
PREDICTING PROTEIN STABILITY CHANGE UPON SINGLE POINT MUTATION USING

MULTI-INSTANCE REGRESSION: A LOCAL CONFORMATIONAL ANALYSIS

APPROACH

by

AKUL DEWAN

(Under the Direction of KHALED M. RASHEED)

ABSTRACT

The prediction of stability change caused by a mutation in a protein structure is of vital

importance for protein design and analysis. Several attempts have been made to predict these

energy changes by analyzing the global conformational properties of a structure. To date, none of

the research has focused solely on studying the effect of local conformational properties of a

mutated residue to the final stability change. In my thesis I use multi-instance regression

learning with output aggregation to learn and predict the energy change using the information

from the local environment of the mutated residue. This research shows a high degree of

correlation between the expected and predicted values of energy changes and a quantum leap

from the current state-of-the-art.

INDEX WORDS: machine learning, protein stability, conformational analysis

PREDICTING PROTEIN STABILITY CHANGE UPON SINGLE POINT MUTATION USING

MULTI-INSTANCE REGRESSION: A LOCAL CONFORMATIONAL ANALYSIS

APPROACH

by

AKUL DEWAN

B.Tech, Uttar Pradesh Technical University, India, May 2011

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

ii

© 2014

Akul Dewan

All Rights Reserved

iii

PREDICTING PROTEIN STABILITY CHANGE UPON SINGLE POINT MUTATION

USING MULTI-INSTANCE REGRESSION: A LOCAL CONFORMATIONAL ANALYSIS

APPROACH

by

AKUL DEWAN

 Major Professor: KHALED M. RASHEED

 Committee: ZACHARY WOOD

 WALTER D. POTTER

Electronic Version Approved:

Julie Coffield

Interim Dean of the Graduate School

The University of Georgia

DECEMBER 2014

iv

DEDICATION

Dedicated to my late grandparents.

v

ACKNOWLEDGEMENTS

This work has been done with an intent to give my bit to the society. Machine Learning is

a power field; nothing can be more fruitful than to use this for welfare of society. All over the

world millions of dollars are spent to decipher the stability and structure of proteins;

unfortunately, less has been discovered so far. Study of proteins can unlock door to a better

diagnosis and treatment of many life threatening diseases including Cancer.

This work would not have made it to this stage without constant encouragement, support

and guidance from Dr. Khaled M. Rasheed, Dr. Zachary Wood and Dr. W. Don Potter. I would

like to thank Dr. Khaled M. Rasheed for introducing me to the amazing field of Machine

Learning and allowing me be a part of several important projects throughout my course of study

at UGA. I also thank Dr. Zachary Wood for his undeterred support, his faith in my work and

most importantly his willingness to go out of his way and teach me fundamentals of

Biochemistry and Molecular Biology.

 Love, care and support of my family and friends have been my pillars of strength. I

cannot thank them enough. A special thanks to Somenath Das for reviewing my thesis work.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS...v

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

INTRODUCTION ..1

Motivation...3

Previous Work ..4

METHODOLOGY..6

Data Collection ...7

Feature Generation ..9

Machine Learning Module .. 11

AARC: Algorithm for Analysis of Residual Conformations .. 14

Intrusion and Gap Factor ... 15

Hydrophobicity ... 23

Nearest Neighbors ... 24

B factor Average ... 25

Molprobity .. 26

vii

Residue Distance ... 29

Amino-acid Availability Feature Set.. 30

DSSP Feature Set .. 31

Substitution Matrices ... 32

Penalty Score .. 33

MIR-OA: Multi-Instance Regression with Output Aggregation ... 34

Multi-Instance Learning .. 34

Input Aggregation v/s Output Aggregation .. 35

Why Output Aggregation in this Work .. 36

Output Aggregation of Prediction .. 38

Machine Learning Algorithms ... 40

Unbalanced Dataset Bias Removal .. 40

EXPERIMENTAL RESULTS & CONCLUSION ... 42

Learning and Cross Validation Results .. 42

Outliers ... 45

Testing Results .. 46

Conclusion .. 48

Future Work .. 48

REFERENCES ... 50

viii

LIST OF TABLES

Table 1: AARC Feature Set ... 14

Table 2: Hydrophobicity Values .. 23

Table 3: DSSP generated secondary structure code.. 32

Table 4: Cross Validation Results of Algorithms ... 42

Table 5: Confusion Matrix S1615 dataset .. 44

Table 6: Test Result on S388 ... 46

Table 7: S388 testing using S1615 complete dataset .. 47

Table 8: Confusion Matrix S388 dataset..47

Table 9: Comparison of S388 dataset...47

ix

LIST OF FIGURES

Figure 1: Three-dimensional structure of a protein. ...1

Figure 2: The basic structure of an amino acid residue...2

Figure 3: System Overview ...6

Figure 4: Subsection of AARC-CSV output 2LZM ...9

Figure 5: Conversion of AARC-CSV to machine learnable dataset.. 11

Figure 6: Intrusion Factor Diagrammatic Illustration ... 16

Figure 7: Gap Factor Diagrammatic Illustration... 20

Figure 8: Ramachandran Plot .. 28

Figure 9: Distribution of Protherm ΔΔG values ... 37

Figure 10: 20 fold Cross Validation of S1615 .. 45

1

CHAPTER 1

INTRODUCTION

 Proteins are essential component of cellular machinery. Mutations in proteins occur due

to environmental stresses, errors during cell replication, or disease states like cancer. A mutation

can adversely affect protein function, leading to a disease state. It is therefore crucial to study the

factors that affect the outcomes of protein mutations. In this work, we look into several

conformational and chemical properties of protein structure and provide an in-depth analysis of

their contribution to protein stability.

Figure 1: Three-dimensional structure of a protein.

2

Figure 1 shows the crystal structure of a protein. The multi-colored balls represent the

atoms that make up the protein.

A protein is a hetero-polymer built from a set of 20 amino-acid residues arranged in a

defined sequence that is specific for a given protein. Figure 1 shows the X-ray crystal structure

of an actual protein, wherein balls represent the Van der Waals radius of individual atoms. A

mutation in a protein is done at residue level, i.e. mutations are carried out by replacing a residue

with another residue.

Figure 2: The basic structure of an amino acid residue

3

Figure 2 shows a general structure of an amino acid residue. Each residue consists of N,

C, H and O group (that basically constitutes the amino-acid). R is a variable side-chain group.

There are 20 distinct R-groups that are joined in a specific sequence to form a ‘peptide chain’

that folds into the structure of the protein.

Every amino-acid contains a common backbone made up of α-amino acid and a side-

chain group named the R group. The distinctive properties of amino acids stems from the side-

chain connected to C-α atom. Four major classes of amino-acids can be derived by variation of

the side-chain group - namely, small hydrophobics, aromatics, polar and charged (acidic and

basic residues). Consider for example, a polar side-chain (such as an amide or alcohol) is added

to an amino-acid. A polarity would be induced, as an effect, in the amino-acid with a potency

directly proportional to the side-chain acid group's strength. The presence of R group also plays a

crucial role when a protein folds. Polar groups will require hydrogen bonding with either solvent

or another polar group. Similarly, charged groups will require dipole-charge interactions with

solvent or will form ionic bonds with oppositely charged amino acids.

Motivation

Noble prize winner Anfinsen's thermodynamic hypothesis states that under constant

physiological conditions, the protein population converges to a structure that represents a

minimum in Gibbs free energy called the native state(Rose, Fleming, Banavar, & Maritan, 2006).

This means that a protein chain of amino acids spontaneously undergoes a conformational

change that minimizes its chemical potential. The focus of this research is to learn what

conformational and chemical features affect the stability of the native state. We have developed a

4

computational tool that can predict the change in stability upon mutation of a residue. This will

provide biologists and biophysicists a much needed tool in which they only have to give a

protein name and the mutation they are interested in analyzing (along with pH of solution in

which mutation should be carried) in order to predict changes in stability. This is significant

because many important proteins are difficult to study in solution, and a computational tool

would greatly speed up research at a fraction of the cost and labor.

Previous Work

Several online tools are available which provide mutation stability prediction for proteins.

Previous successful approaches can be divided into two categories - energy based methods and

machine learning based methods. The Energy Based Methods attempt to generate an energy

function that uses physical, statistical or empirical force field changes to predict change in

energy upon mutation. (Bordner & Abagyan, 2004; Dehouck, Kwasigroch, Gilis, & Rooman,

2011; Gilis & Rooman, 1997; Guerois, Nielsen, & Serrano, 2002) are some of the prominent

works.

 Machine learning has been implemented extensively in this domain. The earliest work

was done by (Capriotti, Fariselli, & Casadio, 2004); this is a neural network based approach

which uses DSSP(Joosten et al., 2011) for generating the residue accessibility surface, and a set

of 40 feature; wherein 20 features are used to represent (in a binary encoded form) the presence

of each amino-acid near the mutated residue and 20 features represent the addition or removal of

amino-acid. A similar idea of coding amino-acid presence was implemented in (Cheng, Randall,

& Baldi, 2006a; and Ozen, Gönen, Alpaydan, & Haliloğlu, 2009) with the major difference in

5

the heuristic used to select nearest neighbors; the former is an application of SVM to this

domain. It investigates 2 heuristics to find nearest neighbors - one in which 9Å radius is used

around mutated residue and the other in which sequence of residues are considered; 9Å heuristic

is reported as the better approach. (Ozen et al., 2009) also used 9Å as cut-off to gather nearest

neighbors. It also used PAM250 (Dayhoff & Schwartz, 1978) for scoring the likelihood of

stability on replacement of amino-acid.

The remainder of the thesis is organized as follows. In Chapter 2, we explain the

methodology of our analysis. Chapter 2 would explicate the link between the different modules

of our system. Specifically, it would explain how exactly the 3-dimensional structural

information of a protein is converted into a machine learnable dataset. We developed a novel

analysis algorithm named AARC (Algorithm for Analysis of Residual Conformations). In

Chapter 3, a detailed explanation of AARC is given. In Chapter 4, we give details of our machine

learning approach. Here again we developed MIR-OA (Multi-Instance Regression with Output

Aggregation), a machine learning technique (to the best of our knowledge) never implemented in

this domain of research. Lastly, Chapter 5 presents the Experimental Results and Conclusion.

6

CHAPTER 2

METHODOLOGY

This chapter is divided into 3 parts namely “Dataset Collection”, “Feature Generation”

and “Machine Learning Module”.

Figure 3: System Overview

The three major and discrete components of the methodology are shown above.

7

 Figure 3 shows the overall architecture of the system. As shown, Protherm (Bava,

Gromiha, Uedaira, Kitajima, & Sarai, 2004) database outset the data collection process, followed

by our algorithm AARC for feature generation. AARC transforms the data in machine learnable

format, which is fed into MIR-OA for generating the final machine learned model. This final

model can now be used to predict results of unknown mutations.

Data Collection

Protherm is a free thermodynamic database for proteins and mutants. This database contains

experimental results of mutations done on several proteins over the years by scientists all over

the world. Being a combined collection of several researchers, Protherm also encompasses data

generated using several reliable and unreliable experimental methodologies which inevitably

induce errors and mistakes in observations. For example, a few mutations have been reported

several times by different sources with each having highly varying ΔΔG values. Removal of such

anomalies requires careful filtering of Protherm before using it. Fortunately, literature has two

reliable and regularly used skimmed down versions of Protherm; these datasets were first

developed by (Capriotti et al., 2004) and have been used regularly since then (Capriotti et al.,

2004; Capriotti, Fariselli, & Casadio, 2005; Cheng et al., 2006; Ozen et al., 2009). The

following are the two versions:

1. S1615 - The S1615 dataset contains 42 wild type proteins with 1615 experimental results.

This has been used as the training set.

2. S388 – This contains 17 wild type proteins with 388 experimental results. This has been

used as the test set.

8

It should be noted here that we are interested in observing the actual experimental results. In

both these datasets there are similar protein structures used, but there is no overlap of

experimental results. Our feature set does not rely upon global conformation of proteins;

therefore repetition of protein structure keeps the disjunction of training, validation and testing

set intact.

As shown in Figure 3, from Protherm we collect the following important information –

1. Wild type protein name

2. Mutation (which includes the residue number of wild type protein which was mutated in

the experiment, the amino group name of residue to be mutated and the amino group it

was mutated to)

3. Mutated protein name

4. pH value of the solution in which the experiment was conducted

5. ΔΔG value observed

The next step was to collect the 3-dimesional structural information for each of these protein

structures. We implemented the FTP based method to download structure files in PDB format

from (Berman et al., 2000). The Protein Database Files or PDB files are standard format files for

representing crystallographic 3-dimensional structural information and other relevant

information regarding the structure observed during crystallography. In Protein Database, every

protein structure is represented by a unique 4-character identifier named PDB ID. While

collecting the PDB files from FTP, we also made the local copies for reducing the fetch time

during later runs. When a PDB file is searched, first the program looks for the pdb in the local

9

database; if not present it uses the (Berman et al., 2000) to grab the PDB file via FTP and save it

into the local database.

Within each PDB file every atom is given a unique atom ID (represented by numbers), the

observed B-factor(Word et al., 1999) value, the chain ID and a residue number. The chain ID and

residue number are not unique for each atom. We collected atoms of only the first chain in a

PDB file (since all other chains would repeat the same atoms). Also, atoms of each residue were

distinguished by residue number.

A PDB file is essentially a text file, and thus for ease of reading and manipulation of these

files several libraries are available. In our work we used the two most common Java libraries

namely BioJava(Prlić et al., 2012) and BioShell(Gront & Kolinski, 2006, 2008). Both of these

libraries provide an easy interface for reading PDB files in an object-oriented manner and also

provides tools for processing several physiochemical properties.

Feature Generation

PDB files are protein structure files which only have the 3-dimensional coordinate

information of each atom and each atom’s temperature factor (explained in Chapter 3)

information. To extract conformational features further processing is needed.

Figure 4: Subsection of AARC-CSV output 2LZM

pdb_name resi_no voronia_property ------ mutation ddG pH

2LZM 33 0.065 ------ ? ? ?

2LZM 158 0.039 ------ ? ? ?

2LZM 34 0.067 ------ ? ? ?

2LZM 157 0.066 ------ 1L04 -1.1 2

2LZM 157 0.066 ------ 1L03 -1.3 2

10

Figure 4 is a small part of AARC-CSV generated for 2LZM pdb. The ‘pdb_name’,

‘resi_no’,’mutation’,’ddG’ and ‘pH’ values combined make each row unique.

This brings us to the next step of the methodology in which we used AARC (explained in

Chapter 3) on the collection of PDB files. AARC generates new Comma Separated Valued

(CSV) files for each protein structure (called AARC-CSV's from hereon). The AARC-CSV of a

protein contains conformational analysis values for each residue in a protein.

AARC-CSV Output Explanation

Essentially AARC-CSV is a simple CSV file with feature values of each residue in a

protein. It is a protein specific CSV file. Some salient features of AARC-CSV are as follows.

 Every row of AARC-CSV represents a residue.

 Each row of AARC-CSV is unique. Although it may be observed that in some cases the

‘pdb_name’ and ‘resi_no’ are common (as shown in Figure 3), but ‘pdb_name’,

‘resi_no’,’mutation’,’ddG’ and ‘pH’ concatenation makes them unique.

 Common ‘pdb_name’ and ‘resi_no’ are due to the fact that in the Protherm dataset, a

residue might have been mutated in different pH values yielding different ddG – we

needed to cover all such experiments.

Once AARC completes its analysis, the AARC-CSV's are further processed to generate a

single CSV file which can be understood by a machine learning algorithm. Next section

describes the process of combining the AARC-CSV files to generate a machine learnable dataset

and our machine learning approach.

11

Machine Learning Module

For machine learning we used a ‘Multi-Instance Learning with Output Aggregation’

(discussed in details in Chapter 4) approach. For this, we were required to develop a multi-

instance dataset wherein each instance (called a bag) would have multiple attribute vectors. Each

attribute vector would have a set of common values. As shown in figure 5, each bag is

represented by a set of common values namely ‘pdb_name’, ‘resi_no’, ‘mutation’, ‘ddG’ and

‘pH’.

Figure 5: Conversion of AARC-CSV to machine learnable dataset

Figure 5 shows the conversion of residue number 38 of 2LZM into a bag of residues (for multi-

instance learning). Note that the ‘pdb_name’, ‘resi_no’, ‘mutation’, ‘ddG’ and ‘pH’ of converted

data corresponds to the actual row from AARC-CSV of 2LZM.

12

For learning, we had to develop a single file dataset which would contain a dataset on

which we could implement a learning algorithm. The output of AARC could not be used directly

due to two reasons – first, it produced per residue feature values whereas we were interested in

performing analysis in bag format (wherein one bag had the to be mutated residue along with its

adjacent residues), and second, the entire information was still divided into separate protein files.

Therefore our objective was to combine all the information into a single CSV file in a bag

format.

As discussed in chapter 1, our focus is to observe the effect of local conformations on the

output of a mutation. For finding the residues which surrounded the to be mutated residue we

developed a Nearest Neighbor feature (part of AARC, discussed in Chapter 3). Essentially from

this feature we were able to gather residue numbers of adjacent residues; this was further used to

grab the rows of data which were collected and put into the final dataset CSV. It is worth noting

that we also used some features (like PAM250 and Blosum90) which are also common for one

bag, although they do not serve any purpose in bag identification.

The following algorithm describes the methodology of generating our Multi-Instance

dataset from AARC-CSV files -

MIR-OA-Dataset-Generator

1. For each wild type protein structure generate AARC-CSV files

2. Loop: for each AARC-CSV AARC-CSVi

3. Loop: for each row rowi in AARC-CSVi

4. If ddGi is ≠ ‘?’

5. Collect nearest neighbor attribute value nn_attributei

6. Loop: for each nn_residuei in nn_attributei

7. rowj = row data corresponding to nn_residuei from AARC-

CSVi

13

8. Put rowj to new dataset with ddGi = ddGj , resi_noi =

resi_noj, phi = phj , pdb_namei = pdb_namej and mutationi =

mutationj

9. Loop ends

10. Loop ends

11. Loop ends

As shown in the above algorithm, we are following output aggregation methodology

(discussed in details in Chapter 4) wherein the target value of the bag is associated with each

attribute vector (which are subtracted attribute vector of adjacent residues) of that bag. Several

learners are implemented on this dataset.

14

CHAPTER 3

AARC: Algorithm for Analysis of Residual Conformations

This chapter discusses the “Algorithm for Analysis of Residual Conformations” (AARC).

AARC is a residue level analysis module. This module performs comprehensive conformational

analysis of each residue of each protein structure in the current dataset.

Table 1: AARC Feature Set

S.NO. Feature Name Final Dataset

Feature Type

Source Number of Attributes

1. Intrusion Factor Individual Novel Feature 3 - Overall Residue,

Main Chain, Side

Chain

2. Gap Factor Individual Novel Feature 3 - Overall Residue,
Main Chain, Side

Chain

3. Hydrophobicity Individual (Widom,

Bhimalapuram, &

Koga, 2003)

1

4. Nearest Neighbor Individual Novel Feature 3 - Overall Residue,

Main Chain, Side

Chain

5. B-Factor Average Individual PDB File 2 - Main Chain, Side

Chain

6. Molprobity Individual (Chen et al., 2010) 4 – Ramachandran

score, Rotamer score,

Worst Angle Sigma,

Worst Length Sigma

7. Residue Distance Individual (Sennett, Kadirvelraj,

& Wood, 2011)

3 - Overall Residue,

Main Chain, Side
Chain

8. Amino-Acid

Availability

Individual and

Bag

(Capriotti et al., 2004) 40 – 20 Individual

(for each Amino-

Acid Type), 20 Bag

(for each Amino-

Acid Type)

9. DSSP Feature Individual and

Bag

(Joosten et al., 2011) 4 – 2 accessibility

surface individual

and bag, 2 secondary

structure binary

individual and bag

10. Substitution Matrices Bag (Dayhoff & Schwartz, 2 – pam250,

15

1978; Henikoff &

Henikoff, 1992)

blosum90

11. Penalty Score Bag Novel Feature 1

Features processed for each residue by AARC framework

In Feature Type, an ‘individual’ feature implies that feature’s value in final dataset is

according to corresponding residue, whereas ‘bag’ means the feature’s value is the value of to be

mutated residue which is repeated in each attribute vector in that bag.

Along with three benchmark programs namely Voronoia (Rother, Hildebrand, Goede,

Gruening, & Preissner, 2009), Molprobity (Chen et al., 2010) and DSSP (Joosten et al., 2011),

we developed several novel features to analyze each residue in its wild type conformation. These

features have never been used collaboratively for analysis to the best of our knowledge. Table 1

shows the features AARC processes.

Intrusion and Gap Factor

These novel features use the concepts of coordinate geometry to provide the exact

volume of intrusion (steric clash) or gap (buried void or cavity) with respect to van der Waals

radius around the residue's main chain and side chain (and the combined value). For this

analysis, van der Waals radii of common elements found in amino acids were collected from

(Bondi, 1964) . Following are explanations of these two features.

16

Intrusion Factor

As the name suggests, Intrusion factor provides the volume of intrusion within an atom's

van der Waals radius. Given an atom a1 with van der Waals radius r1, the intrusion factor would

give the approximate volume of intrusion within the sphere developed by a1 with radius r1.

Figure 6: Intrusion Factor Diagrammatic Illustration

Figure 6 illustrates the intrusion of atom a2 with radius r2 within the van der Waals force

of atom a1 with radius r1. The volume of intrusion is the volume of the 3-dimensional ellipsoid

space which is the shaded overlap shown above. Figure 6a shows the 3-dimensional intrusion.

Figure 6b explicates the precondition for intrusion factor analysis, i.e. the sum of the van der

Waal radius of a1 and van der Waal radius of a2 should be larger than the Euclidian distance

17

between a1 and a2. Lastly, Figure 6c shows the calculation of the height of the ellipsoid shaded

region.

Figure 6a shows, with respect to atom a1, how the atom a2 intrudes into van der Waals

sphere of a1. We believe that if an atom's sphere is intruded by other atoms then it must

experience some amount of strain. To quantify this strain, we considered calculating the total

volume of intrusion with an assumption that intrusion volume will be directly proportional to

strain.

It is possible that two atoms of different residues may not be in contact with each other or

that atoms of same residue might be intruding. In such cases, we do not calculate the intrusion

factor (we calculate the gap-factor for the former condition). We impose the following two

preconditions for calculating the Intrusion Factor.

a. The distance between two atoms is checked. Only if the distance between two

atoms is less than the sum of van der Waals radii of two atoms then the intrusion

factor is calculated. Shown in figure 6b, the distance between the center of

spheres of atom a1 and atom a2 are less than the sum of van der Waal radii of both

the atoms. This is a qualifying case of intrusion factor calculation.

b. The influences of atoms of the same residue are not considered. The intrusions of

atoms within the same residue are not considered for this calculation. This

condition is enforced in order to prevent wrongly considering the compactness

18

that may be inherent within a certain kind of amino-acid. The effect of the type of

amino-acid present is quantified by other factors considered in our analysis.

Often, a tightly packed residue would have many of its atoms surrounded and intruded by

other atoms. For our analysis we summed the total intrusion on all the atoms within a residue.

Therefore, the total volume of intrusion would be the summation of ellipsoid volumes of all such

intrusions in an atom's van der Waal sphere. We calculate intrusion factors for each residue at

main chain, side chain, and overall residue (main + side chain intrusion) levels.

Mathematically, intrusion within an atom can be calculated by first getting the 3-

dimensional vector between the centers of the two spheres i.e.

𝑎1-𝑎2-𝑐𝑒𝑛𝑡𝑒𝑟-𝑣𝑒𝑐𝑡𝑜𝑟[] = (𝑎1.x − 𝑎2.x, 𝑎1.y − 𝑎2.y, 𝑎1.z − 𝑎2.z)

Where, ai.j is j axis value of point ai. Next using the straight line a1-a2-center-vector we

can identify the points which are on the circumference of both the spheres. Let the farthest point

of sphere a2 in a1 be a2Intrusion_Point, which is calculated by the following formula.

𝑎2Intrusion_Point[]=

(𝑎2.x + (𝑎1-𝑎2-𝑐𝑒𝑛𝑡𝑒𝑟-𝑣𝑒𝑐𝑡𝑜𝑟. 𝑥 ∗ 𝑟2), 𝑎2.y + (𝑎1-𝑎2-𝑐𝑒𝑛𝑡𝑒𝑟-𝑣𝑒𝑐𝑡𝑜𝑟. 𝑥 ∗ 𝑟2), 𝑎2.z + (𝑎1-𝑎2-𝑐𝑒𝑛𝑡𝑒𝑟-𝑣𝑒𝑐𝑡𝑜𝑟. 𝑦 ∗ 𝑟2))

 Next we find the extreme most point of sphere a1 in a2, let this point be

a1Circumference_Point

19

𝑎1Circumference_Point[]=

(𝑎1.x + (𝑎1-𝑎2-𝑐𝑒𝑛𝑡𝑒𝑟-𝑣𝑒𝑐𝑡𝑜𝑟. 𝑥 ∗ 𝑟1), 𝑎2.y + (𝑎1-𝑎2-𝑐𝑒𝑛𝑡𝑒𝑟-𝑣𝑒𝑐𝑡𝑜𝑟. 𝑦 ∗ 𝑟1), 𝑎2.z + (𝑎1-𝑎2-𝑐𝑒𝑛𝑡𝑒𝑟-𝑣𝑒𝑐𝑡𝑜𝑟. 𝑧 ∗ 𝑟1))

With these two points we can now work to find the volume of overlapped ellipsoid

volume. The volume of an ellipsoid is –

𝑉𝑜𝑙𝑢𝑚𝑒𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 = 4 3⁄ ∗ 𝜋*a*b*c

Where, a, b and c are 3 dimensional axes distance. In our case axis ‘a’ would be twice the

height (shown in Figure 6c). This is calculated by using the Pythagoras theorem with two shorter

sides being equal to radius r1. We calculate height by the following formula.

The remaining two axes namely b and c would be half of the distance between

a1Circumference_Point and a2Intrusion_Point -

𝑏_or_c=

√(𝑎2Intrusion_Point. 𝑥 − 𝑎1Circumference_Point . 𝑥)2 + (𝑎2Intrusion_Point. 𝑦 − 𝑎1Circumference_Point. 𝑦)2 + (𝑎2Intrusion_Point . 𝑧 − 𝑎1Circumference_Point. 𝑧)2

We can now modify the ellipsoid formula to the following

𝑎𝑖-𝑎𝑗-𝑣𝑜𝑙𝑢𝑚𝑒ellipsoid= 4 3⁄ ∗ 𝜋 ∗ (b_or_c)
2 ∗ ℎ𝑒𝑖𝑔ℎ𝑡

The Intrusion-factor of one residue's main-chain would be the following -

𝐼𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛 − 𝑓𝑎𝑐𝑡𝑜𝑟main-chain = ∑ ∑ (𝑎𝑖 − 𝑎𝑗𝑣𝑜𝑙𝑢𝑚𝑒ellipsoid)

𝑎𝑗∋𝑟𝑒𝑠𝑖𝑑𝑢𝑒nearest_neighbors𝑎𝑖∋𝑟𝑒𝑠𝑖𝑑𝑢𝑒main-chain

For each atom in the concerned residue's main-chain, the formula sums the ai-aj-

volumeellipsoid over all the atoms of the nearest neighbors of the residue.

20

Gap Factor

As mentioned in Intrusion-factor, when the distance between centers of two atoms is

more than the sum of the van der Waal radii of two atoms then we calculate the Gap-factor. It is

observed that void around a residue affects the behavior of mutation. Consider a residue with

large (or possibly unusual) gaps around it. Mutation to such a residue would display more

dramatic characteristics. Gap-factor is an attempt to quantify such sites and understand the

effects of large or small gaps on ΔΔG.

Figure 7: Gap Factor Diagrammatic Illustration

21

The gap factor between atom a1 and a2 is calculated only when they are not intruding in

each other's van der Waal sphere. Figure 7a, shows the 3-dimesional area enclosed within green

outlines between the spheres. This volume of trapezoidal prism is the total volume we measure to

quantify the gap between spheres. Figure 7b, shows the shaded region of trapezoidal, it should be

evident that since r1 and r2 could be different in length (because the van der Waals of sphere of

different elements is different) the area we are interested in becomes the trapezoidal. Figure 7c,

shows how the actual calculation of this area is done.

Figure 7 is the diagrammatic explanation of the gap-factor. There are a few points to note

in this figure -

 The two atoms (a1 and a2) could be from two different elements. In such cases, the radii r1

and r2 would be different and thereby our area of interest would be a trapezoidal prism

volume.

 As shown in Figure 7b, we consider the diametric plane of both spheres as the two

encompassing planes of the trapezoidal volume of interest.

 The distance between a1 and a2 would be the height of the trapezoidal volume. We are

interested in the volume of gap only. Therefore, we subtract half of the volumes of both

spheres from the trapezoidal volume calculated.

Similar to the intrusion factor, the gap factor is also calculated at 3 levels namely main

chain gap, side chain gap and overall gap. Also, we impose the following two constraints before

calculating the gap-factor -

22

1. The distance between two atoms are checked. Only if the distance between the two atoms

is more than the sum of van der Waals radii of the two atoms then the gap-factor is

calculated. As shown in Figure 7b, the distance between the center of spheres of atom a1

and atom a2 are more than the sum of van der Waal radii of both the atoms. This is a

qualifying case for gap factor calculation.

2. The influence of atoms of same residue are not considered. The gap of atoms within the

same residue are not considered for this calculation. This condition is enforced in order to

prevent wrongly considering the space that may be inherent within a certain kind of

amino-acid. The effect of the type of amino-acid present is quantified by other factors

considered in our analysis.

Mathematically, we can see the calculations undertaken as follows. First we calculate the

distance between atom a1 and a2 by –

ℎ𝑒𝑖𝑔ℎ𝑡=√(𝑎1.x − 𝑎2.x)2 + (𝑎1.x − 𝑎2.y)2 + (𝑎1.z − 𝑎2.z)2

Where, ai.j is the value of ai at axis j. Next using the radii r1 and r2 we can find the

volumes of spheres of atom a1 and a2.

𝑣𝑜𝑙𝑢𝑚𝑒sphere_a1 = 4 3⁄ ∗ 𝜋 ∗ 𝑟1
3

𝑣𝑜𝑙𝑢𝑚𝑒sphere_a2 = 4 3⁄ ∗ 𝜋 ∗ 𝑟2
3

Next, we calculate the volume of the trapezoidal region –

𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑎𝑝𝑖𝑧𝑜𝑖𝑑 = ℎ𝑒𝑖𝑔ℎ𝑡 ∗ (((2 ∗ 𝑟2)2 + (2 ∗ 𝑟1) ∗ 0.334) + ((4 ∗ 𝑟1 ∗ 𝑟2)2 ∗ 0.1667))

The gap value between a1 and a2 can be found as follows -

23

𝑎1-𝑎2-𝑔𝑎𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑎𝑝𝑖𝑧𝑜𝑖𝑑 − 𝑣𝑜𝑙𝑢𝑚𝑒sphere_a1 ∗ 0.5 − 𝑣𝑜𝑙𝑢𝑚𝑒sphere_a2 ∗ 0.5

Lastly, the gap-factor for a residue's main-chain is found by following formula

𝐺𝑎𝑝 − 𝑓𝑎𝑐𝑡𝑜𝑟main-chain = ∑ ∑ 𝑎𝑖

𝑎𝑗∋𝑟𝑒𝑠𝑖𝑑𝑢𝑒nearest_neighbors𝑎𝑖∋𝑟𝑒𝑠𝑖𝑑𝑢𝑒main-chain

-𝑎𝑗-𝑔𝑎𝑝 − 𝑣𝑎𝑙𝑢𝑒

In Gap-factormain-chain, just like intrusion-factor all the atoms of main chain of residue of

interest are considered. For all main-chain atoms summation of gap-factor is calculated by

considering the atoms of residues in its nearest neighbors.

Hydrophobicity

Hydrophobicity is the change in free energy when a molecule is transferred from an

apolar solvent to water. A positive free energy change means that the transfer is unfavorable, and

is used to quantify the degree of hydrophobicity. Protein structure is very sensitive to changes in

the hydrophobicity of its residues (Widom et al., 2003). A water soluble protein, in its stable

state, would have hydrophobic core and polar or charged surface. This is because the

hydrophobic side-chains would collapse to the core and become buried whereas the polar side-

chains would react with water and be on surface or partially buried.

Table 2: Hydrophobicity Values

S.NO. X-residue ΔΔG

1 Ala 0.87

2 Arg 2.99

3 Asn 0.30

4 Asp -2.46

5 Cys 1.23

6 Gln 0.30

7 Glu -2.53

8 Gly 1.01

9 His 0.92

24

10 Ile 2.16

11 Leu 2.29

12 Lys 2.49

13 Met 1.71

14 Phe 2.68

15 Pro 0.90

16 Ser 0.85

17 Thr 0.95

18 Trp 2.96

19 Tyr 1.67

20 Val 1.61

In Table 2, the second column is the 3 character pdb name of a residue and the third

column is the octanol-to-water free energy value. In (Wimley, Creamer, & White, 1996) the

authors gave error margin values as well. For simplicity we have omitted these margins. Also,

we are considering only the values for pH value of 9, whereas pH =1 values are ignored. Since

our analysis involves associating the surrounding environment of a mutated residue with the

effect of mutation, we considered hydrophobicity of each residue individually. This would give

us a more detailed picture of the hydrophobic nature of the surrounding and the mutated residue.

Considering the fact that the to be mutated residue is hydrophobic and is buried in core, but the

surrounding residues are not hydrophobic – here the surroundings would be unstable; our idea

was to capture this.

Nearest Neighbors

A novel attempt was made wherein we encoded the 3-dimensional environment of the

residue to be mutated without any approximation methods. We wanted to protect the maximum

possible granularity in the information of the environment of a to be mutated residue. This was

done to support our hypothesis that the surrounding conformational setup of a residue is equally

responsible for the mutation's behavior. Previous attempts were made in (Capriotti et al., 2004,

25

2005; Cheng et al., 2006; Ozen et al., 2009) to encompass the 3-dimensional environment. But

we noticed that in these attempts the highly rich conformational information was reduced

considerably. Given the current availability of highly efficient and accurate machine learning

algorithms and huge processing powers, this step is nothing but unnecessary loss of vital

information of the surroundings.

Nearest neighbor is not itself an attribute for analysis. It is an attribute that helps in

developing dataset for training and testing of machine learning algorithms. That is, we use this

attribute for setting up our multi instance dataset. Around each atom of a residue, a 3-

dimensional sphere with 8A radius is considered. The 'residue numbers' of all the residues that

fall inside this sphere are collected. Later in our processing when we perform our machine

learning analysis, we use this information to collect information of the to be mutated residue's

surroundings.

Nearest Neighbor residues are collected at 3 levels namely main-chain nearest neighbors,

side-chain nearest neighbors and overall nearest neighbors. In each of these levels the atoms of

the residue to be mutated are filtered for the atoms for which nearest neighbors should be

considered.

B factor Average

B factor or temperature factor describes the kinetic or static disorder of an atom, and

represents the flexibility of various segments of the protein. Briefly, the atoms in a crystalline

structure are always vibrating depending on the flexibility of the protein segment. An atom near

26

the surface of a protein would not be as tightly packed as the atom buried within a core, and

would be expected to have higher flexibility. In the extreme case, the atoms can be moving so

much that it becomes difficult to identify the coordinates. In other words, if occupancy of any

atom cannot be distinguished, i.e. its empirical electron density is low then its b-factor value will

signify the low confidence in the coordinates of that particular atom. For our study this factor

was used to determine flexibility as a proxy for protein dynamics. B-factor is found by the

following formula.

𝐵 − 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 = 8 ∗ 𝜋2 ∗ 𝑈𝑖
2

Where,

B-factori = B factor of the ith atom

Ui
2 = the mean square displacement of atom i.

B factors are calculated during the protein structure refinement and are listed in the PDB

file with each associated atom. In our study we average the B factors for per residue analysis. We

use main-chain, side-chain and overall B factor averages for our analysis.

Molprobity

Molprobity(Chen et al., 2010) is a benchmark open source program and a web-service tool. It

provides structure validation service wherein they produce several results which specify which

atoms and residues within a protein are more tensed or are unnaturally aligned. Molprobity

performs the following analysis.

 All-atom contact analysis - This generates a ball of 0.5Å in diameter around every atom

and then identifies the overlap occurring with other non-covalent bonded atoms. If there

27

is an overlap of more than 0.4 Å between non-donor-acceptor atoms then it signifies a

clash. By this method clash/1000 atoms is reported as “clash score” for each atom. For

this analysis Molprobity internally uses PROBE (Word et al., 1999).

 Torsion-angle combination using the updated Ramachandran and Rotamer analyses –

A check is made if the residues fall in the distribution of Ramachandran backbone φ ,ψ

angles (Ramachandran, Ramakrishnan, & Sasisekharan, 1963) and side chain Rotamer

angle. The Ramachandran plot specifies the conformational φ ,ψ angles possible for

amino-acid residue in protein; a conformation plotted outside Ramachandran plot

identifies a strained conformation . The side-chain rotamer angle identifies the strain on a

bond due to the current positional angle of the side-chain residues.

28

Figure 8: Ramachandran Plot

Figure 8 shows the original Ramachandran (Ramachandran et al., 1963) plot. As the number

of observations has increased over the years there have been several improvements in this plot.

The plot is mapped over the phi and psi angles between the atoms. If phi-psi value falls within

the highlighted area then atoms are not strained.

 Covalent-geometry analyses - In this, Molprobity looks at the bond-length and bond-

angle of the residues. It takes a mean of these parameters and then finds the outliers. An

outlier here indicates strain in the structure, and is usually due to a modeling error, which

accumulates in highly dynamic sections of the protein. Thus, these types of geometric

errors are also proxies for protein dynamics.

29

 Molprobity score - This the final molprobity quality statistical value. It is a log-weighted

combination of clash-score, percentage Ramachandran value (the not favored angles

w.r.t. to Ramachandran plot) and percentage bad side-chain Rotamers. The lower the

Molprobity score, the better the spot's stability.

From the abovementioned results, we take Ramachandran Score, Rotamer Score, Worst

Angle (standard deviation value), Worst Length (standard deviation value). We also introduced a

'combinedScore'; it is simply an average of the abovementioned scores. For a residue i,

combinedScorei is calculated as follows -

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝑆𝑐𝑜𝑟𝑒𝑖

= (𝑟𝑜𝑡𝑎𝑚𝑒𝑟𝑆𝑐𝑜𝑟𝑒𝑖 + 𝑟𝑎𝑚𝑎𝑐ℎ𝑎𝑛𝑑𝑟𝑎𝑛𝑆𝑐𝑜𝑟𝑒𝑖 + 𝑏𝑜𝑛𝑑𝐴𝑛𝑔𝑙𝑒𝑖 + 𝑏𝑜𝑛𝑑𝐿𝑒𝑛𝑔𝑡ℎ𝑖) 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑓𝑎𝑐𝑡𝑜𝑟𝑠_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒⁄

The residues at the surface of a protein do not have Rotamer scores available. Therefore,

to take the average in right manner, we make sure that we adjust the denominator, i.e.

'number_of_factors_available' value according to the numerator scores available (due to

constraints enforced by Molprobity).

Residue Distance

Introduced in (Sennett et al., 2011), this is a formula that uses B factor values to identify

the center of motion of a protein structure. In general, the flexibility in proteins is high on the

surface and is lowest near the core. The following Pearson Correlation uses this idea to identify

the center of motion; main-chain B factor will display a linear increase with distance from the

center of motion. The following formula is used for residue distance.

30

𝐶𝑖 =
∑ (𝑑i,j

2 − 𝑑2̄)𝑗 (𝐵𝑗 − 𝐵̄)

[∑ (𝑑i,j
2 − 𝑑2̄)

2

𝑗 ∑ (𝐵𝑗 − 𝐵̄)
2

𝑗]
1/2

Here,

di,j is the Euclidian distance between residue i and residue j,

d is the average distance of atoms in the given protein

Bj is the B factor value of jth atom

B is the B factor average value for the protein

In our study, we use the C-alpha atom only for calculating the distance between residues.

Amino-acid Availability Feature Set

This feature comprises a set of attributes. Here we encode the amino-acid availability. To

account for the presence of a specific kind of amino-acid subset within the vicinity of the to be

mutated residue - studies like (Capriotti et al., 2004, 2005; Ozen et al., 2009) have used a set of

20 binary features (along with few other features that we did not use) wherein they encode

simple presence or absence of one particular amino-acid in the vicinity (explained in Chapter 1,

Previous Work). The abovementioned literatures have claimed high accuracy using these feature

sets. Therefore with the hope that we would be able to use their features along with our novel

feature set we have incorporated these features in our study.

The twenty types of amino-acids are each given a fixed position in a binary array of

length 20. Next we calculate if each of the 20 amino-acids is present in the 8A radius(the

residues within this radius are already present from the Nearest Neighbor Feature explained

above). If a residue is present then we set its corresponding array value of that amino-acid as 1

31

else 0. Therefore for each residue we have a binary array of length 20. Mathematically (Capriotti

et al., 2004) describe this feature as -

𝑉(𝑎) = ∑ 𝛿[𝑡𝑦𝑝𝑒(𝑗), 𝑡𝑦𝑝𝑒(𝑎)]𝜌[𝑟(𝑖), 𝑟(𝑗), 𝑅]
𝑗

Where, j goes from 0 to number of residues in a protein and [type(j),type(a)] is one when

residue at position j is of type a. Also [r(i),r(j),R] is 1 when the Euclidian distance between

residue i and j is less than 8A.

For completeness in our study, we repeated these 20 feature sets twice – first, we used

individual values for each residue (naming it availability feature – individual), second we

repeated the 20 features of the to be mutated residue for every residue in the bag. This provided

us with a measure to learn if to be mutated residue is of more importance or the surrounding

residues.

DSSP Feature Set

DSSP(Joosten et al., 2011) is a benchmark program used by AARC to get the water

exposed surface area and secondary structure information of a residue. This program first reads

the 3-dimensional structural information of a protein from a PDB file and then calculates the

hydrogen bond energy of each atom. Next, to calculate the optimal hydrogen position in a

structure, the actual hydrogen atoms are first removed and new hydrogen atoms are placed at 1A

distance from the Nitrogen atom of backbone chain which is opposite from C=O bond. The best

two hydrogen bonds processed by this are used to determine secondary structure information.

32

Table 3: DSSP generated secondary structure code

S.NO. Code Description

1 H Alpha helix

2 B Beta Bridge

3 E Strands

4 G Helix-3

5 I Helix-5

6 T Turn

7 S Bend

As mentioned in Table 3, we use DSSP’s output of exposed surface area and secondary

structure information as individual and also as a bag feature. The exposed surface area

(represented in square Angstroms) is used as-is in the individual feature and in the bag the

exposed surface area of to be mutated residue is repeated for all the attribute vectors within a

bag. As shown in Table 3, DSSP provides the secondary structure information as a single letter.

We develop binary features for secondary structure by considering all letters as 0 except ‘H’

which is considered as 1.

Developers of DSSP provide a database version of the program and a source code

version. We use the source code version where each time complete processing of PDB file is

done.

Substitution Matrices

Substitution matrices provide substitution rates of amino-acids. When an amino-acid is

substituted by another amino-acid the substitution matrices provide a number representing the

likelihood of substitution. The likelihood is derived from homologues ancestors, i.e. substitution

of a hydrophilic residue such as arginine by another hydrophilic residue such as glutamine is

more likely than if replaced by leucine. In our study we used PAM250(Dayhoff & Schwartz,

33

1978) and Blosum90(Henikoff & Henikoff, 1992). As mentioned in Table 1, both of these

features are bag features – these features are processed for to be mutated residue and are repeated

for each attribute vector in the bag.

Penalty Score

The penalty score is another novel feature in our analysis. The volume occupied by each

residue depends on the conformation and number of atoms in it. It becomes important to take

into account a penalty factor with respect to volume of residue which penalizes a mutation which

replaces a small volume residue by a large volume residue or vice versa.

34

CHAPTER 4

MIR-OA: Multi-Instance Regression with Output Aggregation

This chapter furnishes details about the machine learning module of our analysis. Here

we introduce Multi-Instance Learning and explain why it was adopted in this research. Also we

explain the methodology used to nullify the bias in the protein mutation datasets available.

3-dimensional protein structures are highly compact packages with large numbers of

atoms arranged in a very complex yet specific manner. An analysis of these structures requires

expressing the properties in as much granularity as possible. Detailed expression of features

would allow the learning algorithm to better learn the decision space. Therefore, analyzing the

conformational patterns of residues surrounding the mutated residue (or the residue under

observation) required us to follow a “Multi-Instance Learning with Output Aggregation”

approach for our machine learning analysis. By following this we were able to map the ΔΔG

value of a mutated residue to the properties of adjacent residues; the properties which can be

hypothesized as causing that particular ΔΔG value.

Multi-Instance Learning

Multi-Instance Learning is an extension of single instance learning. Here, each instance

includes multiple attribute vectors rather than the traditional approach wherein each instance has

35

a single attribute vector. To such an instance with a set of multiple attribute vectors (called bag)

a single target value is associated.

There are both pros and cons of this approach. On one hand, each instance can now be

expressed with more details (in terms of the data patterns it holds) and also can include attribute

vectors which may be weakly associated to the target value; i.e. the target value can now be

associated to a group of attribute vectors (instead of just one attribute vector) each of which may

or may not be strongly connected to the target value of the bag. On the other hand, this approach

complicates the learning space considerably - a learner which is presented with a multi instance

bag would have to learn from all the attribute vectors within that bag (which may be a complex

space to learn itself). Also the learner would have to learn to distinguish one bag from the other

bags (which are again sets of attribute vectors). This situation becomes worse when the target

value is continuous (as in our case). Nonetheless, since our domain required high expressive

power, we had to adopt this strategy (justified later).

Input Aggregation v/s Output Aggregation

For multi-instance learning, most of the effort by the machine learning community has

been devoted to developing dataset transformational methods that perform transformations either

during the learning phase or during the prediction phase. These methods would convert the

multi-instance training/testing dataset into a flat single instance dataset. Thereby allowing one to

use the already present myriad of learning algorithms for learning and prediction. Multi-instance

learning has been successfully applied in several domains of which some famous ones are

described in (Dietterich, 1997; Zhang & Zhou, 2007).

36

As mentioned earlier, there are two data transformation approaches – either to transform

at the learning phase, named “Input Aggregation” or to transform at the prediction phase, named

“Output Aggregation”. In input aggregation a representative attribute vector for each bag is

developed. This reduces one instance bag to one attribute vector and consequently the entire

multi-instance dataset to a flat single instance dataset (on which now any classification algorithm

can be applied). Common approaches for finding representative attribute vectors include

arithmetic mean of attributes, geometric mean of attributes and K-nearest neighbor etc. Whereas

in output aggregation, the dataset is flattened by adding the bag's target value to each of its

attribute vector. By this, each attribute vector is now one instance in the learning dataset with a

target value equal to the target value of bag (on this again any classification algorithm can be

applied). Once a classification/regression model is developed on the dataset using either

approach, a new bag is tested by developing the representative attribute vector of the bag in input

aggregation or by taking average, median or any other aggregative method to aggregate the

output predictions of each of its attribute vectors in output aggregation. We are using output

aggregation (the reasons for which are discussed below).

Why Output Aggregation in this Work

Output aggregation suites our needs best. We noticed that by using input aggregation we

incurred severe loss of information. The following are few points that justify our selection of

output aggregation.

37

Figure 9: Distribution of Protherm ΔΔG values

Figure 9 presents a discretized distribution of ΔΔG values of S1615 dataset. Naturally

occurring mutations within a protein do not have drastic ΔΔG values. This is clear in the

distribution pattern of data as well where there are two large gaps of 318 and 476 between the (-

1.25 – 0.35] segment and its nearest neighbors (-2.866 - -1.25] and (0.35 – 1.967] respectively.

• Consider the example of packing density we use in our analysis. We hypothesize that

ΔΔG is directly related to the packing densities of adjacent residues. Now consider averaging

packing densities for transformation of dataset during training. This approach might work for

extreme cases wherein all (or the majority) of surrounding residue collapse or expand, but this

would not work for situations where some residues expand and some collapse -which is mostly

the case where ΔΔG values are near zero (i.e. not much change in protein structure).

38

• Most of the available experimental ΔΔG values lie between -2 and +1. Figure 9 shows

the discretized distribution of the Protherm dataset. In light of the aforementioned point, it

becomes necessary to keep the resolution of data unaffected during learning – which cannot be

achieved in input aggregation. Whereas, in output aggregation the opposite is true; the data

during training and testing is used as-is.

• Most of the data being in a close range also validates the requirement for high granularity

in the training/testing instances. This would provide the learning algorithm with precise and

sufficient data to learn and predict even when the data attributes are closely associated.

Output Aggregation of Prediction

As discussed above, Output aggregation allowed us to flatten the multi-instance dataset

into a single instance dataset during training. Now that the learner is trained on the single

instance dataset, it is capable of predicting a new dataset which is also single instance. Here we

provide details on the transformation methods we use during the testing phase. We tested two

approaches for output aggregation namely predicting-then-aggregating and aggregating-then-

predicting.

Predicting-then-Aggregating

As mentioned earlier, our dataset was flattened and a classifier was trained on it. Each

bag of attribute vectors from a test set sample in this approach was treated in a per-instance

fashion, i.e. each attribute vector was treated as an instance and prediction was made on it by the

classifier. Once done, the following two approaches were compared -

39

1. Aggregation by Average - the average value of the predictions on all instances in the bag was

taken.

2. Aggregation by Median – the median value of the predictions on all instances in the bag was

taken.

Aggregating-then-Predicting

Here, the attribute vector values were compressed so as to generate one representative

instance for the test bag. This representative attribute vector was fed into the classifier model for

prediction. The following two approaches were compared for the compression of attribute

vectors of a bag -

1. Aggregation by Arithmetic Mean - the average value of each attribute in the bag was used.

2. Aggregation by Geometric Mean – the geometric mean of the values of each attribute in the

bag was used.

The Predicting-then-aggregating approach performed substantially better than the

aggregating-then-predicting approach. This further validates our claim regarding the issues with

input aggregation (which, as mentioned earlier, transforms vectors in same way). In predicting-

then-aggregating the aggregation by median worked marginally better in terms of absolute mean

40

error and root mean squared error but was considerably better in Pearson's correlation

coefficient. These results are discussed in detail in the following chapter.

Machine Learning Algorithms

Weka (Hall et al., 2009) is an open source library for machine learning developed by

‘The University of Waikato’. Weka has been developed in Java and can be easily embedded into

Java projects by importing the Java packages. Weka, being a highly robust package, has several

classification, clustering and attribute selection algorithms.

As a good data analysis practice, we experimented with as many algorithms as possible,

including Model Trees, Random Forests, Neural-networks, Radial Basis Functions etc. We also

attempted several Ensemble methods like bagging, stacking and boosting for our analysis.

Unbalanced Dataset Bias Removal

The majority of the experimental values of Protherm dataset lie in the range of -2 to +1.

Learning on such an unbalanced dataset creates a bias in learning algorithms. Unbalanced

datasets may result in a classical case wherein a classifier has high false positives with high true

positives, i.e. most or all of the data is classified to one particular class which has the largest

number of instances. Such biased classifier will show high accuracy if the test set is also biased

(which is commonly the case in real world domain problems). In our case, a model developed on

such a dataset would do well on an average (due to the high likelihood of a new test instance to

lie between -2 to +1) but such a model would be a biased model that would fail on predicting

instances outside to majority dataset range.

41

We introduced stratification during the training/validation phase for balancing the data.

Before training/validation we divided the data into four strata +∞ to 0.2, 0.2 to -1.5, -1.5 to -3.0

and -3.0 to -∞ according to ΔΔG values and made a separate dataset for each strata. Next dataset

of each strata was divided into equal sized folds. Lastly, the ith fold of each strata was combined

with the ith folds of all other strata; this generated a new combined by strata and fold separated

dataset. Training/validation was done on this dataset.

This exercise made sure that all the cross validation folds contained equal instances for

training and for cross validation testing. Thereby, providing a more reliable picture of data over

fitting and cross validation correlational accuracy of the learned models.

42

CHAPTER 5

EXPERIMENTAL RESULTS & CONCLUSION

In this final chapter we explain the experimental results and conclusions. First we

illustrate the cross validation results of several regression learning algorithms on the S1615

dataset and then the test set results on the S388 dataset. At the end we would provide the

conclusion and future work.

Learning and Cross Validation Results

As discussed in Chapter 4, we trained our models on the S1615 dataset. Training was

done with 20 fold cross validation along with stratification. We used four methods of prediction

namely prediction-by-average, prediction-by-median, prediction-by-arithmetic-mean and

prediction-by-geometric-mean. Caution was kept to make sure that during training, validation

and testing none of our bagged instances was split.

Table 4: Cross Validation Results of Algorithms

Algorithm
Name

prediction-by-average prediction-by-median prediction-by-arithmetic-
mean

prediction-by-geometric-
mean

Correlation

Coefficient

 Mean

absolute

 Root mean

squared

Correlation

Coefficient

Mean

absolute

Root mean

squared

Correlation

Coefficient

Mean

absolute

Root

mean

squared

Correlation

Coefficient

Mean

absolute

Root mean

squared

Random
Forest

0.8241 0.6072 0.931 0.8244 0.6027 0.9302 0.8157 2.5011 3.467 0.7971 2.4942 3.422

Random
Forest

with
Bagging

0.8158 0.6159 0.9586 0.8150 0.6122 0.9595 0.8022 2.504 3.477 0.7861 2.523 3.4392

REP Trees 0.6640 0.8311 1.364 0.656 0.8414 1.3891 0.6506 2.593 3.657 0.6502 2.5924 3.6594

M5P 0.6563 0.8503 1.530 0.6505 0.8592 1.5471 0.6493 2.5466 3.756 0.6484 2.5537 3.767

M5P with
Bagging

0.699 0.7637 1.6992 0.6975 0.7653 1.704 0.6972 2.5498 3.936 0.6936 2.5573 3.9422

Multilayer 0.6488 1.071 1.584 0.6496 1.014 1.587 0.6481 2.808 3.907 0.644 2.835 3.955

43

Perceptron

RBF 0.5797 1.001 1.354 0.5777 1.001 1.356 0.5688 4.3870 5.048 0.5589 5.5314 6.182

RBF with

Bagging

0.5498 1.019 1.3966 0.5475 1.019 1.399 0.5367 4.495 5.140 0.527 5.717 6.342

Linear
Regress

0.5463 1.026 1.388 0.5467 1.024 1.398 0.5480 2.518 3.197 0.5407 2.489 3.166

Linear
Regress
with

Bagging

0.5416 1.033 1.4094 0.5418 1.032 1.409 0.532 2.529 3.211 0.5382 2.502 3.189

PLS
Classifier

0.5509 1.032 1.394 0.5506 1.030 1.394 0.5528 2.532 3.222 0.5475 2.484 3.174

MLP
Regress

0.5971 0.9789 1.345 0.5943 0.9817 1.349 0.5942 2.465 3.305 0.5936 2.47 3.311

Table 4 shows the 20 fold cross validation results of several regression algorithms on the

S1615 dataset. Evidently, prediction-by-median method has performed significantly better than

prediction-by-arithmetic-mean and prediction-by-geometric-mean, and often (but not always)

better than prediction-by-average. The reason for such a discrepancy can be attributed to the way

prediction-by-arithmetic-mean and prediction-by-geometric-mean is done; as shown in chapter 4

these methods require manipulation of attribute vectors before learning. As we claimed earlier,

manipulation of attribute vectors reduces the granularity which is essential for learning the

complex dynamics of local conformations in proteins. This result validates our decision of using

Multi Instance Learning with Output Aggregation, rather than input aggregation. Also, from

hereon we consider the approach of prediction-by-median as our standard prediction approach

and discard others.

Random Forests algorithms had the best results in terms of correlation coefficient

(0.8244) and mean absolute error (0.6027). Inherently this algorithm uses a bagging, keeping this

in mind we tested the performance of all other algorithms natively and then with bagging. None

of the other algorithms performed better than Random Forests. It can also be seen that

44

performance of decision tree based algorithms was much better than function based algorithms in

terms of error. A sharp dip was observed in mean absolute error and root-mean-squared error.

Table 5: Confusion Matrix S1615 dataset

Predicted

Actual
Unstable Stable

Unstable 1111 50

Stable 174 267

Table 5 shows the result of binarizing the collective results of the 20 fold cross validation

of the S1615 dataset. The ddG values greater than or equal to zero were considered “Stable” and

the ddG values less than zero were considered “Unstable”. Further, “Unstable” classification was

considered as positive and “Stable” classification was negative. As mentioned earlier, the total

number of instances was 1602 because we removed the experimental results of 1LRP.pdb from

the dataset. From table 5, following statistics can be deduced –

Sensitivity = True Positive/ (True Positive + False Positive) = 0.864

Specificity = True Negative/(True Negative + False Negative) = 0.842

Precision = True Positive/ (True Positive + False Positive) = 0.864

Accuracy = (True Positive + True Negative)/ (Total) = 0.8601

F-Measure = 2*True Positive/(2*True Positive + False Positive + False Negative) =

0.908

45

Outliers

Figure 10: 20 fold Cross Validation of S1615

Figure 10 shows the correlation graph of the S1615 dataset on 20 fold cross validation

using the Random Forests Algorithm. This plot was developed by plotting the predicted against

the actual values of all the cross validation dataset (which ultimately is the entire S1615 dataset).

From figure 10 it can be seen that there are a few data points which the learning

algorithm missed by a large margin. Analysis of points that have absolute difference of more

than two between predicted and actual values by Biochemistry experts showed that the learning

algorithm missed mostly in dimers. Dimers are present on the surface of a protein structure and

therefore AARC is expected to develop features that depict the to be mutated residue as surface

residue. In actuality, dimers despite being on the surface are sandwiched between two protein

structures and thereby behave like buried residue on mutation. Prediction on dimers requires

46

further development of features which are not yet covered by AARC features. Those features are

beyond the scope of this thesis work.

Testing Results

Using the information from Table 4, we developed WEKA models for the Random Forest

algorithm trained on S1615. Since our model development was done in 20 folds, we essentially

had 20 models; on which we ran our test dataset S388.

Table 6: Test Result on S388

fold CC-by-median-
training

CC-by-median-
testing

Error-by-
median-training

Error-by-
median-testing

RMS-by-
median-training

RMS-by-
median-testing

0 0.811 0.980 0.628 0.128 0.952 0.334

1 0.893 0.985 0.621 0.134 0.891 0.285

2 0.841 0.975 0.526 0.143 0.898 0.369

3 0.777 0.983 0.668 0.131 1.013 0.300

4 0.806 0.977 0.625 0.142 0.934 0.349

5 0.782 0.973 0.673 0.137 1.169 0.384

6 0.832 0.988 0.522 0.136 0.882 0.259

7 0.805 0.985 0.548 0.129 0.869 0.287

8 0.914 0.985 0.488 0.140 0.669 0.286

9 0.744 0.979 0.625 0.133 1.079 0.340

10 0.849 0.988 0.550 0.123 0.784 0.259

11 0.847 0.987 0.598 0.114 1.005 0.263

12 0.737 0.987 0.653 0.121 1.174 0.264

13 0.813 0.978 0.776 0.134 1.092 0.342

14 0.815 0.975 0.589 0.147 0.878 0.370

15 0.834 0.980 0.608 0.135 0.933 0.325

16 0.807 0.988 0.605 0.130 0.889 0.254

17 0.846 0.988 0.629 0.124 0.875 0.254

18 0.825 0.981 0.650 0.146 0.918 0.321

19 0.899 0.993 0.463 0.119 0.693 0.205

Avg. 0.82385 0.98275 0.60225 0.1323 0.92985 0.3025

47

The highlighted green row in Table 6 is the average result we observed. On average, the

correlation of 0.98275 was observed with only 0.13213 mean absolute error. This is by far the

best result ever observed in this domain.

Table 7: S388 testing using S1615 complete dataset

CC-by-median-testing Error-by-median-testing RMS-by-median-testing

0.9949 0.0949 0.1595

For completeness we also developed a model on complete S1615 dataset using the

Random Forest algorithm (since it performed the best) and we tested the S388 dataset on it.

Table 7 shows the result. Evidently, this result would not contain any training errors as there was

no cross validation.

Table 8: Confusion Matrix S388 dataset

Predicted

Actual

Unstable Stable

Unstable 339 2

Stable 2 45

Similar to the binarization process followed in developing Table 5, the confusion matrix

on the S388 dataset is shown in Table 8. Here the average of predictions made of each instance

by 20 models developed by 20 fold cross validation process using random forest was done.

Table 9: Comparison of S388 dataset

Method MCC Accuracy Sensitivity(+) Specificity(+) Sensitivity(-) Specificity(-)

FOLDX 0.25 0.75 0.56 0.26 0.78 0.93

DFIRE 0.11 0.68 0.44 0.18 0.71 0.90

PoPMuSic 0.20 0.85 0.25 0.33 0.93 0.90

iMutant2.0 0.25 0.87 0.21 0.44 0.96 0.90

Mu-pro 0.28 0.86 0.31 0.42 0.94 0.91

MIR-OA 0.95 0.989 0.957 0.957 0.994 0.994

48

Finally we compare our binary prediction capability with the state-of-the-art methods.

We collected the results and used the formulas mentioned in (Cheng et al., 2006) for developing

the numbers listed in Table 9. As evident our results in all the comparative metrics are better than

all other methods.

Conclusion

We have observed significant improvement in results over any previous work in this

domain. The success thus far supports our hypothesis that local conformations have greater

impact on the final outcome than global conformations.

From a machine learning perspective, it is evident that granularity of a dataset is an

important factor for learning complex concepts. Our approach of multi-instance learning has

never been attempted in this domain. Keeping the 3-dimensional information of the surrounding

residues intact helped our learning algorithms to learn with high accuracy. The steep reduction in

accuracy when using input aggregation methods (prediction-by-arithmetic-mean and prediction-

by-geometric-mean) for prediction proves that compressing knowledge negatively affects

learning. The combination of novel features and the novel approach of learning together helped

our cause.

Future Work

This work has opened new doors for studying protein structures. The positive results

encourage us to experiment more with the alternative approaches and find the optimal fit.

The following are a few ideas for future work.

49

 We have implemented methodology on single-site mutations only. For robustness, this

program should be trained on multi-site mutations as well.

 We used nearest neighbors of main-chain of to be mutated residue. Further study should

be done at per atom level as well.

 More machine learning and output aggregation approaches can be tested on this model.

 Automation of the stratification approach can be explored. Possibly more optimal

stratification can be found for the S1615 dataset.

 Learning of the larger Protherm dataset can be implemented.

50

REFERENCES

Bava, K. A., Gromiha, M. M., Uedaira, H., Kitajima, K., & Sarai, A. (2004). ProTherm, version

4.0: thermodynamic database for proteins and mutants. Nucleic acids research, 32(Database

issue), D120–1. doi:10.1093/nar/gkh082

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. E.

(2000). The Protein Data Bank. Nucleic acids research, 28, 235–242.

doi:10.1093/nar/28.1.235

Bondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68,

441–451. doi:10.1021/j100785a001

Bordner, A. J., & Abagyan, R. A. (2004). Large-scale prediction of protein geometry and

stability changes for arbitrary single point mutations. Proteins: Structure, Function and

Genetics, 57, 400–413. doi:10.1002/prot.20185

Capriotti, E., Fariselli, P., & Casadio, R. (2004). A neural-network-based method for predicting

protein stability changes upon single point mutations. Bioinformatics (Oxford, England), 20

Suppl 1, i63–i68. doi:10.1093/bioinformatics/bth928

Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: Predicting stability changes upon

mutation from the protein sequence or structure. Nucleic Acids Research, 33.

doi:10.1093/nar/gki375

Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., …

Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular

crystallography. Acta Crystallographica Section D: Biological Crystallography, 66, 12–21.

doi:10.1107/S0907444909042073

Cheng, J., Randall, A., & Baldi, P. (2006). Prediction of protein stability changes for single-site

mutations using support vector machines. Proteins, 62, 1125–1132. doi:10.1002/prot.20810

Dayhoff, M., & Schwartz, R. (1978). A Model of Evolutionary Change in Proteins. In Atlas of

protein sequence and structure, 345–352. doi:10.1.1.145.4315

Dehouck, Y., Kwasigroch, J. M., Gilis, D., & Rooman, M. (2011). PoPMuSiC 2.1: a web server

for the estimation of protein stability changes upon mutation and sequence optimality. BMC

bioinformatics, 12, 151. doi:10.1186/1471-2105-12-151

51

Dietterich, T. (1997). Solving the multiple instance problem with axis-parallel rectangles.

Artificial Intelligence. doi:10.1016/S0004-3702(96)00034-3

Gilis, D., & Rooman, M. (1997). Predicting protein stability changes upon mutation using

database-derived potentials: solvent accessibility determines the importance of local versus

non-local interactions along the sequence. Journal of molecular biology, 272, 276–290.

doi:10.1006/jmbi.1997.1237

Gront, D., & Kolinski, A. (2006). BioShell - A package of tools for structural biology

computations. Bioinformatics, 22, 621–622. doi:10.1093/bioinformatics/btk037

Gront, D., & Kolinski, A. (2008). Utility library for structural bioinformatics. Bioinformatics, 24,

584–585. doi:10.1093/bioinformatics/btm627

Guerois, R., Nielsen, J. E., & Serrano, L. (2002). Predicting changes in the stability of proteins

and protein complexes: A study of more than 1000 mutations. Journal of Molecular

Biology, 320, 369–387. doi:10.1016/S0022-2836(02)00442-4

Hall, M., National, H., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H.

(2009). The WEKA Data Mining Software : An Update. SIGKDD Explorations, 11, 10–18.

doi:10.1145/1656274.1656278

Henikoff, S., & Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks.

Proceedings of the National Academy of Sciences of the United States of America, 89,

10915–10919. doi:10.1073/pnas.89.22.10915

Joosten, R. P., Te Beek, T. A. H., Krieger, E., Hekkelman, M. L., Hooft, R. W. W., Schneider,

R., … Vriend, G. (2011). A series of PDB related databases for everyday needs. Nucleic

Acids Research, 39. doi:10.1093/nar/gkq1105

Ozen, A., Gönen, M., Alpaydan, E., & Haliloğlu, T. (2009). Machine learning integration for

predicting the effect of single amino acid substitutions on protein stability. BMC structural

biology, 9, 66. doi:10.1186/1472-6807-9-66

Prlić, A., Yates, A., Bliven, S. E., Rose, P. W., Jacobsen, J., Troshin, P. V., … Willis, S. (2012).

BioJava: An open-source framework for bioinformatics in 2012. Bioinformatics, 28, 2693–

2695. doi:10.1093/bioinformatics/bts494

RAMACHANDRAN, G. N., RAMAKRISHNAN, C., & SASISEKHARAN, V. (1963).

Stereochemistry of polypeptide chain configurations. Journal of molecular biology, 7, 95–

99. doi:10.1016/S0022-2836(63)80023-6

Rose, G. D., Fleming, P. J., Banavar, J. R., & Maritan, A. (2006). A backbone-based theory of

protein folding. Proceedings of the National Academy of Sciences of the United States of

America, 103, 16623–16633. doi:10.1073/pnas.0606843103

52

Rother, K., Hildebrand, P. W., Goede, A., Gruening, B., & Preissner, R. (2009). Voronoia:

Analyzing packing in protein structures. Nucleic Acids Research, 37.

doi:10.1093/nar/gkn769

Sennett, N. C., Kadirvelraj, R., & Wood, Z. A. (2011). Conformational flexibility in the

allosteric regulation of human UDP-alpha-D-glucose 6-dehydrogenase. Biochemistry, 50,

9651–9663. doi:10.1021/bi201381e

Widom, B., Bhimalapuram, P., & Koga, K. (2003). The hydrophobic effect. Physical Chemistry

Chemical Physics. doi:10.1039/b304038k

Wimley, W. C., Creamer, T. P., & White, S. H. (1996). Solvation energies of amino acid side

chains and backbone in a family of host-guest pentapeptides. Biochemistry, 35, 5109–5124.

doi:10.1021/bi9600153

Word, J. M., Lovell, S. C., LaBean, T. H., Taylor, H. C., Zalis, M. E., Presley, B. K., …

Richardson, D. C. (1999). Visualizing and quantifying molecular goodness-of-fit: small-

probe contact dots with explicit hydrogen atoms. Journal of molecular biology, 285, 1711–

1733. doi:10.1006/jmbi.1998.2400

Zhang, M. L., & Zhou, Z. H. (2007). ML-KNN: A lazy learning approach to multi-label learning.

Pattern Recognition, 40, 2038–2048. doi:10.1016/j.patcog.2006.12.019

