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Abstract

An object tracking-based behavior analysis technique for identifying Traumatic

Brain Injury (TBI) among rodents is proposed. TBI is typically caused by external

factors, resulting in severe structural brain damage, severely impacting cognitive

reasoning and the overall functioning of the brain. Most existing methods used

to identify post-TBI behavior use expensive methods in highly constrained envi-

ronments like functional Magnetic Resonance Imaging (fMRI) to generate brain

scans which are used to identify the nature and assess the extent of the TBI. In

contrast, we propose a visual tracking-based method that computes the trajectory

of the rodent and quantifies the differences in pre-TBI and post-TBI behavior via

analysis of the variations in motion trajectories to assess the extent of TBI in

a given rodent. We explore several feature representation schemes and machine

learning models to capture the subtle cues that signify the variations in the motion

trajectory with encouraging results.
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Chapter 1

Introduction

Behavior analysis is the science of behavior pertaining to humans and non-human

animals. It is a scientific study which seeks to understand the principles underly-

ing how biological, pharmacological and environmental factors influence behavior.

Behavior analysis has been a challenging topic of research within the computer

vision research community.

The observation and assessment of the behavior of animals such as laboratory

rodents has made significant contributions towards our understanding of human

cognition and neurological mechanisms. Rodent models are also used to study the

behavioral impairment after an injury, such as Traumatic Brain Injury (TBI). TBI,

caused by sudden trauma to the head by an external force, results in disruption in

the normal functioning of the brain, and can be temporary if the TBI is mild, and

permanent if the impact on the brain is particularly violent. TBI can occur during

accidents, and are especially prevalent during motor-vehicle accidents. Everyone
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is at risk for TBI, but the rates are generally higher among older adults, children,

prisoners and persons in combat zones and athletic arenas such as football and

boxing. TBI can also occur during incidents of domestic violence. The very nature

of brain injuries make tracking them especially difficult. In the case of TBI, the

injury need not be penetrative such as a bullet wound or a sharp object that

penetrates into the brain tissue, but can be purely intra-cranial with no visible

external bruises. Moreover, these injuries are additive. In scenarios where the

brain is subjected to multiple external assaults, together or spaced apart in time,

each impact will compound the damage from the previous ones. The impact of

this injury is devastating on the injured as it encompasses a broad spectrum of

symptoms and disabilities, a wide range of physical and psychological effects, and

at times can even result in death.

According to Taylor et al. [2], TBI is a major cause of death and disability in

the United States, contributing to about 30 percent of all injury-related deaths.

An estimated 2.8 million people in the United States sustain a TBI annually. Of

these, 2.5 million are involved in Emergency Department (ED) visits where they

are treated and released, another 282,000 require hospitalizations, and 56,000 die

of TBI-related causes. This amounts to an estimated 153 deaths a day from TBI-

related causes. The highest rate of TBI-related deaths is observed among adults

aged 75 or older, with the number of TBI-related deaths greater among older males

than among older females, followed by children aged 0-4 years, and adolescents

aged 15-24 years. Falls are the primary cause for TBI-related hospitalizations

among adults aged 75 years or older, accounting for an increase in TBI-related ED
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visits since 2007, which suggests an urgent need to enhance fall-prevention efforts

among the older adult population.

Motor-vehicle crashes, the leading cause of TBI-related deaths in 2007, have

decreased substantially by 2013, suggesting significant progress on that front. As

of 2013, falls are the leading cause of TBI, followed by getting struck by or striking

against an object, and motor-vehicle crashes. Falls remain the leading cause for

TBI-related deaths, followed by intentional self-harm as the second leading cause.

During the span of 6 years, from 2007-2013, rates of TBI-related ED visits in-

creased by 47 percent, hospitalization rates decreased by 2.5 percent and death

rates decreased by 5 percent. Due to the observed rise in the incidents involving

TBI, it is prudent to conduct more studies that investigate the long-term effects of

such a chronic and life-changing injury. The cost of TBI treatment is prohibitive

for the injured, as well as his/ her family. The effects of TBI, if one survives it,

can last for a few weeks or months to the rest of one’s life. Coupled with loss of

productivity and mounting costs of health-care, TBI can have lasting effects on all

persons involved.

This thesis addresses the analysis of the behavior of rodent subjects impacted

by TBI. The proposed approach tries to analyze the impact of TBI on the given

rodent subject by studying the real-time movement behavior of the rodent subject,

which is then evaluated against a set of available benchmark parameters. This is

achieved by tracking the motion of the rodent subject, treating it as the object of

interest (OOI) in a given video.
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The analysis of motion in videos is a pre-requisite for a variety of applications

such as the analysis of the semantic content in videos, automated video editing

tasks, summarization of videos etc. The three major steps in video-based behavior

analysis are (1) finding the object(s)-of-interest in the video, (2) tracking the

object(s)’ movement from frame to frame, and (3) analysis of the object(s)’ tracks

to recognize their behavior. Video tracking refers to the technique for tracking

the movement of object(s) in a given video. It has a variety of uses, such as

human-computer interaction, security and surveillance, video communication and

compression, augmented reality, video-based traffic control, medical imaging and

video editing.

Video tracking is a computationally intensive process due to the fact that there

is a lot of information contained in the video. The need for object recognition for

aiding the tracking process makes the underlying computation even more complex.

The primary objective of video tracking is to associate object(s)-of-interest across

the frames of the video. The task is rendered more complex if the object being

tracked moves much faster relative to the video frame-rate, and/ or its orientation

varies significantly over time. Under such situations, the normal approach taken by

video tracking methods is to employ a motion model that can provide a description

of how the object appears subject to different kinds of motion. The motion model is

a 2D transformation in the case of tracking a planar object. In the case of tracking

a rigid 3D object, the 3D position and orientation of the object is exploited by the

motion model.
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The proposed approach involves an efficient combination of optical flow com-

putation and Kalman filtering. The proposed work utilizes a locally generated

dataset as the ground truth. The proposed work models the underlying uncertainty

in the problem domain by posing the problem as one involving object masking and

temporal regression, which increases the robustness of the result. The proposed

system is implemented as an architecture which combines optical flow computa-

tion with Kalman filtering. The video dataset for our experiments was provided

by Regenerative Bioscience Center (RBC), UGA, and the ground truth data for

training the tracking model consists of a subset of video frames generated from

this dataset. We have also developed an annotation tool for generating the ground

truth annotations. The proposed approach aims to come up with an exact detec-

tion of the OOI. The performance of the proposed method is tested on randomly

selected video frames generated from the video dataset, which were not considered

during the training phase.
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Chapter 2

Related Work

Over the past three decades, there have been several works related to object track-

ing. The suitability of an algorithm for the given object tracking task greatly

depends on the following factors: object appearances, object shapes, number of

objects, object and camera motions, and illumination conditions. The main goal

of a video object tracking algorithm is to delineate the motion of the object by

localizing its position in every frame of a video. This involves detecting the object

and establishing correspondences between the object instances across the frames

of the video. These two tasks can be done either separately or jointly. In the

first case, the possible region(s) for the object occurrence in the video frames are

obtained by means of an object detection algorithm, and this information is then

exploited by the tracker to determine the object correspondence across the frames.

In the second case, the object regions and correspondences are jointly estimated
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by means of an iterative updating of the object location and region information

obtained from the previous frame(s).

In either of the aforementioned tasks, the object is represented using a shape

and/or appearance model. The choice of the object representation model defines

the changes the object representation can undergo. For instance, an object rep-

resented by a point-based model can have only translational motion. In case of

geometric representation of an object, parametric models such as affine or projec-

tive transformations may be used. These models can be used for approximating

the motion of rigid objects. In the case of non-rigid objects, the best choice is

contour representation, and both parametric and non-parametric models can be

used for motion specification. The methodology of object tracking may be broadly

classified into three categories viz., kernel tracking, point tracking and silhouette

tracking. Kernel tracking makes use of template and density-based or multi-view

appearance based models. Point tracking, on the other hand, makes use of de-

terministic or statistical methods. Silhouette tracking relies on contour evolution

and matching of contour-based shape models.

The mean-shift algorithm (MSA) [1] and cam-shift algorithm (CSA) [3] are

two of the earliest works in the field of video tracking; both can be categorized as

kernel-based tracking methods. The MSA tries to find the center of mass, or in

other words the densest sub-region within the entire given object region. Given a

set of data samples, which could be formulated by a probability density function

(PDF) in RN , the MSA tries to find the modes of the PDFs connecting the data

samples. The PDF is based on an underlying feature space representation. The
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feature space used to define the PDF could be the color space, scale space, time

space etc. The CSA is an iterative version of MSA. The CSA performs the MSA on

each frame of the video. While the CSA utilizes continuously adaptive probability

distribution, the MSA utilizes a static distribution. Thus, the distribution followed

by the CSA varies over each frame of a video whereas the one used by the MSA

varies only when there is a significant variation in the feature space. In the CSA,

the mode of moments is computed using spatial moments whereas the MSA utilizes

the current and target distributions, and tries to arrive at the maximum ratio of the

two. Both the MSA and CSA are good for tracking objects which follow a linear

motion model, assuming the object shape remains constant throughout the motion.

They are not suitable in cases where the object shape changes continuously, or the

motion is not uniform.

Image intensity or color features are usually used for creating the templates

for kernel tracking. The intensity of an image is very sensitive to illumination

changes. Hence, intensity-based gradients and color-based gradients are preferred

candidates for the underlying features [4]. Since the MSA and CSA use a brute-

force search, they have high computation cost. An efficient approach for template-

based kernel tracking is proposed by Schweitzer et al. [5]. Feiguth and Terzopoulos

[6] generate object models by utilizing the color histogram within the rectangle

containing the object region to model the kernel.

Point feature tracking has been popular since the 1970s. The Moravec interest

operator [7], Harris interest point detector [8], KLT detector [9], and SIFT detec-

tor [10] are some examples of point feature trackers. Optical flow has been shown
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to be one of the most successful features for tracking moving objects. Some of the

popular approaches for optical flow computation include Horn and Schunck [11],

Lucas and Kanade [12], Black and Anandan [13], Szeliski and Couglan [14] and

Large Displacement Optical Flow [15].

The recent works proposed by Zheng et al. [16], Zhao et al. [17] and Yin

et al. [18] rely on data from sensors mounted on the body of the subject, and

while they are not noise-free, they are far more accurate for the class of problems

tackled in those respective works. The technique of Zheng et al. [16] relies on using

large amount of annotated data for the application of data mining. However,

our proposed model does not have large amounts of data and our criteria for

categorization is not quite straight forward or even describable in the first place,

as in Zheng et al. [16]. The method used in Zheng et al. [16] is similar to our

method in that both rely on Kalman filtering and post processing to remove noise;

however, while Zheng et al. [16] relies on pre-computed trajectories for mining, our

method computes trajectories from raw data. The proposed method also attempts

to match motion trajectories using Shape Context, similar to that of Zheng et

al. [16]; the major difference is that our trajectories unlike Zheng et al. [16] are

repetitive and noisy and thus are challenging. While the applications are different,

the overall pipeline of Zheng et al. [16] is very similar to our proposed one, except

that we do it without supervision and with the help of very little data.

Zhao et al. [17] propose several methods to use pre-computed trajectories from

sensors for performing data compression. They present frameworks that exploit

reference based spatial and spatio-temporal compression. Though a variety of
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frameworks are engineered in Zhao et al. [17], they are mostly built for data com-

pression and similar to Zheng et al. [16], and also rely on availability of large

amounts of data and supervision.

Yin et al. [18] combine activity trace from activity sensors with GPS trace to

model generic human activities. The human activities modeled in Yin et al. [18]

are more sophisticated, describable, and semantically meaningful, whereas the

trajectories that we compute from the rodent’s motion have no clear semantic

categorization. In addition, as noted above, our method approximates trajectories

without motion sensors by just using image sequences and is bound to be much

more noisy.

Moreover, we attempt to find differences in trajectories, as opposed to learning

or modeling a known (ground truth) categorization of trajectories [16, 17, 18]. We

also face another major challenge: even if we find ways to procure large amounts

of data, we will not be able to obtain annotations, as the purpose of the research

itself is to identify potential cues that human subjects fail to recognize, so that it

could form the basis for automatic categorization. Thus there is no straightforward

way to generate ground truth annotations for our data that can be quantified as

a specific behavior or specific action.

In addition, unlike in [16, 17, 18], our goal is to eliminate the need for mounting

sensors on the body of the rodent which would hamper its natural activity, thereby

defeating the very purpose of this research. Thus, we rely on approximating the

trajectories from infrared sensors, instead of mounting accelerometers or motion

detection sensors to gather motion cues; the lack of motion sensors consequently
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adds significant amounts of noise to the data. On the other hand, we obtain the

data that represent the natural behavior of the rodent.

There have been several works which have tried to study the effects on labo-

ratory rodents once they have been induced with TBI. Yu et al. [19] established

that the velocity and impact of the Controlled-Cortical Impact (CCI) lead to ei-

ther mild, moderate, or severe TBI in the laboratory rodents. The authors also

claimed that rodents with the largest volume of damaged brain tissue exhibited the

worst behavioral impairments. Washington et al. [20] claimed that CCI produces

severity-dependent differences in lesion volume and also showed that CCI-impacted

rodents do not show any behavioral changes in the open-field tests. In the work by

Sarma et al. [21], the rodents were subjected to repeatable direct injury to the left

fronto-parietal cortex via CCI, and the extent of TBI was studied by estimating

the brain lesion volume.
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Chapter 3

Dataset

Our dataset comprises of videos in which laboratory rodents are introduced to a

controlled environment as shown in the Figure 3.1. The rodents were expected

to solve or attempt to solve the puzzle of getting out of the glass box which is

similar to a maze solving problem. The experiment was conducted on 6 rodent

subjects, once before impacting them with TBI (i.e., pre-TBI case) and once after

(i.e., post-TBI case), resulting in a total of 12 videos. Capturing changes in motion

cues of a rodent pre-TBI vs. post-TBI is expected to give insights pertaining to

the extent of impact of TBI on the rodent subject’s behavior. The videos used

in the research have a resolution of 240 × 320 pixels, and were recorded using

an infrared (IR) camera. The infrared cameras were the primary choice for video

acquisition as rodents are nocturnal, and their natural behavior is better observed

under little to no light. The video dataset for our experiments was provided by

Regenerative Bioscience Center (RBC), UGA.
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Figure 3.1: An illustration of the controlled environment.

3.1 Video Annotation Tool

For the purpose of annotating the object’s position over the length of the video, an

annotation module was developed using Tkinter, the Python GUI library. Most

object annotation tools require the user to provide a bounding box that compactly

encloses the object. In our case, it is infeasible, as we deal with over 40,000

frames containing the OOI across multiple videos. Thus, in order to perform the

annotation, we developed a GUI scheme that procures the 2D points based on

mouse hovering. Mouse hover simply requires the user to place the mouse cursor

over the OOI and move it along with the OOI as the OOI moves in the remainder

of the video. The scheme does not require mouse clicks or bounding boxes which

are painstaking to annotate. The frame rate of the video is slowed down in the

toolkit so that the user has sufficient time to follow the OOI (i.e., rodent subject)

as accurately as possible. The video annotation tool also comes with the following
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features: (a) an option to load the video from the directory through a GUI, (b)

an option to select the format in which the annotations are to be saved to the

system, (c) an option to enter the desired name for the output file, (d) options

to change the frame rate of the video during the mouse hovering process thereby

enabling the user to slow the video down further if necessary or to increase the

speed of the video, and (e) an option to pause the video between frames. Figure 3.2

demonstrates the working of the video annotation tool.

14



Figure 3.2: Snapshots explaining the functioning of the video annotating
tool (plugin). (a-c) explains how the video is loaded, and (d) explains
how the mouse hover is done with a video interface, making the anno-
tation of such large videos easier.
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Chapter 4

Video Object Tracking

4.1 Object Detection

Object detection is the task of finding the different objects in an image and clas-

sifying them. It is challenging mainly because of: (a) within-object intra-class

variation; for example, a car though considered as a single object for the sake of

object detection, is actually a large class of objects that could be further sub-

classified based on attributes such as the type of car (sedan, SUV, or hatchback),

model, make, design, changes in appearances over time (vintage vs. new), to cite

a few; (b) variation in appearance due to pose or viewpoint of the object; for ex-

ample, the front view of a truck is completely different from its rear view. Humans

inherently apply context learned over time to identify and associate these subcat-

egories with the same object category, but it is very challenging to design such an

object detection system; and finally (c) rodents (the class of objects that we deal

16



with, in this thesis) have non-rigid shapes and are particularly challenging to de-

tect since the underlying shape cues are highly varying and extremely challenging

to model, and requires more complex reasoning.

4.2 Object Tracking via Optical Flow

4.2.1 Overview of Optical Flow

Optical flow or optic flow captures the apparent motion of object(s), surface(s) or

edges(s) of a scene when the observer is in motion relative to the scene. Imagine

that the observer is traveling in a vehicle. The observer views the buildings, trees,

people etc. as moving objects irrespective of whether these objects are actually

in motion or not. Also, the objects closer to the observer appear to move faster

compared to objects farther away.

The computed optical flow depends on both the relative speed and the distance

between the observer and the target. The magnitude of the optical flow doubles in

either case; whether the observer’s speed is doubled, or the distance between the

target and the observer is halved. The optical flow is at its largest when the target

object’s motion is tangential to the observer’s motion, or when the target object

is vertically above or below the observer. In the case of an object that is in front

of the observer, though the object may seem to be at rest relative to the observer,

the edges of the object, which are not exactly in front of the observer will seem to

move, and the object will appear to grow in size. Figure 4.1 shows an example of

optical flow. The Lucas-Kanade (LK) optical flow and Large Displacement Optical
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Flow (LDOF) are two popular optical flow algorithms used extensively in several

computer vision applications.

The literature pertaining to object tracking can be categorized into two broad

categories: point feature-based methods, and continuous optical flow-based meth-

ods. Point feature-based methods are coarse-grained but fast to compute whereas

continuous optical flow-based methods are fine-grained and slower (since corre-

spondence is computed for each pixel in the source image). Since it computes

pixel-to-pixel correspondence, the LDOF algorithm is usually very slow. However,

the LDOF algorithm has been shown to be successful in object tracking appli-

cations where the object’s features vary significantly from those of the object’s

background.

4.2.2 Large Displacement Optical Flow

The LDOF algorithm employs a coarse-to-fine variational framework for optical

flow estimation between two image frames. The LDOF algorithm incorporates

descriptor matches in addition to the standard brightness and gradient constancy

constraints, for dealing effectively with large displacements of small as well as

large structures. Descriptor matches are obtained by matching densely sampled

histogram of oriented gradients (HOG) descriptors in the two images. The dis-

placement field is then computed by minimizing the energy functional.

In order to minimize the energy functional using a coarse-to-fine pyramidal

scheme, at each level in the pyramid, the non-linear Euler-Lagrange equations

are solved via multiple fixed-point iterations. At each iteration, the sparse linear
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Figure 4.1: Examples of optical flow: columns 1 and 2 are the image pairs
under consideration and their corresponding optical flow is plotted as a
color map in column 3.
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system is solved efficiently via successive over-relaxation (SOR) steps. Intuitively,

at each pyramid level, the pixel displacement estimates and the pairwise/ unary

robust pixel potential terms are updated iteratively, i.e., given the current pixel

motion estimates and the displacement field, the robust unary and pairwise poten-

tial terms are computed, and vice versa. Once a fixed-point for the computation

at a particular level in the pyramid has been reached, the computed flow field is

up-sampled to initialize the computation at a finer pyramid level. Figure 4.1 shows

an example output of the LDOF algorithm.

In the proposed framework, the LDOF algorithm is used for extracting the

temporal cues underlying the trajectory of the OOI in the video. This is accom-

plished by computing the optical flow-based correspondences of the OOI across

the video frames which then serve as the backbone for the Kalman filter-based

tracking algorithm.

4.2.3 Kalman Filtering

The Kalman filter is a traditional approach for object tracking. Proposed by

Rudolph Kalman in the 1960s, Kalman filter provides a computational means for

estimating and predicting the state of a continuously changing system. Consider

the example of a GPS system in a vehicle. The measurement of the GPS is affected

by noise (usually called the measurement noise). The strength of the noise can

be known by knowing the variance associated with the system state (denoted by

σ2), assuming a normal distribution for the noise. The variance associated with
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the GPS sensor is precomputed and is accounted for in the Kalman filter-based

tracking algorithm.

Now, imagine the case of the sensor losing the GPS signal. The navigation

system is totally unclear as to where it is now positioned. Thus, there clearly is

an uncertainty with regard to the state of the GPS location. When the variance

associated with the GPS location is quite large, its probability distribution curve

becomes almost flat. In this situation, a Kalman filter will exploit the previous

state of the system and use a set of system variables along with a likelihood

probability to predict the next possible state of the system. Figure 4.2 shows the

schematic diagram of Kalman filter. The current object position is fed as input

to the Kalman filter. The Kalman predictor stage makes use of the current state

and measurement noise covariance in order to compute an a priori estimate of

the next state. The Kalman corrector stage computes an updated measurement

in order to obtain a better a posteriori estimate of the next state. The predictor

and corrector stages operate hand-in-hand in a cyclic manner.
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Figure 4.2: Overview of the Kalman filter pipeline.
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Chapter 5

Proposed Approach

The proposed approach makes use of a combination of two well known methods

in computer vision for the video tracking problem i.e., LDOF and the Kalman

filter. The proposed architecture is shown in Figure 5.1. In our experiments,

the estimated next state is stored, and in case the next position estimated by

the LDOF stage happens to be an outlier, the previously stored estimated next

state is used as the input to the Kalman filter stage. In order to do the outlier

detection, for each given trajectory (pre-TBI or post-TBI), we use the mean and

the standard deviation computed using the corresponding ground truth positions’

data. In order to compare the performance of standalone LDOF-based tracker and

the proposed Kalman filter+LDOF tracker, the respective tracking results and the

corresponding object trajectories are observed over 85 consecutive frames as shown

in Figure 5.2 and Figure 5.3.
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Figure 5.1: Proposed Object Tracker Architecture.

5.1 LDOF Results

The results of the LDOF algorithm for the pre-TBI and post-TBI cases are shown

in Figure 5.2. As we can see from the results, the LDOF algorithm loses track of the

object in case of illumination noise, and also during sudden pauses in movement,

since the LDOF algorithm tracks the object using optical flow that requires the

object to be in constant motion.

5.2 Kalman filter+LDOF Tracker Results

The Kalman filter+LDOF tracker results are shown in Figure 5.3. The Kalman

filter uses a probability model for predicting the object position based on the

object’s previous state: which consists of its previous position, previous velocity,

and previous acceleration. As we can see from Figure 5.3, the Kalman filter+LDOF
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Figure 5.2: LDOF results (Left: LDOF tracker results, Right: Corre-
sponding object trajectory (red and violet indicate the start and end
points of the trajectory, respectively)).

tracker is more accurate in tracking the trajectory of the object, and it even

captures a minor change in motion direction towards the end of the observed

trajectory.

The difference in behavior of the trajectory of a rodent in its post-TBI case,

as compared to its pre-TBI case, can be effectively studied only if the behavioral

cues that distinguish one from the other can be identified. In order to evaluate the

reliability of the behavioral cues obtained, we also require efficient classification

algorithms which can verify how far these cues are helpful in classifying whether

a given rodent subject belongs to pre-TBI case or post-TBI case.
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Figure 5.3: Kalman filter+LDOF tracker results (Left: Kalman fil-
ter+LDOF tracker results, Right: Corresponding object trajectory (red
and violet indicate the start and end points of the trajectory, respec-
tively)).
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Chapter 6

Classification Techniques: An

Overview

The most popular classification algorithms which can be used as evaluation pro-

totypes for classification based on behavioral cues are Support Vector Machine

(SVM), Multilayer Perceptron (MLP) and OneVsRest classifier.

6.1 Support Vector Machines

A Support Vector Machine is a discriminative classification technique that deals

with high-dimensional data. It is a classification algorithm that works well on

small data sets, providing significant accuracy while requiring less computational

power. The goal of a SVM is to design a hyperplane that best splits or classifies

the data points into the given classes, in such a way that maximizes the margin

between the data points of different classes. In other words, we can split the data
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in several ways, but there will be only one way to split it while maintaining the

widest gap or margin between the classes, which is what SVM accomplishes.

The hyperplane computed by the SVM classifies the classes/ groups while op-

timizing the margin between the nearest data points between the distinct classes.

The points that are nearer to this hyperplane are called support vectors. The

positions of these support vectors are crucial in determining the position of the

hyperplane. The distance between the support vectors and the hyperplane needs

to be as large as possible. If an existing support vector moves or gets deleted, the

optimal hyperplane will also change.

When dealing with the classification of two classes in 2D feature space, the

hyperplane can be visualized as a line that maintains the maximum distance be-

tween the nearest data points of these two classes. With a larger dimensional

feature space, the hyperplanes are multidimensional. Also, with a larger num-

ber of classes, more hyperplanes are needed. However, once we are dealing with

more than three classes in high-dimensional feature space, it can be quite hard

or impossible to visualize all the hyperplanes. Maximizing the margin is a con-

strained optimization problem, and can be solved using the technique of Lagrange

multipliers. Figure 6.1 illustrates how SVM classifier works on data.

6.2 Kernel SVM

When dealing with data that is not linearly separable, we utilize the idea that

linearly non-separable features mostly become separable once they are projected
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Figure 6.1: SVM Classification example.
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to high-dimensional space. This is the concept behind SVM using kernel functions.

In our experiments, we used Radial Basis Function (RBF) [40] as the kernel. Figure

6.2 illustrates how Kernel SVM classifier works on data.

Figure 6.2: Kernel SVM Classification example.
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6.3 Multilayer Perceptron

A perceptron is a classifier which classifies the input by separating two categories

using a straight line. The input to a perceptron is a feature vector ‘u’ (with

an added bias denoted by ‘b’). The MLP computes the output ‘v’ as a linear

combination of input weights and sometimes operating on it using a non-linear

function f(u). The output of a perceptron is of the form:

v = w ∗ u+ b (6.1)

where, w = [w11, w12, w21, w22] is the weight vector.

A multilayer perceptron is a feed-forward neural network consisting of multiple

perceptrons, that is widely used as a classifier and logistic regressor. MLP consists

of a minimum of three layers, each having atleast one perceptron. The first layer

is known as the input layer, the second layer is the hidden layer and the third

layer is known as the output layer. The input layer receives the input signal,

and the output layer computes the prediction or decision corresponding to the

input signal. The number of hidden layers for MLP can vary depending on the

problem and the data it is applied to. The hidden layer(s) form the heart of the

computation involved in a MLP, and constitute for the nonlinear nature of MLP.

MLP can be regarded as a nonlinear function which can be used to approximate

any continuous function. Figure 6.3 shows a MLP having a single hidden layer.

In Figure 6.3, n0 forms the input layer, the layers n1, n2 and n3 form the hidden

layer, and n4 forms the output layer.
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Figure 6.3: Multilayer Perceptron. n0 forms input layer, [n1, n2, n3] forms
the hidden layer, and n4 forms the output layer.

Given an input u of dimension m and a target y, a MLP learns an approxima-

tion mapping,

f(.) : Rm → Rn (6.2)

where, m is the dimension of input and n is the dimension of the output.

6.4 OneVsRest Classifier

OneVsRest classifier is a popular approach to solve multi-label classification prob-

lems. OneVsRest classifier is a technique which trains N binary classifiers on one

particular class at a time, leaving out the rest of the classes. One major disadvan-
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tage is that if the number of classes are huge, it takes a proportionally long time

period for training and prediction.
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Chapter 7

Feature Representation

7.1 Learning Behavioral Cues

In order to analyze the aspects of the object position that are relevant to classify

the subject in the given video as pre-TBI or post-TBI, we employed SVM, Kernel

SVM and MLP. The parameters considered for the evaluation are position vec-

tor (containing respective position coordinates along the the various trajectories

windowed over a fixed time duration), distance vector (containing respective dis-

tances covered every unit time along the various trajectories windowed over a fixed

time duration), pose vector (containing respective object poses or orientations win-

dowed over a fixed time duration) and slope vector (containing respective slopes

of object trajectory paths windowed over the fixed time duration). The results of

the study are shown in Table 7.1. The accuracy is computed as the ratio of the

number of test samples whose labels (i.e., whether it is pre-TBI or post-TBI) are
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correctly predicted to the total number of test samples. We found that the dis-

tance vector and the slope vector generated from the object trajectory were better

features for the classification of the subject as pre-TBI or post-TBI as compared

to object positions over the time duration of the trajectory. However, most of the

results are random in nature (with accuracy as low as 0.5), and hence we require

better features for efficient learning of the trajectory behavior.

Figure 7.1: Illustration of trajectory parameters considered, using first
five trajectory positions for the pre-TBI case of rodent subject A3.
(x1, y1) through (x5, y5) denote the subject positions at consecutive time
instants, θ1 through θ4 denote the angle between consecutive paths in
the trajectory, and d1 through d4 denote the trajectory path lengths at
consecutive time instants.

In order to find the relative nature of the rodent trajectories, the relative tra-

jectory distances (refer Table 7.2) were computed. Given two rodent trajectories,
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Figure 7.2: Relative trajectory distance illustrated using first five trajec-
tory positions of pre-TBI and post-TBI cases of rodent subject A3. P1

through P5 and P
′
1 through P

′
5 denote the subject positions at consecu-

tive time instants for the pre-TBI and post-TBI cases, respectively. d1
through d4 denote the relative trajectory Euclidean distance at consec-
utive time instants.

Table 7.1: Classification accuracy using Relative Trajectory Distances.

Parameter(s) Used Accuracy
Linear SVM SVM (RBF kernel) MLP

Position 0.48 0.52 0.52
Distance 0.47 0.58 0.44
Slope 0.53 0.55 0.56
Pose 0.48 0.52 0.48

Position+Distance 0.47 0.52 0.45
Position+ Slope 0.52 0.52 0.52
Position+ Pose 0.47 0.52 0.52
Distance+ Pose 0.44 0.52 0.44
Distance+ Slope 0.47 0.52 0.48
Slope+ Pose 0.31 0.34 0.56

Position+Distance+ Slope+ Pose 0.47 0.52 0.45
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the relative trajectory distance is computed as the mean of the Euclidean distances

between the respective trajectory points of the two trajectories. Figure 7.2 illus-

trates the idea of relative trajectory distance computation. The distance values

shown in Table 7.2 are the respective mean values of the relative trajectory Eu-

clidean distances between the trajectories over a fixed time duration. The mean

and standard deviation of the respective distance distributions are shown in Ta-

ble 7.3. Figure 7.3 illustrates these probability distributions. As can be inferred

from Table 7.3 and Figure 7.3, the probability distributions of relative trajectory

distances for pre-TBI vs. pre-TBI cases, post-TBI vs. post-TBI cases and pre-TBI

vs. post-TBI cases have significant overlap, and hence a direct approach to discern

the behaviors defined by these distributions is quite a difficult task.

Table 7.2: Relative Trajectory Distances (pre-TBI vs. post-TBI).

V ideos Compared Mean Euclidean distance
A3 : pre− TBI&post− TBI 86.2
B2 : pre− TBI&post− TBI 97.9
C1 : pre− TBI&post− TBI 85.2
D1 : pre− TBI&post− TBI 83.1
E2 : pre− TBI&post− TBI 94.1
F2 : pre− TBI&post− TBI 86.9

Table 7.3: Mean and Standard Deviation for the Relative Trajectory
Distance values.

Case Mean Standard Deviation
pre-TBI vs. pre-TBI 92.24 5.50

post-TBI vs. post-TBI 84.52 4.22
pre-TBI vs. post-TBI 87.19 4.42
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Figure 7.3: Probability density functions (PDFs) for relative trajectory
distances for pre-TBI vs. pre-TBI, post-TBI vs. post-TBI and pre-TBI
vs. post-TBI cases.

7.2 Matching trajectories via Shape Context

7.2.1 Overview of Shape Context

Shape Context [22] is a feature descriptor widely used for object recognition. Shape

Context is used for describing shapes, which can be then used for tasks such as

computing shape similarities and further generate point correspondences [23] [24].

In order to describe a shape, we start with n points on the contour of the shape.

For each point P on the contour, we find the distance (vectors) and the angle to

the remaining n− 1 points on the contour, and compute the resulting histogram.

The histogram gives the Shape Context of those respective points. The angle
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measured is between the respective local tangents and the distance values used

are log-distances. For each point P on the contour, the set of all such vectors is

a rich description of the shape of the object localized at the given point P , but is

too detailed a descriptor. The distribution of the vectors over all contour points

could be considered as a robust, compact and highly discriminative descriptor. For

a given point pi on the contour, the corresponding Shape Context is the coarse

histogram of relative coordinates of the remaining n− 1 points computed as:

hi(k) = #{q 6= pi : (q − pi) ∈ bin(k)} (7.1)

where, q denotes the points on the contour other than the point under consid-

eration, pi. The bins are considered to be uniform in log-polar space. For a given

point pi on the contour, we consider 12 angle bins and 5 log-distance bins: a total

of 60 bins. Figure 7.4 illustrates the Shape Context computation as described in

the original paper by Belongie et al. [22].

7.2.2 Match trajectory signatures using Shape Context

In order to check the similarity between the trajectories of the pre-TBI and post-

TBI cases, we use Shape Context. We extract the trajectory of the rodent for

a fixed time duration (i.e., fixed number of frames), for each pair of source and

target videos. The source and target videos could belong to pre-TBI or post-

TBI rodent subject. For each of the trajectories, we compute the Shape Context

representation which is a histogram representation that implicitly captures the
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Figure 7.4: Shape Context computation and matching. (a, b) Sampled
edge points of two shapes. (c) Diagram of log-polar histogram bins used
in computing the shape contexts. We use 5 bins for log r and 12 bins
for θ. (d-f) Example Shape Contexts for reference samples marked by
o, �, / in (a,b). Each Shape Context is a log-polar histogram of the
coordinates of the rest of the point set measured using the reference
point as the origin (Dark = large value). Note the visual similarity of the
Shape Contexts for o and �, which were computed for relatively similar
points on the two shapes. By contrast, the Shape Context for / is quite
different. (g) Correspondences found using bipartite matching, with
costs defined by the χ2 distance between histograms. (Figure courtesy:
Belongie et al. [22]).
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shape of the trajectory. Then, we compute the Euclidean distance between the

respective histograms. The histogram distance gives a measure of how similar

or dissimilar the trajectory shapes are. The larger the distance value the more

different the relative trajectory behaviors are, and vice versa.

The Shape Context results for the pre-TBI and post-TBI cases of the rodent

subject “A3” are shown in Figure 7.5. Tables 7.4 and 7.5 show the evaluation

measures based on the Shape Context computation. Table 7.4 shows the evaluation

of matching pre-TBI case of rodent subject “A3” with its post-TBI case, and the

pre-TBI as well as post-TBI cases of the rest of the 5 rodent subjects used in

our experiments. Table 7.5 shows the evaluation of matching post-TBI case of

rodent subject “A3” with the pre-TBI as well as post-TBI cases of the rest of the

5 rodent subjects used in our experiments. As described in Belongie et al. [22], the

matching correspondences are found using bipartite matching, with costs defined

by the χ2 distance between histograms. Given the set of costs {Cij} between all

pairs of points i on the first shape and j on the second shape, we want to minimize

the total cost of matching, subject to the constraint that the matching be one-to-

one. This is an instance of the square assignment (or weighted bipartite matching)

problem, which can be solved in O(N3) time using the Hungarian algorithm [37].

In Belongie et al. [22], the authors use the more efficient algorithm proposed by

Jonker et al. [38]. The total cost of matching consists of an affine cost and tangent

angle dissimilarity cost. The affine cost is the computational cost involved in

computing the affine transformation model during the shape matching process.

The tangent angle dissimilarity cost is the measure of dissimilarity of local tangent
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angles. The algorithm also computes Shape Context cost and error values. The

Shape Context cost is the computational cost incurred in computing the Shape

Context representation for the shapes which are matched, and the error values

measure the Euclidean distance between the shapes being matched.

Figure 7.5: Shape Context Sample Results: A3(pre − TBI) vs. rest (a-f),
and A3(post− TBI) vs. rest (g-i).
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Table 7.4: Affine Cost, Shape Context Cost and Error Values for the
Shape Context computation for the rodent subject A3(pre − TBI) vs.
rest case.

Video Reference Affine Cost Shape Context Cost Error
A3(post− TBI) 2.9505 0.3077 39.5892
B2(pre− TBI) 0.5018 0.3942 76.7967
B2(post− TBI) 0.2501 0.3415 70.8682
C1(pre− TBI) 4.6099 0.3172 57.0706
C1(post− TBI) 0.5374 0.2526 79.9706
D1(pre− TBI) 3.9108 0.4160 37.5964
D1(post− TBI) 0.3521 0.3563 42.6753
E2(pre− TBI) 1.3637 0.2543 80.2924
E2(post− TBI) 0.6120 0.2787 65.4966
F2(pre− TBI) 0.9153 0.3063 61.8775
F2(post− TBI) 1.2227 0.2807 57.0941

Table 7.5: Affine Cost, Shape Context Cost and Error Values for the
Shape Context computation for the rodent subject A3(post − TBI) vs.
rest case.

Video Reference Affine Cost Shape Context Cost Error
B2(pre− TBI) 2.2970 0.4170 69.7543
B2(post− TBI) 2.7877 0.2738 56.2740
C1(pre− TBI) 2.4631 0.4189 22.7920
C1(post− TBI) 1.1328 0.3092 44.7031
D1(pre− TBI) 1.5061 0.2982 36.4963
D1(post− TBI) 0.6451 0.5376 23.8164
E2(pre− TBI) 1.1572 0.2933 62.5499
E2(post− TBI) 1.6746 0.2360 44.7109
F2(pre− TBI) 2.0638 0.2152 71.6708
F2(post− TBI) 2.8664 0.3174 36.7060
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7.3 Bag-of-Features

7.3.1 Overview of Bag-of-Features

The Bag-of-Features (BoF) model is a simplified feature representation commonly

used in natural language processing (NLP) and information retrieval (IR). In the

BoF model for NLP, textual data such a sentence or a document is represented as

the bag (or multi-set) of its words while ignoring the grammar or the order of word

occurrences, and retaining only the multiplicity of the words. BoF is a widely used

descriptor in computer vision [25]. The earliest reference to BoF can be found in

the work by Harris [26]. BoF is widely used in IR for document classification tasks

where the aim is to find the frequency of occurrences of words in documents, and

consequently use it to train a classifier.

Consider an example of two documents: (1) “John likes pancakes. Michelle

likes pancakes too.”, and (2) “John also likes puddings.” Based on the these two

text documents, a list is constructed for each document as follows:

[‘John′, ‘likes′, ‘pancakes′, ‘Michelle′, ‘too′, ‘also′, ‘puddings′]

The corresponding bag-of-words representations are as follows:

BoW1 = {‘John′ : 1, ‘likes′ : 2, ‘pancakes′ : 2, ‘Michelle′ : 1, ‘too′ : 1}

BoW2 = {‘John′ : 1, ‘also′ : 1, ‘likes′ : 1, ‘puddings′ : 1}

As the order of the elements is not relevant, {‘too′ : 1, ‘Michelle′ : 1, ‘pancakes′ :

2, ‘likes′ : 2, ‘John′ : 1} is also BoW1.

BoF model is mainly used as a tool for feature generation. In NLP, BoF model

for text is used for computing factors which characterize the text such as term
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frequency: the number of times a particular term appears in the document. The

lists of term frequencies, however, do not preserve the order in which the words

may appear in the documents. This type of feature representation is found to be

useful in applications such as email filtering [25]. The idea is to utilize the “term

frequency” of words likely to appear in spam emails and use them as a criteria for

classifying the given email to be spam or not. Here, two bags of features are used

for training the classifier: one containing words which appear mostly in legitimate

emails and the other containing words likely to come across only in spam mails.

Bayesian spam filtering [27] is a widely used technique which models the email

to be comprised for a set of unordered set of words randomly picked from two

probability distributions: one representing spam email and the other representing

legitimate email. Bayesian spam filter assumes that the email is formed by a pile

of words randomly picked from one of the two feature bags, and uses Bayesian

probability to predict to which feature bag the given email is likely to belong to.

BoF for images involves 3 main steps: (1) feature detection and representation,

(2) image representation, and (3) category classification. Feature detection can be

performed using a regular image grid approach [29], an interest point detector

[29, 30, 31], random sampling [32] or segmentation-based patches [33]. Feature

representation involves detecting the image patches corresponding to the interest

points [34, 35], normalizing the patches and computing a feature descriptor [10].

Once we have the feature descriptor, the next stage is to generate the codeword

dictionary [31]. The codeword dictionary contains the image patches or the image

feature representation (termed as codewords) which can be used as a basis for
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generic representation of the images. The next step is the computation of the

bag-of-features representation. For this purpose, we find the codewords’ frequency

corresponding to each image in the training set, and represent each image in the

training set as a ‘bag’ of codeword frequencies. This image representation can

be used for training a category classifier. The entire set up can be collectively

termed as a bag-of-features classifier. In order for the classifier to be efficient, the

features within the bag-of-features descriptor should be generalizable beyond the

training set data. For instance, in our experiments, we use the events associated

with the rodent movement such as distance, pose, rate of change in distance and

pose gradient as the codewords.

7.3.2 Modeling behavior by identifying events

Any behavior episode which is useful for analyzing the effect of TBI on the subjects

constitutes an event. In our analysis, we use episodes based on trajectory distance,

rate of change in trajectory distance, object pose, and rate of change in the object

pose as events, and we try to model the behavior of the subject using a “bag-of-

event frequencies” descriptor. The reason we chose these episodes as events, is

because these are salient actions which convey information regarding the behavior

of the subjects along the trajectory, which can possibly shed light on the extent

of the impact TBI had on them.

In our work, we use the “N-grams model” [28] for feature representation. This

is because the BoF model is an orderless feature representation. For instance, in

the case of the example above, the Bag-of-Words representation of “John likes
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pancakes. Michelle likes pancakes too.” will not take into consideration the

fact that the verb “likes” always follows a noun such as “John”. Using a “N-

grams model”, we can have the feature representation for the first document in the

example as [‘John likes′, ‘likes pancakes′, ‘Michelle likes′, ‘pancakes too′].

Thus we can see that the “N-grams model” helps to preserve the spatial relation of

the words rather than just binning them. Using the mathematical prefix notation,

if N=1 we call the model an uni-gram model, if N=2 we call the model a bi-gram

model and so on. We use a bi-gram model for feature representation of events.

In our experiments, for instance, the distance traversed along trajectory in unit

time could constitute an event for a uni-gram model whereas two consecutive an-

gular distances taken by the rodent subject could constitute an event for a bi-gram

model.

Through our experiments, we observed that directly matching the behavior

signatures is not helpful since the movement of the rodent is not restricted to any

fixed trajectory, and it is free to move as it wishes. Therefore, there is no point in

directly matching the behavior signatures as it conveys little reliable information.

The direct matching of trajectories was attempted using Shape Context as

shown in Section 7.2.2. As we can see from Figure 5.2 and Figure 5.3, and the

results shown in Figure 7.5, the nature of the trajectory varies widely across the

videos and hence a direct matching of the trajectory makes little sense.

Figure 7.6 shows the trajectory pairs of pre-TBI and post-TBI cases of 3 rodent

subjects for the first 50 frames (∼ 50 seconds). As we can observe from the pairs in

the figure, the trajectory for the subject does not follow any reliable, interpretable
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path. For the pre-TBI and post-TBI cases of the same subject, the nature of the

trajectory is very diverse and there are no available benchmark tracking cues for

comparison. In order for a reliable direct comparison of the trajectories traversed

by the subjects to make sense, the trajectory should be more sophisticated and

should be the same for all, so that we have a benchmark trajectory for comparison

with the trajectory traced by the subject. In such a case, given a fixed trajectory,

one would be able to analyze how the subjects, prior to TBI and after, would

behave along the fixed trajectory, and thus, one could reliably draw a comparison

of their respective behaviors.

In our proposed approach, instead of comparing the trajectories which are

unconstrained and arbitrary, we identify a set of repeating, uniquely identifiable

and salient motion cues which we term as ‘events’. Our approach models the

occurrence and variation of these events over time. Figure 7.7 shows how we

define the events; we use the rodent’s pose as the “event” here. We consider the

distance traveled by the subject across time, the subject’s pose across time, the

rate of change in distance traveled across time (velocity gradient or acceleration)

and the rate of change in pose across time (pose gradient) as salient motion cues

for modeling the behavior of the subject over time. The distance traveled by the

subject per unit time is a indicative measure of the alacrity of the subject, pre-

TBI and post-TBI. The pose of the subject indicates a measure of disorientation

in the subject’s behavior; the greater the number of poses a subject assumes in

a fixed time duration the more disoriented its behavior is and vice versa. The

rate of change in distance traversed over fixed time periods is a measure of mental
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Figure 7.6: Trajectory Pairs (Left: pre-TBI, Right: post-TBI) of 3 sub-
jects.
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Figure 7.7: Left: A Bag-of-Feature example using rodent pose, Right:
The Bag-of-Feature histogram for the subject, using pose as the event
for feature representation.

vagueness; the subject is not certain about how fast to travel along the direction

of its motion. The rate of change of pose is a clear indication of the subject’s

mental confusion regarding which direction to look towards or follow. However,

the process of directly binning the occurrence of events makes us lose the temporal

aspect of occurrence of the events. Since behavioral analysis is a time-dependent

process, we need to model the feature representation as a function of time. This

is achieved by our proposed feature representation using Temporal BoF (T-BoF).

7.3.3 Temporal Bag-of-Features

Temporal Bag-of-Features (T-BoF) models the Bag-of-Features (BoF) representa-

tion as a function of time. Figure 7.8 shows the Temporal Bag-of-Features (T-

BoF) histograms for the pre-TBI and post-TBI cases, using tracking results and

ground truth data, and Tables 7.6 through 7.8 show the corresponding histogram
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(Euclidean) distances between the Temporal Bag-of-Features (T-BoF) representa-

tions.

Figure 7.8: Temporal BoF histograms (based on episode distance) for the
same rodent subject A3 (First row: pre-TBI and post-TBI (Tracking
results), Second row: pre-TBI and post-TBI (Ground Truth)).

In the earlier representations such as the relative trajectory distance measures

and Shape Context representation, we cannot employ any machine learning mod-

els for successfully classifying the obtained feature representation as belonging to

either pre-TBI or post-TBI case, owing to three obvious reasons: (1) the feature

representation is not an ubiquitous one, (2) there is not enough training data, and

(3) there are no reliable cues to discern the nature of one set of data from the

other. As we can see from the results obtained in Table 7.1, training any machine

learning algorithm requires more data with reliable cues. In Table 7.1, Support

Vector Machines (SVM) and Multilayer Perceptron (MLP) were used as initial
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Figure 7.9: Temporal BoF histograms (based on rate of change in episode
distance) for the same rodent subject A3 (First row: pre-TBI and post-
TBI (Tracking results), Second row: pre-TBI and post-TBI (Ground
Truth)).

prototypes for testing the efficacy of machine learning algorithms in learning the

feature representations for the data. As we can see from the results shown in Table

7.1, the machine learning algorithms fail to identify the features as belonging to

either pre-TBI or post-TBI cases.

The use of BoF approach for obtaining the feature representation can provide

us with more reliable cues. In case of pose binning, we use a bi-gram model for

binning the events. We also impose a criterion that the consecutive pose angles

should add up to an angle threshold and the distance traveled along the arcs

forming the pose angles are individually above a distance threshold. In case an
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Figure 7.10: Temporal BoF histograms (based on rate of change in
pose) for the same rodent subject A3 (First row: pre-TBI and post-
TBI (Tracking results), Second row: pre-TBI and post-TBI (Ground
Truth)).

event satisfies the above threshold conditions, we assign it to the corresponding

bin. In our experiments, we used an angle threshold of 50◦ and a distance threshold

of 10 pixels. We chose the bin resolution to be 20◦ and thus have 18 bins (for an

angular coverage of 360◦). Since we have a pair of poses constituting an event,

it leaves us with two set of 18 bins each and a total of 324 bin combinations and

hence 324 histogram bins. In the case of rate of change in distance, we use a

bin resolution of 5 pixels and in the case of rate of change in pose, we use a bin

resolution of 5◦.
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Temporal histogram is the modeling of the histograms as a function of time.

The histograms are computed over fixed time duration of the given videos. Here,

we compute histogram corresponding to video chunks having 100 frames (∼ 100

seconds) each. Since previous research has shown that the activity of the pre-TBI

and post-TBI subject can be efficiently studied only for the first 10 to 12 minutes,

we use only the activity within initial 12 minutes for the temporal histogram

generation.

Our approach tries to reason temporally by maintaining a record of the occur-

rence and variation of the salient motion cues which constitute the events being

monitored over time. These salient motion cues model the behavior of the subject

over time.

For analysis, we compared each of the histograms of a particular video with

the rest of its histograms. We also compared each histogram of the pre-TBI case

of the subject with the histograms corresponding to the same subject’s post-TBI

case.

Table 7.6: Euclidean distances between Temporal BoF descriptors (Tra-
jectory distance episodes) for the rodent subject A3 (pre-TBI vs. pre-
TBI). Both rows and columns correspond to pre-TBI episodes.

0.000 7.483 10.392 12.247 11.489 7.616 13.565 12.570 13.342 13.191 11.045 13.115
7.483 0.000 9.055 17.321 15.492 9.487 17.263 17.378 19.079 18.547 15.033 17.029
10.392 9.055 0.000 13.856 15.033 11.662 20.445 18.276 17.029 14.900 10.296 11.916
12.247 17.321 13.856 0.000 8.000 11.314 14.283 9.899 5.477 5.831 6.164 6.000
11.489 15.492 15.033 8.000 0.000 7.746 11.747 8.367 11.314 13.115 11.225 11.916
7.616 9.487 11.662 11.314 7.746 0.000 10.000 9.695 13.266 14.491 11.576 13.191
13.565 17.263 20.445 14.283 11.747 10.000 0.000 6.325 12.728 16.432 16.248 17.146
12.570 17.378 18.276 9.899 8.367 9.695 6.325 0.000 9.165 12.884 11.916 12.490
13.342 19.079 17.029 5.477 11.314 13.266 12.728 9.165 0.000 4.690 8.602 8.367
13.191 18.547 14.900 5.831 13.115 14.491 16.432 12.884 4.690 0.000 6.928 6.633
11.045 15.033 10.296 6.164 11.225 11.576 16.248 11.916 8.602 6.928 0.000 2.449
13.115 17.029 11.916 6.000 11.916 13.191 17.146 12.490 8.367 6.633 2.449 0.000
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Table 7.7: Euclidean distances between Temporal BoF descriptors (Tra-
jectory distance episodes) for the rodent subject A3 (post-TBI vs. post-
TBI). Both rows and columns correspond to post-TBI episodes.

0.000 10.770 22.045 16.062 21.954 22.539 17.944 15.100
10.770 0.000 12.083 6.481 12.410 12.961 7.616 6.325
22.045 12.083 0.000 7.483 9.592 10.100 8.944 11.225
16.062 6.481 7.483 0.000 7.348 8.124 6.633 8.124
21.954 12.410 9.592 7.348 0.000 2.449 9.274 12.728
22.539 12.961 10.100 8.124 2.449 0.000 9.487 13.342
17.944 7.616 8.944 6.633 9.274 9.487 0.000 5.477
15.100 6.325 11.225 8.124 12.728 13.342 5.477 0.000

Table 7.8: Euclidean distances between Temporal BoF descriptors (Tra-
jectory distance episodes) for the rodent subject A3 (pre-TBI vs. post-
TBI). Rows correspond to pre-TBI episodes and columns correspond to
post-TBI episodes.

32.527 23.238 16.852 18.000 12.410 11.314 19.235 23.281
38.497 29.563 22.672 24.000 18.221 17.607 25.456 29.360
35.861 27.532 23.664 22.891 16.912 16.432 23.495 27.386
24.249 14.765 12.570 10.770 6.325 6.481 9.899 13.928
30.100 19.698 12.247 14.967 10.488 10.583 13.342 17.493
32.833 23.152 15.166 17.607 12.806 12.806 18.439 22.361
28.390 19.235 9.487 13.856 13.115 13.342 15.875 18.815
26.382 16.613 8.718 11.662 10.677 10.392 11.662 15.427
20.199 10.954 10.100 6.481 4.899 5.099 8.124 11.402
21.448 13.342 14.283 10.000 6.633 6.481 11.225 14.071
27.055 18.655 16.912 14.765 10.677 10.000 14.629 18.330
25.846 17.720 17.029 14.283 10.863 10.392 13.784 17.205
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Chapter 8

Results and Evaluation

A combination of the LDOF algorithm and Kalman filter was employed for tracking

the movement behavior of different rodent subjects in pre-TBI as well as post-TBI

conditions across the given videos. In order to find a criterion that is useful for

classification of a given subject as belonging to pre-TBI or post-TBI condition, we

considered direct matching of the trajectories of the subjects. Figure 8.1 shows

the trajectory pairs (pre-TBI and post-TBI conditions) of 3 subjects. As can be

seen from the figure, the subjects were not given any fixed trajectory to follow.

We employed distance-based methods such as using relative trajectory (Euclidean)

distance to see if it can provide any cues to discern a pre-TBI rodent’s behavior

from its own behavior post-TBI (refer Table 8.1). As can be inferred from the

table, there is a small relative distance between the trajectories taken by the same

subject(s) pre-TBI and post-TBI. Therefore, we tried to employ the traditional ma-

chine learning algorithms in order to learn and classify a given trajectory behavior

56



as belonging to pre-TBI or post-TBI, but found that even state-of-the-art machine

learning algorithms for classification such as Support Vector Machines (SVM) and

Multilayer Perceptron (MLP) fail to learn anything significant from the data accu-

mulated by the trajectory, such as the trajectory distance traveled over fixed time

durations, trajectory velocity and acceleration over fixed time durations, rodent’s

poses over fixed time durations and trajectory slopes over fixed time durations.

Upon examining the distribution of trajectories closely, we found that the distribu-

tion of the trajectories for pre-TBI and post-TBI cases were severely overlapped,

thereby making it hard for any machine learning algorithm to interpret. Figure

8.2 shows the mean, variance and standard deviation of the distributions of the

pre-TBI and post-TBI trajectories. We can clearly see that the distributions over-

lap significantly. This fact is backed by the t-SNE distribution of the pre-TBI and

post-TBI trajectories as shown in Figure 8.2.

Table 8.1: Relative Trajectory Distances (pre-TBI vs. post-TBI) for 6
rodent subjects.

V ideos Compared Mean Euclidean distance
A3(pre− TBI)&A3(post− TBI) 86.2
B2(pre− TBI)&B2(post− TBI) 97.9
C1(pre− TBI)&C1(post− TBI) 85.2
D1(pre− TBI)&D1(post− TBI) 83.1
E2(pre− TBI)&E2(post− TBI) 94.1
F2(pre− TBI)&F2(post− TBI) 86.9

Since the machine learning methods failed to find any classification criteria

owing to the relatively random nature of the trajectories taken, we employed the

widely popular and robust shape matching algorithm known as Shape Context
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Figure 8.1: Trajectory Pairs (Left: pre-TBI, Right: post-TBI) of 3 sub-
jects.
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Table 8.2: Mean and Standard Deviation for the Relative Trajectory
Distance cases.

Case Mean Standard Deviation
pre-TBI vs. pre-TBI 92.24 5.50

post-TBI vs. post-TBI 84.52 4.22
pre-TBI vs. post-TBI 87.19 4.42

Figure 8.2: tSNE distributions of (i) position coordinates, distance vec-
tors and slope vectors of estimated trajectory (pre-TBI and post-TBI)
and (ii) with pose included.
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which tries to find a relative histogram representation (known as Shape Context

representation) of the trajectories and tries to find a possible match between them

by translating, rotating, scaling and wrapping trajectories while trying to find a

Thin Plate Spline (TPS) transformation [39] which can represent a correspondence

between the trajectories. However, from the results of Shape Context employed

to match the trajectories for the initial 20 seconds of the video (we used a smaller

number of points to check the efficiency of the algorithm) as shown in Figure

8.3, we can see that the error in finding a correspondence mapping between the

trajectories is very high. This clearly proves that the direct matching of the

trajectories is not useful for our task.

Figure 8.3: Shape Context matching for subject A3 (pre-TBI and post-
TBI).

Since the direct matching of the pre-TBI and post-TBI trajectories made little

sense, we moved on to the idea of employing a feature representation for uniquely

discerning a pre-TBI subject from a post-TBI subject. For this, we made use of

a widely used feature representation technique called “Bag-of-Features”(BoF). In

order to generate the BoF representation, we used the most relevant factors that

could possibly shed light on the behavior of the trajectory irrespective of the tra-
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Figure 8.4: Left: A Bag-of-Feature example using rodent pose, Right:
The Bag-of-Feature histogram for the subject, using pose as the event
for feature representation.

jectory the rodent subject follows, and treated them as the “events” constituting

the feature representation. We regarded the trajectory distance traveled and the

rodent’s pose and the rate of change of both as the “events” for generating the

BoF representation. The idea is, given a trajectory behavior, we model the given

trajectory as a combination of the feature “bags” of these “events”. The left image

of Figure 8.4 shows a Bag-of-Feature bin for a particular pose of the rodent. The

collection of poses indicates the number of occurrences of the encountered pose

“event” across the whole trajectory, and hence this forms the “feature bag” for

the given pose.

However, we could still observe that a straight-forward BoF is not enough to

capture the subtleties involved in the rodent’s behavior over the entire trajectory,

which might be relevant for identifying the subject to be a pre-TBI or post-TBI

subject, since directly binning the events into the bag-of-feature “bags” would
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make us lose the temporal aspects of the trajectory behavior. Hence, we tried to

model the BoF as a function of time. In Figure 8.5, we use trajectory distance

across time as the “event” with a bin resolution of 10 pixels. In Figure 8.6, we

use distance rate (or acceleration) across time as the “event” with a bin reso-

lution of 5 pixels. Figure 8.7 shows the BoF histograms as a function of time,

using change of pose across time as the “event”, and with a bin resolution of

20◦. Figure 8.8 shows the BoF histograms as a function of time, using rate of

change of pose across time as the “event”, and with a bin resolution of 5◦. In

Figure 8.6, we use distance rate (or acceleration) across time as the “event” with

a bin resolution of 5 pixels. As seen from the figures, we were able to significantly

model the behavior of the subject in terms of the temporal occurrences of the

“events” under consideration. It can be observed that there is some noticeable

degree of discernibility between the BoF representation of a subject in its pre-TBI

and post-TBI conditions. The results shown in Table 8.3 shows that the pres-

ence of ‘Temporal Bag-of-Features histogram’ of trajectory distance in the feature

representation increases the performance of the machine learning algorithm. The

combination of ‘Temporal Bag-of-Features histograms’ representation of trajec-

tory distance and ‘Temporal Bag-of-Features histograms’ representation of pose,

and the combination of ‘Temporal Bag-of-Features histograms’ of trajectory dis-

tance and ‘Temporal Bag-of-Features histograms’ of pose rate fetch an accuracy

of about 0.8 . Thus, we can conclude that, with the help of more reliable data,

we can generate much more robust feature representations which can increase the

performance even higher.
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Figure 8.5: BoF Trajectory Distance histograms for subject A3 (Time
Series) (a) pre-TBI (Tracking), (b) pre-TBI (GT), (c) post-TBI (Track-
ing), (d) post-TBI (GT), (e) pre-TBI vs. post-TBI (Tracking) and (f)
pre-TBI vs. post-TBI (GT).
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Figure 8.6: BoF Distance rate (acceleration) histograms for subject A3
(Time Series) (a) pre-TBI (Tracking) (b) pre-TBI (GT), (c) post-TBI
(Tracking) (d) post-TBI (GT),(e) pre-TBI vs. post-TBI (Tracking) and
(f) pre-TBI vs. post-TBI (GT).
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Figure 8.7: BoF Pose histograms for subject A3 (Time Series) (a) pre-TBI
(Tracking), (b) pre-TBI (GT), (c) post-TBI (Tracking), (d) post-TBI
(GT), (e) pre-TBI vs. post-TBI (Tracking) and (f) pre-TBI vs. post-TBI
(GT).
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Figure 8.8: BoF Pose rate histograms for subject A3 (Time Series) (a)
pre-TBI (Tracking), (b) pre-TBI (GT), (c) post-TBI (Tracking), (d)
post-TBI (GT), (e) pre-TBI vs. post-TBI (Tracking) and (f) pre-TBI
vs. post-TBI (GT).
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Table 8.3: Classification accuracy using Relative Trajectory Distance (D:
Trajectory distance, DR: Distance rate, P: Pose distance, PR: Pose
rate.)

Parameter(s) Used Accuracy
SVM(Linear) SVM(RBF kernel) MLP OneVsRest

D 0.5 0.5 0.75 0.5
DR 0.5 0.5 0.25 0.25
P 0.5 0.5 0.25 0.25
PR 0.25 0.25 0.5 0.25

D +DR 0.5 0.75 0.25 0.5
P + PR 0.25 0.5 0.5 0.25
D + P 0.5 0.75 0.75 0.25
D + PR 0.5 0.85 0.75 0.25
DR + P 0.25 0.25 0.5 0.25
DR + PR 0.25 0.25 0.5 0.25

D +DR + P 0.5 0.5 0.5 0.5
D +DR + PR 0.5 0.5 0.25 0.5
D + P + PR 0.5 0.5 0.5 0.25
DR + P + PR 0.25 0.5 0.25 0.25

D +DR + P + PR 0.5 0.5 0.5 0.5
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Chapter 9

Conclusion

In this thesis, we have proposed a framework that classifies the behavior of a

regular rodent vs. rodent with induced traumatic brain injury, in a maze (glass

box). The system combines traditional computer vision techniques, that computes

optical flow that estimates the motion of pixels between adjacent frames of a video,

followed by the use of Kalman filter based filtering to smooth the noisy predictions

of the optical flow method, alongside modeling the state (or position of the rodent)

at each time step across multiple video frames, enabling the system to predict the

current and future positions of the rodent at each frame.

We use a traditional Kalman filter based tracking system to generate trajec-

tories capturing the motion of the rodent at different time steps. The trajectories

are then used for modeling the behavior of the rodent before and after TBI. We

use machine learning classifiers to learn and classify the videos as belonging to

one of the two categories - pre-TBI or post-TBI. The experimental results for
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the proposed method clearly demonstrates the ability of the method to effectively

model the behavior. The Bag-of-Features representation of trajectory distance, the

Bag-of-Features representation of rodent subject’s pose, and the Bag-of-Features

representation of the rate of change of rodent subject’s pose, prove to be reliable

cues for representing the rodent behavior. Further increase in reliable data for

extending the feature representation is bound to increase the robustness of the

proposed approach.

9.1 Future Work

We intend to extend the proposed method to use more effective deep learning based

techniques that have been recently shown to yield state-of-the-art performances

across many image processing and computer vision problems, to learn a better

feature representation and build a better tracking method. We also want to explore

the appearance features to design more sophisticated loss functions that model

non-linear deformations of the rodent’s body.

In addition, most ambiguities that arise in the trajectory can be attributed

to the simplistic nature of the maze used. More complex mazes that guide the

rodents to follow a specific action can tell more about the subtle differences in the

motor and sensory functions of the rodent.

Furthermore, more comprehensive data like the one described above combined

with increase in size of dataset can provide us more informative cues to explore

learning based methods.
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