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 Automatic speech recognition (ASR) is the process by which spoken speech is recognized 

and transcribed by a system. Forced alignment is a task within speech recognition that outputs a 

time-aligned transcript of audio at the phoneme and word level, utilizing an acoustic model that 

represents the relationship between audio signal and linguistic phonemes. This thesis compares 

two acoustic models, one trained on African American English (AAE) varieties and one trained 

on Mainstream U.S. English, on a forced alignment task of AAE speakers from Georgia. The 

output from each system’s forced alignment was analyzed to find differences in performance 

between the two acoustic models. We find that the two systems differ significantly in reported 

vowel duration for certain vowels relevant to ongoing changes in AAE.  
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CHAPTER 1 

INTRODUCTION 

1.1  Background 

African American Language (AAL) is a well-studied dialect of English that has its own 

grammatical system, phonology, and lexical items and is spoken by most Black people in the 

United States (Kendall et al. 2018). Automatic speech recognition (ASR) is an area within 

computational linguistics and artificial intelligence where computer systems are developed to parse 

spoken language and output the speech as text. While ASR systems have made huge progress in 

the last decade, there are still many unsolved issues in the field. Specifically, ASR systems are 

influenced by the training data they are given to first learn to recognize speech (Koenecke et al. 

2020). The training data typically lack diversity in the speakers and varieties of language used, 

leading to performance disparities.  

This thesis builds on the current research in this area by analyzing the impact of training 

data used on an ASR system’s acoustic model. The acoustic model represents the relationship 

between the spoken audio signal and the linguistic phonemes being produced in the audio, and 

research suggests that the data used for training the acoustic model may be responsible for 

performance disparities in ASR systems (Koenecke et al. 2020). This thesis compares the 

performance of two speech recognition systems that are identical except for the acoustic model. 

One system used an acoustic model trained on a general variety of American English, and one 

system used an acoustic model trained on speech from African American speakers collected 

through CORAAL (Kendall and Farrington 2021). Both systems were used on a forced alignment 
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task of African American speech data from two locations in Georgia. Forced alignment is a 

different task than automatic speech recognition; given audio and a sentence-level transcript of the 

audio, forced aligners provide word and phoneme-level transcriptions of the audio. The results of 

the two acoustic model systems on this forced alignment task show broad agreement in 

representations of AAL consonantal features, but less agreement in some vowel contexts, 

especially relating to vowel duration. Differences in vowel durations and onsets are shown to be 

statistically significant in certain environments.  

Research has shown that ASR systems perform poorly on speech data that is not well-

represented in the system’s training data, which typically consists of predominantly white 

Mainstream United States English (MUSE) speakers. Koenecke et al. examined this by testing five 

commercial ASR systems - Amazon, Apple, Google, IBM, and Microsoft - on different varieties 

of English and found that all the reported significantly higher word error rates (WER) on Black 

speakers (2020). Additionally, their results showed that WER was strongly associated with the 

amount of AAL features being used by the speaker – the more AAL features a speaker used, the 

worse the systems’ resulting WER was (Koenecke et al. 2020).  Tatman and Kasten (2017) studied 

differences in gender, race, and regional dialects for both Bing Speech and YouTube automatic 

captions. Their results showed that YouTube captions performed significantly worse on Black 

speakers (Tatman and Kasten 2017). Bing Speech also performed worse on Black speakers, but 

the sample size was too small to achieve high power (Tatman and Kasten 2017).  

 These and similar studies show that ASR does indeed perform worse on AAL, but the 

reasons for this are contested. Some research has shown that ASR systems are more likely to 

produce errors around morpho-syntactic features of AAL. Martin and Tang (2020) examined 

DeepSpeech and Google Cloud Speech and found that the systems were more likely to produce 
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errors around instances of habitual be, a grammatical feature of AAL. Following these results, 

Martin (2021) used corpus linguistics methods on four major spoken corpora used in training of 

ASR systems – Switchboard, Fisher, TIMIT, and LibriSpeech – and the Corpus of Regional 

African American Language (CORAAL). Martin found that habitual be is 1) far less frequent, 2) 

in fewer texts, and 3) surrounded by a less diverse set of word types and parts of speech in the four 

ASR corpora compared to CORAAL (2021). These findings showed that the spoken corpora used 

in training and evaluation of popular ASR systems are biased against AAL and “likely contribute 

to poorer ASR performance for Black speakers” (Martin 2021).  

In contrast to this view, Koenecke et al. (2020) stated that racial disparities in ASR systems 

are primarily due to a performance gap in the acoustic models. This implies that the ASR systems 

are not adequately handling the phonological, phonetic, or prosodic features of AAL, as opposed 

to the grammatical or lexical features of AAL. Researchers do agree, however, that a likely cause 

of performance disparities is the lack of audio data from Black speakers in training ASR models 

(Koenecke et al. 2020; Martin and Tang 2020). Koenecke et al. tested this by using identical short 

phrases spoken by Black and White speakers as input to each of the five commercial ASR systems 

(2020). Their results showed similar performance disparities, suggesting that racial disparities are 

related to differences in pronunciation and prosody (Koenecke et al. 2020).    

As speech recognition systems become more widespread, these racial disparities make it 

more difficult for African Americans to benefit from the technology. As Koenecke et al. note, 

these performance gaps have the potential to cause real harm to Black communities in cases where 

speech recognition systems are used “for example … by employers to automatically evaluate 

candidate interviews or by criminal justice agencies to automatically transcribe courtroom 

proceedings” (2020).  
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This thesis furthers research into racial disparities in ASR by examining the performance 

of two acoustic models on a forced alignment task of AAL speech data. Forced alignment is a task 

in speech recognition where, given an audio file and an orthographic transcription, the system 

creates a time-aligned transcript of the audio at the phoneme and word level. Notably, this task 

differs from ASR in that a transcript of the audio is required, meaning the system does not have to 

search for or predict which words are being said.   

1.2 Experiments and Results 

This work compares two acoustic models on a forced alignment task of AAL data. The 

first acoustic model comes from the Corpus of Regional African American Language (CORAAL). 

This acoustic model was trained on CORAAL version 2018.10.06, which included data from Black 

interviewees from Princeville, North Carolina and Washington, D.C. (Farrington and Kendall 

2019).  The second acoustic model used is a pretrained English acoustic model that is available 

through the Montreal Forced Aligner (MFA) and is trained on LibriSpeech, one of the four major 

spoken corpora examined in Martin (2021) that is trained on primarily white MUSE speech data. 

All other aspects of the speech recognition systems, including the pronunciation dictionary, the 

forced aligner system used, and the audio and transcriptions of AAL speech, were kept the same.  

Each system was tasked with creating time-aligned transcripts of AAL data from Black 

speakers in Georgia. Two corpora were used, including CORAAL’s Valdosta, Georgia interviews 

(Quartey et al. 2021) and data from the Roswell Voices component of the Linguistic Atlas Project 

(Kretzschmar 2016). The outputs from the two acoustic model systems were then compared to 

each other to analyze how each system performed on the AAL data. Several methods of analysis 

were used to target various features of AAL. Five distinctive consonantal features of AAL were 

chosen to be included in the analysis. The outputs of each system were analyzed to find 
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environments where these distinctive features could appear and determine to what extent the two 

systems showed the AAL variant of the feature in their output. The occurrences of the AAL 

variants in the system output were tabulated and compared across the two systems. Three vowel 

pairs that are of interest in AAL research were also chosen to be analyzed. After finding instances 

of the relevant vowels, the data from each system were compared to determine differences in vowel 

onset time, vowel duration, and vowel formant distribution. Vowel onset times were compared 

across systems by finding the difference between the two systems for each instance of a relevant 

vowel. The distributions of vowel durations were also compared across systems to determine if 

any vowels or speakers led to disagreement between the two systems.  Pillai scores were used to 

determine the amount of separation in the distributions of two vowels in a vowel pair, and the 

Pillai scores were then compared across systems to determine if the two acoustic model systems’ 

distributions differed. 

The hypotheses for this study are in line with previous work on ASR performance 

disparities such as Koenecke et al. (2020), who suggested that a lack of variety in the ASR system 

training data was responsible for performance disparities. As the CORAAL acoustic model was 

trained on AAL speech data while the MFA acoustic model was not, the hypotheses for this work 

were as follows: 

1) The system using the CORAAL acoustic model will produce a more accurate forced 

alignment of the AAL speech data than the control system that uses the MFA acoustic 

model 

2) The CORAAL acoustic model system will be better able to distinguish vowels within 

each of the three vowel pairs than the control model 
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3) The CORAAL model will show more instances of phonetic transcriptions consistent 

with AAL phonological features. 

The results of these analyses showed that the two acoustic model systems performed 

similarly in many of the environments analyzed. Vowel onset times were generally similar across 

systems, with consistent differences of less than 50 milliseconds being found in certain vowel 

contexts. The most disagreement between the two systems occurred in vowel duration, where 

statistically significant differences were found for every vowel pair. These differences indicate 

that the two systems differ in their ability to determine vowel durations, particularly with certain 

vowels. Differences were found in the Pillai scores of certain speakers in two vowel pair contexts, 

though most Pillai scores were comparable across systems. 

1.3 Contributions 

This thesis contributes to current research on racial disparities in ASR systems, focusing 

on the theory proposed by Koenecke et al. (2020) and others that acoustic models which lack 

training data from AAL speakers are a primary cause of disparities. This work examines whether 

an acoustic model that is trained exclusively on AAL data will perform better on a forced alignment 

task than a popular acoustic model trained on MUSE. Various common phonological features of 

AAL are analyzed in this work to determine which features and contexts may be more likely to 

lead to performance discrepancies. The results of this thesis show that, for a forced alignment task, 

both acoustic models perform similarly. These results indicate that when an exact transcript is 

available for AAL audio data, an AAL-specific acoustic model does not significantly improve 

performance. This research helps to illuminate the areas where speech recognition systems can 

effectively handle AAL data, namely forced alignment tasks. This work does not indicate that ASR 

systems in general perform well on AAL data, particularly with regard to performance metrics 
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such as Word Error Rate, but rather that if a complete transcript exists for AAL speech data, 

existing acoustic models can be used to effectively time-align those transcripts at the phone and 

word level.  

1.4 Outline 

The outline of the remainder of this thesis is as follows. Chapter 2 presents background 

information and previous research on AAL features, components of ASR systems, and the forced 

alignment process. The two corpora that are used are also described. Chapter 3 explains the 

preprocessing steps required to use MFA and how analyses of the outputs were conducted. Chapter 

4 provides the results of the two systems with respect to the various analyses conducted. These 

include tabulations of the five AAL consonantal features, analysis of vowel onset times and vowel 

duration of the six vowels, and Pillai scores of the vowel pairs. The final chapter details the 

conclusions of this work by providing an overview of the results of analysis and what these results 

mean with respect to acoustic models and forced alignment of AAL, as well as directions for future 

work.  
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CHAPTER 2 

BACKGROUND 

2.1 African American Language (AAL)  

 The varieties of English spoken by African Americans have been referred to by different 

names throughout the past century, including Black English, Ebonics, African American English 

(AAE), African American Vernacular English (AAVE), and African American Language (AAL) 

(Kendall et al. 2018). AAL refers to all varieties of language use in African American communities 

and reflects differences within speakers’ identities that intersect with ethnicity, race, and 

nationality (Lanehart and Malik 2015). AAL differs from other American English dialects in its 

phonological system, grammatical/morphosyntactic system, and its lexicon. While AAL does 

share features with varieties such as Mainstream U.S. English (MUSE), white Southern English, 

and Chicano English, AAL contains a unique combination of these and other features (Kendall et 

al. 2018).  

  This project uses several phonological features of AAL to analyze the performance of the 

forced aligner systems. These features can be generally split into consonantal features and vowel 

features. Five of the most well-studied phonological consonantal features of AAL were chosen to 

be included in the analysis of the speech recognition systems. The features were chosen based on 

their distinctiveness, meaning that they are salient features of AAL, and the regularity with which 

they appear in various varieties of AAL. These features and example instances are shown in Table 
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1 adapted from Lehr et al. (2014), Thomas and Bailey (2015), and ORAAL’s “AAL Linguistic 

Patterns” web page1 (Farrington and Kendall 2019).  

Table 1: The five phonological features of AAL consonants chosen to be used in comparison of 

the two acoustic model systems, with a description and phonological rule mapping from MUSE 

to AAL realization and examples 

Description Phonological Rule Examples 

Reduction of word-final consonant 

clusters ending in [t] or [d] 
C → ∅ / C _ # 

hand → han’ 

past → pas’ 

Devoicing of word-final voiced 

stops after a vowel, especially [d] 

-cont, +voice] → [-cont, - 

voice] / V _ # 
god → got 

Dental fricative variation in [θ] as 

[t, f] and [ð] as [d,v] 

[θ] → [t] or [θ] → [f] 

[ð] → [d] or [ð] → [v] 

something → someting | 

tooth → toof 

other → udder | with → 

wiv 

Deletion or vocalization of /l/ after 

a vowel 

[l] → ∅ / V _ 

[l] → ə / V _ 

help → he’p 

fall → fauh 

Deletion or vocalization of /r/ after 

a vowel or between two vowels 

[r] → ∅ / V _ {#, V} 

[r] → ə / V _ {#, V} 

father → fathuh 

here → heuh 

 

With these features, it is important to note that 1) other varieties of English may exhibit 

similar features but do not exactly adhere to the AAL system and 2) regionality will affect which 

features an AAL speaker uses. For example, all varieties of American English show some level of 

consonant cluster reduction; Mainstream U.S. English (MUSE) and AAL both allow consonant 

cluster reduction when the following word begins with a consonant, as in cold coffee → col’ coffee 

(Kendall et al. 2018). However, AAL also has a higher rate than MUSE of consonant cluster 

reduction where the following word begins with a vowel, as in cold apple → col’ apple (Kendall 

et al. 2018). Similarly, English varieties such as Southern English and New York City English 

exhibit [r] dropping after a vowel or between vowels, but this feature has been diminishing in most 

 
1 https://oraal.uoregon.edu/AAL/Linguistic-Patterns 
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MUSE varieties since the mid-twentieth century while being maintained to some extent in AAL 

varieties (Sȩn 1979). Additionally, as AAL is a purposefully general term that encompasses all 

varieties of language use in African American communities, the region that an AAL speaker is 

from may determine the features that the speaker does or does not use. In particular, Wolfram 

(1994) found that northern AAL speakers tended to delete or vocalize /r/ in fewer contexts than 

southern speakers. Hinton and Pollock (2000) built on this, finding that AAL speakers from 

Davenport, Iowa produced vocalic and postvocalic /r/ in all contexts compared to Memphis AAL 

speakers who showed consistent patterns of variation in their /r/ usage. As such, the features 

examined in this work are those which researchers would reasonably expect to find in southern 

AAL speakers.  

Three vowel pairs were also chosen that represent features of AAL and Southern English 

varieties. This thesis uses IPA phonetic notation as well as the ARPABET phonetic transcription 

system to describe the vowels being examined. Table 2 shows the 2-letter ARPABET codes used 

for each vowel, the corresponding IPA symbol, and example words. ARPABET codes also 

typically include a number after the vowel to indicate no stress (0), primary stress (1), secondary 

stress (2), or tertiary and further stress (3). As unstressed vowels tend to be shorter and reduced 

(Lindblom 1963; Fourakis 1991), all vowel instances used in this analysis were primary stress 

vowels.   

Table 2: A list of relevant ARPABET vowel codes with example words 
ARPABET code IPA symbol Examples 

AA /ɑ/ bot, palm 

AO /ɔ/ bought, caught 

IH /ɪ/ bit, flint 

EH /ɛ/ bet, friend 

IY /i/ beat, eagle 

Each vowel pair being examined shows some relevance to the African American Vowel 

Shift (AAVS) or general AAL in the existing literature (Thomas 2007; Kohn 2013). The AAVS is 
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a chain shift occurring in AAL that primarily affects the LOT, TRAP, DRESS, and KIT vowels, though 

Farrington et al. (2021) note that researchers should not expect all African Americans to be 

participating to the same extent in the AAVS due to how geographically dispersed African 

American communities are, demographic variation, and other social considerations. Whether the 

AAVS is more common in certain regions, age groups, and/or class backgrounds is an ongoing 

research question (Farrington et al. 2021).  

The first vowel pair examined in this work targets the low back merger where /ɑ/ and /ɔ/ 

are no longer distinguished in words like lot and thought. AAL has traditionally kept a distinction 

between these two vowels (Labov et al. 2006; Bernstein 1993; Thomas 1989). There is also 

evidence of /ɑ/ fronting in AAL as part of AAVS, which may help maintain this distinction 

(Thomas 2001). The second vowel pair examined targets the merging of /ɪ/ and /ɛ/, a feature of 

both the Southern Vowel Shift (SVS) and AAL where /ɛ/ is raised and fronted as in the pin-pen 

merger. There is evidence of AAL speakers in Charleston, South Carolina adopting this merger 

(Baranowski 2013). Lastly, the vowel pair /ɪ/ and /i/ is examined, as in bit and beat. While /ɪ/ is 

characterized as being more tensed and raised in both the AAVS and the SVS, SVS also shows 

simultaneous laxing and falling of /i/ which is not present in AAVS (Holt 2016).    

For the chosen vowel pairs, Pillai scores can be used to determine the amount of overlap 

between two vowels and are useful scores for ongoing vowel changes such as vowel mergers (Hall-

Lew 2010; Hay et al. 2006). Pillai scores have been used to determine the effects of ongoing vowel 

shifts such as AAVS on AAL speakers’ vowels (Renwick and Stanley 2017; Renwick and Olsen 

2017, Newman et al. 2018) as well as the status of the ongoing vowel mergers analyzed in this 

work (Shi et al. 2019; Nycz and Hall-Lew 2013; Renwick and Stanley 2017).  
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In addition to Pillai scores, vowel onset and duration are known to be important features in 

automatic speech recognition. Prasanna et al. found that speech recognition performance on 

consonant-vowel units improved significantly when vowel onset points were used as an anchor 

point for feature extraction (2001). If vowel onsets are not accurately determined, performance of 

the overall speech recognition system will suffer as a result. Along with this, calculating a vowel’s 

duration is also important to determine accurate formant values. Some variations in vowel duration 

occur in all varieties of English. For example, open vowels are typically longer in duration than 

closed vowels (Lehiste and Peterson 1961), tensed vowels are longer than lax vowels (Port and 

Rotunno 1979), and women typically produce longer vowels than men (Hillenbrand et al. 1995; 

Jacewicz et al. 2007). Outside of these, there are regional and dialectal differences in vowel 

duration. The speech of Southern U.S. speakers has been found to have longer vowels than 

northerners from New England, the Mid-Atlantic, and the West (Clopper et al. 2005) as well as 

those from central Ohio and southeastern Wisconsin (Jacewicz et al. 2007). With respect to AAL, 

Holt et al. found that Southern AAL speakers have significantly longer vowels than their white 

counterparts (2015). Holt et al. also reported that vowel duration did not differ as a function of age 

and that the tense-lax contrast was minimized for AAL speakers compared to MUSE speakers 

(2015). Increased vowel duration for AAL speakers was also found by Holt (2018), along with 

evidence that the AAL speakers in the study, from North Carolina, were not participating in the 

Southern Vowel Shift.  

2.2 Automatic Speech Recognition 

 Automatic speech recognition (ASR) refers to the process by which a computer processes 

spoken speech into text. Most ASR systems use two components, an acoustic model and a language 

model, in conjunction with the overall system architecture. The acoustic model is trained on audio 
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data, taking the audio as input and outputting probabilities over phonetic units. Prior to deep 

learning, Gaussian mixture models (GMMs) and Hidden Markov Models (HMMs) were popular 

choices for acoustic models. GMMs output the most probable phone for a given time frame in the 

audio, but they do not use any phonetic context when determining the most probable phoneme. 

HMMs are temporal models where the architecture typically looks at three states of a phone – the 

beginning, middle, and end. Within this, each state is modeled by a GMM to determine the most 

likely phone. Recently, deep neural networks have begun to surpass GMM-based models (Yu et 

al. 2020). Current common approaches include a combination of deep learning and traditional 

methods, such as the DNN-HMM acoustic model that first helped promote deep learning 

applications in speech recognition tasks (Mohamed, Dahl, Hinton 2009). 

 The second component, the language model, is trained on text data to learn which word 

sequences are more likely to be produced in speech to aid in word prediction. The goal of the 

language model is to assign probabilities to words and phrases based on the training data. In short, 

the acoustic model contains the phonetic knowledge required for speech processing while the 

language model contains the knowledge of word, grammar, and syntactic structures of the 

language.  

2.3 ASR Performance on AAL 

Historically, AAL speakers have faced discrimination due to the stigmatization of AAL as 

ungrammatical speech. This is not an accurate representation of AAL, but AAL speakers continue 

to face discrimination in a multitude of ways. One area where this discrimination can be observed 

is in ASR. Koenecke et al. (2020) found that five major commercial ASR systems – Amazon, 

Apple, Google, IBM, and Microsoft – had substantially higher average word error rates (WER) 

for Black speakers than white speakers. Within each system, the WER for Black speakers was 
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almost double that of their white counterparts (Koenecke et al. 2020). Averaging the error rates 

across the five ASR systems yielded an aggregate WER of 0.25 for the Black speakers compared 

to 0.19 for the white speakers; even the ASR system with the best overall performance resulted in 

a WER of 0.27 for Black speakers compared to 0.15 for the white speakers (Koenecke et al. 2020). 

Additionally, Koenecke et al. found that WER was “strongly associated with AAVE dialect 

density,” indicating that WER rises for Black speakers using these systems when they use more 

AAL features in their speech (2020). Le (2021) used the ASpIRE ASR model on the CallHome 

and CORAAL corpora and found the model performed significantly worse on Black speakers, in 

a way that interacted with their regionality; WERs were most impacted for AAL speakers who 

also used more features of Southern English. Additionally, Le examined a subset of words from 

the corpora that showed common AAL phonological features, finding that WER increased in the 

words containing AAL features, but only for Black speakers (2021). Tatman and Kasten (2017) 

examined the accuracy of Bing Speech and YouTube’s automatic captions across race and found 

that both systems had lowest error rates for white speakers and higher error rates for African 

American and mixed race speakers. For speakers from the Pacific Northwest, Wassink et al. (2022) 

found that AAL speakers had higher normalized error frequency than Caucasian American 

speakers when using a custom-built ASR system, CLOx, used for sociolinguistic analysis. Usage 

of grammatical features of AAL can also lead to performance disparities. Martin and Tang (2020) 

evaluated DeepSpeech and Google Cloud Speech and found that instances of habitual be, a 

morpho-syntactic feature of AAL, and the surrounding words were more error prone than instances 

of non-habitual be.  

2.4 Forced Alignment 
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 Assuming an orthographic transcription exists for the speech data, the transcription can be 

aligned to the audio recording in a process called forced alignment, providing phone-level 

segmentation of the speech data. The inclusion of an initial transcript makes forced alignment 

different than other speech recognition tasks which would have to predict which word is being 

spoken based on the acoustic signal. Forced alignment is commonly used in cases where data exist 

but lack timeline information, such as movie transcripts, as well as being an important tool for 

phonological research. Manually transcribing and providing accurate time stamps for a movie 

script or linguistic interview is costly and prone to errors. Forced alignment solves these issues, 

but only if the results of the alignment are at least on par with human transcription.   

 To analyze the accuracy of a forced aligner, researchers typically compare the output to a 

human-annotated transcript (Goldman 2011; Coto-Solano et al. 2017; Gonzalez et al. 2018; 

MacKenzie and Turton 2020; Liu and Sóskuthy 2022). At the same time, there is research that 

supports the comparison of forced aligners without a human-annotated sample. MacKenzie and 

Turton, for example, found that aligner-placed and human-placed phoneme boundaries typically 

show only small displacements that would rarely have a significant effect on a researcher’s 

measurements of interest (2020). Strunk et al. (2014) reported a mean inter-aligner difference of 

85.5ms across eight samples from five languages. Goldman (2011) found that human vs. human 

agreement on phoneme boundary placement was roughly 80 percent at a 20ms threshold and 60 

percent at 10ms for both English and French. Goldman also found that agreement between a 

machine alignment and human alignments was comparable to inter-human agreement (2011).  

2.5 Montreal Forced Aligner 

Various forced alignment systems exist, with one of the best-performing aligners being the 

Montreal Forced Aligner, an open-source system for speech-text alignment (McAuliffe et al. 2017; 



 

16 

Gonzalez et al. 2019). The Montreal Forced Aligner (MFA) is built off of the Kaldi ASR toolkit 

and uses a standard GMM/HMM architecture (McAuliffe et al. 2017).  MFA consists of four 

primary training stages that use a combination of monophone models, which are context-

independent, and triphone models, which consider the preceding and following phonetic context 

for each phone during training (McAuliffe et al. 2017). First, monophone GMMs are trained 

iteratively and used to generate a basic alignment. Next, triphone GMMs are trained to account for 

the surrounding phonetic context and generate new alignments. The triphone GMM alignments 

are then used to learn acoustic feature transforms for each speaker in the audio. Specifically, MFA 

uses Mel-frequency cepstral coefficients (MFCCs) as acoustic features. MFA calculates 13 

MFCCs for 25 ms intervals using a 10 ms frame shift as well as delta and delta-delta features from 

surrounding MFCC frames, totaling 39 features per frame. In the third stage, cepstral mean and 

variance normalization (CMVN) is applied to the features on a per-speaker basis. Lastly, feature 

space Maximum Likelihood Linear Regression (fMLLR) is used to estimate feature transforms for 

each speaker (McAuliffe et al. 2017). The output of MFA includes phone-aligned TextGrid files 

and an acoustic model created from the data.  

McAuliffe et al. (2017) first presented MFA and evaluated it against two widely-used 

aligners, FAVE and Prosodylab-Aligner. They report that MFA’s architecture and retraining 

ability improved accuracy compared to FAVE and Prosodylab-Aligner (McAuliffe et al. 2017). 

Gonzalez et al. (2019) also found that MFA produced higher quality alignments than FAVE and 

MAUS, another common aligner. In some cases, the results of MFA alignment were not 

significantly different from human alignment (Gonzalez et al. 2019). 

Included within MFA are two pretrained English acoustic models, English (US) ARPA 

acoustic model v2.0.0 and English MFA acoustic model v2.0.0. The first model is labeled as a 
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“General American English” dialect, which will be referred to here as Mainstream U.S. English 

(MUSE), and is trained on the LibriSpeech English corpus which contains roughly 1,000 hours of 

audiobooks from the LibriVox project (Panayotov et al. 2015). The second model contains training 

data from multiple English dialects but is predominantly trained on a combination of MUSE, 

British English, and Nigerian English. For the purposes of this project, the first model was chosen 

to serve as a control system since it was trained only on MUSE and uses the ARPABET phonetic 

transcription code, matching the dictionary used for the project.  

2.6 CORAAL Acoustic Model 

2.6.1 General Acoustic Model Creation 

Acoustic models are created by taking audio recordings of speech and transcripts of the 

audio and compiling them into statistical representations of the phonemes. Feature extraction 

techniques are typically used to create the statistical representations (Bhatt et al. 2020).  There are 

also various classification methods that can be used, which can be categorized as utilizing acoustic-

phonetic knowledge, pattern recognition, artificial intelligence, or a combination of techniques 

(Bhatt et al. 2020; Saon and Chein 2012). Today, various toolkits exist to create a custom acoustic 

model or use a pretrained model, each with their own techniques and parameters (Lamere et al. 

2003; McAuliffe et al. 2017; MacLean 2018).  Acoustic models can thus be expected to differ in 

ability based on these factors. For acoustic models built using MFA such as CORAAL’s acoustic 

model, the acoustic model is created as part of the forced alignment process outlined in section 

2.5.  

2.6.2 Creation of CORAAL’s Acoustic Model 

The Corpus of Regional African American Language (CORAAL), the first public corpus 

of AAL data, includes recorded speech from over 150 sociolinguistic interviews with speakers of 
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regional AAL varieties from multiple locations in the U.S. (Farrington and Kendall 2019). In 2018, 

CORAAL developed a new acoustic model using MFA and official CORAAL transcripts from 

CORAAL version 2018.10.06. This version included data from Princeville, North Carolina and 

two sets of interviews from Washington, D.C. (Farrington and Kendall 2019).  

The first Washington, D.C. component (DCA) contains data from 68 speakers across 74 

recordings collected between March 1968 and August 1969 as part of Ralph Fasold’s work on 

AAL. The interviews reflect a Labovian sociolinguistic interview, including topics such as games, 

school, and favorite movies (Kendall et al. 2018). For CORAAL’s purposes, speakers were 

selected from Fasold’s interviews to best represent four age groups and three social class groups 

(Kendall et al. 2018). 

The second D.C. component (DCB) comes from interviews conducted for CORAAL 

between July 2015 and December 2017, consisting of 48 primary speakers across 63 audio files 

(Kendall et al. 2018). Speakers for this component were collected through a friend network to fill 

a 4x3 demographic matrix, the same as for the DCA component. The interviews were 

sociolinguistic-styled interviews on topics including life in the D.C. area as well as the 

interviewee’s neighborhood, schooling, and work history (Kendall et al. 2018). 

The third component of CORAAL version 2018.10.06 that was used to create the new 

acoustic model includes data from Princeville, North Carolina. This component consists of 16 

primary speakers across 32 audio files that were collected by Ryan Rowe, Walt Wolfram, and 

colleagues as part of the North Carolina Language and Life Project (Rowe et al. 2018). Princeville 

is the oldest town in the U.S. incorporated by African Americans, and many members of the 

community can trace their family lineage back to the original town founders. As of the 2000 

census, 97% of the Princeville population identified as African American. The speakers in these 
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interviews were recorded between August 2003 and June 2004, with speakers selected to fill a 2x3 

demographic matrix. The interviews were sociolinguistic styled interviews on topics including life 

in Princeville, schooling, and 1999 Hurricane Floyd, which flooded most of the town (Rowe et al. 

2018). Based on the analysis of Le (2021), which included the Princeville component of CORAAL, 

the Princeville data represent speech that exhibits strong AAL and Southern features. 

MFA alignment was first completed using version 2018.10.06, resulting in a new acoustic 

model created from these data as part of MFA’s output. In 2019, CORAAL was re-aligned using 

the new acoustic model (Farrington and Kendall 2019).  
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CHAPTER 3 

DATA AND METHODOLOGY 

This chapter details the process of using the two acoustic model systems to complete forced 

alignment of two AAL speech corpora. The two corpora are detailed in sections 3.1 and 3.2, 

followed by acquisition of the corpora and the preprocessing steps that were undertaken before 

forced alignment in 3.3 and 3.4. Section 3.5 describes the process of using the Montreal Forced 

Aligner. Lastly, 3.6 includes a description of the various analyses performed on the output of MFA 

from both systems.   

3.1 CORAAL Valdosta Corpus 

 As part of CORAAL’s ongoing corpus-building endeavor, interviews that took place in 

Valdosta, Georgia were added to CORAAL version 2021.07 (Quartey et al. 2021). This component 

consists of 12 primary speakers across 14 audio files collected specifically for CORAAL from 

2017 to 2019 in Valdosta, the county seat of Lowndes County in southern Georgia. The population 

of Valdosta is 56,000, with approximately 53% of the population identifying as African American 

as of the 2019 US Census estimate (Quartey et al. 2021). The 12 speakers were interviewed to fill 

a 3x2 demographic matrix as shown below in Table 3. The interviews are sociolinguistic styled 

interviews focusing on topics such as life in Valdosta, the interviewees’ personal histories, and 

high school sports (Quartey et al. 2021). The Valdosta interviews were not added to CORAAL 

until 2021, and as such were not used in creating the 2018 acoustic model or re-aligning of 

CORAAL using the acoustic model in 2019.  
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Table 3: A 3x2 demographic matrix of the Valdosta interviewees, showing the number of male 

and female speakers across three age groups 

 Female Male 

Age group 2 (20 

to 29) 
2 1 

Age group 3 (30 

to 50) 
2 3 

Age group 4 (51 

and over) 
2 2 

 

3.2 Roswell Voices corpus 

 The Roswell Voices corpus is a component of the Linguistic Atlas Project (Kretzschmar et 

al. 2004; Kretzschmar et al. 2006; Andres and Votta 2009; Kretzschmar 2016). The data include 

70 speakers from field work starting in 2002 in Roswell, Georgia, a city of roughly 95,000 people 

in northern Fulton County and a close suburb of Atlanta. African American and non-African 

American speakers are included in the data. Sonja Lanehart was the interviewer for the African 

American speakers while she was a faculty member at the University of Georgia. More recently, 

some of the interviews were manually transcribed and put into the TextGrid format that was used 

as input for the forced aligners in this work (Stanley et al. 2022). Only the African American 

speaker were used in this project. Note that not all of the African American speakers in the dataset 

have been transcribed, so only those with transcribed interviews were used here. This subset of the 

data is shown in Table 4 and includes 8 speakers across 14 recordings, with four males and four 

females. 

Table 4: The name, gender, and number of interviews for the eight Roswell interviewees 

Speaker Gender 
Number of 

Interviews 

ROSWELL_INF006 Female 2 

ROSWELL_INF021 Female 2 

ROSWELL_INF023 Female 2 

ROSWELL_INF024 Female 2 

ROSWELL_INF009 Male 1 
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ROSWELL_INF011 Male 2 

ROSWELL_INF017 Male 2 

ROSWELL_INF042 Male 1 

The data include guided conversational interviews that centered around social life in 

Roswell, fixed format elicitation where interviewees read words from cards, and 24 direct lexical 

questions (Kretzschmar 2016). The audio recordings are structured so that most speakers have two 

recordings, one of the guided conversational interview and a second of the fixed format elicitation 

and direct lexical questions. Two of the male speakers have only one recording each that contains 

the guided conversation interview.  

3.3 Data Acquisition 

 The CORAAL Valdosta files were downloaded from the University of Oregon’s Corpus 

of Regional African American Language website. The downloaded files included the audio 

recordings as .wav files and time-aligned TextGrid files at the utterance level.  

 The Roswell files were downloaded from the UGA GACRC. The downloaded files 

included the audio recordings as .wav files, TextGrid files time-aligned at the sentence level, and 

various metadata files for each speaker.  

3.4 Preprocessing  

 A preprocessing script was created using Python which all TextGrid files went through. 

This initial preprocessing served several purposes. First, any rows of data that were labeled as 

being spoken by the interviewer rather than the interviewee were removed. This ensured that no 

speech data from non-AAL-speaking interviewers would influence the results of forced alignment. 

Since the TextGrid files included a start and end time for each utterance, the audio files were also 

preprocessed using the Python script so that audio from anyone other than the interviewee was 

removed and would not go through forced alignment. Next, flags for redacted information, 

portions labeled as unintelligible, and non-speech sounds such as laughter were removed. Most 
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punctuation was removed, with the exception of apostrophes, which were left in, and dashes and 

hyphens, which were normalized to each be one hyphen.  

 While there are countless other text preprocessing techniques that could have been utilized, 

this method was sufficient for the forced alignment task. More granular approaches are typically 

used when a human-annotated transcript exists for the data so as to not artificially inflate the word 

error rate (WER). However, since neither dataset contains ground-truth annotations, meaning 

annotations created by a human, at the word or phone level, this was not a concern for this project.  

 In terms of audio preprocessing, apart from removing non-interviewee portions of audio, 

no changes were made to the files during preprocessing. The CORAAL data did not require any 

changes to audio formatting. The Roswell audio files were encoded with a bit depth of 24, while 

MFA (via Kaldi) requires a bit depth of 16. However, from the MFA documentation2,  since higher 

bit depths are becoming more common for recording, MFA automatically converts higher bit 

depths to Kaldi’s required 16. As such, no changes were made to the bit depth during 

preprocessing.   

3.5 Using the Montreal Forced Aligner 

 All alignments were completed using MFA version 2.0 in a Linux environment. MFA 

requires four inputs: the audio files in a .wav format; transcripts of the audio as either TextGrid, 

.lab, or .txt files; a pronunciation dictionary; and the acoustic model. The pronunciation dictionary 

used was English (US) ARPA dictionary v2.0.0, which uses the ARPABET phone set and contains 

slightly under 200,000 words (Gorman et al. 2011). Two acoustic models were used. The first was 

the pretrained English acoustic model from the MFA website and described in 2.3, English (US) 

ARPA acoustic model v2.0.0. The second acoustic model was CORAAL’s acoustic model 

 
2 https://montreal-forced-

aligner.readthedocs.io/en/latest/user_guide/corpus_structure.html?highlight=bit%20depth#bit-depth 



 

24 

described in 2.5 and trained on AAL speech data from CORAAL’s Washington, D.C. and 

Princeville, North Carolina data. For both the Valdosta and Roswell datasets, the audio and 

transcriptions were run through MFA twice, once using the pretrained MFA acoustic model and 

once using CORAAL’s acoustic model. The same pronunciation dictionary was used for every 

alignment, and all materials used the ARPABET phone set. The total run time for the four forced 

alignments was approximately one hour.  

 Each forced alignment results in several output files. Most important for this project are 

the resulting word and phone-aligned TextGrid files for each speaker. The output also includes a 

list of words that were out of vocabulary (OOV), meaning they were not listed in the pronunciation 

dictionary but appeared in the original dataset.  

3.6 Analyses 

 After all forced alignment tasks were completed, the resulting word and phone-aligned 

TextGrids were analyzed using Python and Praat to find differences between the performance of 

the two acoustic models, separated by dataset. All analyses compared the output of the two systems 

for each speaker. It is important to note that for both the Roswell and Valdosta datasets, no human-

annotated phone or word-level transcriptions currently exist. This means that there is no gold 

standard to compare against the results of forced alignment. As there is previous research 

supporting the comparison of forced aligners without a human-annotated sample, the decision was 

made to analyze the output of the two systems with respect to vowel onset and duration time and 

compare the systems to examine performance differences in place of a comparison to a human 

annotator. This method places the focus of the comparison on finding environments where the two 

systems perform differently, rather than determining which system’s output is more accurate.  
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 First, each speaker’s outputs by the two systems were compared using Python to find 

instances where the systems’ phone-level representations of a word differed. To do this, each word 

of a transcript was added to a list of arrays, along with each system’s resulting phonetic 

transcription of that word. Within each array, the two transcriptions could then be compared and, 

if they did not match, output to a CSV file. Next, Python’s regular expression package was used 

to search for environments where an AAL feature could appear. The resulting words and phonetic 

transcriptions were saved, and the phonetic transcriptions were then analyzed to determine if they 

exhibited the AAL phonetic realization of a feature. Examples of the AAL features being 

examined, example words, and potential phonetic realizations using ARPABET are shown in 

Table 5. These instances were tabulated to determine if the two systems differed in the number of 

occurrences found for each consonantal feature.  

Table 5: Descriptions of the five AAL features, example words, and AAL realizations 

Feature Word 
AAL 

Realization 

Reduction of 

word-final 

consonant clusters 

ending in [t] or [d] 

Hand H AE N 

Devoicing of 

word-final voiced 

stops after a vowel, 

especially [d] 

God G AA T 

Dental fricative 

variation in [θ] as 

[t, f] and [ð] as 

[d,v] 

Tooth 

Other 

T UW F 

AH D ER 

Deletion or 

vocalization of /l/ 

or /r/ after a vowel 

Tall 

Sister 

T AO  

S IH S T AX 

 Provided in the output of MFA are the onset times and durations for each phoneme. The 

onset times and durations of the six vowels were separated and compared across systems. To 

analyze the vowel duration output, box plots were created to show the spread of vowel durations 
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for each speaker, separated by system. In place of a gold standard, these results were compared to 

existing literature on vowel duration (see Chapter 2.1).  

 For the onset time comparisons, the onset times for the relevant vowels were taken from 

the output, separated by speaker. This resulted in two lists, one for each system’s output. Each 

item in the list contained the predicted vowel, onset time, the word the vowel appeared in, and the 

speaker. The two lists were then compared to each other to ensure that each instance of a vowel 

had a matching instance in the other system. To determine if an instance in one system had a 

matching instance in the other system, the two instances needed to examine the same vowel, in the 

same word, spoken by the same speaker. Additionally, the onset times reported by each system 

had to be within 1 second of each other to ensure the two instances were indeed of the same vowel 

instance. This method is not ideal as it doesn’t account for potential onset time differences of more 

than one second. However, this was a necessary step to ensure that the same instances of a vowel 

were being compared across the systems.  

 This difference between two vowel onset times was calculated by subtracting the MFA 

control system’s onset time from the CORAAL acoustic model system’s onset time. If the resulting 

difference was positive, then the MFA control system’s onset was earlier than the CORAAL 

system. Likewise, if the difference was negative, then the CORAAL system showed an earlier 

onset time than the MFA control system. These differences were used to create box plots to show 

the distribution of onset times by system for each vowel.  Additionally, the differences were 

analyzed for each speaker to determine if the two forced alignment systems disagreed more for 

particular speakers.   

 For the three vowel pairs examined, a Praat script was used to find the formant values for 

each instance of the vowels. This was done using Praat’s To Formant command with the following 
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parameters: time step: 0, maximum number of formants: 5, maximum hertz: 5000 for male 

speakers and 5500 for female speakers, window length: 0.025, and dynamic range: 30. Formant 

measurements were taken at the vowel midpoint and saved to output files for each speaker. These 

formant values were then compared across systems to determine if the two systems’ formant values 

differed for certain vowels or certain speakers.  

 Pillai scores were also used in analyzing the vowel pairs. Pillai scores are used to describe 

the separability, or amount of overlap, of two distributions. Scores range from 0 to 1, with a score 

of 0 indicating total overlap and a score of 1 indicating completely distinct categories with no 

overlap. This score was chosen as the vowel pairs being analyzed all show some degree of overlap 

in both intraspeaker and interspeaker contexts. Shi et al. (2019) also used Pillai scores to examine 

the pin-pen merger in Southern speakers from the Digital Archive of Southern Speech (DASS), 

supporting its use here to examine vowel mergers, including pin-pen, in Southern AAL speakers. 

An R script was created to calculate each speaker’s Pillai scores for a given vowel pair. This script 

was run twice for each dataset to calculate Pillai scores from each system’s output. The following 

phoneme was also included as an independent variable when calculating the Pillai scores to 

account for the phonetic context in which a vowel appeared. The scores were calculated for each 

of the three vowel pairs, with the IH-EH vowel pair being split into prenasal and non-prenasal 

occurrences. Prenasal occurrences were also removed from the IH-IY data before calculating Pillai 

scores. Pillai scores for male and female speakers in each dataset were also calculated by averaging 

all speakers’ individual Pillai scores.  

 After calculating Pillai scores, the decision was made to exclude the Roswell speakers’ 

second interviews from the Pillai score analysis. Due to the format of the Roswell interviews, each 

speaker’s second interview was much shorter than the first, ranging from 7 to 10 minutes. These 
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second interviews only included reading from a word list and direct lexical questions. After 

examining the Pillai scores from the second Roswell interviews, it was determined that some of 

the speakers may have altered their speech style in their second interview. That is to say, due to 

the format of this second interview, it is possible that the interviewees were more aware of their 

speech patterns while reading from the word list and were adopting a more MUSE speech style.  

This type of style shifting has been studied and found in African American communities and 

classic sociolinguistic interviews, being linked to the topic of speech, audience, and speaker 

identity (Garner and Rubin 1986; Craig et al. 2014; Grieser 2019). As a result, the Pillai scores for 

these second interviews appeared to show differences in the speakers’ vowel space that were not 

present in their first interview. The Pillai scores for the Roswell speakers’ second interviews were 

thus discarded. Note that this only affected the second interviews of Roswell speakers; a few 

Valdosta speakers were interviewed twice, but the second interviews there were much longer and 

were not affected by outliers.  
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CHAPTER 4 

RESULTS 

4.1 Consonantal Features 

Five AAL consonantal features were chosen to examine differences in alignment from the 

two acoustic models. These features were 1) reduction of word-final consonant clusters ending in 

[t] or [d], 2) devoicing of word-final voiced stops after a vowel, 3) variation of dental fricatives 

[θ] and [ð] as [t, f] or [d, v], 4) deletion or vocalization of /l/ after a vowel, and 5) deletion or 

vocalization of /r/ after a vowel. For /l/ deletion or vocalization, /r/ deletion or vocalization, dental 

fricative variation, and word-final devoicing, no instances of these features were found in the 

phone output of either system, for either dataset. This is not to say that no speaker utilized these 

features in their speech, but rather that neither ASR system had any instances of using the 

phonological aspects of these features in their phonemic outputs.  

To better understand this lack of AAL realizations, the pronunciation dictionary used 

during forced alignment, English (US) ARPA dictionary v2.0.0, was searched using regular 

expressions to determine if AAL phonetic realizations were included as potential pronunciations. 

The results of these searches showed that the pronunciation dictionary does not include realizations 

that would occur as a result of utilizing the four AAL features listed above. For example, the only 

phonetic realization for the word thing in the pronunciation dictionary is TH IH1 NG, disallowing 

potential variations such as T IH1 NG or F IH1 NG. Due to this, the pronunciation dictionary used 

during forced alignment effectively suppressed AAL realizations of these features as it did not 

allow either system to report the AAL variants in their output, even if speakers were utilizing these 
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features. No AAL-specific pronunciation dictionaries currently exist, and even well-known 

pronunciation dictionaries such as the CMU Pronouncing Dictionary do not include most AAL 

phonetic features. This is a clear direction for future work, as performance of the two acoustic 

models cannot be appropriately compared due to the limitations of the pronunciation dictionary.   

 In contrast to the other four AAL features, the English (US) ARPA dictionary v2.0.0 does 

include phonetic realizations of words where word-final consonant cluster reduction is allowed in 

AAL, such as aroun’ for around. Instances of word-final consonant cluster reduction were found 

in both systems and in both datasets. In these instances, the phonemic outputs did not include the 

final [t] or [d], indicating that the consonant cluster was reduced and the [t] or [d] was not 

pronounced. Comparing between the CORAAL model and the control model, there is no 

significant difference in the number of instances found for this feature. While the two systems do 

differ slightly, overall performance with regard to this feature is the same. Additionally, the set of 

words which showed this feature were almost exactly the same in both the Roswell and Valdosta 

data; only one word, playground, was unique to the Roswell data. Tables 6 and 7 show the 

tabulation of these results.  

Table 6: Tabulation of occurrences of consonant cluster reduction in the Roswell data. 

Roswell Dataset 

 

Word 

Total 

number of 

occurrences 

CORAAL 

system 

occurrences 

with 

deletion 

MFA 

control 

system 

occurrences 

with 

deletion 

Proportion 

of 

CORAAL 

system 

occurrences 

with 

deletion  

Proportion 

of control 

system 

occurrences 

with 

deletion 

around 67 53 61 0.79 0.91 

last 28 16 17 0.57 0.61 

most 79 39 28 0.49 0.35 

thousand 11 8 8 0.73 0.73 
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second 6 3 5 0.5 0.83 

playground 1 1 1 1.0 1.0 

Total 192 120 120 .63 .63 

 

Table 7: Tabulation of occurrences of consonant cluster reduction in the Valdosta data. 

Valdosta Dataset 

 

Word 

Total 

number of 

occurrences 

CORAAL 

system 

occurrences 

with 

deletion 

MFA 

control 

system 

occurrences 

with 

deletion 

Proportion 

of 

CORAAL 

system 

occurrences 

with 

deletion 

Proportion 

of control 

system 

occurrences 

with 

deletion 

around 76 59 65 0.78 0.86 

last 61 34 31 0.56 0.51 

most 103 35 30 0.34 0.29 

second 28 19 18 0.68 0.64 

thousand 18 13 17 0.72 0.94 

Total 286 160 161 .56 .56 

4.2 Vowel Onset Times 

 The phone-level MFA output includes onset times for each phoneme as well as the duration 

of the phoneme. A human-annotated transcript of the data at the phone level would provide a gold 

standard to compare each system against. Lacking this, the decision was made to find the 

difference between the two systems’ onset times for each instance of a relevant vowel. This was 

done by subtracting the onset time of the MFA control model output from the onset time of the 

CORAAL model output, consistent with previous analyses of forced aligners (Goldman 2011; 

MacKenzie and Turton 2020; Gonzalez et al. 2020). If the resulting difference was a positive 

number, then the MFA control model had an earlier onset time than the CORAAL model. 

Likewise, if the resulting difference was negative, then the CORAAL model had an earlier onset 

time for that vowel. While this method cannot determine which system’s output is closer to the 

true onset time (which would still be subject to human-annotator variation), it can still provide 
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useful data by showing general trends in the systems and specific areas that lead to more 

disagreement between the systems.  

4.2.1 Individual Speaker Onset Time Differences 

 Average differences in reported onset times from the two systems were also calculated for 

each individual speaker. From this, it can be determined if the two systems disagreed more for 

certain speakers, as well as the number of speakers who had onset time differences across systems 

for each vowel. Table 8 shows where the two systems differed by an average of more than 10 

milliseconds for all speakers. This shows that the systems disagree more for some speakers than 

others. The speaker labeled VLD_se0_ag3_m_01_1, a male Valdosta speaker, has onset time 

differences of at least 10 milliseconds for every vowel except IY. This speaker is also the only 

speaker from either dataset to have differences of over 40 milliseconds. The two largest differences 

for this speaker are for IH, both in a prenasal and non-prenasal context. Interestingly, these two 

large differences are opposite of each other; for prenasal IH, the CORAAL system reported later 

onset times than the control system, while for non-prenasal IH, the CORAAL system reported 

earlier onset times.  

 Table 8 also shows which vowels are most likely to differ in onset times and which system 

tends to show earlier onset times. Of the 28 speaker interviews, AO onset times differed across 

systems by an average of at least 10 milliseconds for 12 speaker interviews. In these 12 instances, 

the MFA acoustic model system reported earlier onsets in the majority of speakers. Onset times 

for prenasal IH also differed considerably for 11 of the 28 speaker interviews. The CORAAL 

acoustic model system typically reported earlier onsets for prenasal IH. Prenasal EH also showed 

differing onset times between the systems in 11 speaker interviews, and similar to prenasal IH, the 

CORAAL acoustic model system reported earlier onset times for the majority of the 11 instances.    



 

33 

Table 8: Average onset time differences for each speaker between the two systems, calculated 

using CORAAL_onset – MFA_onset. The number of check marks indicates the average 

difference, with each check mark equal to 10 milliseconds. A negative sign before the check 

mark(s) indicates that the result is negative. 

 
Speaker Interview AA AO IH EH IH prenasal EH prenasal IY 

VLD_se0_ag2_f_01_1   ✓ ✓   - ✓ ✓   

VLD_se0_ag2_f_02_1 - ✓       - ✓ - ✓ ✓ 

VLD_se0_ag3_f_01_1 - ✓             

VLD_se0_ag3_f_01_2       - ✓✓   - ✓   

VLD_se0_ag3_f_02_1 ✓ ✓     - ✓✓     

VLD_se0_ag4_f_01_1           - ✓  ✓✓ 

VLD_se0_ag4_f_02_1 - ✓  ✓     - ✓✓✓ ✓✓   

                

VLD_se0_ag2_m_01_1   - ✓      - ✓    ✓ 

VLD_se0_ag3_m_01_1  ✓ ✓✓ - ✓✓✓✓ ✓✓ ✓✓✓✓ - ✓✓✓   

VLD_se0_ag3_m_01_2    ✓✓✓ - ✓      - ✓✓✓   

VLD_se0_ag3_m_02_1    ✓✓ - ✓✓     - ✓    

VLD_se0_ag3_m_03_1   ✓   ✓   - ✓✓   

VLD_se0_ag4_m_01_1    ✓           

VLD_se0_ag4_m_02_1  - ✓      - ✓  ✓✓     

                

ROSWELL_INF006_1                

ROSWELL_INF021_1   - ✓      ✓     

ROSWELL_INF023_1          - ✓      

ROSWELL_INF024_1          - ✓✓     

                

ROSWELL_INF009_1            - ✓✓✓   

ROSWELL_INF011_1                

ROSWELL_INF017_1    ✓✓ ✓   - ✓✓✓   ✓ 

ROSWELL_INF042_1  - ✓✓ ✓   - ✓✓   - ✓✓✓   

Total: 28 7 12 5 5 11 11 4 

 

4.2.2 Average Onset Time Differences in Valdosta and Roswell 

 After finding all onset time differences using the method described above, pairwise t-tests 

were conducted for each vowel to determine if any of the vowels differed significantly across 

systems. Female and male speakers were separated for each t-test.  
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For the female Valdosta speakers, prenasal IH had a statistically significant difference 

between the two systems with an average difference of -0.012 seconds (p < .01). This difference 

is negative, meaning that the CORAAL acoustic model system had earlier onsets than the MFA 

acoustic model system by an average of 12 milliseconds. No other vowels showed significant 

difference in onset times between the systems for the Valdosta female speakers.  

For the male Valdosta speakers, both IY and prenasal EH show significant differences in 

onset times between the two systems. For prenasal EH, the average difference was -0.008 seconds, 

(p < .05), meaning that the CORAAL system had earlier onset times than the control system by an 

average of 8 milliseconds. The results for IY show the opposite trend; the CORAAL system 

reported later onset times for IY by a mean of 5 milliseconds (p < .05). While statistically 

significant, the average differences for both IY and prenasal EH here are quite small at less than 

10 milliseconds.  

 For Roswell females, like in Valdosta, prenasal IH showed a statistically significant 

difference in onset times between the two systems. The mean difference for prenasal IH was  

-0.009 seconds (p < .05), indicating that CORAAL acoustic model system reported earlier onsets 

by an average of 9 milliseconds.  

Lastly, comparing the onset times for the male Roswell speakers, prenasal IH showed a 

significant difference in onset times. CORAAL’s acoustic model system reported earlier onsets 

for prenasal IH by an average of 12 milliseconds (p < .05). 

4.2.3 Analysis of All Onset Time Differences 

 From the pairwise t-tests and table of onset time differences for each speaker, some patterns 

begin to emerge. Average onset times for prenasal IH were significantly different for Roswell 

males and females as well as Valdosta females. Prenasal EH showed significantly different average 
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onset times for the Valdosta male speakers. The CORAAL acoustic model system appears to find 

earlier onset times for prenasal IH and EH compared to the MFA control model. This result is 

somewhat unexpected as prenasal vowels are not typically expected to have an effect on the 

vowel’s onset time. At the same time, it should be noted that even the largest differences in onset 

time between the two systems are under 50 milliseconds, indicating that even when the two 

systems disagree, their outputs are still quite similar. In comparison, Goldman (2011) and 

Raymond et al. (2002) found human annotators to agree on phoneme boundary at a rate of roughly 

80 percent at a 20ms threshold. In other words, two human annotators can be expected to place 

phoneme boundaries within 20ms of each other roughly 80 percent of the time. The results of 

comparing the two acoustic model systems appear to be in line with this.  

4.3 Vowel Duration Analysis  

 The reported duration of vowels can also be compared between the two forced alignment 

systems. Means were calculated to determine the average duration of each vowel for each speaker, 

and box plots were created to compare the two forced alignment systems. Pairwise t-tests were 

conducted to determine if differences in vowel duration were statistically significant. Second 

interviews with Roswell speakers were removed as the interviews were much shorter and highly 

affected by outliers. From the remaining data, the area where the two systems showed the most 

disagreement was in duration of prenasal IH. Significant differences were found for both male and 

female speakers in both Valdosta and Roswell. Average differences for these groups ranged from 

-6 to -16 milliseconds, indicating that the CORAAL acoustic model system reported shorter 

durations than the control system. Figure 1 shows the log10 distribution of prenasal IH durations 

for female Valdosta speakers as determined by both systems. For almost every speaker, the 

distribution is higher in the control system. This pattern also appears in duration for AA. Average 
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duration differences for AA ranged from -5 to -11 milliseconds, again indicating that the control 

system reported longer duration times than the CORAAL acoustic model system. 

 

Figure 1: Box plots showing the log distribution of prenasal IH durations as found by each 

system for female Valdosta speakers 

The vowel durations for IY show the opposite trend. Here, average durations were longer 

in the CORAAL acoustic model system with a range of 3 to 8 milliseconds. While these 

differences are smaller, they are statistically significant and in the opposite direction to prenasal 

IH and AA. Figure 2 shows the log10 distribution of IY durations for male Valdosta speakers, 

who had the highest average difference between systems of 8 milliseconds.  
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Figure 2: Box plots showing the log distribution of IY durations as found by each system 

for male Valdosta speakers  

Overall, the most consistent average differences in vowel duration were found for AA, 

prenasal IH, and IY. Table 9 shows the average difference between the two systems for male and 

female speakers from each location as calculated by pairwise t-tests as well as the level of 

significance. Empty cells in Table 9 are areas where no significant differences were found.  

These results show that for AA and prenasal IH, the CORAAL acoustic model system reported 

shorter average duration times than the control model in every group. Non-prenasal IH also 

showed significantly shorter duration times from the CORAAL model in three of the four 

groups. As stated before, CORAAL reported significantly longer duration times for IY. For AO, 

significant differences were found for both groups of male speakers, though the differences are 

quite small.   

Table 9: Average vowel duration differences between the two systems in milliseconds. A 

negative difference indicates that the CORAAL acoustic model system had shorter average 

duration than the control model. A positive difference indicates that the CORAAL system had 

longer average durations. 

Significance codes: * p < .05;     ** p < .01;     *** p < .001 



 

38 

 AA AO 

Non-

Prenasal 

EH 

Non-

Prenasal 

IH 

Prenasal 

IH 

Prenasal 

EH 
IY 

Valdosta 

females 
-7   -6 -16 ***  4 

Valdosta 

males 
-5 6 4  -6  8 *** 

Roswell 

females 
-11 ***  -2 -8 -16 ***  5 

Roswell 

males 
-6 2 3 -4 -11 *** 2 3 

There are a few possible explanations for these results. It is possible that the control 

acoustic model system is not accurately representing prenasal vowels, and the vowels are marked 

as having a longer duration due to the system’s inability to distinguish the end of the prenasal 

vowel and beginning of the nasal consonant. On the other hand, it is also possible that the 

CORAAL acoustic model system is inaccurately representing prenasal vowels by prematurely 

assuming the prenasal vowel has ended and the nasal consonant has begun. This could also help 

to explain the results in 4.2 where the CORAAL acoustic model system reported earlier onsets for 

prenasal vowels.  

While this analysis cannot determine which system’s output is more correct, it is known 

that tense vowels such as IY typically have longer durations than lax vowels (Port and Rotunno 

1979), which may be indicative of the CORAAL acoustic model finding more accurate duration 

times for this vowel. The CORAAL acoustic model system also reported shorter duration times 

for the lax vowel IH, which we can reasonably expect to have a shorter duration. At the same time, 

however, the CORAAL acoustic model system reported shorter durations than the control model 

for the tense vowel AA. It is also important to note that the largest difference between the two 

systems’ outputs for average vowel duration was a difference of only 16 milliseconds.  An analysis 
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of each speaker’s vowel durations found that both systems reported very similar mean durations 

for each individual with system differences of less than 5 milliseconds.  

4.4 Individual Pillai Scores 

Pillai scores were used to examine each of the three vowel pairs targeting ongoing vowel 

mergers and features of AAVS – 1) AA and AO for the cot-caught merger,  2) IH and EH for the 

pin-pen merger, and 3) IH and IY, where a more tensed and raised IH and similarly tense and 

raised IY would indicate participation in the AAVS. Here, the Pillai scores are calculated using 

the formant measurements of each vowel, which were collected at the midpoint of each vowel. 

Depending on how the two systems calculated measures like the time points for vowels, these 

formant values may be different, leading to different Pillai scores. It is important that a forced 

alignment system correctly represents the speaker’s vowel space so that researchers can draw 

accurate conclusions about which linguistic features a speaker is or is not exhibiting. This is 

especially relevant for vowels that are undergoing changes, such as the ones analyzed in this thesis 

which relate to the AAVS.  

As Kennedy (2006) notes, one limitation of the Pillai score is that it lacks a meaningful 

measure of significance along with the distance measurement. Pillai scores are designed so that 

the score is more likely to be significant if the two distributions are clearly distinct (Kennedy 

2006).  Hall-Lew (2010) further describes that the range of Pillai scores across a speaker sample 

can be used to represent the relative extent of merger between any two speakers. However, the 

MANOVA will only identify speakers with clearly distinct vowels and cannot provide statistical 

discrimination between speakers with near-mergers and complete mergers (Hall-Lew 2010). In 

this work, the two acoustic model systems are considered to have a noticeable difference in Pillai 

scores for a vowel pair if the two systems’ scores differ by at least .10.  
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Pillai scores for each individual speaker were calculated for both systems, for each vowel 

pair. The two systems were largely in agreement, with most speakers’ Pillai scores differing by 

0.05 or less between the two acoustic model systems (see Table 10). However, there were a few 

speakers whose scores varied by more than 0.10 across systems. Of these speakers, each had only 

one or two vowel pairs where Pillai scores differed considerably across systems. Additionally, 

these differences were limited to only the AA-AO vowel distinction and the non-prenasal IH-EH 

distinction. No significant differences were found between the two systems for IH-IY or prenasal 

IH-EH vowel pairs. 

Table  10.a: Pillai scores for each speaker in the Valdosta dataset, for each of the vowel 

pairs and contexts examined. 

Speaker 
CORAAL 

AA AO 

Control 

AA 

AO 

CORAAL 

IH EH 

(prenasal) 

Control 

IH EH 

(prenasal) 

CORAALIH 

EH (non-

prenasal) 

Control 

IH EH 

(non-

prenasal) 

CORAAL 

IH IY 
Control 

IH IY 

VLD_se0_ag2_f_01_1 0.456 0.446 0.158 0.155 0.32 0.322 0.144 0.229 

VLD_se0_ag2_f_02_1 0.156 0.21 0.0245 0.0242 0.254 0.32 0.223 0.171 

VLD_se0_ag2_m_01_1 0.307 0.331 0.115 0.0684 0.251 0.261 0.099 0.0943 

VLD_se0_ag3_f_01_1 0.381 0.444 0.0128 0.0314 0.284 0.251 0.151 0.175 

VLD_se0_ag3_f_01_2 0.369 0.416 0.0258 0.0317 0.381 0.444 0.238 0.291 

VLD_se0_ag3_f_02_1 0.291 0.361 0.0288 0.036 0.387 0.397 0.145 0.125 

VLD_se0_ag3_m_01_1 0.266 0.519 0.0749 0.036 0.138 0.0622 0.101 0.15 

VLD_se0_ag3_m_01_2 0.25 0.371 0.0514 0.0234 0.344 0.263 0.0758 0.0977 

VLD_se0_ag3_m_02_1 0.474 0.599 0.0724 0.123 0.4 0.304 0.15 0.159 

VLD_se0_ag3_m_03_1 0.382 0.388 0.0538 0.00598 0.418 0.416 0.0943 0.0725 

VLD_se0_ag4_f_01_1 0.528 0.522 0.0796 0.0773 0.273 0.297 0.128 0.158 

VLD_se0_ag4_f_02_1 0.335 0.333 0.00923 0.0243 0.313 0.335 0.159 0.111 

VLD_se0_ag4_m_01_1 0.251 0.323 0.0671 0.0581 0.268 0.222 0.205 0.195 

VLD_se0_ag4_m_02_1 0.369 0.352 0.145 0.0664 0.175 0.182 0.057 0.0535 

  

Table  10.b: Pillai scores for each speaker in the Roswell dataset, for each of the vowel pairs 

and contexts examined. 

Speaker 
CORAAL 

AA AO 

Control 

AA 

AO 

CORAAL 

IH EH 

(prenasal) 

Control 

IH EH 

(prenasal) 

CORAALIH 

EH (non-

prenasal) 

Control 

IH EH 

(non-

prenasal) 

CORAAL 

IH IY 
Control 

IH IY 

ROSWELL_INF006_1 0.44 0.34 0.165 0.115 0.37 0.23 0.362 0.444 

ROSWELL_INF021_1 0.276 0.261 0.00666 0.0204 0.34 0.24 0.21 0.273 
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ROSWELL_INF023_1 0.445 0.441 0.0709 0.108 0.314 0.256 0.389 0.403 

ROSWELL_INF024_1 0.472 0.437 0.0662 0.109 0.35 0.418 0.346 0.296 

ROSWELL_INF009_1 0.139 0.227 0.0219 0.0487 0.269 0.247 0.372 0.397 

ROSWELL_INF011_1 0.284 0.37 0.0432 0.0386 0.352 0.27 0.174 0.257 

ROSWELL_INF017_1 0.109 0.187 0.0343 0.0184 0.243 0.167 0.209 0.22 

ROSWELL_INF042_1 0.09 0.09 0.08 0.08 0.37 0.26 0.28 0.21 

 

4.4.1 Valdosta Speakers 

 From the Valdosta dataset, one male speaker showed Pillai score differences of 0.10 across 

systems for the non-prenasal IH-EH distinction, and two male speakers had Pillai score differences 

of more than 0.10 for the AA-AO distinction. Note that Valdosta speaker VLD_se0_ag3_m_01 

participated in two interviews, with the interview number appearing at the end of the speaker label. 

Looking at non-prenasal IH-EH, the CORAAL acoustic model system resulted in a Pillai score of 

0.40, while the MFA acoustic model system resulted in a score of 0.30, indicating that the 

CORAAL system showed slightly less overlap between non-prenasal IH and EH than the control 

system for this speaker. Two speakers also showed differences in Pillai scores for the AA-AO 

distinction. One of these speakers participated in two interviews and showed differences in both 

interviews. For the three instances of differences in AA-AO Pillai scores, the CORAAL acoustic 

model system resulted in a lower Pillai score than the MFA control system (see Table 11). This 

indicates that the MFA acoustic model system showed less overlap between these speakers’ AA 

and AO vowels than the CORAAL acoustic model system. Figures 3 and 4 shows the output of 

both systems for one Valdosta speaker’s AA and AO vowels. As the Pillai scores show, the 

CORAAL system shows greater overlap between the two vowels. The MFA acoustic model 

system displays a narrower distribution of AO vowels on the F2 axis compared to the CORAAL 

acoustic model system, where formant values are more scattered.  

Table 11: Valdosta speakers whose Pillai scores differed by at least .10 across systems (shown in 

bold) 
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 AA-AO Prenasal IH-EH 
Non-prenasal IH-

EH 
IH-IY 

Valdosta Speaker CORAAL Control CORAAL Control CORAAL Control CORAAL Control 

VLD_se0_ag3_m_01_1 0.27 0.52 0.08 0.04 0.14 0.06 0.10 0.15 

VLD_se0_ag3_m_01_2 0.25 0.37 0.05 0.02 0.34 0.26 0.08 0.01 

VLD_se0_ag3_m_02_1 0.47 0.60 0.07 0.12 0.40 0.30 0.15 0.16 

 
Figure 3: A male Valdosta speaker’s AA and AO vowel instances in the CORAAL acoustic model 

system 

 
Figure 4: A male Valdosta speaker’s AA and AO vowel instances in the control system 

4.4.2 Roswell Speakers 
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 From the Roswell data set, two female speakers and one male speaker had Pillai score 

differences of more than 0.10 across the two systems. All three speakers showed differences in 

their non-prenasal IH-EH vowels. One of the female speakers also had Pillai score differences in 

her AA-AO vowels.  For all instances of non-prenasal IH-EH differences as well as the instance 

of AA-AO differences, the CORAAL acoustic model system reported a higher score than the MFA 

acoustic model system. The Pillai scores for all three speakers are shown in Table 12 with system 

differences of more than 0.10 in bold.  

Table 12: Roswell speakers whose Pillai scores differed by at least .10 across systems (shown in 

bold) 

 AA-AO Prenasal IH-EH 
Non-prenasal 

IH-EH 
IH-IY 

Roswell Speaker CORAAL Control CORAAL Control CORAAL Control CORAAL Control 

ROSWELL_INF006_1 0.44 0.34 0.17 0.12 0.37 0.23 0.36 0.44 

ROSWELL_INF021_1 0.28 0.26  0.01 0.02 0.34 0.24 0.21   0.273 

ROSWELL_INF042_1 

(male) 

0.09 0.09 0.08 0.08 0.37 0.26 0.28 0.21 

 

For the non-prenasal IH-EH vowel distinction, all three speakers had higher degrees of 

vowel separation, or less overlap between the two vowel distributions, in the CORAAL acoustic 

model system. Figures 4 and 5 show the instances of female speaker ROSWELL_INF006_1’s non-

prenasal IH and EH vowels from the CORAAL and MFA control acoustic model systems, along 

with ellipses showing one standard deviation around the means for each vowel3. When looking at 

just the ellipses, there is little noticeable difference between the two acoustic model systems. By 

plotting each instance of the vowels, however, it becomes clearer that the CORAAL acoustic 

model system shows slightly less overlap between the two vowels. Both systems show general 

clusters for each vowel with a large overlap, but the MFA control acoustic model system appears 

 
3 This speaker shows a bimodal EH distribution, with clusters of higher and lower F1 tokens. The cluster closer to 

IH is predominantly pre-rhotic EH tokens. Both acoustic model systems display this similarly. 
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to have more instances of EH scattered amongst the IH vowel cluster compared to the CORAAL 

acoustic model system, consistent with the Pillai scores of 0.37 and 0.23 for the CORAAL and 

MFA acoustic model systems, respectively.  

 
Figure 5: A female Roswell speaker’s instances of non-prenasal IH and EH as determined by the 

CORAAL acoustic model system 

 
Figure 6: A female Roswell speaker’s instances of non-prenasal IH and EH as determined by the 

control acoustic model system 
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 Female speaker ROSWELL_INF006_1 also showed a higher Pillai score from the 

CORAAL acoustic model system for AA and AO vowels. Here, the CORAAL acoustic model 

system resulted in a Pillai score of 0.44, while the MFA acoustic model system showed a score of 

0.34. Figures 6 and 7 show the results of the two systems on this speaker’s AA and AO vowels.  

 
Figure 7: One Roswell female’s AA and AO vowels as found by the CORAAL acoustic model 

system 

 
Figure 8: One Roswell female’s AA and AO vowels as found by the MFA acoustic model system 
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In all four cases where the two acoustic model systems resulted in Pillai score differences 

of more than 0.10 for Roswell speakers, the CORAAL acoustic model system showed a higher 

degree of separation between the two vowel distributions. These results suggest that while the two 

systems perform very similarly in the majority of speakers, there are a few cases where the 

CORAAL acoustic model system finds more separation between vowels. In every instance of 

disagreement between the two systems with respect to non-prenasal IH and EH, regardless of 

speaker location, the CORAAL acoustic model system showed at least slightly more separated 

vowel distributions than the control model. However, the results for the AA-AO vowel pair are 

less clear. In the Valdosta data, the CORAAL acoustic model system always reported less 

separation of AA and AO compared to the control model. In the Roswell data, in the one instance 

of AA-AO difference, the CORAAL model reported more separation than the control model. This 

could be due to regional differences between Roswell and Valdosta.  

4.5 Average Pillai Scores for Males and Females 

After calculating each individual speaker’s Pillai scores, average Pillai scores for male and 

female speakers in each dataset were calculated. The results, shown in Table 13, show that the two 

systems perform very similarly in the amount of separation between vowel pairs. 

Table 13: Average Pillai scores for males and females for the vowel pairs AA-AO, IH-EH, and 

IH-IY, split by dataset and alignment system. Numbers in parentheses indicate the standard 

deviation from the mean. 

Average Pillai Scores for Males and Females in Each Dataset for Each System 

 Valdosta Roswell 

 CORAAL MFA CORAAL MFA 

Female AA-AO 0.36 (0.12) 0.39 (0.08) 0.41 (0.09) 0.37 (0.09) 

Male AA-AO 0.33 (0.10) 0.41 (0.11) 0.16 (0.09) 0.22 (0.12) 

Female prenasal IH-EH 0.05 (0.05) 0.05 (0.03) 0.08 (0.07) 0.09 (0.05) 

Male prenasal IH-EH 0.08 (0.05) 0.05 (0.04) 0.04 (0.03) 0.05 (0.03) 

Female non-prenasal IH-

EH 
0.32 (0.05) 0.34 (0.11) 0.34 (0.02) 0.29 (0.09) 

Male non-prenasal IH-EH 0.28 (0.06) 0.24 (0.11) 0.31 (0.06) 0.24 (0.05) 

Female IH-IY 0.17 (0.04) 0.18 (0.05) 0.33 (0.08) 0.35 (0.08) 
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Male IH-IY 0.11 (0.06) 0.12 (0.05) 0.26 (0.09) 0.27 (0.09) 

 

The differences between the two systems are all within a range of 0.08, indicating broad agreement 

between the systems. Comparing between male and female speakers, Pillai scores for males are 

slightly lower for most of the vowel pairs, regardless of system. This is most noticeable in the 

Roswell AA-AO data. While female speakers in both locations do not show merged cot/caught, 

the Roswell male speakers appear more merged than the Valdosta male speakers, whose scores are 

in line with the female speakers. This suggests that the male Roswell speakers exhibit merged AA 

and AO vowels that the other speakers do not. Additionally, Valdosta speakers show lower Pillai 

scores for the IH-IY vowel pair compared to the Roswell speakers, indicating more overlap within 

the Valdosta speakers’ vowel space. This result is consistent with vowel shifting from both the 

AAVS and SVS.  

Figures 8 and 9 show plots of  AA and AO for Roswell females and males with ellipses 

showing one standard deviation from the mean F1 and F2 values. The plots show that, for the AA-

AO vowel distinction, the female Roswell speakers show a higher degree of separation between 

the two sounds. The female speakers AA vowels are slightly more fronted than the males, a feature 

of AAVS that can help maintain the AA-AO distinction. This is not to say that the Roswell females 

completely maintain the AA-AO distinction, as the Pillai scores do not support this. However, the 

females do show more separated AA and AO vowels than the male Roswell speakers. The output 

of the two acoustic model systems show strong similarities.  
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Figure 9: AA and AO plots for Roswell females with ellipses showing one standard deviation 

from the mean F1 and F2 values 

 
Figure 10: AA and AO plots for Roswell males 

4.6 Summary 

 The output of forced alignment from both acoustic model systems was analyzed in regard 

to four areas: 1) consonantal AAL features, 2) vowel onset times, 3) vowel durations, and 4) 

merged status of vowels via Pillai scores. The analysis of consonantal features showed that for /l/ 

deletion or vocalization, /r/ deletion or vocalization, dental fricative variation, and word-final 
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devoicing, neither system had any instances of the AAL phonology for these features in their 

output. Analysis of the pronunciation dictionary used during forced alignment showed that the 

AAL phonetic realizations of these features are not included within the dictionary, meaning that 

even if speakers did utilize these features, the features could not be represented in the phonetic 

output of forced alignment. The pronunciation dictionary did, however, include AAL variants of 

word-final consonant cluster reduction, and both systems showed a similar number of instances of 

[t] and [d] deletion in a similar set of words. Vowel onset times were mainly in agreement, but 

were more likely to differ for certain speakers than others. The CORAAL acoustic model system 

tended to find earlier onset times for prenasal IH and EH. On the other hand, the CORAAL system 

found later onset times for IY in Valdosta males. These differences were statistically significant 

but small, with average differences of roughly 10 milliseconds. For vowel duration, the CORAAL 

acoustic model system consistently reported shorter durations for AA and prenasal IH and longer 

duration times for IY. These results were also statistically significant, with the greatest average 

difference between the systems being 16 milliseconds.  

Analysis of individual speaker Pillai scores showed broad agreement across the systems. 

For two Valdosta males, the two systems differed in Pillai scores by more than .10 in four 

instances. Three of these were for the AA-AO vowel distinction, where the CORAAL acoustic 

model system reported lower Pillai scores, and the remaining instance was for the non-prenasal 

IH-EH distinction, where the CORAAL system reported a higher Pillai score. For Roswell 

speakers, Pillai scores differed by more than .10 across systems for three speakers, two females 

and one male. For the non-prenasal IH-EH distinction, the CORAAL acoustic model system again 

reported higher Pillai scores, and the CORAAL system also reported a higher Pillai score for one 

female’s AA-AO vowel distinction. Lastly, Pillai scores were compared across the male and 
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female Valdosta and Roswell speakers. The Roswell males were unique in that they showed a 

more merged cot-caught than Roswell females or Valdosta speakers of either gender. Additionally, 

Pillai scores for the Valdosta speakers indicated more merged IH and IY vowels than the Roswell 

speakers. This is consistent with stronger participation in the AAVS and/or SVS by the Valdosta 

speakers.  

Overall, differences were not found with respect to consonantal features of AAL. Vowel 

onset times were generally in agreement but were more likely to differ for certain speakers. Vowel 

durations were significantly different across systems, with the CORAAL acoustic model system 

finding shorter durations for AA and prenasal IH and longer duration times for IY, as compared to 

the control system. Pillai scores were broadly in agreement, though differences were found for 

several speakers in each dataset. 
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CHAPTER 5 

CONCLUSION 

The goal of this thesis was to analyze the performance of two acoustic models on a forced 

alignment task using AAL speech data. From the previous literature on racial disparities in ASR 

systems and how acoustic models may contribute to the issue, this thesis furthered work in the area 

by examining the following questions: 1) Will an acoustic model trained on AAL data perform 

better on an AAL forced alignment task compared to an existing widely-used, MUSE-trained 

acoustic model? 2) Does performance between the two acoustic models differ based on 

phonological environment, speaker, region, or gender? 3) To what extent will the two acoustic 

model systems include AAL realizations in their output? It was hypothesized that the CORAAL 

acoustic model system would produce a more accurate forced alignment of the AAL speech data, 

be better able to distinguish vowels within each of the three vowel pairs than the control model, 

and show more instances of phonetic transcriptions consistent with phonological features present 

in AAL. 

5.1 Results and Trends 

  Five consonantal features of AAL were examined to determine if the two acoustic model 

systems differed in their treatment of common AAL features. Four of the five features did not 

appear in the output of either system for either dataset, as the pronunciation dictionary did not 

include these features as potential variants. Instances of word-final consonant cluster reduction 

consistent with AAL were found in both systems. These occurrences were similar across both 
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systems, with the feature being found in the same words and a similar number of times in each 

system.  

 Three vowel pairs that are often examined in AAL research were chosen to look for 

differences between the two systems. In regard to vowel onset times, the results of these analyses 

showed small differences in onset times for prenasal IH and EH in both Roswell and Valdosta. 

This result is somewhat surprising, as a nasal following a vowel would not typically be expected 

to influence the vowel’s onset time. Additionally, the onset time analysis showed that certain 

speakers led to more disagreement between the systems. This could be due to differences in the 

extent to which speakers use AAL features.   

 The most consistent differences between the two systems occurred in vowel durations. 

Significant differences were found for AA and prenasal IH, where the CORAAL acoustic model 

system reported shorter durations, as well as IY, where the CORAAL system reported longer 

vowel durations. These differences were found for male and female speakers from both Valdosta 

and Roswell, indicating that this result is not due to a difference between regional AAL varieties 

used in Roswell and Valdosta. There are multiple ways to interpret this result, and further work 

should be done to determine which system is producing more accurate vowel durations for the 

AAL speakers. It is possible that an acoustic model trained on CORAAL data does a better job 

locating the offset of prenasal vowels, which could explain the differences in prenasal vowel onset 

time and duration. However, it is also important to remember that even when the differences 

between systems were statistically significant, the differences themselves were typically small.  

Pillai scores were also used to determine the amount of overlap reported for a vowel pair 

for each system. For four Valdosta speakers and three Roswell speakers, the two systems differed 

in Pillai scores by more than .10. In the Valdosta data, three of these were for the AA-AO vowel 
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distinction, where the CORAAL acoustic model system reported lower Pillai scores, and the 

remaining instance was for the non-prenasal IH-EH distinction, where the CORAAL system 

reported a higher Pillai score. For the three Roswell speakers, the CORAAL acoustic model system 

again reported higher Pillai scores for non-prenasal IH and EH, and the CORAAL system also 

reported a higher Pillai score for one female’s AA-AO vowel distinction. Average Pillai scores for 

male and female Valdosta and Roswell speakers were also compared. These showed that Roswell 

males exhibit a more merged cot-caught than female Roswell speakers or Valdosta speakers of 

either gender. Pillai scores for the Valdosta speakers were lower than the Roswell speakers for the 

IH-IY vowel distinction, consistent with both the AAVS and SVS. 

5.2 Implications and Limitations 

 The results of this work show that the two acoustic models performed quite similarly but 

did show significant difference with relation to certain vowels on a forced alignment task of AAL 

speakers from Georgia. It is important to remember that forced alignment is a different task than 

ASR as a whole. Forced alignment assumes the existence of a full transcription of the audio data. 

In a task such as forced alignment, the speech recognition system does not need to predict which 

word is being spoken or search for potential words. Additionally, the transcriptions used as input 

for forced alignment typically have utterance-level time stamps in the TextGrid file, further 

simplifying the task of forced alignment. Previous work has shown that ASR systems do not 

perform well on AAL data but have not examined forced alignment of AAL speech. As the two 

acoustic models performed similarly on this task, it appears that the existence of a transcript of 

audio data is very helpful in processing AAL speech. The results also show that, in general, a 

dialect-specific pretrained acoustic model is not needed for forced alignment. This is helpful for 

linguistic researchers who study various dialects of a language as they generally can use a single 
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model trained on a general variety of the language. These results also support previous work such 

as MacKenzie and Turton (2020), who found that a model trained on MUSE was able to effectively 

perform forced alignment of British English varieties.  

 While in general the two systems performed similarly, the analysis of vowels relevant to 

ongoing AAL changes showed that the systems do disagree in significant ways in certain vowel 

contexts. It is possible that the data each acoustic model was trained on are responsible for these 

differences. This result would be in line with current theories proposed by Koenecke et al. (2020) 

and others. It could also be the case that the differences are caused by the way in which one or 

both systems determines the boundaries of phonemes. This would explain why differences were 

found in both the onset times and durations of certain vowels.  

 The largest limitation of this work is the lack of human-annotated data at the word and 

phone level. Without this, it is impossible to determine measures such as word error rate. The lack 

of gold-standard transcriptions also limited the methods that could be used to analyze vowel onset 

time and duration.  Secondly, the lack of AAL realizations within the pronunciation dictionary 

used in this work limited the extent to which the systems were able to produce transcriptions 

consistent with AAL phonology. It is noted on the MFA website4 that for pronunciation 

dictionaries, transcription accuracy and lexicon coverage typically cater to the prestige variety of 

a language, and this is certainly the case in this work. Only one of the five AAL features examined 

in this work, word-final consonant cluster reduction, appears as a  potential phonetic variant.  

5.3 Future Work 

 
4 https://mfa-

models.readthedocs.io/en/latest/dictionary/English/English%20%28US%29%20ARPA%20dictio

nary%20v2_0_0.html#English%20(US)%20ARPA%20dictionary%20v2_0_0 
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 The results of this thesis create various paths for future work. Perhaps most obvious is to 

tackle the lack of human-annotated data. This could be done by developing human annotations for 

the datasets used in this work or by utilizing different corpora that include human-annotated data. 

This would allow for better analysis of how the models perform with respect to a gold standard 

transcription. With the data used in this work, there is an open question of why some speakers 

appeared to have more discrepancies in the two systems’ outputs. Koenecke et al. (2020) and 

Martin (2021) found that ASR system errors increased as more instances of AAL features were 

used. An analysis of the amount of AAL features used by the speakers in these datasets could help 

determine if this is the cause for performance discrepancies between speakers.  

 Another potential avenue for future work would be to adapt current pronunciation 

dictionaries to include pronunciations common in dialects outside of the prestige dialect. Previous 

work such as Shi et al. (2019), Bailey (2016), and Yuan and Liberman (2011) have shown the 

effectiveness of adding multiple pronunciations to a dictionary. Additions to the pronunciation 

dictionaries used by speech recognition systems would lead to greater dialectal coverage and 

higher accuracy for varieties that are not currently being represented. Including these 

pronunciation variants would also allow for a more accurate comparison of the two acoustic 

models, as the pronunciation dictionary would not be suppressing phonetic realizations that do not 

appear in the prestige variety of a language.  

 Lastly, CORAAL is one of the only large-scale corpora of AAL speech, and there are very 

few acoustic models or ASR systems trained on AAL data. Existing literature on ASR performance 

disparities points to a lack of non-MUSE training data (Tatman 2017, Koenecke et al. 2020, Martin 

2021). Developing more datasets for non-MUSE speakers is an important next step. There is also 

an ongoing research question as to whether and to what extent ASR systems can perform multi-
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dialectal speech recognition (Elfeky et al. 2016, Li et al. 2018, Chen et al. 2015). Future work 

could therefore work on developing and implementing more non-MUSE corpora in multi-dialectal 

speech recognition tasks.  
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