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Abstract

Certain diseases, and the success of their treatment, are reflected in the struc-
ture of mitochondria within human cells. Automating the characterization of
mitochondrial states may accelerate trials to find life-saving drugs. This study
explores the use of deep learning tools in preliminary characterization of cell
states. We attempt to model morphological changes over the time, using a Con-
volutional Neural Network (CNN) to embed frames, then comparing several es-
tablished methods for aggregating time information across frames. We train this
deep model with a classification task to emphasize the presence of mitochondrial
fission and fusion in the representation. After obtaining this representation,
we embed the video in a low dimensional space to show a cohesive progression
through the course of a video. This reveals structure in the frames that link to
mitochondrial events, showing promise for detecting behavior shifts.
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Chapter 1

Introduction and

Literature Review

1.1 Introduction

1.1.1 Motivation

The goal of this study is to model broad structural changes of mitochondria,

with the hope of eventually using similar methods on the specific structural

changes that result from pathogen invasion of the human cell. Such a model

would be useful to assess the health of the cell as a whole. It could also help

identify states of disease. Previous work shows that deep learning tools such as

convolutional neural networks (CNNs) and long short term memory (LSTM)

are capable representing broad mitochondrial states. These investigations pri-

marily focus on learning still frames of mitochondria to classify current states.

Unlike some of their more static counterparts, mitochondria are quite dynamic

over the course of a single life-cycle. Thus, modeling mitochondria well requires
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modeling mitochondrial changes over time. This has broader implications in

offering clinicians new ways to assess and treat diseases.

1.1.2 Objective

Our aim is to provide a temporal analysis of mitochondrial states using basic

deep learning architectures such as CNNs and LSTMs. We contend that a bare

minimum temporal analysis should be able to 1) show an interpretable cellular

progression from states at the beginning to end of the video and 2) learn for

short-term time dependencies between nearby frames.

In this study, we work with videos of mitochondria that are tagged with

fluorescent proteins. The cells housing these mitochondria are placed in several

different environments that provoke different dynamics over the course of the

cell’s life (discussed further in section 2.1.1). We focus on capturing short-term

mitochondrial behavior; the changes that take place in a tiny fraction of the

cellular life-cycle. We break videos of mitochondrial dynamics down into many

small segments, model these segments, then show how they develop over the

course of the video. This representation yields sections of the video that share

similar behavior. This preliminary model may be useful in detecting shifts in

the data, such as cell collapse. Optimistically, this method may eventually help

detect stages of pathogenic invasion.

1.2 Biological Significance

Mitochondria play a crucial role in several cellular processes. While their most

famous function is to provide "immediate" energy to cellular processes, they

also have a complex role within cellular regulation as a whole. They are closely
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linked to the health of the cell and mediate cell death when called to do so. They

interact with bacterial pathogens—for example, Mycobacterium tuberculosis,

the bacteria responsible for causing the disease tuberculosis—and they respond

to such invasions with specific changes in morphology [16], [26].

In their natural state, mitochondria stretch across the eukaryotic cell in

a complex network of tubular protein structures. These bodies grow, merge,

shrink, and divide in order to deliver their functionality to any part of the cell

in need.

As this organelle has a strong link to many diseases, modeling it could em-

power wide scale research studies in areas such as drug discovery. Better models

of mitochondria could also also benefit research into other organelles with simi-

lar dynamics. As it stands, manual analysis of mitochondrial dynamics is a time

intensive task that requires trained experts. Automation of some of this analysis

could open the door for bigger, broader studies of mitochondria.

1.2.1 Roles

Mitochondria’s foremost role is to make energy available immediately and lo-

cally within a cell [9]. In a healthy cell, mitochondria are spread out to support

ATP-dependent events, i.e. protein functions such as pumps or enzymes. They

also support other local processes like calcium regulation, which is crucial in

muscle tissue [13]. The fluctuating structure of mitochondria makes for a multi-

faceted temporal modeling problem.

Another wide role that mitochondria play lies in propagating information

across the cell. They can even trigger cell death (apoptosis) if there is sufficient

need; this pathway sparks extreme internal fragmentation of the mitochondria

and communication of a “death signal” to the rest of the cell [19]. Apoptosis

3



can be a marker of disease. If the body is fighting a disease, "shutting down"

one cell may be the best choice for the health of surrounding cells. For instance,

apoptosis might prevent pathogens from replicating within the relative safety

of a cell. This mechanism protects nearby tissue from the spread of disease.

1.2.2 Disease

The response of mitochondria to disease is more complex than the broad cell

states explored so far in the literature (section 1.3). Modeling the nuances of

disease progression necessitates some integration of temporal information.

Mitochondria have evolved to respond to cellular dysfunction. They facili-

tate a lot of cross-talk in a cell regarding events like inflammation and autophagy

[5]. This connection to the immune system makes them crucial in fighting dis-

ease. Defects in mitochondrial functions have been linked to various respiratory

diseases, cancer, metabolic disorders, and neurodegenerative disorders such as

Alzheimer’s, Parkinson’s, and Huntington’s disease [9].

Several infectious diseases not only impact mitochondria, but exploit them.

A studied example of this is the pathogen M. tuberculosis, which invades cells

and embeds itself within mitochondrial systems. While the bacteria often lie

dormant, they can also activate and engage in a complex interaction with mito-

chondria and the cell. The first stage of this interaction, where the bacteria seek

to survive, includes altering the form and function of the organelle to provide

nutrients to the invader [23]. The second stage involves more cell-wide influ-

ence, as the invader seeks to propagate and expand to new cells, without being

detected by the immune system.

Mitochondria have great influence in deciding whether a cell is still viable

[19]. This has significant consequences for the immune system. A disease that
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can manipulate mitochondrial regulation can preserve the life of its host cell.

There is evidence that M. tuberculosis does just this: inhibiting mitochondrial

pathways that signal for cell disposal [30]. Thus, not only is mitochondrial

structure an indicator of cell health during invasion, but restoring mitochon-

drial health would be a key way to repel M. tuberculosis [3].

The complexity of M. tuberculosis invasion requires a global view of cell

events to identify the disease and the success of the cell’s response. Not only do

they display a bimodal progression, but they can cause specific morphological

changes that serve as clues to the disease’s advancement. Models that only cap-

ture broad cell states may not be useful to clinicians seeking to fight disease. Our

integration of temporal information is the first step towards a more nuanced

model.

1.2.3 Dynamics

Mitochondria are some of the most complex organelles in the human cell. They

have their own DNA, ribosomes, and a host of specialized proteins. While

other organelles, like nuclei have a rather fixed form and location, mitochon-

dria spread throughout an entire cell, propagating wherever they are needed.

Mitochondria are best conceived as a network, with an interconnected protein

structure sometimes branching, forming rings, and extending into terminal

nodes [6]. This network is in constant flux.

Proteins in a mitochondria’s membrane signal for fission or fusion with

other mitochondria. Fission and fusion often determine which portions of

the organelles are supported, and thus are engaged in a constant dialogue over

cell-wide health.
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Our model tracks visual changes in our 2D slice of tagged mitochondrial

proteins. The most salient in our data occur from the process of fusing and

fissioning mitochondria. Nanoscale repairs and lysosome-mediated processes

are much more difficult to identify at the scale of our videos. Our data does

not distinguish whether protein disappears from view due to movement, divi-

sion, or destruction. Thus visible changes due to fusion and fission become the

bedrock upon which our model is built.

These processes can become imbalanced, leading to extreme cell states. We

focus on cells that have been artificially altered to induce imbalances in fusion

and fission. The hyperfused state of mitochondria occurs when there is too

little fission, and the hyperfissioned (fragmented) state occurs when there too

much fission.

1.2.4 Mitochondrial Structure and Imaging

Modeling mitochondria from confocal microscope imaging is a challenging

task.

An important aspect of modeling mitochondria is that significant parts of

the mitochondrial structure are not visible under light microscopy. While pro-

teins in the folds of mitochondria are easily tagged, the microtubule scaffolding

of the cristae is less opaque. A 2021 study explored 3D electron microscopy

of mitochondria and estimated that “42% of cristae structure surface exhibits

tubular structure that are not recognizable in light microscopy [33]. These struc-

tures are critical to temporal characterization because much of the motion of

mitochondrial protein is controlled by non-visible structure. Mitochondria

move on tubular tracks, which are only discernible in the paths these organelles
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trace over time. These tubular structures and their resulting motion are only

one part of mitochondrial dynamics, but are not negligible.

However, electron microscopy data is unsuitable for our purposes. We in-

tend to extend mitochondrial models to temporal features of mitochondrial

dynamics. Electron microscopy is not capable of taking videos, at least not at

an acceptable frame rate. It requires a fixed cell, and it cannot be extended to

live cell imaging. Thus, we must work with light microscopy knowing that it is

missing critical structural information.

Beside dealing with hidden structure, this study is limited to 2D frames

that show a horizontal slice of mitochondrial form. A whole dimension of

movement is lost to us. This introduces ambiguity into tracking the structural

changes—for example, when tagged protein appears in frame, it is unknown

whether that is a result of protein growth, or some rotation or translation of

existing protein from a different "slice" of the cell.

As such, we must choose a flexible model that can account for these unseen

dynamics. Handcrafting features from visible information is risky; we seek to

use deep methods to add more robust features to this body of work.

1.3 Mitochondria Modeling

1.3.1 Image Processing and Machine Learning

Spatial

Foundational work on mitochondrial modeling seeks to identify what the eye

can see; the branching, endpoints, and isolated nodes in a mitochondrial net-

work. Work like [24] uses image analysis techniques to cast branch points to

a set of vectors. They then took measurements on the length and volume of
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branches. [35] extended this work into a software package, providing a tool

to measure network features and identify relationships. They also measure the

number of these features. For instance, they measure the average length between

branches and count the number of toruses in the mitochondrial network. Note

that these works used Z-stack imaging, which retains some 3-dimensional data

and is useful for determining the true form of the mitochondrial network. This

allows the formation of a holistic mitochondrial skeleton. The reliability of

this tactic is effected by preprocessing and imaging artifacts. Different, brittle

thresholds can cause erroneous merging or tearing of the learned mitochondrial

skeleton.

These handcrafted features, like average branching length or number of

rings, are good predictors of cellular state. Prior work[8] shows that a random

forest classifier can identify these cell states, just from measurements of seg-

mented mitochondrial networks. Our previous work shows that successful

state classification is possible from a graph representation of the mitochondrial

network [27]. Both these works build intermediate representations of morphol-

ogy and classify these representations with some success.

Temporal

Zahedi et al[38] present a pipeline that extends model capabilities to video data.

In order to classify cell states compute intermediate features such as the length

or radius of a mitochondrial body. However, they also compute pixel inten-

sity differences over time to gather temporal features like direction and speed.

Styling temporal features like this has advantages: calculating the magnitude

and direction of motion preserves key information from the videos. Notably,

the authors also provide a measure of "texture". They then feed this informa-
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tion into a suite of simple machine learning classifiers, capturing hyperfusion,

hyperfission, and apoptosis well. The advantages of calculating the flow of pixel

intensity between frames is clear; the model is able to represent some of the fu-

sion and fission behavior, rather than only the extreme results of these processes

gone wrong.

This paradigm is taken a step further in Mitometer, which uses morpho-

logical measurements and changes in pixel intensity to add each individual mi-

tochondrion to a rigid internal representation [20]. They cast mitochondrial

dynamics into a set of tracks—the paths of mitochondrial bodies over time.

The main difficulty of their work is how to determine when two mitochondria

merge or split. Cell state classifications on top of this work yield similar accuracy

as previous works [21], [38].

Issues with Classic Machine Learning Methods

These classic methods have some benefits. Most notably, they are relatively

interpretable. A biologist knows what to do with features like a low branching

number, presumably. Deep representations are not always so interpretable; they

often build robust yet unintuitive features. Thus it is worth mentioning a few

drawbacks of the classic methods, which deep learning can help overcome:

1) There may be some useful information lost when going from images to a

set of measurements or a graph representation. A Deep Model is given all this

information at train time and can learn what to disregard.

2) Handcrafted features can be brittle, sensitive to slight changes in the data.

Deep features tend to be more robust to variations.

3) we need more than coarse state classification—we need a robust represen-

tation. Powerful classifiers like Random Forests do not build a representation
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of the data that does anything other than classify. We want a representation

that we can query in other ways, which deep learning provides.

1.3.2 Deep Methods

Deep methods have proven to be excellent at classifying still frames of mito-

chondria into general morphological categories. These works incorporate tem-

poral domain by extending inference to more than one still frame. For instance,

our previous work summarizes a video of mitochondrial dynamics as the first

and last frames of the video [21]. Convolutional Neural Networks (CNNs) are

shown to be capable of classifying these into broad morphological categories.

However, this mostly captures the effect of laboratory stimuli - for instance,

mitochondria that are induced to hypofission eventually turn into a tight mass.

“Before” and “after” captures very little of the mitochondrial dynamics.

Similarly, [15] extends a one frame CNN classifications to multiple frames.

They model a video by inferring the category for each still frame, then classifying

the video with the majority label of all the frames. They achieve 98% accuracy

on a binary “normal” or “abnormal” classification task, which are promising

results for an anomaly detection application.

Both these methods show that CNN’s are perfectly adequate for represent-

ing still mitochondrial morphology. Yet, they do not account for the temporal

changes. For instance, taking only two frames is a severe summarization of the

information available in the video, and will surely not generalize to more di-

verse clinical scenarios. Using frame labels to vote on the video label provides

a stronger summary, but does not incorporate past temporal information to

inform the next frame’s classification.
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We set out to provide a model that models still frames and the changes that

occur between them.

1.4 Deep Learning for Video Methods

1.5 Supervised Methods

Video learning draws on models from image analysis and time series analysis to

capture relationships in both space and time.

Researchers have extended CNNs to include 3D convolutions that process

local information in space and time through the same kernel [4], [17]. By passing

a 3D filter over a stack of images, they produce features that aggregate informa-

tion from the space and time domains. Tran et al showed that changing some

or all layers of a residual network to 3D convolutions can improve accuracy on

action recognition benchmarks [34]. However, a convolutional filter’s ability

to compose non-local relationships across longer sequences is limited by the

filter’s size. At deeper layers of the model, abstract relationships may be learned

across longer dependencies, but this is a dark art rather than a guarantee by the

architecture.

In order to learn longer dependencies, research has turned to sequence mod-

eling techniques used in NLP. Architectures like Recurrent Neural Networks

(RNNs) seek to propagate signals across sequences [28]. In this paradigm, time-

series units, or "tokens", are iteratively passed through the same RNN mod-

ule, which maintains a stream of information influenced by each past state.

However, this architecture also struggles with maintaining strong long-term de-

pendencies, not because of filter constraints, but because it is difficult to push

changes back along its learning gradient without collapse. In response to this
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problem, specialized gated RNNs were developed, such as the Long Short Term

Memory module (LSTM) [12]. By combating gradient loss, this architecture

achieves success at learning longer dependencies than the vanilla RNN. These

do not claim to model truly "long" dependencies—they still are inclined to learn

local relationships.

A natural strategy to video modeling is to use CNNs to generate the input

sequence to a recurrent neural network. LSTMs accept a variety of inputs,

such as patches of an image or percepts from pretrained 2d CNNs. One tactic

is to simply flatten 2D image convolutions into individual vectors that form the

sequence. Another tactic is taken by ConvNet, which maintains the input’s

dimensionality within the recurrent module, using convolutional operators to

pass information between iterations [31].

The supervised component of our work is focused on learning short-term

behavior: namely the "action" of fusion or fission. As such, LSTMs present

a reasonable solution for learning temporal patterns. In our work, we train

a CNN to output percepts of individual frames from 2D convolutions, then

feed this sequence of outputs into an LSTM. This composite CNN-LSTM is

trained from scratch—no part of the system is frozen or pretrained.

1.5.1 Inductive bias

Inductive bias refers to the collection of assumptions a model makes in order

to guide its learning. Selecting the most useful inductive biases will allow the

model to learn useful patterns in the data. When working with small datasets,

it is especially important to select models with a good inductive bias because

the model will have less opportunity to build good assumptions about the data

from scratch. One reason Convolutional Neural Networks are so successful
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at image analysis is their design is biased towards learning shape and texture in

image data. When trained to infer from textural features, CNNs can become

quite reliant on texture as a predictor. Given the “high-frequency” morphology

of mitochondrial dynamics, this preference towards texture is desirable in our

model. CNNs have the additional advantage of building translational invari-

ance through the use of pooling layers in the models. The cells in our data exist

in different locations in frame, with no bearing on their internal state. Thus

translational invariance is highly desirable.

LSTMs contain other inductive biases that are appropriate for our modeling

goal. Naturally, their sequential processing of input is appropriate for a time

series problem. LSTMs cannot look back to access information from old time

points, so they are forced to push this information onto a constantly maintained

hidden state. They have a recency bias, where timestamps more recently seen

have a greater impact on future predictions. The overall effect is to boost the

learning of short-term dependencies.

In addition to the LSTM model, we explore two simpler methods of ag-

gregating the temporal information over a handfuls of frames. First, we try

flattening frame outputs into a single vector. Secondly, we take the mean of

each frame output. These are more low-tech solutions than an LSTM, but they

give us a baseline to compare against. If they are able to learn, then the heavier

parametrization of an LSTM may be unnecessary.
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1.6 Unsupervised Methods

1.6.1 Dimensionality Reduction

Unsupervised methods like clustering seek to find meaningful groupings in the

underlying structure of datasets. In order to learn reliable clusters, the data

needs to be transformed into the appropriate representational form. The first

step towards this in our study is learning the deep embeddings of our videos,

the second is to reduce the dimensionality of this embedding.

A host of clustering methods were developed to cluster low dimensional

data and they tend to be less reliable at increased dimensions. "The curse of

dimensionality" is a catch-all phrase for issues which arise in computations at

a high enough dimension. In these spaces, many metrics begin to fail. For

example, the euclidean measure of distance is affected by dimensionality; as you

add components to vector inputs, each component has less impact on the whole.

At high enough dimensions, differences in components become negligible to

the output, and the euclidean metric becomes less useful. As a result, common

clustering algorithms built on similar metrics, like k-means and DBSCAN, will

lose their efficacy.

Dimensionality reduction refers to the practice of projecting high dimen-

sional data on a less complex space. Typically, these algorithms exploit some

underlying structure in the data to map it to meaningful axes, such as a set of

axes that explain the most variance in the dataset. With reducing the represen-

tational space of the dataset, choices must be made about which information is

preserved. Typically, there is a trade-off between preserving global vs local struc-

tures - one can prioritize the greater landscape of the dataset, or prioritize the
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local neighborhoods that often show meaningful relationships between data

points.

UMAP

UMAP is a popular tool due to its ability to balance this trade-off [22]. UMAP

works by constructing a graph where connections are made from each data-

point to other points that fall within a certain radius of the datapoint. As the

radius extends outwards, such edges are weighted to be "less likely" connections.

(Prioritizing connections within the tight radius has the double benefit of de-

valuing connections that may by touched by the curse of dimensionality). This

construction tends to heavily push topological information onto sparsely con-

nected datapoints - simple forms in the graph like ’lines’ or ’triangles’ preserve a

lot of the important information. This reduces the computational difficulty of

the latter step of UMAP, which is to find an optimal match from the complex

graph to a simple graph.

This simple graph is then cast back into a lower dimensional projection,

with the data ripe for analysis.

Sparse PCA

Sparse PCA [18] is a variant of Principal Component Analysis that attempts

to find axes containing the most variance in high dimensional data. Sparse

PCA finds these axes by first selecting a subset of variables that describe each

vector. As a result, the low dimensional projections are more representative of

key relationships in the data, and less likely to be composed of many smaller

relationships. This is meant to yield more interpretable axes that map to real

world meanings.
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Overall, both UMAP and Sparce PCA exploit "sparsity". UMAP deals

purely with graph structure, and reflects a balance of local and global features.

PCA more focused on global structure. Sparse PCA captures less variance in

the reduced axes than traditional PCA and this is helpful if we want an axis that

has some has some interpretation of fusion and fission.
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Chapter 2

Experiments

2.1 Methods

2.1.1 Data Collection

The dataset consists of confocal microscopy video footage of epithelial HeLa

cells collected for [6]. The videos span 24 hours: roughly the length of one life

cycle for these cells.

Mitochondria were fluorescently tagged with the DsRed2- Mito-7 protein

and filmed with a Nikon A1R confocal microscope. Thus, the data tracks in-

tensity of the fluorescent signal in a 512x512 frame as it changes over time [6].

The footage collected one frame every 10 seconds, resulting in at least 20,000

frames per video. Each video contains multiple HeLa cells.

The cellular samples were artificially induced into three distinct morpholo-

gies. The first set of samples was exposed to Listeriolysin O (LLO), a pore-

forming toxin which induces mitochondrial fragmentation. The second set

of samples was exposed to mitochondrial division inhibitor 1 (mdivi), which

induces mitochondrial hyperfusion. A final set of samples remain unaltered to

serve as a control group. Examples of these three classes are shown in Figure 2.1.
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Figure 2.1: video frames from mitochondria in 3 different states, from left to
right: normal, hyperfused, and hyperfragmented

Exposure to LLO and Mdivi creates extreme imbalances in mitochondrial

fission and fusion processes, respectively, within affected cells. While affected

classes display fragmentation and hyperfusion, all three classes can share aspects

of fission and fusion at some time point.

2.1.2 Preprocessing

As each video contains multiple cells, we segment videos into sections contain-

ing one cell to obtain a set of videos tracking a single cell’s development. The

methodology is the same as in previous works on this data [6], [11], [27]. This

consists of seeding each video with a segmentation mask generated by ITK-

SNAP [37], then tracking each cell’s progression over the video through iterative

dilation, thresholding, and contour detection.

As development is fairly slow, the number of frames is downsampled from

20,000 to 200. Before, differences in the video were about 10 seconds, and

after, they are about 7 minutes apart. This downsampling is used in previous

OrNet work, leaving this study open to comparison with models. Some videos
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are truncated to shorter time frames due to loss of signal. For example, a tracked

cell leaves the frame.

We then used median normalization to minimize the effect of light fluctua-

tion over the frames over a video. This results in 114 videos of single HeLa cells.

There are 54 instances of LLO, 31 of Mdivi, and 29 of healthy control.

2.1.3 Dataset construction

Our dataset contains a small number of videos, but a plethora of information

along the temporal axis. Each video was decomposed into sets of 5 frames, span-

ning 0.25-0.4% of each video. The CNN training aimed to capture the differ-

ence between hypofission and hyperfission, rather than the categories LLO and

Mdivi. These classes have overlapping structure; there is some fission in Mdivi,

and some fusion in LLO. It would be preferable to only have datapoints with

the respective imbalance implied by each class. Since each LLO video typically

takes longer to develop an imbalance of fission, the first 50 frames of each LLO

video were omitted from the training set.

The control group is not trained on, and serves as a true control to test the

final model on unseen behavior. This allows us to reflect on what attributes the

model actually uses to distinguish between the two classes.

In order to train the model, the dataset was split into three partitions: the

train, validation, and test sets. These classes are balanced with each having

slightly more LLO videos in each partition to reflect its majority in our dataset.

The validation and test partitions were chosen to make sure the videos reflect

the diversity of the training set. In the data, Mdivi tends to have a similar effect,

whereas in LLO, some cells are more greatly effected by the toxin. There is ad-

ditional diversity in the placement of cells, with some being large and centered,
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some smaller but still entirely visible, and some leaving the edge of the frame.

Furthermore, some cells fade entirely from view as the cell presumably dies. In

2.3, we see this reflected in the test. It contains 3 similar Mdivi videos, three LLO

videos with a reflection of the toxin, and two LLO videos that stay pretty static.

It mostly contains medium sized, entirely visible cells, but also contains a larger

cell, an occluded cell, and a cell that fades nearly to no signal.

To summarize, the dataset construction is as follows: First the train/validation/test

split was performed on the set of videos. Second, the respective videos were split

into chunks consisting of 5 frames, omitting the beginning of LLO videos. Last,

to prevent the model from seeing a batch with samples all from the same video,

the chunks were randomly shuffled one time upon instantiation of the training

dataset.

These were implemented using PyTorch and scikit-learn.

2.1.4 Models

The model architecture used can be broken into three components: a CNN, an

aggregator, and a training task. The CNN gathered deep features from each in-

dividual frame, and the aggregator joined sets of frames together to form a single

vector in the final representation space. The training task consisted of a single

dense layer mapping to these final representations to a binary classification.

SqueezeNet served as the CNN backbone of the model [14]. Squeezenet is a

smaller version of AlexNet, one of the foundational class of CNN architectures

that has achieved great empirical success. The model consists of several submod-

ules that "squeeze" data through a pointwise filter, and "expand" the results into

many feature maps. Downsampling is performed late, to keep activation maps

broad and to best exploit the limited number of parameters. We used a vanilla
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version of SqueezeNet, containing no skip connections. ReLu served as the

activation function in the network.

The SqueezeNet outputs were passed through a final dense layer to yield

a single vector representation of a frame. These were aggregated through 3

methods: flattening, mean, and an LSTM. In “flattening” the frame vectors

were simply concatenated into larger vector. In mean, a new vector with the

same dimensions as an individual frame vector was constructed by taking the

mean across each element of the frame vectors. In the LSTM, a vector of the

same size as the frame vectors was learned by iteratively passing the sequence

of frame vectors through this deep model. These aggregators are treated as

sub-experiments, and the efficacy of each choice of aggregator is examined in

The training task was simply to map frame sequences back to their original

category: hyperfused Mdivi or hyperfragmented LLO. This was achieved by a

single dense layer taking in the aggregated frame representation.

All parts of the model were implemented with PyTorch [25]. An untrained

implementation of SqueezeNet was taken from pytorch hub, the original out-

put layer removed, and the aggregator and training task appended.

2.1.5 Training

The complete model was trained to minimize cross entropy loss in the binary

classification task. The loss function is shown below, where p represents the

probability that an input belongs to a particular class ADAM was used as the

optimizer.

LBCE = −(y log(p) + (1− y) log(1− p))

Training deep models on a small dataset leads to challenges. Deep models,

equipped with many parameters, may simply use this wealth of parameters to
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"memorize" data. In other words, they may learn overly specific features found

in the dataset that allow for high accuracy at train time. However, these brittle

patterns are often insufficient to map new data to a high quality representation.

For example, a model may learn the pattern of a cell collapsing by memorizing

the exact shape, location, and velocity of the pixels representing the cell bound-

ary. Without a more abstract parameterization of the “collapse”, the model may

be confounded by unseen collapses in new configurations. Thus, the goal of

training these models is to encourage the model to distribute information be-

tween parameters in a more satisfying strategy. The standard way to address

this problem is to insure that the model is not “overfitting”; The training loss

should not outstrip the validation loss. When working with a dataset as small

as our study, overfitting is almost inevitable.

There are several methods to combat overfitting. First of all, the represen-

tational power of the model should be appropriate for the scale of the dataset.

In our study, we selected SqueezeNet as the base model due to its small size, or

fewer parameters. Additionally, the training task was instantiated in a single

dense layer, to force representation learning to happen primarily in the CNN

and aggregation component.

Second, regularization like dropout was used [32]. Dropout discourages the

model from relying on a single parameter to store key information. In order

to learn in a setting where no weight is guaranteed to be active on the forward

pass, the model must distribute info between parameters. This method quickly

overturns brittle mappings during training, and prevents hash-like solutions.

Additionally, this may encourage “redundancies” in the mapping. This leads

to healthy models which tend to rely on more abstract layers to form the final

representation.
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Third, regularization like image augmentation is crucial to generalization.

The dataset does not contain enough variance in pose, position, scale, and pixel

intensity to prepare the model to generalize to very similar clinical settings. Im-

age augmentation serves the dual purpose of artificially diversifying the dataset,

and downweighting features overrepresented in the train set. For example, ro-

tations are used to show the model cells in more orientations. On the other

hand, artificially altering brightness attempts to knock the model’s confidence

in pixel intensity as a useful predictor. Our video data contains artifacts where

the intensity of pixels will change over the course of the video with no corre-

sponding change in mitochondrial mass. The model could rely on this artifact.

Synthetically perturbing frame brightness in the train set discourages the model

from relying on this artifact.

The result of image augmentation is that training inputs have an equal

chance of being rotated 0, 90, 180 or 270 degrees. The brightness of a frame has

a 50% chance of being increased by 10%. All frames in a chunk have the same

transformation applied.

Hyperparameter Tuning

Hyperparameter tuning first consisted of a wide search over learning rate, batch

size, dropout, weight decay, and shuffling. The best models had a learning rate

of 1e-05 , batch size of 16, no weight decay, and negligible impact of shuffling.

After this, additional experiments were run with dropout in two locations -

the final dense output of Squeezenet, and in the LSTM module. Both the final

Mean and LSTM models contained 50% dropout rate in the final layer of the

CNN. The final LSTM model had a dropout rate of 25% between iterations of
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the LSTM Module. All final models shuffled the training set between rounds.

Training used early stopping.

Training of the model was implemented in PyTorch Lighting [7]. All ran-

dom behavior was controlled with 2 seeds - one global seed for the lighting meth-

ods, and 1 seed for the PyTorch dataset construction. Training was distributed

between two NVIDIA TITAN X (Pascal) GPU cores.

2.1.6 Dimensionality Reduction and Clustering

Deep embeddings were obtained by passing the test dataset through the fully

trained model and hooking the outputs of the penultimate layer. This yielded

set of vectors in R32, each representing a chunk of the video. Standard scaling

was applied to these vectors. An instance of UMAP with 2 components was

fitted to these embeddings, resulting in projections for the data. These were

then plotted as individual videos.

The 2D UMAP plots were fitted with a 30 neighbors and .3 minimum dis-

tance between projected points. This strikes a balance between global and local

for our dataset.

Additional Sparse PCA plots were made to attempt to project the video

onto 1 interpretable axis.

2.2 Results

2.2.1 Model Results

The test set consists of 8 videos verbally described in Table 2.3. Each is referenced

by its class and an alphabetic number for the remainder of the plots.
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The test results are shown in 2.1. The UMAP embeddings for all three

aggregators are shown in Figure 2.4. As LSTM 2.1 is the only model resulting

in a test score above random chance, these are the only dimension reduction

plots explored further. The rest can be found in the Appendix.

Figures 2.5 through 2.9 show 2D UMAP projections of the 8 videos, with

each point representing a chunk of frames and each color denoting the times-

tamp on the first frame of the chunk. Figures 2.14 show these point projecting

on only the x-axis through sparse PCA.

Model Train Val Test

Accuracy (%) Loss Accuracy (%) Loss Accuracy (%)

Mean 2.2 84.4 .390 92.7 0.332 45.1

Flatten 2.2 87.5 .290 96.4 0.247 47.1

LSTM 2.1 56.3 .686 83.6 0.570 68.9

LSTM 2.2 93.8 .184 95.0 0.132 43.0

Table 2.1: Accuracy and loss scores for final models

Cross-validating Models to Confirm Low Accuracy

To confirm the uneven findings of the model’s accuracy, a cross-validated train-

ing of the LSTM model was completed. This was a 10-fold cross validation

upon the combined train and validation splits, leaving the test split the same as

in the previous training. The average train loss was .324 and the average valida-

tion loss was .257. Train Accuracy was 91% and validation accuracy was 88.4%.

Yet the average train accuracy was 49.6% accuracy.
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Brief investigation of Morphological vs Temporal Features

The embedding had both morphological and temporal features to draw from.

In order to shed light on how much the temporal features were explored by the

models, a revised test set was formed where instead of each time-frame consisting

of 5 successive frames, the time-frame consisted of the first frame repeated 5

times. The resulting test accuracies are shown in figure 2.2

Model Test Set Flat Test Set

Mean 2.2 45.1 45.5

Flatten 2.2 47.1 46.7

LSTM 2.1 68.9 68.4

LSTM 2.2 43.0 44.2

Table 2.2: Differences in test accuracies given all frames versus just given the first
frame

Video Label Annotation

Mdivi A

A cell in the top right quadrant with several “arms” extending out from it.

Network development is slow and subtle, with branches merging and little division.

The cell shape remains static.

Mdivi B

An elliptical cell in the center of the right half of the frame.

Network development is observed, with branches forming

and slightly changing location. There is some division of branches

but no punctuate structures. The cell shape remains static.
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Mdivi C

A round, diffuse cell in the center of the left half of the frame.

Network development is observed, with initially branches merging.

There is a dip in brightness, then the same slow merging continues,

without a major structural change.

LLO A

A large cell shows signs of fragmentation.

After a flare of brightness, the fragmentation continues followed by a sharp collapse.

The cell slides towards the center of the frame and deteriorates rapidly,

eventually only leaving the barest speck of illumination.

LLO B

An elliptical cell in the top center.

Excessive fragmentation is observed, followed by a swift collapse.

The cell slides to the center of the frame and loses a third of its mass.

It then remains fairly static.

LLO C

A visible ring in the bottom left quadrant.

Both division and merging of the visible portion is observed.

No collapse or movement.

LLO D

A fairly static cell in the bottom right quadrant.

Over the course of the video, there is a faint fragmentation of protein.

The brightness of the video fluctuates several times.

There is no “collapse” event or any sort of movement.

27



LLO E

A large cell centered in the frame, with clear definition of cellular protein.

The proteins display fragmentation, becoming more punctate.

A shift is observed, with boundaries of the cell shrinking.

However, the center of the cell stays static - no translation.

Table 2.3: Verbal description of each video in the test set
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Figure 2.2: 2D UMAP projections from the LSTM embedding.
Videos are shown in different colors. LLO C, D, and the end of A are separated from
the rest (these are very static videos). LLO B and E have very similar structure, but are
entangled with Mdivi

Figure 2.3: 2D UMAP projections from the Flatten embedding.
LLO D and the very end of are separated from the rest, but LLO C and the beginning
of LLO A are far away, adjacent to Mdivi C. LLO B and E are less similar than in the
LSTM plot, but are still entangled with Mdivi
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Figure 2.3: 2D UMAP projections from the Mean embedding
Of the plots this has the least linear progression, with some videos changing directions
and looping back around. LLO C, D, and the end of A are not separate from Mdivi C
(Though this makes it look like the relationship in the Flatten embedding may be a tear
in the graph.) LLO B and D are not very similar, but are both entangled with Mdivi.

Figure 2.4: Global UMAP Plots

Figure 2.5: Mdivi A - LSTM 2.1 - 2D UMAP
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Figure 2.6: Mdivi B - LSTM 2.1 - 2D UMAP

Figure 2.7: Mdivi C - LSTM 2.1 - 2D UMAP
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Figure 2.8: LLO A - LSTM 2.1 - 2D UMAP

Figure 2.9: LLO B - LSTM 2.1 - 2D UMAP
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Figure 2.9: LLO E - LSTM 2.1 - 2D UMAP

Figure 2.10: 2D UMAP projections showing LLO videos with a discernible
collapse - LSTM 2.1
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Figure 2.11: LLO C - LSTM 2.1 - 2D UMAP

Figure 2.12: LLO D - LSTM 2.1 - 2D UMAP

Figure 2.13: 2D UMAP projections showing LLO videos without a discernible
collapse - LSTM 2.1
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Figure 2.14: 1d PCA Plot.
Each video is projected onto a single axis. Mdivi and LLO videos progress in different
directions, overlapping their location. LLO videos with more cellular shifts show a
distinct spread compared to the tightly clumped, static LLO videos.

Figure 2.15: 1d PCA Plot for healthy control videos.
Each video is projected onto a single axis. The model has never trained on this class of
videos so they are technically OOD. These videos all display similar dynamics, fusing
and fissioning in balance. However, Control A, C, and D all remain tightly clumped
(similar to the static LLO videos) while control B has a greater spread.
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Chapter 3

Discussion and Future
Work

3.1 Discussion

3.1.1 Lack of Generalization

Despite an extensive hyperparameter search, no satisfying, generalizable solu-

tion is found. It is possible to fit a model that does well on the train and test

set, as shown by LSTM version 2.2. This model achieves train/val accuracy of

93.8/95.0%, with loss as low as .184/.132, respectively. However, this solution

has the worst test accuracy, at 43%. This indicates that while the model is able to

represent the data points well enough, it is not forced into a truly generalizable

solution.

Likewise, The Mean and Flatten models perform worse/around random,

and the LSTM slightly out-performs random. Thus, these trained models do

not successfully generalize to the test set.

The model with the worst train and test scores, LSTM 2.1, happens to per-

form the best on the train set. This should be interpreted as finding a lucky

solution that works for all dataset splits.
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As we conducted a thorough hyperparameter search, it is likely that this

failure to generalize has more to do with the dataset. Previous work dealt with

severe truncations of the videos. Expanding the study to a temporal domain

introduces a lot more variance. This puts a strain on the small dataset, where

108 videos are unlikely to show all the diversity of mitochondrial behavior that

will be found in the validation and test set. Without the opportunity to master

the variance in the population of videos, the model will learn features from the

train set that yield a local optima in the loss function. Sometimes, these features

will transfer to the validation set, yielding a nice drop in validation loss. We cut

the training off at this point, because we hope that the learned parameters that

work for the validation set will also work for the test set. Yet in our case, they

do not.

Instead of controlling overfitting, the validation set just becomes folded

into the problem. There are clearly non-optimal, non-generalizable solutions

that predict the train and validation sets without predicting the test set. In this

landscape, early stopping is more akin to guessing.

The inductive bias of the model is not strong enough to make up for a

lack of good training data. In other words, it is unlikely that a more extensive

hyperparameter search would be less fruitful than improving on the existing

dataset or model. This issue is discussed further in section 3.2.3.

Still, poor classification could be stemming from overfitting in the decision

layer. There might be some quality in the pre-decision representation, thus

the next sections continue on to interpret the UMAP projections of this layer.

While we examine the representation layers of all three models types in the next

section, we then will only seriously consider the LSTM 2.1 model, as it is the

only model with some indication of good learning.
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Utilization of Time Domain

Section 2.2.1 examines whether there is any difference between giving the model

all the frames in a section (how the model was trained), or just the 1st frame

in a section. The results show very similar test accuracies on both tasks. The

Flatten and LSTM 2.1 aggregators drop by less than half a percentage point

without the full time information, and the other models gain a similarly small

increase in accuracy. Given the poor quality of the mapping it’s uncertain that

these changes mean anything significant. However, if the model was using

information in the time domain we’d probably see a significant drop in accuracy

when this information was taken away. Because we do not see such a drop, it is

likely that the model is relying purely on morphology (the structure seen in a

still frame).

3.1.2 UMAP Projections

Global insights

Examination of all the videos in Figure 2.4 reveals that while the Mdivi and

LLO classes are not linearly separable, the plots seem to capture some local

structure for each video. Similar videos have similar distributions. There is a

clear progression from structures at the beginning of each video to the end of

the video, with some variance (see figs 2.5 through 2.9). This behavior would

follow from the CNN capturing the morphology of each frame; similar shapes

in the frames yield neighbors in the embedding.

Much of the low test score seems to stem from the entanglement of Mdivi

A with LLO B and D, which occurs in all three aggregators. However, this is

the only significant entanglement in LSTM 2.1, whereas the Mean and Flatten
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projections have additional conflations: Mdivi A, B and LLO B, E are inter-

twined, as well as LLO A,C,D with Mdivi C. However, the LSTM model is

able to separate Mdivi A from LLO. It also separates LLO C,D and the end

of LLO A from the rest of the embedding. This is a meaningful association,

because LLO C and D are videos where nothing happens, and the end of LLO

A is a collapsed cell with very low protein signal and little dynamics.

Due to a lower quality embedding and worst test accuracy, the Mean and

Flatten models are dropped from the rest of this analysis. The potential of the

LSTM embedding is explored further.

Video Insights - UMAP

The progression of timestamps in each video should be taken with a grain of

salt, the reduction is just putting them in order because nearest neighbors will

be most similar morphologically by default.

The projections generated by LSTM show a few meaningful relationships

with the data. The first common thread is the rather smooth progression of

Mdivi timestamps. These tend to move in the same direction*, with earlier

timestamps being spread a little farther apart than later timestamps. There is

some mingling of points which may reflect the way the fusion progresses in the

cell, or other artifacts of the training.

Another common thread between aggregators is the difference between

LLO embeddings that contain a cellular collapse and cells that stay static. Both

the LLO A and LLO B videos contain a cell collapse. In the projections of LLO

A, there is a clear separation between initial, early timestamps, and the rest of

the later timestamps. In projections of LLO B, there is a more complex struc-
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ture with two clumps for early and later timestamps, with middle timestamps

(between frames 100 and 120) having the most distance between them structure.

Videos of LLO cells that do not collapse have an analogous counterpart in

the projections. These projections are clumped very tightly together compared

to their more dynamic counterparts. There is some progression of the spread,

but nothing particularly distinct. This non-development may be a useful indi-

cator of cell health, as it accurately reflects how these cells did not take on much

cellular change at all.

Video Insights - Sparse PCA

The 1D projections attempt to provide a single, interpretable axis that captures

how much the cell has fused or fissioned. These plots seem to capture cellular

progression, at least in morphology.

Mdivi data points are projected from right to left, whereas LLO data points,

in the dynamic videos, proceed from left to right. These are not entirely in order,

with some mixing of timestamps occurring in Mdivi B and especially Mdivi A,

especially near the end of the video. Similar to the UMAP projections, LLO

B and E are mapped to a similar area, whereas LLO A ends up near the static

LLO C and D mappings. Note that LLO E timestamps progress from left to

right, then loops back to after about frame 140.

The projected embeddings for the wild-type videos are shown in Figure

2.15. These videos are all of slightly different cells, of similar sizes undergoing a

similar balance of fusion and fission. In the videos, control A, C and D are all

tightly grouped in a similar area as the static LLO videos and the totally collapsed

portion of LLO A. However, Control B is located to the left, overlapping with

Mdivi and active LLO projections. It also spans a wider area than the other

40



control videos. There is little in the video that explains this aberration, so it may

be an artifact of the embedding.

3.2 Future Work

Future work for this project involves steps to learn a better embedding through

advancements to the model, training task, and dataset.

3.2.1 Improvements to Training Task

The classification task is too limited for our data. First of all, a “good enough”

classification can be made from overly specific attributes of the data, and clas-

sification does not force a beautiful, generalized solution that applies to the

validation/test set. Secondly, given the results of 2.2, it is clear that the classi-

fication task does not force the model to rely on any temporal features. The

classification results are near the same whether 5 frames of information are given

or one frame.

Generative training paradigms like autoencoders can spur a better embed-

ding in latent space in order to perform tasks such as image reconstruction.

These have the advantage of requiring less annotation of the data. However,

these come with their own issues. Most significantly to our data, reconstruction

loss contains biases towards global shape. There is a higher penalty for getting

a shape with a large volume wrong with the right texture, than for getting the

right texture but the wrong volumetric shape. A generative training task will

need to take special care to preserve important local features.

An autoencoder tasked with recreating a short sequence would pick up on

temporal features, but it would not necessarily give special attention to fusion or
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fission. As a result, an autoencoder fine-tuned on the hyperfusion/fragmentation

classification task would be ideal. This model would get the learning benefits

of the autoencoder with an emphasis on the features we care about.

3.2.2 Improvements to Model

We sought to learn short-term dependencies in a supervised manner, then model

global dynamics with unsupervised tools. The resulting representation shows a

progression of “events” in the video, but does not indicate any concrete relation-

ships between the small time chunks. This is sufficient structure to represent

broad cell states, but may not be sufficient for modeling more realistic scenarios.

For instance, cellular invasion by a pathogen may incur changes in mitochondria

morphology that connect to much later cell events. Explicitly learning longer

dependencies may be a helpful tool for our purposes.

Video models that incorporate self-attention decompose a video into a set

of spatiotemporal tokens, consider all possible relationships between tokens,

and learn which relationships are the most predictive of some learning task [2],

[10], [36]. This paradigm is borrowed from natural language processing, where

their notion of tokens (words, subwords) is rather rigid.In video modeling, a

diverse set of "tokens" may be appropriate. These make look like single frames

passed through a CNN, the result of 3D convolutions, or the representations

in this study.

Some studies take multi-headed self-attention to its fullest extreme, replac-

ing all modules of a video model with transformers [1], [29]. Transformers

require more data to learns than CNNs, and they do not contain the same in-

ductive biases that make CNNs more appropriate for mitochondrial dynamics.

As such, the middle ground approach is recommended: use convolutions to
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generate spatiotemporal tokens, then self-attention to learn longer temporal

relationships.

3.2.3 Improvements to Dataset

Deep learning methods are notoriously data-hungry. Quality footage of live mi-

tochondria takes a lot of labor and expertise to obtain. As a result, the literature

is peppered with studies at a similar scale to our study; cells numbered in the

100s. The variation of imaging conditions are unique to each study, yet mono-

lithic within the study. Thus these small datasets do not span a very diverse

partition of the mitochondrial imaging domain. Not only does this limit the

models and training that can be done though deep learning, but it leaves regular

machine learning models open to skewed dataset splits, generating misleading

accuracy scores. For clinical settings, we need stronger guarantees of accuracy.

3.2.4 Augmenting Data

Our dataset was augmented to increase variance in pose. Future work recom-

mends even more use of these augmentations, with more rotations, tessellations,

and even skewing of frames. One might also include local patches of the frame,

which are typically predictive of fragmentation. The end effect is to encourage

the model to rely on the relational change in protein over features like brightness

and location.

In particular, tessellations may have the greatest impact on whether the cell

is relying on local protein transformation or global shape. Tessellations may

look like duplicating a single cell to fill up the input space. However, it may

be simpler to return to the unsegmented data with multiple cells in the same

frame. Including some to all cells may discourage the model from relying on the
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cell boundary for decisions. However, cells that are spread spread apart may be

less helpful for this purpose as the CNN can simply combine single cell lessons

deep into the network. We want flush tessellations.

Ultimately, these attempts to make the dataset stronger will not be enough.

A deep model robust enough to be trusted in a clinical setting will most likely

need more data than we are working with in these experiments.

3.2.5 More Data

Though one solution is to pay for the acquisition of more data, another solution

is clear: merge datasets. With the combined data of many labs, organized and

well-documented, we could create a solid benchmark dataset accessible to all

researchers. The creation of similar benchmark datasets has spurred machine

learning development in fields like image recognition and natural language pro-

cessing. It is the best practice for research of this nature, as it allows scientists to

compare their methods against an objective target. Creating this public dataset

would spur rapid evolution of deep learning models on the task of representing

mitochondrial dynamics.
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Chapter 4

Conclusion

This work explores the extension of deep models to modeling mitochondrial

dynamics. The combination of a CNN with an LSTM to model short time

frames shows some promise in capturing morphological changes in the cell.

The model embeds sections of the video in a sensible order mostly because sim-

ilar structures occur in adjacent frames. This embedding can be projected into

lower dimensional structures that differentiate between hyperfusion and hyper-

fission through the direction the video progresses on a projected axis. There

is also a discernible difference between projections of videos where the cell col-

lapses and the cell stays static. Future work could explore this structure to map

shifts in the projection back to frames of the video.

However, the model suffers from weak generalizability and under-utilization

of the temporal domain. It is recommended that future work change the train-

ing paradigm to first embed short sections of the video with an autoencoder,

then fine-tune on the hyperfusion/fragmentation classification task to empha-

size this behavior in the representation. After these basic steps, it may be fruitful

to explore other mechanisms for learning temporal dependencies like attention.

In order to generate reliable results, more data is needed. Future work is held
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back by the partitioning of biomedical imaging data. If biomedical deep learn-

ing is to succeed at the academic level, comprehensive benchmarks must replace

small datasets that produce unreliable accuracy results in the literature.

Overall, deep learning tools show promise for cellular imaging problems.

However, much more work is needed to successfully capture the dynamics of

organelles like mitochondria. Success on classification tasks isn’t sufficient for

learning nuanced dynamics. Such nuance is critical to building useful models

for pressing questions like pathogenic invasion.
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