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Abstract

Several studies have focused on comparisons between Support Vector Regression (SVR)

and Artificial Neural Networks (ANNs). However, few have involved domains with massively

large data sets. This research led to a methodology for reducing the number of SVR training

patterns without a need to pre-process the data set. Using this methodology SVR models

were created for air temperature prediction from one to twelve hours ahead. These models

were more accurate than ANN models that were trained on data sets of 300,000 patterns and

competitive with ANN models that were trained on 1.25 million patterns. A fuzzy expert

system was also developed which incorporates the knowledge of local agrometeorologists in

order to assess the risk of frost. Wind speed, as well as ANN models of air temperature

and dew point temperature, enabled the expert system to make frost predictions from one

to twelve hours ahead. This tool will be made available to Georgia farmers through a web-

based interface that was created for The University of Georgia’s Automated Environmental

Monitoring Network website (http://www.georgiaweather.net).
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Chapter 1

Introduction

Extreme air temperatures are responsible for reduced crop production and loss of livestock

in nearly all geographical regions across the U.S. In addition to creating dangerous working

conditions for farmers, heat stress has been shown to decrease dairy production in cows by

20 to 30% (Jones and Stallings, 1999). In 1990, frosts in California resulted in $500 million

in fruit losses and damages to 450,000 ha of trees (Attaway, 1997). The citrus industry in

Florida has been devastated by frost damages on several occasions, resulting in billions of

dollars in losses (Cooper et al., 1964; Martsolf et al., 1984; Attaway, 1997). Freezing temper-

atures in early April of 2007 caused 50% of Georgia’s peach crop and 80% of its blueberry

crop to be lost (Fonsah et al., 2007). If given sufficient warning, agricultural producers can

minimize many of these damages through irrigation or by deploying orchard heaters and

wind machines. Accurate air temperature prediction is therefore vital to the agricultural

sector.

The University of Georgia’s Automated Environmental Monitoring Network (AEMN) is

a collection of over 75 weather stations (Hoogenboom, 1993). It was created as a means of

collecting meteorological data in mainly rural areas across the state of Georgia. Artificial

Neural Networks (ANNs) were created using this data for the purpose of air temperature

prediction (Jain et al., 2006; Smith et al., 2006, 2008). Since the AEMN weather stations

record observations every 15 minutes, massive amounts of data were available for training

these ANNs. The models developed by Smith et al. (2008) made use of over 1.25 million

training patterns.
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Support Vector Regression (SVR) is a supervised learning technique which can be used

in many of the same domains as ANNs. In instances where comparisons have been made

between SVR and ANNs, SVR has often been shown to outperform ANNs (Müller et al.,

1997; Qin et al., 2005; Khan and Coulibaly, 2006; Chen and Wang, 2007; Mori and Kanaoka,

2007; Zhang et al., 2007). However, training times for the SVR algorithm scale somewhere

between quadratic and cubic with respect to the number of training patterns so applying

SVR becomes infeasible with massively large data sets (Dong et al., 2005).

Frost damage is responsible for more economic losses than any other weather related phe-

nomenon in the United States (White and Haas, 1975). The severity of a frost is dependent

not only on air temperature but also dew point temperature and wind speed. Methods used

by experts to determine the relationship between these variables and the risk of frost are

not easily quantifiable. Although, the National Weather Service (NWS) issues three levels

of frost warnings, they do not consider dew point temperature and with only three levels,

the warnings are not very granular. Fuzzy expert systems offer a means of reasoning about

the vague concepts which are often associated with meteorological domains. The MEDEX

system was developed to predict gale-force winds in the Mediterranean Sea (Hadjmichael

et al., 2002). The SIGMAR system was used to assist meteorologists with marine forecasts

(Hansen, 1997). Additionally, more traditional expert systems have been used to predict the

occurrence of frost on bridges and roadways (Takle, 1990; Temeyer et al., 2003).

Chapter 1 discusses the need for accurate air temperature and frost prediction. Artificial

Neural Networks, Support Vector Regression, and Fuzzy Expert Systems, which are used

for this purpose, are all introduced. This chapter also provides a brief review of background

information and related work. Chapter 2 proposes a methodology for discovering an appro-

priate reduced training set that enables SVR to be competitive with ANNs while using much

smaller training sets. This methodology is used to develop SVR models for air temperature

prediction and the results are compared to those obtained using ANNs in previous studies.

Chapter 3 describes the development of GENIE, a web-based tool for assisting Georgia
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farmers in assessing the risk of frost. This tool is a neural network-based, fuzzy logic expert

system. It uses wind speed as well as ANN predictions of air temperature and dew point

temperature to provide granular frost warnings from one to twelve hours ahead. Chapter 4

summarizes the research conducted in this study and suggests possible areas for future work.
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Chapter 2

Support Vector Regression with Reduced Training Sets for Air

Temperature Prediction: A Comparison with Artificial Neural Networks1

1Chevalier, R. F., R. W. McClendon, G. Hoogenboom and J. A. Paz. To be submitted to

Artificial Intelligence in Agriculture
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2.1 Introduction

Accurate air temperature prediction is an essential component in decision making related to

many areas of agricultural production. Extreme air temperatures can cause crop loss and lead

to reduced yields as well as causing dangerous working conditions for farmers. In 2007, 50%

of Georgia’s peach crop and 87% of its blueberry crop were lost due to devastating freezes

in early April (Fonsah et al., 2007). Extreme temperatures have also been shown to have an

adverse effect on livestock. Heat stress can cause dairy cows to produce 20 to 30% less milk

and in some cases can result in death (Jones and Stallings, 1999). Air temperature prediction

is an important factor in providing early warnings for both dangerous frost and heat stress

conditions. With sufficient notice, crop loss due to frost can be minimized through the use of

preventative measures such as orchard heaters and irrigation. During times of extreme heat,

proper precautions can also be taken to ensure the safety of workers and livestock.

The Georgia Automated Environmental Monitoring Network (AEMN) was created in

1991 (Hoogenboom, 1993). The purpose of the AEMN is to collect weather data across the

state of Georgia and to disseminate the data in near real-time via the World Wide Web.

The AEMN is comprised of over 75 stations that are located in mainly rural areas where

the National Weather Service does not have a presence. One of the services currently offered

on the AEMN website (http://www.georgiaweather.net) is a short-term air temperature

prediction tool. This tool provides hourly predictions ranging from one to twelve hours

ahead. These predictions are generated using Artificial Neural Network (ANN) models (Jain

et al., 2006; Smith et al., 2006, 2008). An ANN is a popular data modeling tool that mimics

the operation of neurons in the human brain. It is used to express complex functions which

perform a non-linear mapping from R
I to R

K , where I and K are the dimensions of the input

and output space, respectively (Engelbrecht, 2002). An ANN is comprised of interconnected

nodes, or neurons, which are themselves simple processing elements. Weights are associated

with each of the inputs to a given neuron, which control the strength of that input. By

adjusting these weights an ANN is able to model the data that are presented to it as patterns
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of input-output pairs. The original ANN air temperature models of Jain et al. (2006) were

developed using NeuroShell (Ward Systems Group, 1993) and were limited to 32,000 training

patterns due to software constraints. Subsequent work by Smith et al. (2006) overcame this

limitation by implementing a custom ANN suite in Java. Additionally, several enhancements

were made to the original approach which included the addition of seasonal variables, an

extended duration of prior variables, and the use of multiple instantiations for parameter

selection. As a result of these enhancements, the prediction accuracy of these subsequent

models was increased (Smith et al., 2006).

Another supervised learning method that has been used for estimation tasks is Support

Vector Regression (SVR). The SVR algorithm is an extension of the popular classification

tool Support Vector Machines (SVM). A SVM is a machine learning tool that has its roots

in statistical learning theory (Cortes and Vapnik, 1995). In its original form, the SVM was

designed to be used as a classification tool. Upon its introduction, researchers applied it

to classification problems such as optical character recognition (Schölkopf et al., 1996) and

face detection (Osuna et al., 1997). Subsequently, the algorithm was extended to the case

of regression, or estimation, and termed SVR (Vapnik, 1995). Intuitively, SVR works by

performing a non-linear mapping of the data from the input space to a higher dimensional

feature space where linear regression can be performed. In the case of a linear SVR model,

if the training data are of the form:

{(x̄1, y1), (x̄2, y2), · · · , (x̄l, yl)} (2.1)

x̄i ∈ R
d, yi ∈ R, and l = number of examples

then the solution function takes the form:

f(x̄) =
l

∑

i=1

(αi − αi
∗)〈x̄i, x̄〉 + b (2.2)

where 〈·, ·〉 represents the dot product of two points and the variables αi,αi
∗, and b are

calculated by the SVR algorithm (Smola and Schölkopf, 2004). It is important to note that

the model is described in terms of dot products between the data. Furthermore, the term
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(αi − αi
∗) will be zero for many of the patterns in the training data. This means that only

some of the patterns will actually have an impact on the final solution. These patterns are

referred to as the support vectors. In the case of a non-linear SVR model, the data must

first be transformed from the input space into a higher dimensional feature space using a

non-linear mapping function, Φ. As the data are mapped into increasingly higher dimensions,

calculating the term 〈Φ(x̄i), Φ(x̄)〉 becomes infeasible. The solution is to take advantage of

Mercer’s Theorem, shown in Equation (2.3).

〈Φ(ū), Φ(v̄)〉 ≡ k(ū, v̄) (2.3)

This theorem states that for certain mappings, Φ, and any two points, ū and v̄, the dot

product of these two points can be evaluated using a kernel function, k, without ever explicitly

computing the mapping (Schölkopf and Smola, 2001). Substituting a kernel into Equation

(2.2) results in the following solution function:

f(x̄) =
l

∑

i=1

(αi − αi
∗)k(x̄i, x̄) + b (2.4)

This solution is obtained by solving the convex optimization problem shown below:

maximize







−1
2

∑l

i,j=1(αi − αi
∗)(αj − αj

∗)k(x̄i, x̄j)

−ε
∑l

i=1(αi + αi
∗) +

∑l

i=1 yi(αi − αi
∗)

(2.5)

subject to
l

∑

i=1

(αi − αi
∗) = 0 and αi, αi

∗ ∈ [0, C]

where x̄i and yi are the input-output pairs of the training data, αi and αi
∗ are the variables

to be discovered, and ε and C are constants. The constant ε represents the SVR algorithm’s

tolerance for errors. The area within ±ε of the learned function is referred to as the SVR

regression tube and any errors that fall within this tube are ignored. The constant C is

referred to as the penalty factor and it controls the tradeoff between the complexity of the

function and the frequency with which errors are allowed to fall outside of the SVR regression

tube.

7



Comparisons between SVR and ANNs have been made in several domains. Khan and

Coulibaly (2006) used SVR for lake water level prediction and demonstrated a slightly better

performance than that of a multilayer perceptron. The training set for this work was com-

prised of approximately 850 patterns. Least squares support vector machines were used by

Qin et al. (2005) to model water vapor and carbon dioxide fluxes over a cropland. Using

training sets that ranged in size from 390 to 1,561 patterns, they were able to achieve better

results than those obtained using radial basis function networks. SVR has also been used to

predict the daily maximum air temperature (Mori and Kanaoka, 2007). Models were devel-

oped using data collected during the summer months from 1999 to 2001 in Tokyo, Japan

and tested on data collected in 2002. Predictions obtained using SVR were shown to reduce

the average error by 0.8% when compared to a multilayer perceptron. Again, comparisons

were drawn between models that were trained on a relatively small training set size of 366

patterns. The performance of SVR in these instances can be explained by a few key character-

istics that differentiate it from the ANN approach. Artificial Neural Networks use empirical

risk minimization as a basis for model selection (Engelbrecht, 2002). Since empirical risk is

simply a measure of the error over a given set of data, ANNs attempt to fit the data as

closely as possible. This often leads to a solution function which performs extremely well on

the training data but performs poorly on patterns not used in training. This is referred to as

overfitting. SVR is much less susceptible to overfitting because it is based on the principle of

structural risk minimization. Structural risk minimization seeks to minimize not only empir-

ical error but also model complexity (Vapnik, 1995). The less complex a model is, the more

likely it will be to fit patterns not used in training. Another advantage of the SVR algorithm

over ANNs is that it always converges to a solution which is globally unique and optimal as

a result of being framed as a convex optimization problem. Backpropogation ANNs, on the

other hand, are susceptible to local minima and will discover different solutions depending

upon the initial weights and the order of the training patterns. One critical advantage that

ANNs have over SVR is that they are less computationally expensive. It has been shown
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that training times for SVR scale somewhere between quadratic and cubic with respect to

the number of training patterns (Dong et al., 2005). For this reason, they are typically not

considered a practical alternative to ANNs for problems involving massively large data sets

(more than 100,000 training patterns).

When working with massively large data sets, SVR is limited by both the speed and

memory constraints of the available hardware. Several attempts have been made to address

both issues. In the original SVR algorithm, the results of kernel calculations were cached

in memory. As the number of training patterns increases, the memory requirements become

excessive. The Kernel Adatron algorithm addresses this problem by removing the cached

data and re-evaluating kernel components as necessary (Friess et al., 1998). Training time,

however, is increased with this algorithm. Chunking (Osuna et al., 1997) and decomposition

(Joachims, 1999; Platt, 1999) are methods that address both issues to some degree by incre-

mentally solving subsets of the overall optimization problem. Even with these enhancements

to the original algorithm, SVR is generally not applied to massively large data sets.

One approach to dealing with this limitation involves simply removing a portion of the

training data and relying on the SVR algorithm’s ability to generalize from the remaining

training patterns. Since the decision function obtained by the SVR algorithm is determined

exclusively by the support vectors, all non-support vector patterns could be removed from

the training set without affecting the final solution. However, it is not possible to definitively

identify the support vectors without first solving the optimization problem. Nevertheless,

several successful heuristic methods for reducing the number of training patterns have been

suggested for use with both SVM and SVR (Rychetsky et al., 1999; Almeida et al., 2000;

Yang and Ahuja, 2000; Guo and Zhang, 2007). The drawback to these heuristic methods is

that they involve pre-processing the data, which can be quite time consuming when working

with massively large data sets.

The ANN models previously created for air temperature prediction by Smith et al. (2006;

2008) were developed using massively large data sets. Twelve models were developed to
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predict air temperatures during the winter months from one to twelve hours ahead, using

a training set of 300,000 patterns. Additionally, twelve models were developed to predict

year-round air temperatures from one to twelve hours ahead using a training set of 1.25

million patterns. The study presented herein used these same data sets to develop models

with SVR. The overall goal of this study was to evaluate the capability of SVR in predicting

air temperature for horizons from one to twelve hours. The specific objectives included:

(1) to develop a methodology for reducing the number of SVR training patterns that does

not require that the data be pre-processed, (2) to develop SVR models for air temperature

prediction for winter-only and year-round scenarios using the data collected by the AEMN,

and (3) to compare the accuracy of these models with those developed in previous studies

that used ANNs.

2.2 Model Development

2.2.1 Data Sets

All of the data used in this research were obtained from the AEMN weather stations located

across the state of Georgia. Each of these weather stations monitors air temperature, relative

humidity, vapor pressure deficit, precipitation, wind speed and direction, solar radiation, and

soil temperature at 5, 10, and 20 cm. Some stations are also equipped to monitor open pan

evaporation, water temperature, leaf wetness, and soil surface temperature. Of these weather

variables, only air temperature, solar radiation, wind speed, rainfall, and relative humidity

were used for ANN model development by Smith et al. (2006; 2008). These same inputs were

used for SVR model development herein. Individual patterns were comprised of the current

values and a 24-hour duration of prior observations for air temperature, solar radiation, wind

speed, rainfall, and relative humidity. Additionally, the hourly rates of change in each of these

variables over the previous 24-hour period was included. In keeping with the previous work,

each of these 250 inputs was then scaled in the range [0.1, 0.9]. Eight additional inputs,

representing the time of day and the day of year were also included. These were cyclic
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variables that were created using fuzzy logic-type membership functions as described in

(Smith et al., 2006). The total number of inputs for each pattern was therefore 258.

The data sets used in this research were partitioned the same as those used by Smith

et al. to develop winter-only ANN models (2006) and year-round ANN models (2008). The

first data set was used to create models for predicting air temperature during the winter

months only. The second data set was used to create models for predicting air temperature

throughout the year. The winter-only data set was merely a subset of the year-round data

set. It consisted of patterns restricted to the first 100 days of the year and the days for which

the recorded temperature was 20◦C or below.

Both the year-round data and the winter-only data were partitioned into the following

data sets: training, selection, and evaluation. The training sets were used for model devel-

opment. The year-round training set consisted of approximately 1.25 million patterns, while

the winter-only training set consisted of approximately 300,000 patterns. Both training sets

were comprised of meteorological data collected during the years 1997-2000 from the fol-

lowing sites: Alma, Arlington, Attapulgus, Blairsville, Fort Valley, Griffin, Midville, Plains,

and Savannah. These locations were selected to provide patterns which are both geographi-

cally and agriculturally diverse.

The selection sets were used to choose between alternate parameter settings as well as

candidate reduced training sets. The year-round selection set consisted of approximately 1.25

million patterns, while the winter-only selection set consisted of approximately 300,000 pat-

terns. The evaluation sets were reserved for a final measure of each model’s accuracy and

the patterns were not used in model development or selection. The year-round evaluation set

consisted of approximately 800,000 patterns while the winter-only evaluation set consisted of

approximately 200,000 patterns. Selection sets and evaluation sets were comprised of mete-

orological data taken from the following sites: Brunswick, Byron, Cairo, Camilla, Cordele,

Dearing, Dixie, Dublin, Homerville, Nahunta, Newton, Valdosta, and Vidalia. The selection

11



set patterns were collected during the years 2000-2003, while the evaluation set patterns were

collected during the years 2004-2005.

2.2.2 A Method for Reducing the Number of Training Patterns

The major factor that contributed to long SVR run times was the number of training pat-

terns. Since not all patterns are used by the SVR algorithm, an appropriate reduced training

set can decrease the run time without a loss of accuracy. The ideal reduced training set would

contain only those patterns which the SVR algorithm would eventually determine to be sup-

port vectors. Without prior knowledge of which patterns comprise this set, a methodology

was developed for creating an effective reduced training set which does not require lengthy

pre-processing of the data. This methodology was based on the observation that training

time is strongly dependent upon both the size of the training set and the width of the SVR

regression tube. The width of the regression tube is controlled by the ε parameter of the SVR

algorithm. While smaller values of ε prolong training time, they typically result in improved

model accuracy as shown in Figure 2.1. This figure plots the MAE over a selection set for

various models developed for the four-hour prediction horizon using a reduced training set

of 60,000 patterns. Each line represents the MAE produced while using a different ε value

and varying the value of γ from 0.01 to 0.06. It can be seen that regardless of the γ value,

the MAE consistently improved as the width of the regression tube was decreased. Although

optimal parameter settings cannot be discovered unless all parameters are tuned simultane-

ously, considerable time savings can be gained by keeping ε at a moderately high value while

tuning the remaining parameters. For the SVR algorithm, the only other parameters are

the penalty factor, C, and any kernel parameters. The kernel used with the SVR algorithm

in these experiments was the radial-basis function. This kernel, which is shown below, was

arbitrarily selected because it has been shown to be a good general purpose kernel (Hsu

et al., 2000).

exp(−γ‖ū − v̄‖2) (2.6)
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For the purposes of SVR, ū represents a support vector and v̄ represents the pattern that is

being evaluated. The only free parameter in this kernel is γ, which controls the width of the

kernel. Since training time is less of a concern with high values of ε, several reduced training

sets can be sampled from the complete training set and evaluated using the selection set.

The SVR algorithm need only be applied with smaller values of ε once one of these candidate

reduced sets has been selected. The basic steps in this methodology are summarized below:

1. Using a small subset of the complete training data and a moderately high value of ε,

perform initial parameter tuning of the penalty factor, C, and any kernel parameters.

2. Find a favorable training set by repeatedly sampling from the complete set, applying

the SVR algorithm with a moderately high ε value, and evaluating on the selection

set.

3. Reduce the ε and apply the SVR algorithm to produce the final model.

All experiments for this research were conducted in a University of Georgia computer

lab containing 30 computers, the fastest of which had Intel Core Duo processors and 2 GB

of RAM. Support Vector Regression run times varied depending on the training set size

and parameter settings. The longest runs took up to 72 hours on these machines. The SVR

algorithm was implemented using SVMlight (Joachims, 1999).

2.3 Results and Discussion

2.3.1 Year-Round Models

The initial experiments were carried out on the year-round data. Parameter tuning was

performed using a reduced training set of 15,000 randomly sampled patterns for the four-

hour prediction horizon. The results were then applied to all other prediction horizons.

While tuning the C and γ parameters, ε was held at a moderately large value of 0.05. A

series of progressively finer grained grid searches were performed with values of C from 0

13



to 800 and values of γ ranging from 0 to 1. The grid searches involved applying the SVR

algorithm with varying parameter combinations and then evaluating the resulting model

with the selection set. The resulting MAEs ranged from 1.48◦C, for the best model, to

110.26◦C, for an extremely poor model. Since the models had been built using a training set

of only 15,000 patterns, the accuracy was not expected to be remarkable. Of interest was each

model’s accuracy relative to the other models in the grid search. This relative performance

was used as a measure of the effectiveness of the corresponding parameter combinations.

While this approach did not guarantee that optimal parameter settings would be found for

the final model, it offered a quick method for discovering generally good values for C and γ.

Based on these grid searches, values of 25 and 0.0104 were selected for C and γ, respectively.

These parameter values were used for all remaining experiments.

The tradeoff between model accuracy and training time was the major factor in deter-

mining the size of the reduced training sets to be used for final model development. Larger

training sets typically produced more accurate models, as demonstrated in Figure 2.2. This

figure shows the MAE for models created by randomly selecting training patterns from the

complete year-round training set of 1.25 million patterns. Thirty separate reduced training

sets were created for different data set sizes, including 15,000, 30,000, 60,000, and 120,000

patterns. It can be seen that model accuracy generally increases with larger training set sizes.

This is because the larger data sets are more likely to contain a greater number of support

vectors from the complete training set. However, this improved accuracy had to be balanced

with the increased training time that is associated with larger training sets. A run-time limit

of three days was arbitrarily placed on any single SVR run. This limitation became a factor

when building final SVR models which used smaller regression tube widths. As a result,

training set sizes were capped at 60,000 patterns.

For each year-round prediction horizon, 30 candidate reduced training sets were created

by randomly sampling 60,000 patterns from the complete training set of over 1.25 million

patterns. A model was then created from each candidate set using the C and γ parameter
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values that were determined earlier. The ε parameter was again kept at a moderately high

value of 0.05. The candidate set whose model achieved the lowest MAE when applied to the

selection set became the training set for that particular prediction horizon. Finally, the ε

parameter was adjusted for each prediction horizon in order to obtain the highest possible

accuracy on the selection set. This was accomplished by applying the SVR algorithm with

values of ε ranging from 0.003 to 0.01 with a step size of 0.001. The model with the lowest

MAE for each prediction horizon was selected and a final performance estimate was obtained

by applying it to the evaluation set.

The MAE over the year-round evaluation set for the one-hour prediction horizon was

0.513◦C. The MAE increased monotonically for each subsequent prediction horizon up to

the twelve-hour prediction horizon which had an MAE of 1.922◦C. This trend in model

performance can be seen in Figure 2.3, which shows the predicted and observed air temper-

atures for all evaluation set patterns from Byron, GA. The distribution of prediction errors

was centered near zero for all prediction horizons, while the variance of the errors increased

relative to the prediction horizon.

The accuracy of the year-round SVR models was compared to that of the ANN models

created by Smith et al. (2008) and is shown in Table 2.1. For the selection set, the SVR

models performed slightly better than the ANN models on every prediction horizon with

improvements in MAE of up to 0.052◦C, or 3.7%, when compared to the ANN models. For

the evaluation set, however, the ANN models performed slightly better than the SVR models

for all but three of the prediction horizons. Again, there was only a slight disparity between

the methods. The largest difference in MAE occurred for the nine-hour prediction horizon

where the ANN model had an MAE that was 0.057◦C, or 3.4%, lower than that of the

corresponding SVR model.
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2.3.2 Winter Models

The methodology used to develop year-round air temperature prediction models was applied

to the winter-only data set in order to create models specific to the cold weather months

of the year. Instead of being drawn from a complete set of 1.25 million patterns, these

candidate reduced sets were randomly selected from the winter-only complete set of 300,000

patterns. After tuning the ε parameter, the resulting SVR models were applied to their

respective winter-only evaluation set. The MAE over the evaluation set for the one-hour

prediction horizon was 0.514◦C. The MAE of each subsequent hourly prediction horizon

increased monotonically up to the twelve-hour prediction horizon which had an MAE of

2.303◦C. These MAE values were slightly higher than those obtained with the year-round

models, which was consistent with the findings of Smith et al. (2008) when using ANNs. The

accuracy of the winter-only SVR models was compared to that of ANN models created by

Smith et al. (2006) and is shown in Table 2.2. For both the selection set and the evaluation set,

the SVR models performed slightly better than the ANN models. The largest improvement

in MAE for the evaluation set was on the three-hour prediction horizon where the SVR model

had an improvement in MAE of 0.027◦C, or 3.1%, when compared to the ANN model.

These results comparing SVR to ANNs demonstrate the advantage that ANNs have

over SVR in terms of their ability to handle massively large data sets. However, they also

demonstrate the ability of SVR to generalize from comparatively smaller training sets. For

the year-round data set, the ANNs were able to take advantage of more than 20 times as

many training patterns as the SVR algorithm. Yet the SVR models were still competitive

with the ANN models. The MAEs of the SVR models for the evaluation set were not greater

than 0.057◦C, or 3.4%, of the ANNs MAEs on any horizon and they achieved slightly lower

MAEs for three of the prediction horizons, as shown in Table 2.1. For the winter-only data

set, despite the fact that the SVR algorithm used fewer training patterns than the ANNs,

the SVR models achieved slightly greater accuracy on all prediction horizons.
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2.4 Summary and Conclusions

Support Vector Regression was shown to be a viable alternative to Artificial Neural Networks

for the problem of air temperature prediction. The method proposed in this study offers a

quick means of producing a reduced training set from a massively large training set. It works

by repeatedly and randomly sampling from the complete training set. Candidate training

sets are quickly evaluated by applying the SVR algorithm with relaxed parameter settings,

which reduces training time. The more time consuming SVR experiments are only performed

after an appropriate reduced set has been identified. Even with computational limitations

on the number of training patterns that the SVR algorithm was able to handle, it produced

results that were comparable and in some cases more accurate than those obtained with

ANNs. With a data set of 300,000 patterns, the SVR algorithm outperformed ANNs for all

prediction horizons. With a larger data set of 1.25 million patterns, ANNs appeared to have

a slight advantage over SVR. As more processing power becomes available, the advantage

could likely shift to SVR.

The SVR models described in this research were developed using the radial-basis function

kernel. Evaluating other kernels was beyond the scope of this work, however, alternate kernels

may prove more effective. Additionally, parameter tuning was performed using only the

four-hour prediction horizon data. It is likely that model accuracy would be increased if

parameters were tuned for each individual prediction horizon. Future work may also involve

exploring the effects of some limited pre-processing of the data. It is possible that a more

intelligent method for creating a reduced training set would result in better performance.

The method described by Guo and Zhang (2007) takes advantage of the observation that

target values for support vectors are typically local extremes. Pre-processing is performed on

the data using a k-nearest neighbor approach in order to find extremes in each neighborhood

of size k. The remaining patterns are then filtered out of the training set. As stated earlier,

this pre-processing step will be rather lengthy when dealing with massively large data sets,

however, the extra investment may prove worthwhile.
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Table 2.1: Mean Absolute Errors (MAE) of the year-round models for the selection and
evaluation sets.

Horizon Year-Round Selection Set MAE (◦C) Year-Round Evaluation Set MAE (◦C)

length ANN SVR Percent ANN SVR Percent

(hours) model∗ model improvement model∗ model improvement

1 0.525 0.516 1.6% 0.516 0.513 0.5%

2 0.834 0.811 2.8% 0.814 0.806 1.0%

3 1.046 1.036 0.9% 1.015 1.027 -1.2%

4 1.226 1.214 1.0% 1.187 1.203 -1.4%

5 1.404 1.352 3.7% 1.356 1.344 0.9%

6 1.483 1.466 1.1% 1.432 1.463 -2.2%

7 1.577 1.570 0.4% 1.532 1.569 -2.4%

8 1.669 1.659 0.6% 1.623 1.664 -2.5%

9 1.734 1.727 0.4% 1.686 1.743 -3.4%

10 1.801 1.798 0.2% 1.755 1.810 -3.1%

11 1.865 1.855 0.5% 1.815 1.875 -3.3%

12 1.908 1.906 0.1% 1.873 1.922 -2.6%
∗Smith et al. (2008)

Table 2.2: Mean Absolute Errors (MAE) of the winter-only models for the selection and
evaluation sets.

Horizon Winter Selection Set MAE (◦C) Winter Evaluation Set MAE (◦C)

length ANN SVR Percent ANN SVR Percent

(hours) model∗ model improvement model∗ model improvement

1 0.534 0.528 1.1% 0.527 0.514 2.4%

2 0.884 0.861 2.7% 0.864 0.837 3.1%

3 1.167 1.110 4.9% 1.118 1.110 0.8%

4 1.401 1.386 1.1% 1.338 1.329 0.7%

5 1.624 1.592 2.0% 1.546 1.518 1.8%

6 1.811 1.768 2.4% 1.715 1.692 1.3%

7 1.987 1.929 2.9% 1.874 1.832 2.3%

8 2.126 2.072 2.6% 2.007 1.964 2.1%

9 2.243 2.205 1.7% 2.091 2.078 0.6%

10 2.362 2.315 2.0% 2.191 2.173 0.8%

11 2.443 2.405 1.5% 2.250 2.245 0.2%

12 2.526 2.481 1.8% 2.333 2.303 1.3%
∗Smith et al. (2006)
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Regression Tube Width Comparison
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Figure 2.1: Selection set Mean Absolute Error (MAE) for various combinations of ε and γ.
All results were obtained using a penalty factor, C, of 25.
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Training Set Size Comparison
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Figure 2.2: The Mean Absolute Error (MAE) for various training set sizes using the year-
round, four-hour prediction horizon data. The following SVR parameters were used to create
all models: ε = 0.05, C = 25, γ = 0.0104.
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(a) 1-hour model
     y = 0.039 + 0.999x
     R2 = 0.9914

(b) 4-hour model
     y = 0.431 + 0.981x
     R2 = 0.9636

(c) 8-hour model
     y = 0.980 + 0.952x
     R2 = 0.9781

(d) 12-hour model
     y = 1.416 + 0.931x
     R2 = 0.9126

Figure 2.3: A comparison of predicted and observed temperatures for evaluation patterns
specific to Byron, GA. (a) one-hour model, (b) four-hour model, (c) eight-hour model, and
(d) twelve-hour model.
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Chapter 3

GENIE: The Georgia Extreme-weather Neural-network Informed Expert1

1Chevalier, R. F., R. W. McClendon, J. A. Paz and G. Hoogenboom. To be submitted to

Computers and Electronics in Agriculture
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3.1 Introduction

Agricultural crops in most geographical regions of the U.S. are susceptible to damage from

frost and freeze events during the growing season. For instance, in the state of Georgia,

USA, a freeze occurred in early April of 2007 which resulted in estimated losses of 50% of

the peach crop and 87% of the blueberry crop (Fonsah et al., 2007). The 2007 Georgia Farm

Gate Value Report notes that the values for fruits and nuts for 2007 were down by $65 million

compared to the previous year as a result of this late freeze event (Boatright and McKissick,

2008). These damages can be mitigated with preventative measures such as irrigation and

orchard heaters provided that producers are given sufficient notice of impending frost and

freeze events.

The terms frost and freeze are often used synonymously, however, they actually refer to

two different conditions. Although there are no universally agreed upon definitions for these

terms, it is generally accepted that a frost event becomes a freeze event when extracellular

water within a plant freezes. Freeze events are particularly damaging to crops because this

extracellular ice formation draws water out of a plant’s cells causing dehydration (Snyder and

de Melo-Abreu, 2005). Frost events are further classified based on the particular atmospheric

conditions causing the loss of heat. Radiation frosts occur when heat is lost through radiation,

causing the warm air close to the surface to be inverted with the colder air in the atmosphere.

These frosts are characterized by clear skies, no wind, and a low dew point temperature.

Advective frosts occur when wind brings cold air into a region replacing warmer air. Advective

frosts are characterized by cloudy skies, moderate to strong winds, no temperature inversion,

and low humidity.

The National Weather Service (NWS) currently issues three levels of frost and freeze

warnings (Perry, 1994). A frost warning is issued when forecasts call for air temperatures

near, but not below 0◦C and wind speeds below 16 km/h. A frost/freeze warning is issued

when forecasts call for air temperatures below 0◦C and wind speeds below 16 km/h. Finally,

a freeze warning is issued when forecasts call for air temperatures below 0◦C and wind
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speeds greater than 16 km/h. While the NWS warnings take into account air temperature

and wind speed, they do not consider the dew point temperature. Additionally, there is little

granularity in the NWS warnings since there are only 3 distinct warnings issued. The utility

of the NWS warnings for Georgia producers is further limited by the fact that the NWS

focuses on urban areas and does not collect weather data from many of the rural areas where

agricultural production is prevalent.

The Georgia Automated Environmental Monitoring Network (AEMN) was created for

the purpose of collecting weather data from areas across the state of Georgia, especially for

those regions where the NWS does not have a presence (Hoogenboom, 1993). The AEMN

consists of over 75 stations whose data are disseminated in near real-time via the AEMN

website (http://www.georgiaweather.net). Using data collected from AEMN stations,

Artificial Neural Network (ANN) models were created to predict air temperature (Jain et al.,

2006; Smith et al., 2006, 2008) and dew point temperature (Shank et al., 2008a, 2008b).

These models were implemented on the website and provide hourly predictions from one

to twelve hours ahead for the areas surrounding the AEMN stations. Given the proximity

of the stations to Georgia’s croplands, these predictions provide invaluable information to

producers across the state. A natural extension to this service would be to interpret these

predictions for use in a decision support system. This would be a useful tool for producers

who are concerned with frost and freeze events.

Fuzzy Logic is derived from Fuzzy Set theory and is a superset of the more conventional

Boolean Logic (Zadeh, 1965). Fuzzy Logic is a method of reasoning that allows for infor-

mation that is approximate, rather than precise. It is based on fuzzy sets as opposed to

the two-valued sets which are the basis of Boolean Logic. In both forms of logic, an input

variable’s membership in a given set can be determined by applying a membership function

to the input variable. In Boolean logic, there are only two possible outputs: a zero, which

signifies that the input variable is not a member of the set, or a one, which signifies that

the input variable is a member of the set. In Fuzzy Logic, partial membership in a set is
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possible because output values can be any number in the continuous set [0, 1]. The output

value assigned by a fuzzy membership function, therefore, represents the degree to which an

input variable is a member of the set. The process of applying a fuzzy membership func-

tion to an input variable is referred to as “fuzzifying” the “crisp” input value (Engelbrecht,

2002). These fuzzy inputs are then used to define fuzzy if-then rules, and ultimately, to pro-

duce crisp output values. Formally implementing fuzzy logic involves the following five steps:

fuzzification of the inputs, application of fuzzy operators in the rule antecedents, implica-

tion from the rule antecedents to the rule consequents, aggregation of the consequents, and

defuzzification to a crisp output value (MathWorks, 1999).

Expert systems based on Fuzzy Logic have proved useful in domains involving meteoro-

logical data. The MEDiterranean EXpert system (MEDEX) was developed to predict specific

gale-force wind events in the Mediterranean Sea (Hadjmichael et al., 2002). The inputs were

supplied by various numerical models and this expert system was shown to be competitive

with the US Navy’s regional forecasting center in Rota, Spain. The Significant Information

Generated from Marine Area Reports (SIGMAR) system was used to alert meteorologists

when the accuracy of their marine forecasts began to deteriorate (Hansen, 1997). In this

application, a fuzzy expert system was used for diagnostic rather than predictive purposes.

More traditional expert systems have been used to provide frost related decision support.

Takle (1990) used an expert system to predict the occurrence of frost on bridges and road-

ways. The expert system relied upon maximum and minimum recorded temperatures from

the previous day as well as several estimated variables which included cloud cover, air tem-

perature, dew point temperature, precipitation, and average wind speed. These estimated

variables were not produced by a numerical model. Rather the user of the expert system was

expected to estimate these values. Similar work was performed in which a model for frost

deposition on Iowa bridgeways was used as a predictive tool by providing it with predictions

from an ANN (Temeyer et al., 2003). Inputs for this model included current air temperature,

dew point temperature, wind speed, and surface temperature.
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The overall goal of the research reported herein was to develop a decision support tool

to assist Georgia producers in assessing the risk of impending frost and freeze events. The

specific objectives were: (1) to develop an expert system which encompasses the knowledge

of agrometeorologists using fuzzy rules, (2) to evaluate the performance of the fuzzy expert

system using historical data collected from the Georgia AEMN, and (3) to develop a web-

based interface for disseminating the information to producers across the state of Georgia.

3.2 Methodology

A panel of expert agrometeorologists provided baseline information for the design of the

expert system based on user needs and preferences. They determined that while the expert

system should produce granular results, these results would be most useful if they were also

translated into one of five general warnings: no warning, possible frost, mild frost, severe

frost, and hard freeze. The crisp outputs of the fuzzy expert system, which represent the

relative level of risk associated with the given weather conditions, were arbitrarily restricted

to the continuous set [0, 1000]. Warnings were generated based solely on the value of these

outputs as follows:

• Output ∈ [0, 200] = No Warning

• Output ∈ [201, 400] = Possible Frost

• Output ∈ [401, 600] = Mild Frost

• Output ∈ [601, 800] = Severe Frost

• Output ∈ [801, 1000] = Hard Freeze

By providing producers with both the warning and the crisp output value, they would be

able to differentiate between conditions such as a possibly non-threatening mild frost (output

= 405) and a mild frost that is dangerously close to a severe frost (output = 595).
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Extracting the knowledge of the local agrometeorologists was accomplished by presenting

them with possible scenarios involving various combinations of air temperature, dew point

temperature, and wind speed. The wind speed values in each table were determined through

preliminary discussions with the agrometeorologists. The experts were asked to label each of

these scenarios using one of the five warnings discussed earlier. All scenarios involving low

wind speeds are shown in Table 3.1, while medium wind speeds scenarios are shown in Table

3.2, and high wind speed scenarios are shown in Table 3.3. Note that some combinations of

air temperature and dew point temperature are labeled with an asterisk. These combinations

are unrealistic because the air temperature never drops below the dew point temperature.

It is possible to infer from these tables a set of fuzzy rules which cover, not only the specific

scenarios described in the tables, but also all of the possible scenarios involving the continuous

set of values between these discrete values. As an example, the following rule can be inferred

based on the information presented in Table 3.1:

“If the air temperature is between 0.5◦C and 4.5◦C, the dew point temperature

is between 0.5◦C and 2.5◦C, and the wind speed is under 8 km/h, then possible

frost conditions exist.”

In this example, the decision boundaries were selected such that they are located half way

between the points in the table where the labels change from one warning to another. For

instance, an air temperature of 0.5◦C is half way between 0.0◦C, which is labeled as no

warning for the given dew point temperature range, and 1.0◦C, which is labeled as mild frost

for the given dew point temperature range. Overall 75 fuzzy rules of this nature were inferred.

These rules covered all possible combinations of air temperature, dew point temperature, and

wind speed.

Multiple membership functions were used in each of the 75 rules. For instance, in the

example above, six total membership functions were required. Two air temperature mem-

bership functions were required to express the degree to which the air temperature is “over

0.5◦C” and “under 4.5◦C”. Similarly, two dew point membership functions were required to

30



express the degree to which the dew point temperature is “over 0.5◦C” and “under 2.5◦C”.

One membership function was required to express the degree to which the wind speed is

“under 8 km/h” and one output membership function was required to express the degree to

which a possible frost warning results. The 75 rules used by the expert system required a

total of 25 unique air temperature membership functions, 28 dew point temperature mem-

bership functions, 3 wind speed membership functions, and 5 output membership functions.

Several types of membership functions were evaluated , including triangular, Gaussian, and

sigmoid functions. The suitability of each function was determined through a process of trial

and error. The functions were evaluated by implementing them and then determining if they

were able to produce outputs that matched the experts’ warnings given the inputs found in

Tables 3.1, 3.2, and 3.3. In general, concepts which are not clearly defined can be difficult to

express using triangular membership functions. Triangular functions have discrete bounds,

which means that their appropriateness is dependent upon being precisely fit to particular

values. Smooth functions which approach limits are more forgiving in this regard. There-

fore a mixture of Gaussian and sigmoid functions were considered for the input membership

functions. The air and dew point temperature membership functions were defined exclu-

sively using sigmoid functions. When necessary, the functions were tailored to each concept

by adjusting the slope of the membership function. The slope is controlled by the γ term in

the following sigmoid equation:

y = − 1

1 + e−γ(x−m)
(3.1)

The term m refers to the midpoint of the curve. Two of the membership functions from

the dew point temperature fuzzy set are shown in Figure 3.1. The membership functions

pictured, describe the concepts of “dew point over 0.5◦C” and “dew point under 2.5◦C”.

A rule may use these membership functions in conjunction to express the concept of “dew

point between 0.5◦C and 2.5◦C”. The three wind speed membership functions are shown in

Figure 3.2. A left-facing sigmoid function was used for the low wind concept and a right-

facing sigmoid function was used for the high wind concept. The midpoints of these functions
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were centered at 8 km/h and 16 km/h respectively. The medium wind concept is defined

by a Gaussian function. Notice that the width of the Gaussian curve has been manipulated

so that it intersects with the sigmoid curves at their midpoints. This is accomplished by

adjusting the constant, c, of the Gaussian equation shown below:

y = e−
(x−12)2

2c
2 (3.2)

The result is that these intersections become decision boundaries for the expert system.

Since the output concepts were arbitrarily defined with clear boundaries, it was possible

to express them using the triangular membership functions shown in Figure 3.3. Note that

although, the no warning and hard freeze membership functions actually extended beyond

the arbitrarily selected bounds, their peaks were centered at 0 and 1000 respectively which

were the effective bounds of the expert system’s overall crisp output values. This is because

the crisp output value was a function of the x-coordinate of each triangle’s peak.

When multiple rules exist containing the same output function in the consequent, these

output functions must be aggregated. Several aggregation methods exist, including the Max-

Min method, the Root-Sum-Square method, and the Sum method (Engelbrecht, 2002). All

three of these methods were evaluated using the scenarios provided by the experts. Prelimi-

nary work found that all of these methods were capable of producing satisfactory results for

the majority of the scenarios. However, the Max-Min method was slightly more consistent

in its ability to match the experts’ warnings, as shown in Figure 3.4. Each method was able

to produce outputs in the appropriate range for the no warning and possible frost scenarios.

However, some of the mild frost and severe frost scenarios were misclassified when using

both the Root-Sum-Square and Sum methods. The Max-Min method of aggregation was

therefore selected for use in the model.

Crisp output values were obtained during the defuzzification step using a centroid calcu-

lation. Typically the area underneath each curve must be calculated in order to determine

the centroid of a complex object. However, since the output membership functions used in

this study took the form of identically sized equilateral triangles, their areas did not need
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to be considered during the centroid calculation. The simplified centroid equation is shown

below:

crisp output = −oi(0) + o2(300) + 03(500) + o4(700) + o5(1000)

o1 + o2 + o3 + o4 + o5

(3.3)

The terms o1, o2, o3, o4, and o5 represent the aggregate output values for each membership

function and the constants represent the x-coordinate of the centroid of each triangle. These

constants remain the same regardless of the scaled size of each triangle. Note that the crisp

output is equal to the x-coordinate of the centroid. This coordinate will shift between 0 and

1000 depending on the size of the triangle associated with each output function.

The expert system fuzzy inferencing process is summarized in Figure 6. The process

pictured is a simplified version of the actual inferencing process because only two rules are

shown. Crisp input values of air temperature, dew point temperature, and wind speed are

fuzzified and then used as inputs for each rule. The order of the rules is irrelevant. Fuzzy

operators are applied to the antecedents of a rule to obtain the overall degree of support for

that particular rule. This value is used to scale the output fuzzy set. Finally, the aggregate

fuzzy output set is defuzzified by calculating the x-coordinate of its centroid.

To extend the capabilities of the fuzzy expert system to produce advance warnings, it

must be supplied with predicted values of the weather variables. The work of Smith et al.

(2008) and Shank et al. (2008) was used for this purpose. Smith et al. (2008)and Shank

et al. (2008) developed ANN models for air temperature and dew point temperature based

on weather data collected by the Georgia AEMN. These models can provide predictions

from one to twelve hours ahead. Currently no model for wind speed prediction using the

AEMN data exists. The expert system, therefore, assumes that the wind speed remains at

the current level while assessing the risk of frost or freeze events for each hourly prediction

horizon.

The fuzzy expert system was written in Java and its rules incorporate knowledge of critical

temperatures that are specific to blueberries. However, the rules are implemented in such a

way that the knowledge base can be easily modified to include new scientific knowledge or to
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be used with another crop. The rules are constructed from implication operator methods and

their arguments. The antecedents of the rules are layered using overloaded methods for each

of the implication operators. This means that the existing blueberry rules do not need to

be re-written when rules are added specific to other crops. They are simply augmented with

an additional layer. A rule can be augmented by simply appending an additional argument

to any of the implication operator methods that are being called. For instance, the AND

operator method with two arguments is shown below:

and(argument1, argument2);

An additional layer can be added to a rule which uses this method by simply inserting

another argument as follows:

and(argument1, argument2, argument3);

This additional argument may identify the rule as being specific to some particular crop.

In this way, the expert system could provide frost warnings which are specific to multiple

crops. Several methods were also built into the expert system that provide a means of trou-

bleshooting while developing new fuzzy rules. These include methods for viewing aggregate

membership function outputs as well as outputting the firing strengths of individual fuzzy

rules.

3.3 Web-Based Interface

The usefulness of the GENIE tool is dependent upon the ease with which potential users can

access its information. A web-based tool offers convenient access for many users, however,

it must be user-friendly in order to gain acceptance. Most producers do not have time to

search through vast amounts of information in order to find relevant warnings. The web

interface of GENIE was built with this constraint in mind. It was designed to offer a quick

graphical warning scheme that is easily accessible yet offers detailed information if the user

is interested.
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The interface was designed with four main panes that include a banner, a color map, a

control panel, and a detail pane, as shown in Figure 3.6. The banner advertises the most

severe warning level that is being predicted at any of the statewide locations for the next

twelve hours. Producers can quickly identify the most extreme predictions by viewing banner

messages (Figure 3.6a). The background color of the banner changes depending on the level

of risk associated with the banner message. The color map also offers producers a quick

assessment of statewide conditions as well as those in local areas (Figure 3.6b). Warning

levels are actually only produced for areas where AEMN weather stations are located. These

stations are denoted by small icons on the map which will display their location names when

moused over. Warning levels from these locations are used to interpolate the colors across

the rest of the map. Producers also have the ability to see how the map’s frost landscape

will change over the next twelve hours. Using the controls panel, users can either manually

skip to a particular prediction horizon or click on the “Play Slide Show” button to see the

map scroll through each hourly prediction (Figure 3.6c). At any time a producer can click

on one of over 75 AEMN station icons to obtain more detailed information from the detail

pane (Figure 3.6d). The location of the AEMN station as well as the current wind speed

and maximum warning level are shown in the header field of this pane. Below this header

is a graph, plotting the observed air temperatures and dew point temperatures for the past

twelve hours as well as the values of these variables for the next twelve hours, as predicted

by GENIE’s ANN models (Smith et al., 2008; Shank et al., 2008). The information in the

detail pane helps to explain the mathematical and scientific basis for the origin of the expert

system’s warnings by providing access to the complete set of variables used to produce the

warnings.

The web interface was developed as a Java Applet. Applets allow for an interactive user

interface even with large graphics files. This is a result of the applet being run directly on a

user’s computer as opposed to being run from a web-server. Additionally, Java Applets can
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be developed as independent applications and then easily added to any existing website with

a few lines of HTML code.

3.4 Results

The strength of the expert system’s fuzzy rules is in their ability to produce granular warnings

for any given value of air temperature, dew point temperature, and wind speed. After refining

the rules, using the scenarios provided by the experts, GENIE was evaluated on an expanded

set of scenarios which had not been previously used for model development. Table 3.4 shows

the output for various air and dew point temperatures with a wind speed of 4 km/h. Output

values have been rounded to the nearest whole number for clarity. Higher output values

correspond with decreases in either air temperature or dew point temperature and there is

a large range of values within each broad warning level. For instance, within the no warning

level, values range from 52 to 172. These varying output levels provide GENIE’s warnings

with their granularity. For those scenarios that are present in Table 3.1, the GENIE’s outputs

are all in the appropriate ranges to match the experts’ warnings.

A surface plot in Figure 3.7 shows the expert system’s output landscape for wind speeds

of 4 km/h and 20 km/h, using various combinations of air and dew point temperature.

Values drop to zero for the unrealistic scenarios in which air temperature is lower than dew

point temperature. Within each broad warning level, output values vary depending on their

proximity to adjacent warning levels. Wind speed does not have a significant impact on the

expert system’s output values until temperatures drop below -3.0◦C. This is consistent with

the warnings provided by local agrometeorologists in Tables 3.1 and 3.3. At wind speeds of 4

km/h there were also no hard freeze warnings issued. As expected, these warnings do appear

with higher wind speeds.
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3.5 Summary and Conclusions

A fuzzy expert system was developed to produce frost threat levels for use by producers

across the state of Georgia. The specific numeric warning levels produced by the system

offer more granularity than the textual warnings currently made available by the NWS.

Additionally, the underlying ANN models were trained with AEMN data collected from

a wide range of locations in Georgia, making the system specifically tailored to Georgia’s

agricultural production. A web interface was developed to provide producers with convenient

access to the frost warnings. The interface was consolidated into one interactive page to allow

for quick access to all of the relevant information. Additionally, it offers transparency to the

users by providing the predicted variables that were used in the expert system’s decision

making process. This allows users to develop confidence and trust in the warnings that are

being provided by the system.

Although the warnings produced by the GENIE tool were developed specifically for blue-

berry producers, the fuzzy rules could easily be extended to accommodate any number of

other crops. Future work may offer producers the ability to tailor the warnings to a specific

crop. Also, as previously mentioned, the expert system does not make use of predicted wind

speeds. In the future, a predictive wind speed model will be developed and incorporated in

order to increase the reliability of the warnings. An opportunity also exists to extend the

expert system so that it may provide heat stress warnings. Like frost, heat stress is dependent

upon air temperature, dew point temperature, and wind speed. Heat stress is a concern for

agricultural producers as it relates to both workers and livestock. For instance, heat stress

can cause dairy cows to produce 20 to 30% less milk and in some cases even result in death

(Jones and Stallings, 1999). Incorporating heat stress warnings into the GENIE tool could

allow it to serve as a year-round resource for agricultural producers throughout the state of

Georgia.
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Table 3.1: Frost warnings supplied by domain experts for wind speeds < 8 km/h.

Dew Point Temperature (◦C)
Air 4.0 3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0 -4.0 -5.0
Temperature
(◦C)

4.0 N N P P M M S S S S
3.0 * N P P M M S S S s
2.0 * * P P M M S S S S
1.0 * * * P M S S S S S
0.0 * * * * M S S S S S
-1.0 * * * * * S S S S S
-2.0 * * * * * * S S S S
-3.0 * * * * * * * S S S
-4.0 * * * * * * * * S S
-5.0 * * * * * * * * * S

*Air temperature is never lower than dew point temperature.

N No Warning M Mild Frost
P Possible Frost S Severe Frost
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Table 3.2: Frost warnings supplied by domain experts for wind speeds = 12 km/h.

Dew Point Temperature (◦C)
Air 4.0 3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0 -4.0 -5.0
Temperature
(◦C)

4.0 N N P P M M S H H H
3.0 * N P P M M S H H H
2.0 * * P P M S S H H H
1.0 * * * P S S S H H H
0.0 * * * * S S S H H H
-1.0 * * * * * S S H H H
-2.0 * * * * * * S H H H
-3.0 * * * * * * * H H H
-4.0 * * * * * * * * H H
-5.0 * * * * * * * * * H

*Air temperature is never lower than dew point temperature.

N No Warning S Severe Frost
P Possible Frost H Hard Freeze
M Mild Frost
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Table 3.3: Frost warnings supplied by domain experts for wind speeds > 16 km/h.

Dew Point Temperature (◦C)
Air 4.0 3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0 -4.0 -5.0
Temperature
(◦C)

4.0 N N P P M M S H H H
3.0 * N P P M M S H H H
2.0 * * P P M M S H H H
1.0 * * * M M M S H H H
0.0 * * * * M M S H H H
-1.0 * * * * * M S H H H
-2.0 * * * * * * S H H H
-3.0 * * * * * * * H H H
-4.0 * * * * * * * * H H
-5.0 * * * * * * * * * H

*Air temperature is never lower than dew point temperature.

N No Warning S Severe Frost
P Possible Frost H Hard Freeze
M Mild Frost
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Table 3.4: GENIE’s numeric outputs for various scenarios of air temperature and dew point temperature. Wind speed is 4 km/h.

Dew Point Temperature (◦C)
Air 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0
Temperature
(◦C)

4.0 52 87 129 172 240 268 298 362 433 461 489 555 631 631 631 680 694 694 703
3.5 * 88 130 172 240 302 330 362 433 500 527 555 631 680 680 682 697 703 712
3.0 * * 131 172 240 302 365 398 433 500 555 585 631 680 694 697 701 708 721
2.5 * * * 172 240 302 365 434 468 500 555 604 655 680 694 703 708 710 723
2.0 * * * * 240 302 365 434 500 532 555 604 668 693 694 703 711 713 724
1.5 * * * * * 302 365 434 500 566 591 604 668 700 700 703 711 715 726
1.0 * * * * * * 365 434 500 566 625 639 668 700 703 706 711 715 727
0.5 * * * * * * * 434 500 566 625 665 674 703 712 713 713 715 727
0.0 * * * * * * * * 500 566 625 665 690 704 714 717 717 717 727
-0.5 * * * * * * * * * 566 625 665 690 704 714 717 717 718 728
-1.0 * * * * * * * * * * 625 665 690 704 714 716 717 718 728
-1.5 * * * * * * * * * * * 665 690 704 714 716 717 718 728
-2.0 * * * * * * * * * * * * 690 704 714 716 717 718 728
-2.5 * * * * * * * * * * * * * 704 714 716 717 718 728
-3.0 * * * * * * * * * * * * * * 714 716 717 718 728
-3.5 * * * * * * * * * * * * * * * 716 717 718 728
-4.0 * * * * * * * * * * * * * * * * 717 718 728
-4.5 * * * * * * * * * * * * * * * * * 718 728
-5.0 * * * * * * * * * * * * * * * * * * 728

*Air temperature is never lower than dew point temperature.

No Warning Possible Frost Mild Frost Severe Frost

43



Dew Point Temerature (oC)

-1.5 0.5 2.5 4.5
0.0

0.5

1.0

Dew Point > 0.5oC

Dew Point < 2.5oC

Figure 3.1: Sigmoid membership functions for dew point temperature greater than 0.5◦C and
less than 2.5◦C. Midpoints of each function are at the intersection of the dashed grid lines.
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Figure 3.2: Sigmoid membership functions for low and for high wind speed and Gaussian
membership function for medium wind speed.
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Figure 3.3: Triangular output membership functions.
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Figure 3.4: Crisp outputs obtained using different aggregation methods for every combination
of air temperature (◦C) and dew point temperature (◦C) in the integer set [4,-5] with a wind
speed of 0 km/h. Labels provided by the experts for these scenarios are listed along the
bottom axis.

47



Hard Freeze

-100 100 300 500 700 900 1100

Wind speed
is high

12 14 16 18 20
0.0

0.5

1.0

Air under

6.5
o
C

0 2 4 6

Dew point
under -2.5

o
C

-6 -4 -2 0

Air over
4.5

o
C

0 2 4 6

Dew point
over -4.5

o
C

-8 -6 -4 -2

Air over
5.5

o
C

0 2 4 6

Dew point
over -5.5oC

-8 -6 -4 -2

andIf and and or and then

0.9975 0.9999 0.4255

0.0005

0.9644

0.0001

0.9918

and
not

Severe Frost

-100 100 300 500 700 900 1100

Wind speed
is high

12 14 16 18 20
0.0

0.5

1.0

andIf and and then

0.9975

andAir over
-2.5oC

-6 -4 -2 0

Air under
4.5

o
C

-2 0 2 4 6

Dew point 
over -2.5oC

-6 -4 -2 0

Dew point
under -1.5

o
C

-4 -2 0 2

0.9525 0.9994

0.7685

0.5744

-100 100 300 500 700 900 1100
0.0

0.5

1.0

-100 100 300 500 700 900 1100
0.0

0.5

1.0

0.4255

0.5744

-100 100 300 500 700 900 1100
0.0

0.5

1.0

Crisp output = 827.66

5. Defuzzify
    Output

4. Aggregate Outputs 
    (not necessary here).

1. Fuzzify
    Inputs

2. Apply Fuzzy
    Operators

3. Apply Implication
    Method (min)

[( )]) (

⇒

⇒

Crisp Inputs:

     Air temperature: -0.5oC

     Dew point temperature: -2.3oC

     Wind speed: 20 km/h

Figure 3.5: A simple example of GENIE’s fuzzy inference process using two of its rules. The fuzzy operators have the following
mathematical equivalences: AND = min, OR = max, NOT = complement.
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Figure 3.6: A screenshot of GENIE’s web interface. (a) The most severe threat level that is
being issued statewide, (b) the hourly color maps and station locations, (c) the control panel,
and (d) detailed station information, including station specific maximum warning levels.

49



0

200

400

600

800

1000

-4
-2

0
2

4

-2
0

2

4

O
ut

pu
t V

al
ue

Air Temperature (oC)

Dew Point ( oC)

(b)

No Warning
Possible Frost
Mild Frost
Severe Frost
Hard Freeze

0

200

400

600

800

1000

-4
-2

0
2

4

-2
0

2

4

O
ut

pu
t V

al
ue

Air Temperature (oC)

Dew Point ( oC)

(a)

Figure 3.7: GENIE output values for various combinations of air temperature and dew point
temperature. (a) Wind speed = 4 km/h, (b) Wind speed = 20 km/h.
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Chapter 4

Summary and Conclusions

The two goals of this research were to (1) evaluate the capability of SVR in predicting

air temperature for horizons from one to twelve hours and (2) to develop a fuzzy logic-

based expert system which can be used to assist Georgia growers in predicting the risk of

frost up to 12 hours in advance. In Chapter 2, a methodology was proposed which allows

reduced SVR training sets to be created without a need to pre-process the data. Using this

methodology, the SVR algorithm was applied to the problem of air temperature predic-

tion, a domain in which massive amounts of data have been collected by Georgia’s AEMN

weather stations. Resulting SVR models were shown to be more accurate than ANN models

which had been trained on data sets of over 300,000 and competitive with ANN models

which had been trained on over 1.25 million patterns. In Chapter 3, the Georgia Extreme-

weather Neural-network Informed Expert (GENIE) was introduced. The GENIE tool is a

neural network-based fuzzy expert system that was developed to assist Georgia blueberry

producers in assessing the risk of frost. The fuzzy logic rules of this system incorporated the

knowledge of local agrometeorologists while considering the effects of air temperature, dew

point temperature and wind speed on the severity of frost occurrences. Warnings from one

to twelve hours ahead were made possible by supplying the expert system with the predic-

tions of previously developed ANN models for air temperature and dew point temperature.

Finally, a web-based interface was created so that this tool’s warnings could be disseminated

to Georgia farmers across the state of Georgia.

The SVR models described in this research were developed using the radial-basis function

kernel. Evaluating other kernels was beyond the scope of this work, however, alternate kernels
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may prove more effective. Additionally, parameter tuning was performed using only the

four-hour prediction horizon data. It is likely that model accuracy would be increased if

parameters were tuned for each individual prediction horizon. Future research involving SVR

and air temperature prediction could also benefit from more systematic methods of creating

reduced training sets. Heuristic methods attempt to exploit characteristics of support vectors

in order to identify them prior to applying the SVR algorithm. This pre-processing step would

be rather lengthy when dealing with the large AEMN data set, however, the benefits may

prove worthwhile. The accuracy of the GENIE tool would be increased by incorporating

predictive models of wind speed. Future work may involve the development of such models

using ANNs or SVR. The warnings currently produced by the GENIE tool are specific to

blueberries. Since each crop has a different tolerance to frost, enabling the tool to produce

warnings for multiple crops would involve the addition of rules specific to each individual

crop. This extension to the fuzzy rule set would be fairly straight forward and would greatly

increase the GENIE tool’s utility to Georgia farmers. Another useful extension to the expert

system would be a more transparent explanation of the decision making process. Producers

wishing to see why a particular warning was issued could benefit from a list of the rules with

the highest firing strengths. Transparency will increase the producers’ level of trust with the

expert system and ultimately make GENIE a more effective tool.
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Appendix

Support Vector Regression

Support Vector Regression (SVR) is a machine learning tool which uses a nonlinear mapping

to transform input data into a higher-dimensional feature space where linear regression can

be performed (Vapnik, 1995). SVR uses input-output pairs to develop a function which not

only fits the training data, but which also maintains the highest possible degree of generality

so as to be applicable to future, unseen data.

Typically, SVR is implemented as ε-SVR, which makes use of an ε-insensitive loss function

(Vapnik, 1995). This type of loss function allows for deviation from the true targets by at

most ε. The ε-SVR algorithm (referred to simply as SVR from this point forward) does not

recognize errors as long as they fall within ±ε of the learned function.

Training data is usually of the form:

{(x̄1, y1), (x̄2, y2), · · · , (x̄l, yl)} (1)

x̄i ∈ R
d, yi ∈ R, and l = number of examples

Each pattern, therefore, contains a vector, x̄i of real-valued inputs as well as a scalar, yi

representing the target value. In the case of a linear function, f , the solution would be given

in the form:

f(x̄) = 〈w̄, x̄〉 + b (2)

w̄ ∈ R
d, ∈ R

The term w̄ represents a vector of weights which have been learned by the SVR algorithm.

The notation 〈·, ·〉 denotes the inner product of two vectors. As noted earlier, it is desirable
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for f to have a high degree of generality. In other words, it should be loosely fit to the

training data as to avoid overfitting. SVR accomplishes this by forcing the function to be

as flat as possible. Equation (2) is considered flat if w̄ is small, which can be achieved by

minimizing the norm1 of w̄ (Smola and Schölkopf, 2004). The entire problem is therefore,

formulated as the following convex optimization problem:

minimize
1

2
‖w̄‖2 (3)

subject to







yi − 〈w̄, x̄i〉 − b ≤ ε

〈w̄, x̄i〉 + b − yi ≤ ε

This optimization problem assumes that a function exists which approximates every pair

(x̄i, yi) in the training data with ε precision. To deal with instances where this is not the

case, and to account for errors in the training data, Vapnik introduced two slack variables, ξi

and ξi
∗. These slack variables compute the error for underestimating and overestimating the

true value. With the addition of these two variables, the optimization problem in Equation

(3) becomes:

minimize
1

2
‖w̄‖2 + C

l
∑

i=1

(ξi + ξi
∗) (4)

subject to























yi − 〈w̄, x̄i〉 − b ≤ ε + ξi

〈w̄, x̄i〉 + b − yi ≤ ε + ξi
∗

ξi, ξi
∗ ≥ 0

This is the primal form of the objective function for linear SVR. Here, C is a constant,

known as the penalty factor, which controls the trade-off between the complexity of the

function and the frequency with which errors are allowed when estimating the true value of

the training patterns. The higher the value of C, the greater the influence of the empirical

error component on the optimization problem. This component (ξi + ξi
∗) amounts to any

difference, greater than ε between the estimated values and the target values.

1The norm of a vector is a characterization of its length. The most common form is the

Euclidean norm, ‖x̄‖ =
√

xi
2 + x2

2 + · · · + xn
2. Note that this is equivalent to the 2-norm,

‖x̄‖2 =
(
∑n

i=1|xi|2
) 1

2
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The primal form of the optimization problem involves handling inequality constraints

directly, which can be difficult. It is often easier to solve an alternate, dual form of the

problem (Smola and Schölkopf, 2004). A dual description of the problem is obtained by

constructing a Lagrange function, which introduces dual variables. The Lagrange function,

L, constructed from the primal objective function in Equation (4) is shown below.

L =
1

2
‖w̄‖2 + C

l
∑

i=1

(ξi + ξi
∗) −

l
∑

i=1

(ηiξi + ηi
∗ξ1

∗) (5)

−
l

∑

i=1

αi(ε + ξi − yi + 〈w̄, x̄i〉 + b)

−
l

∑

i=1

αi
∗(ε + ξi

∗ + yi − 〈w̄, x̄i〉 − b)

Here, ηi, ηi
∗, αi, αi

∗ are the dual variables, or Lagrange multipliers. It is known that the

partial derivatives of L with respect to the primal variables (w̄, b, ξi, ξi
∗) must be equal to zero

(Cristianini and Shawe-Taylor, 2000). We can, therefore, eliminate these partial derivatives

from Equation (5) resulting in the following dual optimization problem:

maximize







−1
2

∑l

i,j=1(αi − αi
∗)(αj − αj

∗)〈x̄i, x̄j〉

−ε
∑l

i=1(αi + αi
∗) +

∑l

i=1 yi(αi − αi
∗)

(6)

subject to
l

∑

i=1

(αi − αi
∗) = 0 and αi, αi

∗ ∈ [0, C]

Another interesting consequence of deriving the partial derivatives of L with respect to the

primal variables is that we can obtain the following equation:

w̄ =
l

∑

i=1

(αi − αi
∗)x̄i (7)

This equation allows w̄ to be described as a linear combination of the training patterns.

Substituting this value into Equation (2) the solution function now appears in the following

form:

f(x̄) =
l

∑

i=1

(αi − αi
∗)〈x̄i, x̄〉 + b (8)
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It is important to note that the complete algorithm can be expressed in terms of inner

products between the data. Additionally, the α values will be zero for many of the training

patterns, which provides for a sparse solution. The patterns whose α values are not set to

zero are referred to as the support vectors.

The algorithm and equations described so far have been for the simple case when SVR

seeks to find a linear function. In order to deal with nonlinear functions, the data must be

transformed from the input space to a higher dimensional feature space using a nonlinear

transformation function,Φ. A straightforward extension of linear SVR would be to simply

substitute Φ(x̄) for every instance of x̄ in Equation (6) and Equation (8). This approach

quickly becomes infeasible, however, as x̄ is mapped into higher and higher dimensions. The

solution is to avoid mapping the data altogether through what is known as the ”kernel trick”.

A kernel takes advantage of Mercer’s Theorem, shown in Equation (9), which states that

for certain mappings, Φ, and any two mapped points ū and v̄, the dot product of these points

can be evaluated using a kernel function, k, without ever explicitly knowing the mapping

(Schölkopf and Smola, 2001).

〈Φ(ū), Φ(v̄)〉 ≡ k(ū, v̄) (9)

The polynomial function of degree 2, for instance, has a correspondence with two points

which have been mapped from R
2 → R

3 using the transformation function below:

Φ

(

s1

s2

)

=













s1
2

√
2s1s2

s2
2













(10)

In this equation, s1 and s2 refer to the components of s̄. As an example, consider the points

ū =
(

2
3

)

and v̄ =
(

4
5

)

. In order to calculate 〈Φ(ū), Φ(v̄)〉 without a kernel function, each point

would first need to be mapped into the higher dimension as follows:

Φ

(

2

3

)

=













4

6
√

2

9













(11)
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Φ

(

4

5

)

=













16

20
√

2

25













(12)

Then the inner product would need to be calculated in this higher dimensional space as

shown below:

〈













4

6
√

2

9













,













16

20
√

2

25













〉

= (4 × 16) + (6
√

2 × 20
√

2) + (9 × 25) (13)

= 64 + 240 + 255

= 529

Using the polynomial kernel, the solution is simply derived as follows:
〈

Φ

(

2

3

)

, Φ

(

4

5

)〉

=

〈(

2

3

)

,

(

4

5

)〉2

(14)

= (8 + 15)2

= 529

When using a kernel such as this in place of very high dimensional transformations, the

computational cost savings are substantial.

Since the SVR algorithm only depends on the inner products between the patterns, it

can be easily augmented to deal with nonlinear functions by simply replacing these inner

products with the kernel function, producing the following new optimization problem:

maximize







−1
2

∑l

i,j=1(αi − αi
∗)(αj − αj

∗)k(x̄i, x̄j)

−ε
∑l

i=1(αi + αi
∗) +

∑l

i=1 yi(αi − αi
∗)

(15)

subject to
l

∑

i=1

(αi − αi
∗) = 0 and αi, αi

∗ ∈ [0, C]

Likewise, the solution function can be written in the form:

f(x̄) =
l

∑

i=1

(αi − αi
∗)k(x̄i, x̄) + b (16)
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Although it is intuitive to think of SVR as performing linear regression in the higher-

dimensional feature space, in practice, the kernel allows SVR to perform all the necessary

computations in the lower-dimensional input space.
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