.5h1 + 0.5h2 + 1.5h3 + 2.5h4 −0.5 Yes Yes Yes
x4 −1 0 −1 −0.5h1+1.5h2+0.5h3+2.5h4+

1
8
−0.375 No Yes Yes

x5 −1 0 0 −0.5h1+0.5h2+0.5h3+1.5h4+
2
8
−0.250 No Yes Yes

x6 −1 0 1 −0.5h1+0.5h2+0.5h3+1.5h4+
1
8
−0.375 No Yes Yes

x7 −1 1 −1 0.5h1 + 0.5h2 + 1.5h3 + 1.5h4 0.000 No No Yes
x8 −1 1 0 0.5h1− 0.5h2 + 1.5h3 + 0.5h4 +

1
8
−0.375 No Yes Yes

x9 −1 1 1 0.5h1 − 0.5h2 + 1.5h3 + 0.5h4 −0.5 Yes Yes Yes
x10 0 −1 −1 −0.5h1+1.5h2+1.5h3+3.5h4+

1
8
−0.375 No Yes Yes

x11 0 −1 0 −0.5h1+0.5h2+1.5h3+2.5h4+
2
8
−0.250 No Yes Yes

x12 0 −1 1 −0.5h1+0.5h2+1.5h3+2.5h4+
1
8
−0.375 No Yes Yes

x13 0 0 −1 −0.5h1+1.5h2+0.5h3+2.5h4+
2
8
−0.250 No Yes Yes

x14 0 0 0 −0.5h1+0.5h2+0.5h3+1.5h4+
3
8
−0.125 No Yes Yes

x15 0 0 1 −0.5h1+0.5h2+0.5h3+1.5h4+
2
8
−0.25 No Yes Yes

x16 0 1 −1 0.5h1 + 0.5h2 + 1.5h3 + 1.5h4 +
1
8

0.125 No No Yes
x17 0 1 0 0.5h1− 0.5h2 + 1.5h3 + 0.5h4 +

2
8
−0.250 No Yes Yes

x18 0 1 1 0.5h1− 0.5h2 + 1.5h3 + 0.5h4 +
1
8
−0.375 No Yes Yes

x19 1 −1 −1 0.5h1 + 2.5h2 + 0.5h3 + 2.5h4 0.000 No No No

x20 1 −1 0 0.5h1 + 1.5h2 + 0.5h3 + 1.5h4 +
1
8

0.125 No No Yes
x21 1 −1 1 0.5h1 + 1.5h2 + 0.5h3 + 1.5h4 0.000 No No Yes
x22 1 0 −1 0.5h1 + 2.5h2− 0.5h3 + 1.5h4 +

1
8
−0.375 No Yes No

x23 1 0 0 0.5h1 + 1.5h2− 0.5h3 + 0.5h4 +
2
8
−0.250 No Yes Yes

x24 1 0 1 0.5h1 + 1.5h2− 0.5h3 + 0.5h4 +
1
8
−0.375 No Yes Yes

x25 1 1 −1 1.5h1 + 1.5h2 + 0.5h3 + 0.5h4 0.000 No No No

x26 1 1 0 1.5h1 + 0.5h2 + 0.5h3 − 0.5h4 +
1
8
−0.375 No Yes Yes

x27 1 1 1 1.5h1 + 0.5h2 + 0.5h3 − 0.5h4 −0.5 Yes Yes Yes
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Definition 2.4.3. The rule of Ex Falso Quodlibet holds in a logic if and only if:

K ⊨ (P ∧ ¬P )⇒ K ⊨ Q

for any knowledge baseK and sentences P andQ. This rule can be expressed syntactically as

P, ¬P
Q

We note that an important characteristic of LPm is that it does not hold. This is the critical property

that contradiction does not reduce the entire set of sentences to trivially True .

Theorem 4.4.4. When an LPm knowledge base is encoded into an RBM, Ex Falso Quodlibet does not

hold.

Proof. We must show that if contradictory literals P and ¬P are satisfied in the same knowledge base,

one is not able to derive an arbitrary sentenceQ. We follow the same procedure from Thm. 2.4.4.

We recall our Ex Falso LP SDNF

K ≡ (P ∧ ¬P ∧R ∧Q) ∨ (P ∧ ¬P ∧R ∧ ¬H (Q) ∧ ¬Q) (3.4.35)

and define our energy function:

E = −h1
(
DLP

v (P )−DK3
v (P ) +DLP

v (R) +DLP
v (Q)− 2.5

)
− h2

(
DLP

v (P )−DK3
v (P ) +DLP

v (R)−DLP
v (Q)−DK3

v (Q)− 1.5
)
+ pK (ν) , (4.4.7)

We now consider all possible truth valuations xi and identify those that minimize (4.4.7).

Studying Table 4.2, we see that those valuations xi which minimize the energy function are the

minimally inconsistent valuations which model (3.4.34). In each of these models,Rmust have the value 1,

restricting it not only to designated values, but to the minimally inconsistent designated value. Q can take
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Table 4.2: The LPm Ex Falso energy function (4.4.7) for each valuation xi.

LPm Ex Falso Quodlibet Energy Function

xi P Q R Energy Function Min. mi Model Model Ex Falso
Energy ofK ofK (Q)

x1 −1 −1 −1 2.5h1 + 1.5h2 0.000 No No No

x2 −1 −1 0 1.5h1 + 0.5h2 +
1
8

0.125 No No No

x3 −1 −1 1 1.5h1 + 0.5h2 0.000 No No No

x4 −1 0 −1 1.5h1 + 2.5h2 +
1
8

0.125 No No Yes
x5 −1 0 0 0.5h1 + 1.5h2 +

2
8

0.25 No No Yes
x6 −1 0 1 0.5h1 + 1.5h2 +

1
8

0.125 No No Yes
x7 −1 1 −1 1.5h1 + 3.5h2 0.000 No No Yes
x8 −1 1 0 0.5h1 + 2.5h2 +

1
8

0.125 No No Yes
x9 −1 1 1 0.5h1 + 2.5h2 0.000 No No Yes
x10 0 −1 −1 1.5h1 + 0.5h2 +

1
8

0.125 No No No

x11 0 −1 0 0.5h1 − 0.5h2 +
2
8

−0.250 No Yes No

x12 0 −1 1 0.5h1 − 0.5h2 +
1
8
−0.375 Yes Yes No

x13 0 0 −1 0.5h1 + 1.5h2 +
2
8

0.250 No No Yes
x14 0 0 0 −0.5h1 + 0.5h2 +

3
8
−0.125 No Yes Yes

x15 0 0 1 −0.5h1 + 0.5h2 +
2
8
−0.250 No Yes Yes

x16 0 1 −1 0.5h1 + 2.5h2 +
1
8

0.125 No No Yes
x17 0 1 0 −0.5h1 + 0.5h2 +

2
8
−0.250 No Yes Yes

x18 0 1 1 −0.5h1 + 0.5h2 +
1
8
−0.375 Yes Yes Yes

x19 1 −1 −1 2.5h1 + 1.5h2 0.000 No No No

x20 1 −1 0 1.5h1 + 0.5h2 +
1
8

0.125 No No No

x21 1 −1 1 1.5h1 + 0.5h2 0.000 No No No

x22 1 0 −1 1.5h1 + 2.5h2 +
1
8

0.125 No No Yes
x23 1 0 0 0.5h1 + 1.5h2 +

2
8

0.250 No No Yes
x24 1 0 1 0.5h1 + 1.5h2 +

1
8

0.125 No No Yes
x25 1 1 −1 1.5h1 + 3.5h2 0.000 No No Yes
x26 1 1 0 0.5h1 + 1.5h2 +

1
8

0.125 No No Yes
x27 1 1 1 0.5h1 + 1.5h2 0.000 No No Yes
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on the values−1 or 1, i.e., its value is not determined by our knowledge base, but a consistent value for

the atom is prefered. We have maintained the knowledge ofR that we have outside of our contradiction,

while not deciding the values of other atoms, i.e.,Q. Thus, Ex Falso Quodlibet does not hold for LPm in

RBM Logic, and it fails in the same robust way as the LP case.

■

§ 4.4.3 Disjunctive Syllogism

We recall Defn. 2.4.5:

Definition 2.4.5. The rule of Disjunctive Syllogism holds in a logic if and only if

K ⊨ (P ∨Q) ∧ ¬P ⇒ K ⊨ Q

for any knowledge baseK and sentences P andQ. This rule can be expressed syntactically as

(P ∨Q) , ¬P
Q

.

Priest’s motivation for defining LPm is at least in part to maintain the property of Disjunctive Syllo-

gism wherever possible, i.e., in those cases in which overdetermination is not necessary, one can still rely

on Disjunctive Syllogism for inference. We now show that the same is true in the LPm context for RBM

Logic.

Theorem 4.4.6. When an LPm knowledge base is encoded into an RBM, Disjunctive Syllogism does hold.

Justification. We must show that when both statements (P ∨Q) and¬P are satisfied in the same knowl-

edge base, one is able to derive the sentenceQ in the minimally inconsistent models. We follow the same

procedure from Thm. 2.4.6.

We recall our Disjunctive Syllogism LP SDNF

K ≡ (P ∧ ¬P ) ∨ (¬H (P ) ∧Q ∧ ¬P ) (3.4.38)
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and define our energy function:

E = −h1
(
DLP

v (P )−DK3
v (P )− 0.5

)
−h2

(
−DLP

v (P ) +DLP
v (Q)−DK3

v (P )− 0.5
)
+pK (ν) ,

(4.4.9)

We now consider all possible truth valuations xi and identify those that minimize (4.4.9).

Table 4.3: The LPm Disjunctive Syllogism energy function (4.4.9) for each valuation xi.

LPm Disjunctive Syllogism Energy Function

xi P Q Energy Function Minimized mi Model Model Disjunctive

Energy ofK ofK Syllogism (Q)

x1 −1 −1 0.5h1 + 0.5h2 0.000 No No No

x2 −1 0 0.5h1 − 0.5h2 +
1
6

−0.333 No Yes Yes
x3 −1 1 0.5h1 − 0.5h2 −0.500 Yes Yes Yes
x4 0 −1 −0.5h1 + 1.5h2 +

1
6

−0.333 No Yes No

x5 0 0 −0.5h1 + 0.5h2 +
2
6

−0.166 No Yes Yes
x6 0 1 −0.5h1 + 0.5h2 +

1
6

−0.333 No Yes Yes
x7 1 −1 0.5h1 + 2.5h2 0.000 No No No

x8 1 0 0.5h1 + 1.5h2 +
1
6

0.166 No No Yes
x9 1 1 0.5h1 + 1.5h2 0.000 No No Yes

Studying Table 4.3, we see that valuation x3 is the minimally inconsistent model of 3.4.37 which

is selected by the minimization process. This model does entail Q, and as such the rule of Disjunctive

Syllogism holds for the minimally inconsistent models of our knowledge base.

■

§ 4.4.4 Resolution

Because we have salvaged the property of Disjunctive Syllogism by extending LP to LPm , we are now

able to explore the property of Resolution in the LPm context. We recall the defintion of Resolution.

Definition 2.4.7. [11] The generalized Resolution rule can be stated as

l1 ∨ . . . ∨ lk, m1 ∨ . . . ∨mn

l1 ∨ . . . ∨ li−1 ∨ li+1 ∨ . . . ∨ lk ∨m1 ∨ . . . ∨mj−1 ∨mj+1 ∨ . . . ∨mn

,
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where li andmj are complementary literals, i.e. li ≡ ¬mj .

We continue to prove only that Resolution holds in the case of short resolvents and claim that the

argument will hold for longer resolvents as well.

Theorem 4.4.8. In the LPm context of RBM Logic, the rule of Resolution holds for resolvents of the form

(P ∨Q) ∧ (¬P ∨R). That is:

K ⊨ (P ∨Q) ∧ (¬P ∨R)⇒ K ⊨ (Q ∨R)

Justification. We begin our proof by defining the relevant knowledge base,

K ≡ (P ∨Q) ∧ (¬P ∨R) , (4.4.10)

and presentingK in SDNF:

K ≡ (P ∧ ¬P ) ∨ (P ∧H∗ (P ) ∧R)

∨ (¬H (P ) ∧Q ∧ ¬P ) ∨ (¬H (P ) ∧Q ∧H∗ (P ) ∧R) . (4.4.11)

Using Thm. 4.3.3, we transform (4.4.11) into an energy function:

E = −h1
(
DLP

v (P )−DK3
v (P )− 0.5

)
− h2

(
DLP

v (P ) +DK3
v (P ) +DLP

v (R)− 2.5
)

− h3
(
−DLP

v (P ) +DLP
v (Q)−DK3

v (P )− 0.5
)

− h4
(
−DK3

v (P ) +DLP
v (Q) +DK3

v (P ) +DLP
v (R)− 2.5

)
+ pK (ν) , (4.4.12)

We now calculate the value of (4.4.12) for all possible valuations over the atoms.
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Table 4.4: The LPm Resolution energy function (4.4.12) for each valuation xi.

LPm Resolution Energy Function

xi P Q R Energy Function Min. mi Model Res.

Energy Model ofK (Q∨R)

x1 −1 −1 −1 0.5h1 + 2.5h2 + 0.5h3 + 2.5h4 0.000 No No No

x2 −1 −1 0 0.5h1 + 1.5h2 + 0.5h3 + 1.5h4 +
1
8

0.125 No No Yes
x3 −1 −1 1 0.5h1 + 1.5h2 + 0.5h3 + 1.5h4 0.000 No No Yes
x4 −1 0 −1 0.5h1 +2.5h2− 0.5h3 +1.5h4 +

1
8
−0.375 No Yes Yes

x5 −1 0 0 0.5h1 +1.5h2− 0.5h3 +0.5h4 +
2
8
−0.250 No Yes Yes

x6 −1 0 1 0.5h1 +1.5h2− 0.5h3 +0.5h4 +
1
8
−0.375 No Yes Yes

x7 −1 1 −1 0.5h1 + 2.5h2 − 0.5h3 + 1.5h4 −0.500 Yes Yes Yes
x8 −1 1 0 0.5h1 +1.5h2− 0.5h3 +0.5h4 +

1
8
−0.375 No Yes Yes

x9 −1 1 1 0.5h1 + 1.5h2 − 0.5h3 + 0.5h4 −0.500 Yes Yes Yes
x10 0 −1 −1 −0.5h1+1.5h2+1.5h3+2.5h4+

1
8
−0.375 No Yes No

x11 0 −1 0 −0.5h1+0.5h2+1.5h3+1.5h4+
2
8
−0.250 No Yes Yes

x12 0 −1 1 −0.5h1+0.5h2+1.5h3+1.5h4+
1
8
−0.375 No Yes Yes

x13 0 0 −1 −0.5h1+1.5h2+0.5h3+1.5h4+
2
8
−0.250 No Yes Yes

x14 0 0 0 −0.5h1+0.5h2+0.5h3+0.5h4+
3
8
−0.125 No Yes Yes

x15 0 0 1 −0.5h1+0.5h2+0.5h3+0.5h4+
2
8
−0.250 No Yes Yes

x16 0 1 −1 −0.5h1+1.5h2+0.5h3+1.5h4+
1
8
−0.125 No Yes Yes

x17 0 1 0 −0.5h1+0.5h2+0.5h3+0.5h4+
2
8
−0.250 No Yes Yes

x18 0 1 1 −0.5h1+0.5h2+0.5h3+0.5h4+
1
8
−0.375 No Yes Yes

x19 1 −1 −1 0.5h1 + 0.5h2 + 2.5h3 + 2.5h4 0.000 No No No

x20 1 −1 0 0.5h1− 0.5h2 +2.5h3 +1.5h4 +
1
8
−0.375 No Yes Yes

x21 1 −1 1 0.5h1 − 0.5h2 + 2.5h3 + 1.5h4 −0.500 Yes Yes Yes
x22 1 0 −1 0.5h1 + 0.5h2 + 1.5h3 + 1.5h4 +

1
8

0.125 No No Yes
x23 1 0 0 0.5h1− 0.5h2 +1.5h3 +0.5h4 +

2
8
−0.250 No Yes Yes

x24 1 0 1 0.5h1− 0.5h2 +1.5h3 +0.5h4 +
1
8
−0.375 No Yes Yes

x25 1 1 −1 0.5h1 + 0.5h2 + 1.5h3 + 1.5h4 0.000 No No Yes
x26 1 1 0 0.5h1− 0.5h2 +1.5h3 +0.5h4 +

1
8
−0.375 No Yes Yes

x27 1 1 1 0.5h1 − 0.5h2 + 1.5h3 + 0.5h4 −0.500 Yes Yes Yes
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From Table 4.4, we see that the valuations which minimize the energy are those which modelK, and

also that these models are a subset of those valuations which entail (Q ∨R), i.e., which entail Resolution.

■

§ 4.4.5 Resolution Refutation

We further have the ability to investigate the process of Resolution Refutation within the context of

encoding LPm . We recall our defintion of Resolution Refutation in the context of RBM Logic.

Definition 2.4.9. Resolution Refutation in the RBM Logic will be defined as the process of adding the

queryQ to the knowledge baseK, then creating and minimizing the resulting energy function based upon

K ∪ {Q}.

We now present our theorem and justify it using the same method as Thm. 2.4.10.

Theorem 4.4.10. Given a consistent knowledge baseK and a queryQ, the RBM Logic in the LPm context

will prefer the classical models for whichQ ≡ True ifK ∪ {Q} is consistent and minimally inconsistent

models ofK ∪ {Q} ifK ∪ {Q} is not consistent.

Justification.

Claim 1: The RBM Logic will prefer the classical models for whichQ ≡ True ifK∪{Q} is consistent.

Subjustification. We define a simple knowledge base:

K ≡ P ∧ (P→Q) , (4.4.13)

and offer the sentenceQ as our query:

K′ ≡ P ∧ (P → Q) ∧Q,
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We convertK′
into SDNF:

K′ ≡ (P ∧ ¬P ∧Q) ∨ (P ∧H∗ (P ) ∧Q) . (4.4.14)

and define our energy function to represent (4.4.14).

E = −h1
(
DLP

v (P )−DK3
v (P ) +DLP

v (Q)− 1.5
)

− h2
(
DLP

v (P ) +DK3
v (P ) +DLP

v (Q)− 2.5
)
+ pK (ν) . (4.4.15)

We now consider possible evaluations xi and identify those which minimize energy function (4.4.15).

Table 4.5: The LPm Resolution Refutation energy function (4.4.15) for each valuation xi.

LPm Resolution Refutation Energy Function

xi P Q Energy Function Minimized mi Model Model

Energy ofK′
ofK′

x1 −1 −1 1.5h1 + 2.5h2 0.000 No No

x2 −1 0 0.5h1 + 1.5h2 +
1
6

0.166 No No

x3 −1 1 0.5h1 + 1.5h2 0.000 No No

x4 0 −1 0.5h1 + 1.5h2 +
1
6

0.166 No No

x5 0 0 −0.5h1 + 0.5h2 +
2
6

−0.166 No Yes
x6 0 1 −0.5h1 + 0.5h2 +

1
6

−0.333 No Yes
x7 1 −1 1.5h1 + 0.5h2 0.000 No No

x8 1 0 0.5h1 − 0.5h2 +
1
6

−0.333 No Yes
x9 1 1 0.5h1 − 0.5h2 −0.500 Yes Yes

We see then that x9 is the sole valuation which minimizes the energy and the only valuation which

serves as a minimally inconsistent model for bothK andK ∪ {Q}. □

Claim 2: The RBM Logic will prefer the minimally inconsistent models ifK ∪ {Q} is inconsistent.
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Subjustification. We define a simple knowledge base:

K ≡ P ∧ (P→Q) , (4.4.16)

and offer the inconsistent sentenceQ as our query:

K′ ≡ P ∧ (P → Q) ∧ ¬Q.

We convertK′
into SDNF:

K′ ≡ (P ∧ ¬P ∧ ¬Q) ∨ (P ∧H∗ (P ) ∧Q ∧ ¬Q) . (4.4.17)

and define our energy function to represent (4.4.17).

E = −h1
(
DLP

v (P )−DK3
v (P )−DK3

v (Q)− 0.5
)

− h2
(
DLP

v (P ) +DK3
v (P ) +DLP

v (Q)−DK3
v (Q)− 2.5

)
+ pK (ν) . (4.4.18)

We now consider possible evaluations xi and identify those which minimize energy function (4.4.18).

We see then that bothx4 andx8 are the minimally inconsistent valuations which satisfyK∪{Q}. We

also note that these are the valuations which minimize the energy function, and the formalism therefore

prefers the minimally inconsistent models when an inconsistent query is added into the knowledge base.

□

■

§ 4.5 Chapter Conclusion

We have, where possible, successfully restored our desirable deductive properties for paraconsistent RBM

Logic by encoding LPm , the original language which sought to restore the deductive properties lost
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Table 4.6: The LPm Resolution Refutation energy function (4.4.18) for each valuation xi.

LPm Resolution Refutation Inconsistent Energy Function

xi P Q Energy Function Minimized mi Model Model

Energy ofK′
ofK′

x1 −1 −1 0.5h1 + 2.5h2 0.000 No No

x2 −1 0 0.5h1 + 1.5h2 +
1
6

0.166 No No

x3 −1 1 1.5h1 + 2.5h2 0.000 No No

x4 0 −1 −0.5h1 + 0.5h2 +
1
6

−0.333 Yes Yes
x5 0 0 −0.5h1 + 0.5h2 +

2
6

−0.166 No Yes
x6 0 1 0.5h1 + 2.5h2 +

1
6

0.166 No No

x7 1 −1 0.5h1 + 0.5h2 0.000 No No

x8 1 0 0.5h1 − 0.5h2 +
1
6

−0.333 Yes Yes
x9 1 1 1.5h1 + 0.5h2 0.000 No No

in LP . By penalizing the energy function of inconsistent valuations proportionally to their measure of

inconsistency, one is able to respond to contradictory cases while preferring those models which minimize

the inconsistency or even are fully consistent. This method of penalizing a given valuation could also be

generalized for other metrics of preference for certain models.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

We have explored here the formalism for encoding propositional logic using Restricted Boltzmann Ma-

chines, and extended this formalism to encode three paraconsistent logics as well.

We found that the original formalism faithfully recreates a number of expected behaviors of classical

logic, noting that while the property of Ex Falso Quodlibet does not explicitly hold in the same fashion as

classical propositional logic, the system reduces into a philosophically similar degeneracy if one assumes

that the necessary contradiction can even be encoded in the first place.

We found that the extension of the formalism to non-binary logics is viable, provided a method for

identifying whether an arbitrary sentence receives a designated status or not is expressable. In the LP case,

we explored a method through which one can extend the expressability of a language in order to represent

a sentence in the necessary form for encoding into an RBM.

We further explored a method through which one can introduce a penalty to certain valuations, al-

lowing us to extend the formalism even further to capture the concept of minimal inconsistency, allowing

us to reclaim the deductive properties that are lost when one extends from the two-valued classical logic

to the three-valued LP .

The general formalism presented here seems quite robust, easily encoding a number of additional

properties required to express certain logics. The methods employed in order to express a sentence in

SDNF and identify when a sentence receives a designated value in the extensions to K3 , LP , and LPm

are readily generalizable for encoding additional propositional logics.

We further conjecture that this formalism may be a solid foundation for the mathematical expression

of logics in general. If one were to develop a method for encoding the predicate quantifiers ∀ and ∃,

it may be possible to express a variational calculus for identifying models of predicate logic, perhaps
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providing insight into issues of deciadability or at least interesting manifestations of undecidability within

the system. Further, unpublished work has begun to explore a representation of modal logic in which a

given world is represented by a minimized RBM, and the worlds which are accessible by this world are

represented by an unminimized RBM connected to the first by a matrix which captures the relational

information represented by the modal quantifiers. Further development of the formalism is needed, but

there is apparent promise.

Given the prior inability of the mathematical logic community to ground mathematics in formal logic

throughout the 20
th

century, perhaps the time has come to reverse this goal and instead ground formal

logic in mathematical structures.

72



BIBLIOGRAPHY

[1] R. J. Brachman and H. J. Levesque, Knowledge representation and reasoning. Morgan Kaufmann,

2004.

[2] A. Caliskan, J. Bryson, and A. Narayanan, “Semantics derived automatically from language corpora

contain human-like biases,” English, Science, vol. 356, no. 6334, pp. 183–186, Apr. 2017, issn: 0036-

8075. doi: 10.1126/science.aal4230.

[3] G. Casella and E. I. George, “Explaining the gibbs sampler,” The American Statistician, vol. 46,

no. 3, pp. 167–174, 1992, issn: 00031305. [Online]. Available: http://www.jstor.org/

stable/2685208.

[4] A. Fischer and C. Igel, “An introduction to restricted boltzmann machines,” in Progress in Pattern

Recognition, Image Analysis, Computer Vision, and Applications, L. Alvarez, M. Mejail, L. Gomez,

and J. Jacobo, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 14–36, isbn: 978-3-

642-33275-3.

[5] R. Guidotti, A. Monreale, S. Ruggieri, F. Turin, F. Giannotti, and D. Pedreschi, “A survey of

methods for explaining black box models.,” ACM COMPUTING SURVEYS, vol. 51, no. 5, n.d.

issn: 03600300. [Online]. Available: http://proxy-remote.galib.uga.edu/login?

url=http://search.ebscohost.com/login.aspx?direct=true&db=edswsc&AN=

000457121600006&site=eds-live.

[6] S. C. Kleene, Introduction to Metamathematics. North Holland, 1952.

[7] H. Larochelle and Y. Bengio, “Classification using discriminative restricted boltzmann machines,”

in Proceedings of the 25th International Conference on Machine Learning, ser. ICML ’08, Helsinki,

Finland: Association for Computing Machinery, 2008, pp. 536–543, isbn: 9781605582054. doi:

73

https://doi.org/10.1126/science.aal4230
http://www.jstor.org/stable/2685208
http://www.jstor.org/stable/2685208
http://proxy-remote.galib.uga.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edswsc&AN=000457121600006&site=eds-live
http://proxy-remote.galib.uga.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edswsc&AN=000457121600006&site=eds-live
http://proxy-remote.galib.uga.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edswsc&AN=000457121600006&site=eds-live


10.1145/1390156.1390224. [Online]. Available: https://doi.org/10.1145/1390156.

1390224.

[8] G. Priest, “The logic of paradox,” Journal of Philosophical Logic, vol. 8, no. 1, pp. 219–241, 1979,

issn: 00223611, 15730433. [Online]. Available: http://www.jstor.org/stable/30227165.

[9] G. Priest, “Minimally inconsistent lp,” Studia Logica: An International Journal for Symbolic Logic,

vol. 50, no. 2, pp. 321–331, 1991, issn: 00393215, 15728730. [Online]. Available: http://www.

jstor.org/stable/20015581.

[10] M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should i trust you?”” Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16, 2016.

doi: 10.1145/2939672.2939778. [Online]. Available: http://dx.doi.org/10.1145/

2939672.2939778.

[11] S. J. Russell and P. Norvig, Artificial Intelligence a Modern Approach, 3rd ed. Prentice Hall, 2010.

[12] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann machines for collaborative

filtering,” in Proceedings of the 24th International Conference on Machine Learning, ser. ICML

’07, Corvalis, Oregon, USA: Association for Computing Machinery, 2007, pp. 791–798, isbn:

9781595937933. doi: 10.1145/1273496.1273596. [Online]. Available: https://doi.org/

10.1145/1273496.1273596.

[13] P. Smolensky, “Information processing in dynamical systems: Foundations of harmony theory,”

Parallel Distributed Process, vol. 1, Jan. 1986.

[14] S. Tran and A. S. d’Avila Garcez, “Deep logic networks: Inserting and extracting knowledge from

deep belief networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 2,

pp. 246–258, Feb. 2018. doi: 10.1109/TNNLS.2016.2603784. [Online]. Available: https:

//openaccess.city.ac.uk/id/eprint/19150/.

[15] S. Tran, “Representation decomposition for knowledge extraction and sharing using restricted

boltzmann machines,” 2016. [Online]. Available: https://openaccess.city.ac.uk/id/

eprint/14423/.

74

https://doi.org/10.1145/1390156.1390224
https://doi.org/10.1145/1390156.1390224
https://doi.org/10.1145/1390156.1390224
http://www.jstor.org/stable/30227165
http://www.jstor.org/stable/20015581
http://www.jstor.org/stable/20015581
https://doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/1273496.1273596
https://doi.org/10.1145/1273496.1273596
https://doi.org/10.1145/1273496.1273596
https://doi.org/10.1109/TNNLS.2016.2603784
https://openaccess.city.ac.uk/id/eprint/19150/
https://openaccess.city.ac.uk/id/eprint/19150/
https://openaccess.city.ac.uk/id/eprint/14423/
https://openaccess.city.ac.uk/id/eprint/14423/


[16] S. Tran, “Propositional knowledge representation in restricted boltzmann machines,” ArXiv, May

2017.

[17] H. Wang, D. Dou, and D. Lowd, “Ontology-based deep restricted boltzmann machine,” in Database

and Expert Systems Applications, S. Hartmann and H. Ma, Eds., Cham: Springer International Pub-

lishing, 2016, pp. 431–445, isbn: 978-3-319-44403-1.

75


	Acknowledgments
	List of Tables
	Introduction
	Introduction
	Background and Related Works
	Summary of This Work

	Propositional Logic
	Chapter Introduction
	Strict Disjunctive Normal Form
	Equivalence of an SDNF and an RBM
	Analysis of RBM Logic Representation
	Chapter Conclusion

	Paraconsistent Logic
	Chapter Introduction
	Paraconsistent Logics
	Paraconsistent Logics in RBMs
	Analysis of Paraconsistent Logics in RBMs
	Chapter Conclusion

	Minimally Inconsistent Logic
	Chapter Introduction
	LPm: Minimally Inconsistent LP
	Minimally Inconsistent LP in RBMs
	Analysis of Minimally Inconsistent LP in RBMs
	Chapter Conclusion

	Conclusion and Future Work
	Bibliography

