
Multi-Agent Reinforcement Learning

for Task Open Systems

by

Gayathri Anil

(Under the direction of Dr. Prashant Doshi and Dr. Frederick Maier)

Abstract

We target task-open systems where tasks are introduced dynamically in a multi-agent

system, requiring continuous learning and adaptation from agents. This scenario is challeng-

ing due to the evolving action space and reward function, which conventional RL algorithms

cannot handle. We present a novel decision-making framework, Task-Open MDP (TaO-

MDP), to capture dynamic task arrivals and evolving environments. We further introduce a

multi-agent RL algorithm, Models of Hyper Interactions under Task Openness (MOHITO),

that learns a generalized policy for task-open environments. It employs interaction graphs to

link agents, tasks, and actions, processed via graph neural networks. MOHITO uses central-

ized training and decentralized execution to select the best action from the available action

space. Evaluated in a task-open Ridesharing domain, our algorithm facilitates knowledge

transfer and boosts rewards by enabling agents to pool multiple passengers simultaneously.

Results show agents achieve higher rewards compared to baseline methods, demonstrating

MOHITO’s effectiveness in dynamic, task-open environments.

Index words: Multi-agent reinforcement learning, Open agent systems, Multi-agent
systems, Graph neural networks, Hypergraph, Incidence graph,
Centralised training decentralised execution, Markov decision process

Multi-Agent Reinforcement Learning

for Task Open Systems

by

Gayathri Anil

Bachelor of Technology, SASTRA University, 2018

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2024

©2024

Gayathri Anil

Multi-Agent Reinforcement Learning

for Task Open Systems

by

Gayathri Anil

Approved:

Major Professors: Prashant Doshi
Frederick Maier

Committee: Adam Eck
Jin Sun

Electronic Version Approved:

Ron Walcott
Dean of the Graduate School
The University of Georgia
August 2024

Multi-Agent Reinforcement Learning

for Task Open Systems

Gayathri Anil

July 13, 2024

Dedication

To Amma, Acha, and Nand. You mean the world to me.

1

Acknowledgments

I’m grateful to the many individuals who have supported and guided me throughout my

academic journey, culminating in this thesis. First and foremost, I would like to express

my gratitude to my advisor, Dr. Prashant Doshi, for his guidance throughout my research.

His expertise and insights have been instrumental in shaping the direction and success of

this work. I’m also immensely thankful to Dr. Adam Eck and Dr. Leen-Kiat Soh for

their regular feedback and constructive inputs, which have greatly influenced and refined my

research. Special thanks to Dr. Frederick Maier for his invaluable feedback and support,

which have been crucial in completing my thesis.

I would like to extend my sincere appreciation to Dr. Jin Sun for his support during my

Master’s program, not only as a professor and committee member but also as a mentor. I

would like to thank Dr. Neal Outland, Dr. Khaled Rasheed, and Evette for their unwavering

support and assistance throughout the program.

I’m also grateful to all my labmates, especially Daniel, for being my rubber duck, friend,

advisor, and editor. To all my friends, thank you for your unwavering support, especially

Bhargav, whose efforts have kept me balanced during times when balance was incredibly

difficult to maintain.

Lastly, I owe my parents and sister a profound debt of gratitude. Their love and encour-

agement have always been my greatest strength.

2

Contents

1 Introduction 11

1.1 Contributions . 16

1.2 Thesis Structure . 17

2 Related Work 19

2.1 Open-agent systems . 19

2.2 Learning-based methods in OASYS . 21

2.3 Related Approaches to Task Openness . 23

3 Foundational Concepts 25

3.1 Task-Open Systems . 25

3.2 Markov Decision Process . 27

3.3 Multi-Agent Reinforcement Learning . 30

3.4 Hypergraphs and Incidence Graphs . 34

4 Modeling Task-Open Systems 37

4.1 Task-Open MDP . 38

4.2 Example Domain: Dyamic Ridesharing . 41

4.3 Modeling Dynamic Ridesharing as TaO-MDP 44

3

5 MARL for Task-Open Systems 51

5.1 State-Task Representation in Task-Open Systems 52

5.1.1 Interaction incidence graphs . 53

5.1.2 State-Task dynamics in Ridesharing 54

5.2 MOHITO . 57

5.2.1 Architecture . 58

5.2.2 Training Algorithm . 62

6 Experiments and Results 67

6.1 Experimental Setup . 68

6.1.1 Training and Evaluation Setup . 68

6.1.2 Testing Setup . 69

6.2 Performance Baselines . 71

6.3 Performance Evaluation . 72

6.3.1 Training Metrics . 73

6.3.2 Policy Analysis . 77

6.3.3 Comparative analysis against Baselines 81

7 Conclusion 87

7.1 Training Limitations . 88

7.2 Future Work . 91

A Task Completion Time Metrics 103

B Training parameters 105

C OTPG-ELLA 107

C.1 PG-ELLA . 107

4

C.2 Adapting PG-ELLA . 108

C.2.1 Multi-agency . 109

C.2.2 Environments as Sets of Tasks . 110

C.2.3 Forming Joint Policies . 112

C.2.4 Learning Tasks by Set . 117

5

List of Figures

1.1 Schematic depicting a multi-agent system, characterised by an interactive do-

main inhabited by several autonomous agents (represented as circles). These

agents have the capability to gather environmental data and execute decisions

aimed at fulfilling their objectives. Source: Albrecht et al. (2024) 12

2.1 Overview of the architecture of Graph-based Policy Learning (GPL) intro-

duced by (Rahman et al., 2021) . 22

3.1 Action-reward feedback loop of a generic single-agent RL model where an

agent takes actions in an environment, which is interpreted into a reward and

a representation of the state, which are fed back into the agent 31

3.2 Independent Learning in Multi-Agent Systems 32

3.3 Centralised Training and Decentralised Execution learning paradigm with one

controller for all agents . 33

3.4 Centralised Training and Decentralised Execution learning paradigm with in-

dividual controllers for each agent. Action′
i represents the inferred action of

agent i, as indicated by the dotted line in the image. 34

3.5 An example of an undirected hypergraph. Source: Wikipedia contributors

(2024) . 35

6

3.6 (a)Alternate representation of the hypergraph in Figure 3.5, (b)Incidence

graph of the hypergraph in Figure 3.5 . 36

4.1 A dynamic ridesharing driver operates a vehicle in a task-open MAS where

new tasks (passengers) suddenly appear and existing tasks complete leading

to an open ground action set. 42

4.2 Snapshot of the Dynamic Ridesharing Domain at Time Step t 45

5.1 Observation interaction hypergraph capturing the state of the Dynamic Rideshar-

ing domain at timestep t . 55

5.2 Observation interaction incidence graph capturing the state of the Dynamic

Ridesharing domain at timestep t . 56

5.3 State interaction incidence graph capturing the state of the Dynamic Rideshar-

ing domain at timestep t . 57

5.4 Overview of MOHITO Algorithm . 59

5.5 Architecture of the Actor and Critic Networks 61

6.1 Task entry map for an example test episode with 3 agents operating at open-

ness level 3 . 70

6.2 Mean rewards achieved in validation episodes through training epochs for a

setup with 4 agents . 74

6.3 Validation rewards across training epochs for 2, 3, and 4-agent setups, il-

lustrating the average rewards obtained by agents during validation episodes.

The shaded region around the mean denotes the standard deviation of rewards

across different validation episodes. These setups were trained with triple the

number of passengers as the number of agents. 75

6.4 Comparison of steps involved in task pooling versus single-task execution by

agents across various setups . 80

7

6.5 Comparison of average episodic rewards across different openness levels for

policies based on MOHITO algorithm, First-come First-serve (FCFS), Nearest

Task First (NTF), and Open-task Policy Gradient Efficient Lifelong Learning

Algorithm (OTPG-ELLA) . 82

6.6 Average task acceptance, task pick-up and task completion time in MOHITO,

First-Come First-Serve (FCFS) and Nearest Task First (NTF) policies . . . 85

A.1 Stacked bar plot showing the average time spent on each task phase across the

three policies (MOHITO, FCFS, NTF). The plot illustrates the breakdown of

time from task entry to acceptance, from acceptance to pick-up, and from

pick-up to completion . 103

A.2 Average task acceptance, task pick-up and task completion time in MOHITO,

First-Come First-Serve (FCFS) and Nearest Task First (NTF) policies. The

standard deviation has been marked as error bars 104

C.1 Centralised training of critics over the joint-actors’ observations and action

choices with decentralised execution of actors from their individual observa-

tions, as described for MADDPG Lowe et al. (2020). 111

C.2 Joining PG-ELLA’s task-specific policies together to create a single policy for

an environment with a set of tasks. Note that this initial approach requires a

fixed observation space, to be addressed later. 113

8

C.3 In OTPG-ELLA, a variable observation space is partitioned into a set of fixed-

size task-specific observations. These are defined by the concatenation all

elements not specific to any task and the task-specific elements relevant to one

task each of those present in the environment. After that, each observation

can be passed through the appropriate task-specific policy for task-specific

action values. Combining those results in the full policy for the agent at that

step in the environment. 116

9

List of Tables

6.1 Table displaying the pooling-to-single task ratio for agents across various open-

ness levels (OL) . 80

10

Chapter 1

Introduction

Multi-agent systems (MAS) represent complex frameworks consisting of autonomous

intelligent agents, which interact within an environment to achieve individual or collective

goals. These agents exhibit intelligent behavior, autonomously executing actions and mak-

ing decisions based on their perceptions and knowledge. MAS are particularly effective in

scenarios where tasks are too complex for a single agent to handle or where cooperation can

lead to more efficient problem-solving. The foundational concepts and potential of MAS are

comprehensively explored in the work by Balaji and Srinivasan (2010), which serves as an

important resource for understanding these dynamic systems.

In an era marked by increasing autonomy, MAS have significantly transformed various

sectors, from manufacturing to healthcare. For instance, in robotics, multiple robots collab-

orate to assemble products, while in logistics, a fleet of autonomous vehicles coordinates to

deliver goods efficiently. The decision-making processes of these agents are underpinned by a

wealth of algorithms and strategies that enable them to navigate, interact, and adapt within

their environments. These algorithms can be broadly categorised into two primary classifi-

cations: learning-based methods Canese et al. (2021) and planning-based methods

Moroni and Chiffi (2022).

11

Figure 1.1: Schematic depicting a multi-agent system, characterised by an interactive do-
main inhabited by several autonomous agents (represented as circles). These agents have
the capability to gather environmental data and execute decisions aimed at fulfilling their
objectives. Source: Albrecht et al. (2024)

Most MAS under study are characterised by a fixed set of agents of a given type and

a fixed number of tasks to be accomplished by these agents. These systems are called

closed systems because both the agents and tasks are known in advance. In MAS, each

decision-making agent must determine and continuously adapt strategies to achieve collective

and/or individual objectives. Learning how to coexist and effectively operate within a shared

environment that includes multiple other agents, even in a system where the agents and tasks

are fixed, is challenging.

One property of real-world environments that further complicates multi-agent decision-

making is openness, where some elements of the environment appear and disappear over time.

Closed systems are limited in the sense that they do not model the dynamic nature of many

real-world environments where openness can exist. To address these limitations, researchers

have turned their attention to open agent systems (OASYS) Eck et al. (2023a). Rea-

12

soning in such open agent systems is more complicated than in closed environments because

of the continuous changes in the set of agents, tasks, and the agents’ capabilities.

Openness can occur due to changes in three different key components: the set of agents

interacting in the environment, the set of tasks those agents aim to accomplish, and the

types of agents (i.e., their capabilities)

• Agent openness occurs when the set of agents in the system changes over time.

Existing agents may leave, never to return, or could rejoin the environment later, and

new agents may join.

• Task openness occurs when the set of tasks that agents can work on changes over

time as new tasks are introduced and prior tasks disappear.

• Type openness occurs when the capabilities and decision-making processes of agents

change over time. Learning how to act in environments with openness is even more

challenging since the set of objectives and/or agents is neither static nor predefined.

This thesis introduces the Task-Open Markov Decision Process (TaO-MDP), a

formal framework addressing the complexities of dynamic task-open systems. This frame-

work is exemplified through the novel conceptualisation of the Dynamic Ridesharing

domain, which is modeled and implemented as a TaO-MDP to effectively manage dynamic

task assignments. Central to this thesis is the introduction of the multi-agent learning-

based algorithm, Models of Hyper Interactions under Task Openness (MOHITO).

MOHITO employs centralised training and decentralised execution to develop generalised

policies for task-open environments. By leveraging graph neural networks (GNNs) to process

novel graph-based state-task representations—termed interaction hypergraphs and in-

teraction incidence graphs—the algorithm facilitates sophisticated action selection based

on the causal flow of information within these graphs.

13

Recent advances in multi-agent reinforcement learning (MARL) address related

challenges. Multi-task learning algorithms (e.g., Tanaka and Yamamura (2003),

Andreas et al. (2017); Rajeswaran et al. (2017); Sodhani et al. (2021)), for instance, excel

at learning generalised policies across multiple related tasks simultaneously but falter when

faced with tasks not seen during training. Lifelong learning (Thrun and Mitchell (1995);

Ammar et al. (2014a); Chen and Liu (2018); Mendez et al. (2022)), on the other hand, is

designed for continuous adaptation to new tasks over time but assumes a sequential, rather

than simultaneous, arrival of these tasks. Out-of-distribution learning (e.g., Sedlmeier et al.

(2020); Haider et al. (2023)) aims to enable agents to detect when their current tasks are

different from those experienced during training and must adapt their behavior to new

situations, but the question of how to adapt remains open. Despite these advancements,

state-of-the-art MARL algorithms inherently struggle with such dynamic task openness due

to their underlying design, which maps states to a static and dimensionally fixed action

space.

The robustness and efficacy of the MOHITO algorithm have been validated through

comprehensive empirical analysis within the novel dynamic ridesharing domain. The results

highlight its practical applicability and innovative approach to navigating dynamic environ-

ments. Using the training algorithm, agents learn optimal policies, which are then tested

in task-open ridesharing environments with various configurations, including different agent

counts and task entry rates. Agents start from random locations and adapt to a contin-

uously evolving set of tasks throughout each episode. Each training experiment involves

agents initialised at random locations within the dynamic ridesharing grid, alongside a few

passengers with varying start and endpoints. Throughout the episode, additional passen-

gers with distinct start and endpoints are gradually introduced. At the start of training,

agents are initialised with random policies in a task-open ridesharing environment. The

training progresses as the episode unfolds following the novel training algorithm outlined in

14

this thesis.

As training progresses, after every few training steps, the learned policies are evaluated

in predefined evaluation environments containing tasks that were not encountered by the

agents during training. These evaluation environments consist of the same number of tasks

as used during training, which is three times the number of agents. The rewards accumulated

in these validation episodes are utilized to monitor policy convergence. As training epochs

progress, when agents show stabilized rewards in the validation episodes, the policy is said

to have converged.

On obtaining converged policies, they are evaluated to understand if the desired outcomes

are present in them. Agents with the learned policies are deployed in several pre-determined

test episodes containing previously seen and unseen tasks. The test environments are con-

figured with varying levels of openness to see how well the policy can adapt to openness.

This thesis reports performance across three predefined levels of openness: Openness Level

1 (OL1), Openness Level 2 (OL2), and Openness Level 3 (OL3).

Through these test runs, the intention is to see if the learned policies fulfill the basic ex-

pectations one has from an autonomous intelligent agent. These expectations are successful

task execution, adaptability to dynamic previously unseen task set changes, strategic task

selection to maximize rewards, and advanced planning abilities resulting in task pooling.

The performance of the learned policy in the test episodes indicates that agents successfully

satisfy all the above-listed expectations. The behavior of the learned policies in these environ-

ments even qualitatively resembles optimal human-like decision-making capabilities, incor-

porating long-term planning, such as pooling multiple tasks together whenever it is efficient.

MOHITO-enabled agents learned policies that allowed them to efficiently tackle previously

unseen tasks, maintaining low acceptance times for new tasks. Agents are observed evalu-

ating the available set of actions at any given time rather than relying solely on pre-learned

state-to-action mappings, thus effectively embracing task openness. The MOHITO-trained

15

policies exhibit long-term thinking capabilities, with agents pooling multiple tasks together

when they fall along the same route.

The strategic decision-making capabilities of MOHITO-trained policies led to better per-

formance compared to some baseline policies. This thesis identifies two static rule-based

baselines—First-come first-serve and Nearest task first—apart from a dynamic decision-

making based policy similar to MOHITO: an extension of PG-ELLA Ammar et al. (2014a)

called Open Task PG-ELLA (OTPG-ELLA). Quantitatively, the policy learned by MOHITO

performs better than the static baseline policies by an average of 29.78% and marginally

better than the dynamic decision-making based baseline, demonstrating the algorithm’s ro-

bustness and adaptability in dynamic, task-open environments.

The training of MOHITO-based policies encounters a limitation that results in a pro-

portion of agents failing to converge to an optimal policy. This thesis also addresses this

limitation and explores several directions to mitigate the issue.

1.1 Contributions

This thesis addresses the significant challenges associated with task-open multi-agent systems

(MAS), specifically the dynamic changes to the action set, reward function, and environmen-

tal state, to accommodate dynamic and non-stationary environments. The contributions of

this thesis include:

• This thesis introduces Task-Open Markov Decision Process (TaO-MDP), a for-

mal framework to represent the decision-making in task-open systems, capturing their

unique characteristics and addressing the limitations of traditional MDPs in handling

dynamic task arrivals and evolving environments. This formalisation represents a novel

theoretical contribution to the field.

• Novel conceptualisation of a ridesharing domain as a task-open system calledDynamic

16

Ridesharing. This domain has been instantiated and implemented as a TaO-MDP,

providing a structured approach to model dynamic task assignments and effectively

addressing the challenges of a constantly evolving environment.

• Novel graph-based state-task representations as interaction hypergraphs and inter-

action incidence Graphs, are proposed. This representation captures a variation

of the state and action variables typically used in reinforcement learning. It combines

the agent’s state information with the available tasks and the resulting action space at

each time step. The graphical structure uses directional edges to allow information to

flow from agent, task, and action nodes to a decision-making node.

• This thesis introduces a multi-agent reinforcement learning (MARL) algorithm called

Models of Hyper Interactions under Task Openness (MOHITO). MOHITO

uses centralised training and decentralised execution to learn generalised policies for

task-open environments. The algorithm utilises graph neural networks (GNNs) to

process graphical state-task representations and select actions based on the causal

flow of information within the graph-based representation. This approach offers a

sophisticated and novel mechanism for action selection in dynamic environments.

• Comprehensive empirical results are provided, demonstrating the efficacy of the MO-

HITO algorithm in the Dynamic Ridesharing domain, instantiated as a TaO-MDP.

These results validate the effectiveness of the proposed algorithm, highlighting its ap-

plicability and robustness in real-world scenarios.

1.2 Thesis Structure

The rest of the thesis is organised as follows:

17

• Chapter 2 reviews the existing literature on open-agent systems (OASYS), learning-

based methods within OASYS, and related approaches to task openness, providing a

context for the contributions of this thesis.

• Chapter 3 provides essential foundational concepts necessary for understanding the

thesis.

• Chapter 4 presents the formal framework for task-open systems. Section 4.1 introduces

the Task-Open MDP (TaO-MDP), a novel framework designed to represent decision-

making in task-open systems. Section 4.2 introduces dynamic ridesharing and Section

4.3 applies this framework to this dynamic domain, demonstrating how TaO-MDP can

effectively model and manage dynamic task assignments in real-world scenarios.

• Chapter 5 details the proposed multi-agent reinforcement learning algorithm for task-

open systems. Section 5.1 discusses state-task representation using interaction inci-

dence graphs, including the dynamics of state-task interactions in ridesharing. Section

5.2 introduces the MOHITO algorithm, explaining its architecture and training algo-

rithm in detail.

• Chapter 6 presents the experimental setup and results for evaluating the MOHITO

algorithm. Section 6.1 describes the training and evaluation setup, including the con-

figurations used for testing. Section 6.2 outlines the performance baselines used for

comparative analysis. Section 6.3 evaluates the performance of MOHITO, discussing

key training metrics, policy analysis, and comparative analysis against baselines. The

section also addresses training limitations and provides a discussion of the findings.

• Chapter 7 summarises the contributions of the thesis, discusses the limitations of the

current work and suggests directions for future research.

18

Chapter 2

Related Work

In this chapter, we review the body of work that has contributed to the development and

understanding of open-agent systems (OASYS) and related fields. The aim is to provide a

comprehensive background that situates this thesis within the broader context of multi-agent

systems (MAS) research. We explore various methodologies and approaches, particularly

those that address the challenges posed by dynamic and open environments. This chapter is

organised into sections that cover foundational concepts of OASYS, learning-based methods

in OASYS, and other approaches relevant to task openness, highlighting how each of these

areas contributes to the motivation and development of the proposed MOHITO algorithm.

2.1 Open-agent systems

An initial step towards understanding the extreme challenges brought about by openness for

decision-making is to classify openness. Prior work Calmet et al. (2004),

Jumadinova et al. (2014); Shehory (2000) has recognised three types: agent openness

manifests when the set of agents operating in the environment changes over time as individual

agents temporarily or permanently join or leave the system; task openness where the set

19

of tasks for agents to accomplish changes over time; and frame (or type) openness where

agents’ frames (i.e., capabilities and reasoning processes) may change over time, such as

when they acquire new abilities or change roles. These do not exhaustively represent all

types of openness but they encompass the ones often seen in practice. Among these types of

open systems, agent openness has received the most attention so far, whereas task openness

remains very much understudied.

More than two decades ago, Shehory Shehory (2000) noted that agent openness is about

introducing additional agents into the system in addition to the agents that comprise it

initially. Calmet et al. Calmet et al. (2004) studied open societies of agents that are open to

new agents either with no definite goal or with goals not exceedingly relevant to society. Both

focused on the system and software architecture to support openness. Additional properties

of agent openness were then reported after a gap of about ten years. Jamroga et al. Jamroga

et al. (2013) defined the degree of openness of multiagency as the complexity of the minimal

transformation that the system must undergo to add a new agent to the system or remove

an existing one.

Jumadinova et al. Jumadinova et al. (2014) and Chen et al. Chen et al. (2016) extended

the notion of openness to include both agent openness and task openness to model the

dynamic nature of the agents and tasks in the environment, primarily considering the rates

at which agents or tasks join and leave the system. As a first step towards reasoning about

task openness, they reacted to such openness in ad-hoc and domain-specific manners, whereas

we seek to develop principled learning solutions in this work that enable an agent to flexibly

address changing tasks and the resulting changes to their action space and reward function

being optimised.

Decision-making has predominantly focused on closed-world settings with a perfectly

observed state, with a few exceptions. Whereas isolated discussions of open systems have

appeared in the literature as we noted above, a more visible thrust into acting in such con-

20

texts has recently emerged. For example, Chandrasekaran et al. (2016) viewed an interacting

agent’s absence analogous to performing a no-operation and sought to evaluate whether ac-

tively predicting the agent’s exit from the system is beneficial compared to post hoc inference

from the no-operation. Observations of a clear improvement in global system behavior due to

the former led to subsequent methods for better predicting agents’ exits and re-entries even

in MAS. Eck et al. (2020); Kakarlapudi et al. (2022) extended the notion of planning with

communication in open MAS. They introduced a principled, decision-theoretic method that

leverages the communicative interactive POMDP framework. This method enables agents to

plan with both physical and communicative actions in open multiagent systems, addressing

the nontrivial predictability of agent presence

2.2 Learning-based methods in OASYS

In addition to planning-based approaches that assume the agent has a mental model of

the environment available a priori, recent research has also explored how agents can use

reinforcement learning for decision-making in open systems.

(Jiang et al., 2020) addresses the concept of openness in multi-agent systems by proposing

a flexible and adaptive framework that can handle the dynamic nature of agent interactions.

The authors tackle agent openness by using graph neural networks (GNNs) to model the

multi-agent environment as a graph, where each agent is a node, and the edges represent

interactions between agents. The graph convolution process adapts to the changing graph

structure, allowing the system to maintain an understanding of the inter-agent relationships

even as agents enter or leave the system. This approach ensures that the reinforcement

learning process remains robust to the open nature of the environment, enabling agents to

learn effective cooperation strategies despite the fluidity of their operational context

Recently, Rahman et al. (2021) developed over the concept of graph convolutional rein-

21

forcement learning to introduce a policy learning approach for OASYS with agent openness

by employing a Graph Neural Network (GNN) to dynamically model agent interactions as

a graph, where nodes represent agents and edges their interplay. This graph-based frame-

work facilitates the GNN’s adaptation to fluctuating team structures and agent behaviors,

fostering resilient cooperation within open, unpredictable environments. The architecture’s

design, which includes type embedding networks and parameterised models, allows for the

computation of action-value functions that adapt to the team’s current state. This adaptabil-

ity is key to managing the complexities of open ad hoc teamwork. Figure 2.1 illustrates the

solution architecture, highlighting how the GNN effectively addresses openness by adjusting

to real-time changes in team dynamics and agent policies.

Figure 2.1: Overview of the architecture of Graph-based Policy Learning (GPL) introduced
by (Rahman et al., 2021)

Instead of directly learning a model of the environment dynamics solved through planning

as indicated by (Chandrasekaran et al., 2016), agents instead learn a deep neural network

with components for (1) inferring the types of other agents, (2) approximating the other

agent’s policies, and (3) estimating the value of the joint action of all agents and the learning

agent’s contribution to cumulative rewards. Together, these components enable the agent to

learn how to behave when the teammates of the learning agent change due to agent openness.

Experiments on a few ad hoc teamwork benchmark problems demonstrated appropriate

22

adaptation to changing teams of agents and significant improvement in behavior compared

to prior methods from both multiagent reinforcement learning and ad hoc reasoning.

Both (Jiang et al., 2020; Rahman et al., 2021) that contribute to RL in open MAS

target agent openness without considering task openness. Both rely on the use of graph

neural networks Wang et al. (2016); Battaglia et al. (2018a) that are resilient to changing

input sizes Hamilton et al. (2017). These embed fully connected coordination graphs of the

agents, and may intrinsically adapt to dynamic team sizes as agents depart or reenter.

We are aware of just two recent works, Jiang et al. (2020); Rahman et al. (2021), that

contribute to RL in open MAS, both of which target agent openness without considering

task openness. Both rely on the use of graph neural networks Wang et al. (2016); Battaglia

et al. (2018a) that are resilient to changing input sizes Hamilton et al. (2017). These embed

fully connected coordination graphs of the agents, and may intrinsically adapt to dynamic

team sizes as agents depart or reenter.

2.3 Related Approaches to Task Openness

Other related topics have also inspired how to learn rules of behavior that generalise to novel

situations due to changing sets of agents and tasks in OASYS. Out-of-distribution learning

(e.g., Sedlmeier et al. (2020); Haider et al. (2023)), where agents detect that their current

tasks are different from those experienced during training and must adapt their behavior to

new situations,

Lifelong learning, as explored by (Thrun and Mitchell, 1995; Ammar et al., 2014a),

(Chen and Liu, 2018; Mendez et al., 2022), involves agents continuously acquiring knowledge

from past experiences and applying it to new tasks. This approach enables agents to learn

more efficiently and effectively, as they can leverage previously gained knowledge to tackle

future challenges. The work by (Abel et al., 2018) delves into the optimisation of policy

23

initialisation for lifelong learning1. The authors address the challenge of how to best use

prior experience to bootstrap an agent’s learning process when faced with a series of tasks

drawn from a task distribution. They propose methods for initializing an agent’s policy or

value function that optimise expected performance over the distribution of tasks.

Multitask learning, investigated by (Tanaka and Yamamura, 2003; Andreas et al., 2017;

Rajeswaran et al., 2017; Sodhani et al., 2021), focuses on agents learning to generalise across

a set of tasks. By identifying similarities and differences between tasks, agents can develop

strategies that improve their performance across the board, making them more versatile and

capable of handling a variety of situations.

(Ammar et al., 2014a) present Policy Gradient Efficient Lifelong Learning Algorithm

(PG-ELLA), a multi-task policy gradient method that allows for the consecutive learning

of decision-making tasks. This method facilitates the transfer of knowledge between tasks,

thereby accelerating the learning process. The approach is designed to be computationally

efficient, enabling online learning with low overhead, which contrasts with the typically high

computational cost of batch multi-task learning. This work is significant as it contributes

to the development of more sample-efficient RL agents capable of quickly adapting to new

tasks, which is particularly valuable in robotics and other areas where agents face multiple

tasks over their operational lifetime.

Recently, (Zhang et al., 2023) have also studied decision-making through multiagent

RL when other agents’ policies abruptly change during operations, which could be useful for

guiding RL under task and type openness. At the same time, insights about the complexities

caused by OASYS and how to reason with them could produce new methods that may

generalise to settings considered in these related areas.

24

Chapter 3

Foundational Concepts

In this chapter, we define and clarify several foundational concepts and terminologies that

form the basis for subsequent discussions throughout this thesis. Section 3.1 introduces the

concept of task-open systems, which are central to our study. Section 3.2 discusses Markov

Decision Processes (MDPs), essential for modeling stochastic environments in decision-

making problems. In Section 3.3, we explore Multi-Agent Reinforcement Learning (MARL),

focusing on methodologies where multiple agents interact and learn concurrently. Following

that, Section 3.4 examines hypergraphs and incidence graphs, which are critical for analyz-

ing the dynamics within task-open systems. Section 3.5 presents Graph Neural Networks, a

method for processing graph-structured data effectively. Lastly, Section 3.6 describes the Dy-

namic Ridesharing toy domain, which serves as the practical test bed for the methodologies

developed in this thesis.

3.1 Task-Open Systems

Extant learning generally assumes that the set of tasks that the agents seek to complete

are known in advance and remain in the environment until completed. This assumption

25

is valid for many real-world environments. For example, (Kong et al., 2023) assumed an

environment in their domain of multi-aircraft close-range air combat to train agents on three

specific pre-determined types of shooting subtasks. Amongst popular MARL benchmark

problems Papoudakis et al. (2021), level-based foraging Albrecht and Ramamoorthy (2013)

tasks agents with collaboratively collecting food items that are present from the beginning

of operations; problems within the multiagent particle environment (MAPE) Lowe et al.

(2017) contain consistent tasks ranging from evading or catching one another (Predator-

Prey) to spreading agents to cover a fixed set of landmarks. The StarCraft multiagent

challenge problems Samvelyan et al. (2019) include multiple scenarios where two teams of

agents have a single high-level task of competing to eliminate their opponents. In such closed

environments, the agents’ goals are fixed, the reward function optimised by each agent is

also unchanging, and the set of relevant actions is generally static.

On the contrary, many real-world environments where MARL might be used for decision-

making by intelligent agents are more complex. For example, teams in a business organisztion

often experience a request to accept new projects, which must be completed concurrently

with existing projects. Drivers in a ridesharing application (e.g., Uber, Lyft) with vacancies

in their vehicle must decide whether to accept new hailing passengers that arrive dynamically

and often unexpectedly within the environment. For larger vehicles (e.g., Uber Pool), the

driver must balance the needs of multiple simultaneous tasks (different passengers occupying

the same vehicle but desiring different destinations) while also considering the locations of

competing drivers to maximise their income, as illustrated in Figure 4.1. As such, new

tasks and goals are introduced over time, and their presence may alter previously planned

or learned behavior (e.g., picking up a nearby passenger could alter the order in which the

driver intended to drop off existing passengers).

In this thesis, we focus on task openness that is caused by exogenous factors, such as

external market forces in business organizations or passengers appearing dynamically within

26

dynamic ridesharing applications (not due to decisions internal to the ridesharing drivers or

supporting infrastructure). Such factors are impossible to plan for since they are usually

unknown to the actors within a MAS. In some circumstances, the factors might be predicted

from experience with learning. However, reactive behavior also typically requires learning

since the range of possible tasks (e.g., diversity of dynamically arriving passengers) could be

difficult to enumerate and anticipate.

It is acknowledged that task openness can also be caused by endogenous factors, such

as one business organization deciding to merge with another to combine their product lines

and teams, or a task being completed and thus exiting the environment. For such types of

task openness, planning-based solutions have been previously explored, particularly decision-

making under uncertainty with time-varying Markov models (e.g., Badings et al. (2023)),

which do not necessarily require reinforcement learning. In this thesis, we address task

openness due to endogenous factors to the extent of events like task completion. The study

of task openness under other endogenous factors is left as future work.

3.2 Markov Decision Process

Markov Decision Processes (MDP) provide a mathematical framework for modeling stochas-

tic environments for decision-making problems. An MDP is formally defined using the

following 4-tuple

MDP
def
= ⟨S,A, T ,R⟩

where S denotes the set of states called the state space, representing all possible config-

urations of the environment. A denotes the set of actions available to the agent called the

action space, T is the transition function, and R is the reward function

• State Space - The configuration of the environment at any time step is called the

27

state s of the environment. The state space S denotes all possible states that the

environment can be in. MDPs assume that the state is perfectly observable, meaning

that the agent has complete and accurate knowledge of the current state s when making

decisions.

• Action Space - Given the state s of the environment, an agent is required to take a

decision on what action a to carry out at that time step. The Action Space A is the

set of all possible actions that the agent can carry out in the environment.

• Transition Function - When an agent carries out an action a in a state s, the envi-

ronment transitions into the next state s’. The transition function can be deterministic

or stochastic and can be defined as

T (s, a, s′)=Pr(s′|s, a)

• Reward Function - When an agent performs action a in state s, it receives a reward

r. The reward function R determines the reward the agent receives at each time step.

R can be function of only s, or (s, a), or even (s, a, s’)

MDPs operate on Markovian Property which states that the future state depends

only on the present state and does not depend on the past history. That is,

Pr(st+1|st, at)=Pr(st+1|s0, a0, s1, a1, ..., st, at)

The decision horizon T of an MDP refers to the number of time steps into the future

for which an agent considers the consequences of its actions when making decisions. The

stochastic process is called a finite-horizon MDP if the number of time steps is finite. Oth-

erwise, when the number of time steps is infinite, the stochastic process is referred to as an

infinite-horizon MDP.

28

Policy

The objective of the MDP is to find a good policy π for the decision-making agent. A

policy function π is a mapping from the state space S to the action space A, where π(s)

determines the best action that the agent can carry out in state s. The policy can be

deterministic or stochastic. A deterministic policy maps states to actions as shown below.

This means that for any given state, the policy will always produce the same action.

π : S 7→ A

However, a stochastic policy maps states to actions via a probability density function.

It assigns probabilities to each action that can be taken from a given state, allowing for a

range of actions to be chosen under similar circumstances.

π : S 7→ Pr(A)

Value Functions

Value functions are used to both evaluate the performance of policies and to optimise

them. They are used to measure the expected return from states or state-action pairs under

a specific policy.

The state-value function V π(s) measures the expected return starting from state s under

policy π

V π(s) = Eπ
[∑T

t=0R(st, at) | s0 = s
]

Here, γ is a discount factor with a value in the range [0, 1), which balances the importance

of immediate and future rewards.

The action-value function, or Q-function Qπ(s, a), measures the expected return starting

from state s, taking action a, and following policy π thereafter.

Qπ(s, a) = Eπ
[∑T

t=0 γ
tR(st, at) | s0 = s, a0 = a

]
Optimal value functions are derived from the best possible policy π∗ that maximises the

expected return

29

V ∗(s) = max
π

V π(s)

The value functions can be recursively defined using the Bellman equations. These equa-

tions express the value of a state or state-action pair in terms of the immediate reward and

the value of subsequent states. The corresponding Bellman optimality equation is

V ∗(s) = max
a∈A

∑
s′∈S

T (s, a, s′) [R(s, a, s′) + γV ∗(s′)]

Similarly, the optimal action-value function Q∗(s, a) delivers the maximum return from

state s after taking an action a, under the best policy:

Q∗(s, a) = max
π

Qπ(s, a)

The Bellman optimality equation for the action-value function is

Q∗(s, a) =
∑
s′∈S

T (s, a, s′)

[
R(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

]

3.3 Multi-Agent Reinforcement Learning

Within the realm of decision-making for autonomous agents, policies can be derived through

two categories of approaches: planning and learning. The planning-based methods involve

pre-computing strategies based on model predictions or simulations of the environment. On

the other hand, learning-based methods adapt and evolve policies through the agent’s interac-

tions with the environment. A significant and increasingly prevalent subset of learning-based

methods is Reinforcement Learning (RL), which enables agents to learn optimal behaviors

via trial-and-error, by reinforcing them with positive and negative rewards corresponding to

the actions taken.

30

In single-agent RL, an agent perceives the state of the environment and chooses the best

action to execute at that time step. The execution of this action causes a transition to a new

state within the environment, which consequently results in a positive or negative reward to

the agent. Over time, through repeated interactions with the environment, the agent learns

an optimal policy that maximises its total accumulated reward. Figure 3.1 illustrates the

action-reward feedback loop of a generic single-agent RL model.

Figure 3.1: Action-reward feedback loop of a generic single-agent RL model where an agent
takes actions in an environment, which is interpreted into a reward and a representation of
the state, which are fed back into the agent

Multi-agent Reinforcement Learning (MARL) addresses the problem of sequential decision-

making for multiple autonomous agents in an environment that can interact with the en-

vironment as well as with each other. Each agent in MARL is modeled as an independent

decision-maker that learns from its interactions with the environment and other agents. In

such a setting, before taking an action, agents need to account for not only the dynamics

of the environment but also the actions and policies of other agents. This introduces non-

stationarity from the perspective of any individual agent, rendering the landscape of MARL

inherently more complex than its single-agent counterpart.

Single-agent RL algorithms can be applied to train individual agents in a multi-agent

system by having each agent treat the environmental changes due to others’ actions as

environmental stochasticity. While this can sometimes lead to meaningful policies, it is not

31

sufficient for effective learning. Figure 3.2 shows Independent learning in multi-agent systems

where individual agents ignore the existence of other agents.

Controller1

Agent1

Environment

Observation1,
Reward1

Policy1

Action1

Feedback1

ControllerN

AgentN

ObservationN,
RewardN

PolicyN

ActionN

FeedbackN

Figure 3.2: Independent Learning in Multi-Agent Systems

To aptly capture the intricacies of decision-making in multi-agent systems, sophisticated

algorithms are required to learn within such environments. These algorithms must navigate

scenarios, where the aim might involve attaining a collective objective or pursuing individual

objectives that may conflict with one another.

One of the approaches in MARL is Centralised Training with Decentralised Execution

(CTDE)Lowe et al. (2017); Foerster et al. (2017). CTDE aims to leverage the global infor-

mation available during the training phase to learn decentralised policies that agents execute

during operation. That is, individual agents pass their local information, such as their ob-

servation, action and reward, to a central controller. This central controller then collects

joint actions, joint observations and joint rewards to update individual agent policies. Fig-

ure 3.3 shows this learning paradigm. This approach allows for coordination among agents

by sharing information during training, thus enabling them to learn policies that are aware

of the actions and potential strategies of their counterparts. During execution, each agent

acts independently based on its policy, ensuring scalability and adaptability in diverse and

dynamic environments.

32

Controller

Agent1

Environment

Observation1,
Reward1

Policy1

Action1

Feedback1

AgentN

ObservationN,
RewardN

PolicyN

ActionN

FeedbackN

Figure 3.3: Centralised Training and Decentralised Execution learning paradigm with one
controller for all agents

While the paradigm outlined in Figure 3.3 proves effective in scenarios focused on achiev-

ing a collective objective, a modified version of this approach is adopted when agents pur-

sue individual objectives that may clash with each other. Figure 3.4 illustrates a learning

paradigm wherein each agent possesses its own controller, yet still utilises joint actions ob-

served in the environment to refine its individual policy. During execution, agents once again

act autonomously based on their respective policies.

The Actor-Critic framework Lowe et al. (2017), a cornerstone of modern RL tech-

niques, is a manifestation of the CTDE learning paradigm with controllers. In this frame-

work, the ’Actor’ component is responsible for selecting actions based on the current policy,

while the ’Critic’ assesses the taken actions by evaluating the potential long-term rewards.

The Actor-Critic method thus combines the benefits of value-based and policy-based ap-

proaches, offering a powerful mechanism for policy improvement.

33

Controller1

Agent1

Environment

Observation1,
Reward1

Policy1

Action1

Feedback1

ControllerN

AgentN

ObservationN,
RewardN

PolicyN

ActionN

FeedbackN

Action'1 Action'N

Figure 3.4: Centralised Training and Decentralised Execution learning paradigm with in-
dividual controllers for each agent. Action′

i represents the inferred action of agent i, as
indicated by the dotted line in the image.

3.4 Hypergraphs and Incidence Graphs

A graph is a structure containing a set of objects in which some pairs of the objects are in

some sense ”related”. The objects in a graph are represented by nodes and the ”relations”

between the pairs of nodes are represented as edges between them. A hypergraph is an

extension of a graph, where edges can connect any number of nodes. This generalisation

allows us to represent more complex relationships in data. The edges in hypergraphs are

called hyperedges. The cardinality of a hyperedge refers to the number of nodes connected

by that hyperedge. A hypergraph where all hyperedges have the same cardinality k is called

a k-uniform hyperedge

34

Figure 3.5: An example of an undirected hypergraph. Source: Wikipedia contributors
(2024)

Formally, a hypergraph H can be defined as a pair H := (X,E), where X is a set of

elements called nodes, and E is a set of non-empty subsets of X called hyperedges.

An example of an undirected hypergraph can be seen in Figure 3.5. In the hypergraph,

X = {v1, v2, v3, v4, v5, v6, v7} and E = {e1, e2, e3, e4} = {{v1, v2, v3}, {v2, v3}, {v3, v5, v6}, {v4}}.

In this hypergraph, the cardinality of edges e1, e2, e3, e4 are 3, 2, 3, and 1 respectively. Figure

3.6 (a) shows an alternate representation of the hypergraph.

Hypergraphs can also be viewed as incidence structures. For every hypergraph, there

exists a corresponding bipartite incidence graph or Levi graph. A bipartite graph is a

graph whose vertices can be divided into two disjoint sets such that no two graph vertices

within the same set are adjacent. An incidence graph is a specific type of bipartite graph

that represents the incidences or connections between nodes and hyperedges of a hypergraph.

35

v1

v2

v3

v4

v7

v6

v5

e4

e3

e2

e1

(a) (b)

Figure 3.6: (a)Alternate representation of the hypergraph in Figure 3.5, (b)Incidence graph
of the hypergraph in Figure 3.5

The process of converting a hypergraph to an incidence graph involves creating a node

in the incidence graph for each hyperedge in the hypergraph. Edges are then drawn in the

incidence graph between nodes representing nodes and those representing hyperedges that

are incident in the hypergraph. This results in a bipartite graph where nodes representing

nodes and hyperedges in the hypergraph are never adjacent.

Figure 3.6 (b) illustrates the incidence graph of the hypergraph depicted in Figure 3.5.

In this incidence graph, the hyperedges e1, e2, e3, e4 are represented as nodes. The edges

in the incidence graph connect the original nodes v1, v2, v3, v4, v5, v6, v7 to these hyperedge

nodes e1, e2, e3, e4.

36

Chapter 4

Modeling Task-Open Systems

Traditional Markov Decision Processes (MDPs) struggle to handle the dynamic nature of

task-open systems, as they rely on a static framework that requires fixed state and action

spaces, along with fixed transition and reward functions. They cannot support systems

where tasks arrive unpredictably, making it necessary to develop a more flexible framework to

formalise these systems. In this chapter, in Section 4.1, we introduce our novel contribution:

the Task-Open Markov Decision Process (TaO-MDP), which extends the traditional MDP

framework to better accommodate the complexities of task-open environments. Specifically,

we formalise the representation of decision-making in task-open systems through the TaO-

MDP. In Section 4.2, we then introduce the novel conceptualisation of the task-open rideshare

domain, called dynamic ridesharing, which models the unpredictable nature of real-world

ridesharing scenarios. Finally, in Section 4.3, we instantiate dynamic ridesharing as a TaO-

MDP, demonstrating how this framework can effectively manage dynamic task assignments

and the evolving environment. This chapter provides a comprehensive understanding of

the TaO-MDP and its application to dynamic ridesharing, setting the stage for further

exploration and analysis.

37

4.1 Task-Open MDP

We propose Task-Open MDP or TaO-MDP to formalise the representation of decision-

making in task-open environments where exogenous factors trigger the action space and

hence the reward function of an environment to change from one time step to another.

We propose to model the problem as consisting of a two-step iteration of a base decision-

making model and a generator. The base decision-making model is an MDP and represents

the parameter values of the initial decision-making model. The generator is responsible for

modifying the decision-making model. At the occurrence of an exogenous factor that leads

to a modification in the list of tasks present in the environment, the generator captures how

the parameters of the newly added task(s) modify the current decision-making model to

generate a new one for the agent.

In developing this novel decision-making framework, the following assumptions have been

considered.

1. All tasks in the environment are homogeneous and share a common underlying struc-

ture, denoted as ϵ. This underlying structure ϵ defines the functional similarities across

tasks. While each task introduces a specific set of actions, these actions are guided by

the common structure ϵ ensuring that new actions align with the functional character-

istics of existing actions.

2. When a new task is added to the environment, the mapping of the corresponding new

actions to the underlying structure ϵ must be known. This mapping is represented

as aT × ϵ 7→ {0, 1}, indicating that each new action aT is defined in relation to the

common underlying structure ϵ. This ensures that new actions are consistent with the

existing functional framework, even as the specific action set evolves.

To formalise the decision-making process within a task-open system adhering to the

38

aforementioned assumptions, the following formalisation has been devised. Specifically, let

TaO represent the challenge posed by task openness:

TaO-MDP
def
= ⟨MT,XTa,G⟩

• MT is the base decision-making model at the T th timestep, which is a standard Markov

Decision Process (MDP) defined by the state space, action space, transition function,

and reward function available in the environment at timestep T . A detailed overview

of MDP can be found in Section 3.2.

MT def
= ⟨S,A, T ,R⟩T

• XTa represents the outcomes of events, both exogenous and endogenous, that cause

task openness in an environment. Exogenous variables are assumed to come from

an external distribution independent of the agents’ actions. Although endogenous

variables can be influenced by agents’ actions, they are not explicitly modeled; their

outcomes simply update the task set.

XTa = ⟨τ, ω⟩

τ ∈ X Ta includes parameters of tasks resulting from exogenous events, such as new

tasks or tasks exiting the environment. Similarly, ω ∈ X Ta contains parameters of

tasks affected by endogenous events. While τ is the outcome of exogenous variables(s),

ω is the outcome of endogenous variable(s) present within MT .

• G is the generator function that transforms the base decision-making model when an

exogenous or endogenous event changes the set of available tasks, populating XTa.

When XTa is set, G, along with ϵ, updates the current decision-making model MT .

39

As mentioned in the assumptions, ϵ denotes the underlying action description of a

task—a conceptual framework defining the functional similarities of actions across all

tasks. This ensures that new tasks and their corresponding actions seamlessly integrate

into the decision-making model.

MT+1 =

G(MT , XTa) if τ ∈ XTa or ω ∈ XTa are non-empty

MT otherwise

Components of G operate on parameters of the base model and generate new ones

– ST+1 = GS(S
T , XTa): G updates the state space to include representations of

newly added tasks and remove those of tasks that have exited, as indicated in

XTa.

– AT+1 = GA(A
T , XTa): G updates the action space using XTa and ϵ, combining

existing actions with those required for new tasks, and removing actions associated

with exited tasks.

– T T+1 = GT (T
T , XTa): G adapts the transition function to incorporate the new

states and actions while excluding those related to exited tasks. Transitions for

new tasks in XTa are updated by comparing the underlying framework ϵ of the

new tasks to the existing framework. This is present in XTa

– RT+1 = GR(R
T , XTa): G similarly updates the reward function to account for

the entry and exit of tasks using XTa and ϵ.

Consequently, the operational workflow for the agent consists of solving the current

decision-making model either through planning or reinforcement learning, executing the

obtained policy while simultaneously monitoring the exogenous variables in X Ta. If these

variables indicate the arrival of new tasks, the agent pauses the execution of its current

40

policy and applies the generator G to the current model MT to obtain a new model G(MT),

which the agent then solves to obtain the revised policy that is also cognizant of the new

tasks.

In this thesis, the Task-Open variant of the rideshare domain serves as the experimental

testbed. The subsequent sections offer an introduction to the task-open ridesharing domain,

along with a formal representation of this domain defined as a TaO-MDP.

4.2 Example Domain: Dyamic Ridesharing

Ridesharing Qin et al. (2022) involves driver agents transporting passengers to their desired

destinations. Traditionally, this domain has been modeled with a fixed set of passengers

and predetermined tasks. In this section, we introduce a novel conceptualisation of task

openness in the ridesharing domain: dynamic ridesharing. This task-open version allows new

tasks (passenger requests) to appear dynamically, simulating real-world unpredictability. We

discuss the design details of this dynamic environment, highlighting its complexities and the

challenges it poses to the learning agents.

Each driver agent can transport up to k passengers in their vehicle at a time. Each

passenger (task) has a pickup location, a desired drop-off location, and a fare assigned by a

centralised algorithm external to the driver’s decision-making. Thus, at any point in time,

each driver agent must keep track of (1) how much room it has available to pick up additional

passengers, (2) the drop-off location of each passenger currently being transported, and (3)

the currently available tasks not yet collected by other drivers. This information is all fully

observable to the driver.

Since the passengers carried by a driver change over time, and new passengers not yet

assigned to a driver also appear dynamically, the action space of the high-level decision

process of a driver agent also changes over time. As the specific passengers in the system

41

0

2

3

No. of

free

seats

Direction

of travel

Agent (Driver)

Passenger

destination

Task (Passenger)

Figure 4.1: A dynamic ridesharing driver operates a vehicle in a task-open MAS where new
tasks (passengers) suddenly appear and existing tasks complete leading to an open ground
action set.

change over time (due to arrival or drop off), the actions relevant for each driver change, and

the number of actions is not even constant but grows and shrinks depending on the current

passengers in the system.

At any timestep, each driver must decide which passenger to serve, whether that is (1) a

passenger currently occupying the driver’s vehicle, (2) an outstanding passenger who recently

appeared but has not yet been assigned to any driver, or (3) a newly assigned passenger who

is not yet in the vehicle. Consequently, the action set associated with a passenger task

includes accepting the passenger (accept), picking up the accepted passenger from its pick-

up location (pick), and dropping the picked-up passenger at its drop-off location (drop).

These actions must be carried out in the sequence of accept-pick-drop to complete a task.

Notably, we model pick and drop actions as one-step actions, rather than using temporally

42

extended actions as is common in the literature Jiao et al. (2021); Oda (2021). This design

choice facilitates task pooling, allowing agents to handle multiple passengers concurrently.

While temporally extended actions could simplify the learning process by bundling multiple

steps into a single high-level action, our approach requires agents to perform pick and drop

actions repeatedly over several timesteps to complete a task and realise the reward.

Changes in the passengers (tasks) both assigned to a driver agent and available for

assignment also change the reward function optimised by each driver. This is because new

passengers bring new actions that were not previously accounted for by the reward function

and because each passenger has a new fare that they earn the driver when dropped off at

their destination location (where fares generally increase with longer distances from pickup

to drop-off locations).

Importantly, these changes to the reward function over time also cause the utility function

(i.e., discounted cumulative rewards) of the driver agents to also change over time with task

openness, including for actions that previously existed. For instance, at one point in time, a

driver might currently have two passengers A and B that need to be dropped off at locations

on opposite sides of the map, causing the driver’s utility function to be higher for serving the

closest passenger A (due to earning positive rewards for completing a task more quickly).

However, suppose a new passenger C were to enter the system with a similar destination as

the non-served passenger B. In that case, the driver might pause their current task (serving

passenger A) because moving instead towards the destinations of B and C would now have

higher utility due to task openness through the newly introduced task assigned to the driver.

Notably, changes to the set of passengers over time in dynamic ridesharing cannot sim-

ply be modeled as agent openness, for which existing planning and reinforcement learning

solutions already exist (as described above). Once a passenger enters the system, they are

generally not autonomous actors – each passenger’s pick-up and drop-off locations and fares

are constant, and they simply trust the drivers in the system to take them to their drop-off

43

location. Thus, drivers do not need to model them as autonomous actors for which they

should adapt their own behavior; instead, the passengers represent unique tasks whose indi-

vidual descriptions do not change while the set of available tasks changes over time. Thus,

existing solutions for addressing agent openness cannot be reused in this domain, as reflected

in the fact that those prior works do not consider dynamic action sets nor changing reward

functions.

4.3 Modeling Dynamic Ridesharing as TaO-MDP

Having discussed the definition of TaO-MDP in the previous section, this section will instanti-

ate the previously defined dynamic ridesharing domain as a TaO-MDP. Figure 4.2 illustrates

a snapshot of the dynamic ridesharing environment at timestep t. Here, we formally define

the TaO-MDP for the ridesharing domain, with a particular focus on the environment at

timestep t.

44

1

2

2
No. of
free seats

Direction
of travel

Agent (Driver)

Passenger
destination

Task (Passenger)

1

Agent 1

Agent 3

Agent 2

Figure 4.2: Snapshot of the Dynamic Ridesharing Domain at Time Step t

Formally, the TaO-MDP for the dynamic ridesharing problem can be defined as:

TaO-MDP
def
= ⟨MT,XTa,G⟩

• The base decision-making model MT is an MDP describing the state space, the

action space, the transition function and the reward function of dynamic ridesharing.

Let us represent the MDP at timestep t as MT

MT def
= ⟨S,A, T ,R⟩T

– The state of the environment captures the location of all agents and detailed

information about all tasks in the system, including the pick-up and drop-off lo-

45

cations of passengers and the ride fare. In dynamic ridesharing, we use a matrix to

represent the state, where the grid cells indicate the agent’s locations and passen-

ger details. Information about a passenger traveling with an agent is represented

within the same cell where the agent is present.

Below is an example representation of the state at timestep t as shown in Figure

4.2

s =

({}, {}) ({}, {}) ({}, {}) ({}, {}) ({}, {}) ({}, {})

({}, {}) ({Ag3}, {P31}) ({}, {}) ({}, {}) ({}, {}) ({}, {})

({}, {}) ({}, {}) ({}, {}) ({}, {P1}) ({}, {}) ({}, {})

({}, {}) ({}, {}) ({}, {}) ({}, {}) ({}, {}) ({Ag2}, {P21})

({}, {}) ({Ag1}, {P11, P12}) ({}, {}) ({}, {}) ({}, {}) ({}, {})

({}, {}) ({}, {}) ({}, {}) ({}, {}) ({}, {}) ({}, {})

where, s ∈ ST , Agi = [passenger count, ride status, ...] and

Pij = [pick loc, drop loc, ride fare, servicing agent, ...]

The agents at (4, 2), (3, 5), and (1, 1) are represented as Ag1, Ag2, and Ag3,

respectively. The passengers being serviced by Ag1 are represented as P11 and

P12. The passenger being serviced by Ag2 is represented as P21, and the passenger

being serviced by Ag3 is represented as P31. The new un-serviced passenger is

represented as P1. As shown above, the agent and passenger variables are vectors

that capture more detailed information about them.

– The action space for each passenger includes accept, pick, and drop actions, along

with a no-operation action allowing agents to do nothing for a timestep. Each

action is specific to a particular passenger, meaning that an accept, pick, or drop

action for one passenger will have a completely different effect than the same

46

action for another passenger. This is because the transition function and the

effect on the environment are unique for each passenger based on their current

state and location. For example, a pick action for P12 involves agent Ag1 moving

closer to P12’s pick-up location, which may be different from P21’s pick-up location,

thus affecting the agent’s travel path differently.

An example representation of the action space at timestep t is shown below:

AT = {acceptP01
, dropP11

, dropP12
, dropP21

, dropP31
, no-op}

Each action a ∈ AT is a vector describing parameters related to that action, such

as pick-up or drop-off locations. For passengers already being serviced, only drop

actions are available, as other actions have been completed. For the new task P01,

the only feasible action at this step is accept.

– The transition function determines the next state of the environment based on

the actions carried out by the agents. In this domain, the transition function is

deterministic.

For example, if an agent Agi performs a drop action for passenger Pij, the tran-

sition function updates the state by moving Agi and Pij both one step closer to

Pij’s drop-off location. The combined actions of all agents collectively influence

the environment, resulting in a new state that reflects the updated positions and

statuses of both agents and passengers.

– The reward function determines the reinforcements agents receive for different

actions. Shown below is a representation of the reward function for the dynamic

ridesharing. Agents receive a negative move cost for every step they take towards

the pick-up and drop-off locations of the passengers, but receive a relatively huge

positive reward when they finally drop off the passenger.

47

R(s, ai, s
′) =

rfarePij
if ai = dropPij

and Agi is at Pij drop loc in s′

−cmove if ai = pickPij

−cmove if ai = dropPij
and Agi is not at Pij drop loc in s′

−coverload if ai = acceptPij
and Agi’s pooling limit is exceeded in s′

−cconflict if ai = acceptPij
and Pij is also accepted by a nearer agent

0 if ai = no-op or ai = acceptPij

where, ai is the action carried out by Agi. −cmove,−coverload,−cconflict are the

costs for moving, exceeding pooling limits, and accepting passengers closer to

other agents, respectively. rfarePij
is the ride fare for the respective passenger.

• The task openness events XTa capture the arrival and departure of passengers in

the system. τ ∈ XTa includes all passengers entering or leaving the environment

due to exogenous factors, such as new passenger requests or cancellations. ω ∈ XTa

encompasses passengers entering or exiting the environment due to endogenous factors,

such as dropping off the passenger. Each task in τ and ω contains the pick-up and

drop-off locations and the ride fare. This thesis addresses task entry due to exogenous

factors and task exit due to endogenous factors. Thus, in the version of dynamic

rideshare in this thesis, ω only includes tasks leaving the environment through arriving

at their destination, and τ only includes tasks entering the environment through calling

for a ride.

For example, in state s shown in Figure 4.2, if Ag3 executes dropP31 and reaches its

drop-off location in s′, the completion of task P31 is triggered. Suppose a new passenger

P02 enters the environment in the next time step. The endogenous task completion

48

event and the exogenous new passenger event modify the decision-making model’s

components as follows:

T = {(task entry bool, P02 pick loc, P02 drop loc, rfareP02
, ϵP02)}

W = {(task entry bool, P31 pick loc, P31 drop loc, rfareP31
, ϵP31)}

The underlying action description ϵ contains the vectors for actions required to

complete the task and a mapping of how these new actions correspond to existing ones

in the action space. For instance, the action vector of acceptP02 maps to other accept

actions in the action space as they are functionally similar, despite differing immediate

transitions in the environment.

• The generator (G) in dynamic ridesharing updates the decision-making model when

new tasks (passengers) arrive. This function updates the state space, action space,

transition function, and reward function based on the new task information in τ and

ω. The pick-up and drop-off locations, along with the ride fare information in XTa,

update the state to reflect the new passengers available for the agents. The actions

accompanying each new passenger, as specified in ϵ, update the action space. Conse-

quently, the reward and transition functions are revised based on the new state and

action space.

In the running example, XTa is populated due to both endogenous and exogenous

events, triggering the generator G to create a new decision-making model MT+1. The

next state s′ is updated by GS to include a new passenger P02, while passenger P31,

whose service is completed, is removed. The action space is updated as follows:

49

AT+1 = GA(A
T , XTa) = {acceptP01

, acceptP02
, dropP11

, dropP12
, dropP21

, no-op}

With the updated state and action space, the reward and transition functions are

also updated using ϵ in τ and ω through GR and GT , respectively. The updated

reward function RT+1 will adjust to include or exclude the ride fares of entering or

exiting passengers. The newly introduced actions, indicated by ϵ, will be mapped

to the existing actions, extending the costs of moving, picking, and other actions to

the new tasks. Additionally, the transition function is expanded to accommodate the

transitions for the modified set of tasks.

Modeling the dynamic ridesharing domain as a TaO-MDP provides a structured and

comprehensive framework to address the complexities introduced by task openness. By

formalizing the state, action, transition, and reward functions, alongside the integration of

task openness events and the generator function, this approach captures the dynamic nature

of ridesharing environments. This framework not only facilitates the development of robust

multi-agent reinforcement learning algorithms but also sets a foundation for further research

into dynamic, task-open systems.

50

Chapter 5

MARL for Task-Open Systems

In the realm of task-open environments, the dynamic nature of the action space presents a

significant challenge for developing effective learning algorithms. Traditional Reinforcement

Learning (RL) algorithms, which are designed to learn a static mapping from a stable state

space to a fixed action space, are inadequate for handling the ever-changing action dimensions

inherent in task-open systems. This chapter explores an innovative approach that selects

the optimal action based on a relative evaluation of the set of actions available at a specific

time step, contingent upon the current state.

This chapter is structured as follows: Section 5.1 discusses the state-task representation in

task-open systems by introducing interaction hypergraphs and interaction incidence graphs.

These representations capture the present state, along with the existing set of tasks and

associated actions, in a graphical format, serving as a crucial component of the approach.

Section 5.1.2 provides a concrete example of constructing an interaction hypergraph and

interaction incidence graph for a specific state in the dynamic ridesharing domain at a given

time step. Moving forward, Section 5.2 introduces the novel MARL algorithm, MOHITO,

which selects the optimal action through a relative evaluation of the current set of actions.

Section 5.2.1 discusses the detailed architecture of the MOHITO algorithm, while Section

51

5.2.2 focuses on the training algorithm, outlining the steps and methodologies used to train

agents effectively in task-open environments.

5.1 State-Task Representation in Task-Open Systems

The cornerstone of our approach is the creation of a generalised policy that is informed by

relative evaluations. This necessitates the policy to consider the present state in tandem with

the existing set of tasks and the associated actions. We encapsulate this approach within

the framework of interaction hypergraphs.

At each time step, this graphical representation encapsulates the agent’s observable state

and tasks, along with the associated action set. These elements are graphically combined into

the interaction hypergraph and subsequently interpreted through a Graph Neural Network.

By employing this approach, we overcome the limitations imposed by pre-defined action

spaces, or even agent spaces in environments exhibiting Agent Openness, resulting in a more

adaptable and dimensionally agile RL paradigm.

As in any graph, a hypergraph comprises 3 entities - nodes, edges, and global attributes.

However, in a hypergraph, an edge can join any number of nodes. The interaction hyper-

graph comprises three distinct types of nodes: Agent nodes that encapsulate state-specific

information of agents; Task nodes that store information about the tasks available in the

environment; and corresponding Action nodes that hold information about the actions that

are required to complete each task. We adopt a 3-uniform hypergraph to represent an in-

teraction graph, where each edge connects exactly three nodes. To be precise, each edge

in the interaction hypergraph connects an Agent node, a Task node, and an Action node.

Edges are introduced between all Agent, Task, and corresponding Action nodes to capture

the comprehensive set of potential interactions that agents may have with extant tasks in the

environment. Incorporating these edges serves a pivotal role in quantifying the effectiveness

52

of any Agent-Task-Action combination in the given state.

5.1.1 Interaction incidence graphs

Hypergraphs, while powerful for capturing complex relationships, can introduce various com-

putational complexities, including but not limited to high computational overhead. These

factors can limit their practical applicability to large-scale scenarios. Consequently, we trans-

form the interaction hypergraphs into their corresponding incidence graphs, which serve as

the bipartite equivalent of a hypergraph. This transformation represents the same combina-

torial data as the original graph but with 2-uniform edges instead.

To facilitate this transformation, we introduce a new set of nodes, designated as Hyperedge

nodes. Each 3-uniform edge that previously connected Agent, Task, and Action nodes in the

original hypergraph is now represented by a dedicated Hyperedge node. Subsequently, 2-

uniform edges are established to connect this Hyperedge node with each of the pre-existing

Agent, Task, and Action nodes. Notably, the edges must be directed inwardly, from the

Agent nodes, Task nodes, and Action nodes converging upon the corresponding Hyperedge

nodes. Such inward orientation highlights the aggregation of information into the Hyperedge

node, reflecting the fusion of information from the state and available task and action set a

singular, analytical entity.

The resulting bipartite graph, termed an interaction incidence Graph, allows for the

assessment of the efficacy of any Agent-Task-Action combination within the environment

through the node embedding of the connecting Hyperedge node. The methodology to com-

pute the node embedding of a Hyperedge node is discussed in the subsequent section. Note

that with an incidence graph, the computational complexity is markedly reduced without

compromising the integrity of the information represented, allowing for a more scalable and

efficient analysis in vast and dynamic environments.

53

5.1.2 State-Task dynamics in Ridesharing

To elucidate the manner in which a state, its tasks, and the relevant actions are encapsulated

within an interaction hypergraph—and consequently, an incidence Graph—let us consider

a specific timestep within the Dynamic Ridesharing domain, as depicted in Figure 4.2. At

this juncture, the environment comprises three agents and five passengers, four of whom are

engaged in transit, with one passenger awaiting acceptance.

Focusing on eastbound Agent 1, positioned at cell (2, 3) and currently accommodating

passengers A and B, we denote the newly available passenger as passenger C. Each passenger

represents a distinct task, replete with a suite of potential actions; thus, Agent 1’s purview

encompasses Tasks A, B, and C, as well as their corollary Actions A, B, and C. For instance,

implementing Action A would entail progressing towards Passenger A’s designated drop-off

point, while selecting Action C would involve the acceptance of Passenger C. It is pivotal

to acknowledge that Agent 1’s perception of the state excludes passengers presently in the

care of other agents. While each agent maintains awareness only of its accepted and in-

service passengers, all unaccepted passengers within the environment remain observable to

the collective.

From Agent 1’s point-of-view, the corresponding incidence hypergraph is articulated in

Figure 5.1. Within this framework, the 3-way Hyperedge 1 connects Agent 1, the ongoing

Task A, and the consequential Action A. Hyperedges 1, 2, and 3 are shown in red to signify

the tasks under Agent 1’s consideration. Additionally, the illustration shows Hyperedge 4,

which interconnects Agent 2 with Task C and the respective Action C, and Hyperedge 5,

which aligns Agent 3 with Task C and Action C, highlighting the visibility of these tasks

to all agents within the purview of the environment. Given that this hypergraph represents

Agent 1’s observations, it intentionally excludes the tasks being serviced by Agents 2 and 3.

54

Task C

Task B

Task A

Action A

Action C

Action B

Agent 1

Hyperedge 1

Hyperedge 3

Hyperedge 4

Hyperedge 2

Hyperedge 5

Agent 2

Agent 3

Figure 5.1: Observation interaction hypergraph capturing the state of the Dynamic Rideshar-
ing domain at timestep t

The transformed interaction incidence graph, derived from the hypergraph depicted in

Figure 5.1, is exhibited in Figure 5.2. The original hyperedges have been replaced by distinct

Hyperedge nodes. These nodes form the new nexus of the graph, each branching out via

directed edges to a specific agent, task, and action triad formerly unified by the corresponding

hyperedge. In this graphic representation, the Hyperedge nodes of Agent 1 are emphasised

in red, while those correlated with Agents 2 and 3 are distinguished in green and blue,

respectively. It is important to observe that all edges are consistently oriented inwards,

converging upon the Hyperedge nodes, reinforcing the directionality of the relationships

within the graph.

While only Hyperedges 1, 2, and 3 are pivotal for Agent 1 in determining the optimal

55

action to execute at this timestep, the inclusion of Hyperedges 4 and 5 is crucial in illus-

trating that the unaccepted Task C is also under consideration by other agents within the

environment. We can see that Task C and Action C are connected to 3 different Hyperedge

nodes and thus are in consideration by 3 decision-making agents. Note that, only nodes that

are directly connected to an agent’s hyperedge influence the agent’s decision-making.

Task C
Task B

Task A

Action A

Action C

Action B

Agent 1

Hyperedge 1

Hyperedge 3

Hyperedge 4

Hyperedge 2

Hyperedge 5

Agent 2

Agent 3

Figure 5.2: Observation interaction incidence graph capturing the state of the Dynamic
Ridesharing domain at timestep t

While the above figures show the interaction incidence graph of one agent’s observation

of the environment, Figure 5.3 shows the interaction incidence graph of the state, where task

associations of all agents are indicated

56

Task D

Task C
Task B

Task A

Action A

Action C

Action B

Agent 1

Hyperedge 1

Hyperedge 3

Hyperedge 5

Hyperedge 2

Hyperedge 7

Agent 2

Agent 3

Action D

Hyperedge 4

Task E

Action E

Hyperedge 6

Figure 5.3: State interaction incidence graph capturing the state of the Dynamic Ridesharing
domain at timestep t

The interaction incidence Graph is invariably accompanied by a feature matrix, serving

as a way to integrate state, task, and action attributes into the respective Agent nodes, Task

nodes, and Action nodes. In the Ridesharing domain, Agent nodes can be used to encapsulate

the agent’s positional data within the environment, alongside metrics such as the number of

tasks presently assigned to them or their remaining fuel reserves. Task nodes can be used

to capture pertinent task details, including passengers’ origin and destination points, as well

as the allocated ride fare. Similarly, Action nodes can be used to capture the specific action

details to be executed concerning designated tasks. Given that Hyperedge nodes initially

lack a concrete representation, they can be initially populated with infinitesimal random

values, setting the stage for subsequent refinement and application.

5.2 MOHITO

Having delineated the challenges posed by dynamic, non-stationary environments, we now

turn our attention to the architecture that enables agents to make optimal decisions within

57

such complex settings. In this section, we explore the details of the novel Multi-Agent Rein-

forcement Learning (MARL) algorithm - Models of Hyper Interactions under Task Openness

(MOHITO). The primary objective of this algorithm is to evaluate the environment via the

interactions among agents, tasks, and actions at each time step, thereby enabling the selec-

tion of the most suitable action for that particular time step.

The algorithm utilises an Actor-Critic framework and engages in learning based on the

Centralised Training and Decentralised Execution (CTDE) strategy, and is designed specif-

ically to leverage interaction graph representations of the environment. Like all CTDE

approaches, each agent has a local actor (or policy) and a local critic. During the training

phase, agents’ policies are learned in a centralised manner by harnessing the joint obser-

vations of the state, and the joint action set that is carried out in the environment. This

allows each agent to learn optimal strategies by considering both individual and collective

objectives, respectively. Post-training, the algorithm transitions to a decentralised execution

mode, where each agent makes an autonomous decision based on its own local observations

and policies. This ensures coordinated learning while maintaining the real-world applicability

that comes with decentralised operation.

5.2.1 Architecture

In this deep learning-based framework, both the actor and critic are defined as deep networks.

To leverage the benefits of the graphical representation of interactions in the environment, we

propose the use of Graph Neural Networks (GNN), specifically Graph Attention Networks

(GAT), for both the actor and critic networks. GNNs are a class of deep learning tech-

niques designed to perform inference on data described by graphs by performing optimizable

transformations on graph attributes (e.g., nodes, edges, global attributes).

58

GNN-based
Actor1

GNN-based
ActorN

GNN-based
Critic1

GNN-based
CriticN

Training

Execution

ed_11

Ag1

T1

A1

AgN

T2

ed_12

ed_N2

A2 Hyperedge
Node1
(ed_1i)

Observation
Interaction Graph1 (G1)

1

ed_1i

ed_12

Ag1

T2

A2

AgN

T3

ed_N2

ed_N3

A3 Hyperedge
NodeN
(ed_Ni)

Observation
Interaction GraphN (GN)

N

ed_Ni

G1 ed_1i GN ed_Ni

ed_1i

ed_1i

ed_Ni

ed_Ni

1
Gstate, {ed}

ed_11

Ag1

T1

A1

AgN

T2

ed_12

ed_N2

A2

T3

A3

ed_N3

State Interaction
Graph (Gstate)

{ed_1i,
......,

ed_Ni}

Joint Hyperedges
{ed}

Gstate, {ed}

ed_11

Ag1

T1

A1

AgN

T2

ed_12

ed_N2

A2

T3

A3

ed_N3

State Interaction
Graph (Gstate)

{ed_1i,
......,

ed_Ni}

Joint Hyperedges
{ed}

N

Figure 5.4: Overview of MOHITO Algorithm

We use the message-passing neural network framework proposed by (Gilmer et al.,

59

2017) with the Graph Networks architecture schematics introduced by (Battaglia et al.,

2018b). Within this framework, each node in the graph communicates with its neighbors by

exchanging and transforming information through message passing. Specifically, when a node

transmits a message, it conveys a modified version of its own features to all neighboring nodes.

Conversely, upon receiving messages from its neighbors, a node aggregates this information,

incorporating it with its own features to enrich its understanding of the local graph structure.

The directionality of edges in the graph plays a crucial role in the message-passing process.

In graphs with unidirectional edges, messages are passed in a single direction from the source

node to the target node. This can be useful for tasks where the flow of information is

inherently directional, such as modeling causal relationships or hierarchical structures. In

contrast, graphs with bidirectional edges allow messages to be passed in both directions

between connected nodes.

Furthermore, the integration of GAT layers into the network is pivotal. GAT layers

calculate attention coefficients between a node and its neighbors, effectively quantifying

the significance of features from neighboring nodes. This mechanism allows for a weighted

emphasis on the most relevant neighboring nodes, enhancing the overall message-passing

process.

Figure 5.4 shows an overview of the architecture of the MOHITO algorithm, featuring

GNN-based actor and critic networks. The actor network processes an observation inter-

action incidence Graph (similar to the one in Figure 5.2), with directed edges converging

from Agent nodes, Task nodes, and Action nodes towards the Hyperedge nodes. Through

GNN processing, this network engages in message-passing, culminating in the aggregation

of data from the Agent, Task, and Action nodes into the Hyperedge node—thus positioning

the Hyperedge nodes as the principal decision-making entities.

60

2-
he

ad
 G

AT
C

on
v

I:
2

x
hi

dd
en

_d
im

; O
: 2

 x
 h

id
de

n_
di

m

Observation
Interaction Graphi

Hyperedgei

Actori

State Interaction
Graphi

Qi

{Hyperedge1,
..HyperedgeN}

Joint Hyperedges

Critici

Q-valuei

ed_11

Ag1

T1

A1

AgN

T2

ed_12

ed_N2

A2 2-
he

ad
 G

AT
C

on
v

I:
in

pu
t_

di
m

; O
: 2

 x
 h

id
de

n_
di

m

R
eL

u
+

D
ro

po
ut

R
eL

u
+

D
ro

po
ut

2-
he

ad
 G

AT
C

on
v

I:
2

x
hi

dd
en

_d
im

; O
: 2

 x
 h

id
de

n_
di

m

R
eL

u
+

D
ro

po
ut

1-
he

ad
 G

AT
C

on
v

I:
2

x
hi

dd
en

_d
im

; O
: i

np
ut

_d
im

So
ftm

ax

ed_1i

ed_11

Ag1

T1

A1

AgN

T2

ed_12

ed_N2

A2

T3

A3

ed_N3

2-
he

ad
 G

AT
C

on
v

I:
in

pu
t_

di
m

; O
: 2

 x
 h

id
de

n_
di

m

R
eL

u

2-
he

ad
 G

AT
C

on
v

I:
2

x
hi

dd
en

_d
im

; O
: 2

 x
 h

id
de

n_
di

m

R
eL

u

2-
he

ad
 G

AT
C

on
v

I:
2

x
hi

dd
en

_d
im

; O
: 2

 x
 h

id
de

n_
di

m

R
eL

u

Li
ne

ar
 L

ay
er

s
I:

in
pu

t_
di

m
 +

 h
yp

er
ed

ge
_d

im
; O

:1

1-
he

ad
 G

AT
C

on
v

I:
2

x
hi

dd
en

_d
im

; O
: i

np
ut

_d
im

I: Input tensor dimension; O: Output tensor dimension; : Concatenation

input_dim = feature length of graph nodes; hidden_dim = dimension of intermediate tensor within hidden layers;
hyperedge_dim = length of hyperedge node feature x number of agents

G
lo

ba
l M

ea
n

Po
ol

H
yp

er
ed

ge
 n

od
es

Figure 5.5: Architecture of the Actor and Critic Networks

The actor-GNN is designed to select one of the Hyperedge nodes connected to the learner

agent, serving as the output. The detailed architecture of the actor network in Figure 6.1

shows this node filtering step, which occurs prior to the softmax operation on the learner

agent’s Hyperedge node features. Once the Hyperedge node with the highest value is selected,

the corresponding action is obtained for updating the environment through a straightforward

mapping of the Action node connected to it.

61

The critic network processes the state interaction incidence graph, similar to the one in

Figure 5.3, along with the vector of values of the Hyperedge nodes generated by all agents’

actor networks. The state interaction graph is processed by successive GAT layers, after

which the node features are pooled and concatenated with the vector of Hyperedge node

values. The new vector of values is then passed through a series of linear layers to compute

the Q-value. The detailed architecture of the critic network can be found in Figure 6.1.

Note that the dropout layers are only used during training to avoid overfitting, and

are turned off during execution. More details of the network architecture, including the

dimensions and the number of layers used to generate the reported results, can be found in

the Appendix section.

5.2.2 Training Algorithm

The proposed MARL architecture, Models for Hyper Interactions under Task Openness

(MOHITO), is a cohesive integration of the advanced components described previously. It

is designed to operate under the principles of CTDE, where the environmental parameters

accessible to the agents are graphically encapsulated and subsequently processed to deter-

mine their course of action. An overview of MOHITO’s training algorithm can be found in

Figure 5.4.

Given a task-open environment (env) with N agents, at time step t, the environmental

state (Xt) and set of available tasks (Tt = {T0, .., Tk}t) are defined. While agents can fully

observe the environmental state, they can only observe a subset of the total tasks, the ones

available to them for execution. Each agent i in the environment represents the multifaceted

information of the state and the observed task set as an observation interaction incidence

graph (Obsi), containing Agent, Task, Action, and Hyperedge nodes, each described by a

fixed-length feature vector. As Hyperedge nodes are generated nodes not associated with

innate features, they are initialised with infinitesimal random values to seed the learning

62

process. This is indicated in lines 2− 4 in Algorithm 2

The GNN-based actor network (πi) processes agent i ’s observation graph to return the

Hyperedge node (edi) connected to it with the highest value. The corresponding action (ai)

that the Hyperedge node is connected to is also determined. Action selection using the policy

can be seen in line 5 and the subroutine is described in Algorithm 1.

Upon determining the bestHyperedge nodes for all agents, a joint hyperedge set ({ed0, ..., edN})

is created. This set represents the set of decisions made by the agents in state X at timestep

t. The critic network now evaluates the quality of the decisions made by agents. The state

(Xt), along with the complete set of tasks available in the environment (Tt), is converted into

a state interaction incidence graph (Gcritic), as shown in lines 12 − 13. The critic network

of each agent (Qi) processes the state graph along with the joint hyperedge set to return a

Q-value (qi). This can be seen in lines 15− 16. The Q-value serves as an evaluative metric,

indicating the expected cumulative future rewards that an agent can accrue from executing

the selected decisions in the current state, under the current policy.

The joint set of actions carried out by each agent in the environment is used to determine

the next state (Xt+1), the next set of tasks (Tt+1), and the reward set (r0, .., rNt). Since the

environment is task-open, the next set of tasks depends not only on the actions carried out by

the agents but also on exogenous factors. This transition is indicated in line 6 of Algorithm

2.

In line with the principles of CTDE architectures, the centralised training phase in the

algorithm allows the critic to leverage collective information for the evaluation of selected

actions through Q-values. Meanwhile, during the decentralised execution phase, each agent

relies exclusively on its own local observations and policy to make real-time decisions. The

Q-values output by the critics, along with the reward set, are used to update the agents’

actor and critic networks. The loss functions used to update the two networks are discussed

in the subsequent sections. The update of the actor network is specified in lines 21−29, and

63

that of the critic network is in lines 11− 20.

Algorithm 2 details the training process of MOHITO comprehensively. While the above

description provides an overview, several crucial components are integral to the training

algorithm. The epsilon-greedy action selection Sutton and Barto (1998) strategy, depicted

in Algorithm 1, ensures exploration during learning. A random policy (πrand) is employed to

select a random hyperedge from the interaction graph. Additionally, the principle of double

networks van Hasselt et al. (2016) is utilised to stabilise network updates, with the target

actor and critic networks (π′
i, Q

′
i) being updated at predetermined rates (τπ, τQ). This can

been in lines 30− 32 in Algorithm 2

MOHITO - Online training parameters

1: Input: A set of N agents in an episodic environment
2: Parameters:
3: πθ, π′θ: Main and Target Actor networks with parameters θ and θ′ for each agent
4: Qϕ, Q′ϕ: Main and Target Critic networks with parameters ϕ and ϕ′ for each agent
5: πrand: Random Actor network for action exploration
6: S: Minibatch size
7: γ: Discount factor
8: λπ, λQ: Regularisation coefficient for Actor and Critic networks
9: τπ, τQ: Actor and Critic target network update rates

Algorithm 1 MOHITO - Action selection subroutine ps(Obs, π)→ a, ed

1: Input: Observations Obs, policy π
2: Output: action a, maximum hyperedge ed
3: for agent i do
4: Graphi ←generateIncidenceGraph(Obsi) #see Section 5.1.2
5: Edgesi ← πi(Graphi)
6: MaxEdgeIndexi ← argmaxa(

∑
Edgesi[a])

7: edi ← Edgesi[MaxEdgeIndexi]
8: ai ← ϵ-greedy(MaxEdgeIndexi, argmaxa(

∑
πrand(Graphi)[a]), ϵ)

9: end for

64

Algorithm 2 MOHITO - Online Training

1: for episode← 1 to E do
2: Get start state X with tasks {T0, . . . , Tt}
3: while episode is not terminated do
4: Get observation incidence graphs Obs0, Obs1, . . . , ObsN−1

5: a, edθ ← ps(Obs, πθ)
6: Obs′, r ← env(a)
7: a′, ed′θ

′ ← ps(Obs′, πθ′)
8: Add (X, edθ, r,X ′, ed′θ

′
) to buffer

9: if size(buffer) = S then
10: LossQi

, Lossπi
← 0 ∀i ∈ agents

11: for (Obs, edθ, r, Obs′, ed′θ
′
) in buffer do

12: Gcritic ← generateIncidenceGraph(X)
13: G′

critic ← generateIncidenceGraph(X ′)
14: for agent i do
15: qϕi ← Qϕ

i (Gcritic, ed
θ) # q actual

16: q′ϕ
′

i ← Q′ϕ′

i (G′
critic, ed

′θ′) # q expected

17: LossQi
← LossQi

+MSE[qϕi , ri + γ ∗ q′ϕ
′

i] + λQ ∗ |ϕ− ϕ′|
18: end for
19: end for
20: Backpropagate LossQi

to update Qϕ
i

21: for (X, edθ, r,X ′, ed′θ
′
) in buffer do

22: Gcritic ← generateIncidenceGraph(X)
23: for agent i do
24: qϕi ← Qϕ

i (Gcritic, {edθ})
25: Lossπi

← Lossπi
−mean(qϕi) + λπ × |θt − θt−1|

26: end for
27: end for
28: Backpropogate Lossπi

to update πθ
i and clear buffer

29: end if
30: for each agent i after every K episodes do #slow update
31: θ′i ← τ × θi + (1− τ)× θ′i
32: ϕ′

i ← τ × ϕi + (1− τ)× ϕ′
i

33: end for
34: end while
35: end for

65

The training losses used in the MOHITO algorithm are similar to those used for the actor

and critic networks in the MADDPG algorithm [Lowe et al. (2020)]. The actor loss function

is defined as:

Lossπi
= −E

[
Qϕ

i (Gcritic, {edθi })
]
+ λπ × |θt − θt−1|

In addition to the mean Q-value evaluation of the critic graph and joint hyperedges, a

regularization term is included to minimize changes in the network parameters from one

training update to the next. This regularization ensures that the network does not overfit

to the non-stationarity of the environment, which is particularly caused by task openness.

The critic loss function is defined as:

LossQi
= MSE [q actual, ri + γ × q expected] + λπ × |ϕt − ϕt−1|

where, q actual = Qϕ
i (Gcritic, {edθ})

q expected = Qϕ′

i (G
′
critic, {ed′θ

′})

The critic loss is based on the Temporal Difference (TD) error, which measures the

difference between the actual Q-value and the expected Q-value. The expected Q-value is

calculated by evaluating the next state and the next action resulting from the current action

taken at this time step. A similar regularization term is included in the critic’s loss equation

to ensure stability and prevent overfitting to transient changes in the environment.

66

Chapter 6

Experiments and Results

In this chapter, we present the experimental results of our novel MARL technique, MOHITO,

and provide a comprehensive analysis of these results. Section 6.1 outlines the experimen-

tal setup, detailing the configurations and parameters used to train and evaluate agents’

policies across various open systems. Section 6.2 introduces the performance baselines used

for comparative analysis, providing a reference point for the evaluation of the MOHITO

algorithm.

Section 6.3 evaluates the performance of the MOHITO algorithm through various sub-

sections. Section 6.3.1 discusses key training metrics, such as reward curves, to provide

insights into the learning process. Section 6.3.2 offers a detailed policy analysis, examin-

ing the behavioral outcomes of the learned policies and how agents handle dynamic tasks.

Section 6.3.3 compares the performance of MOHITO-trained policies against the baseline

policies, highlighting the algorithm’s strengths and areas for improvement. Finally, Section

7.1 addresses the training limitations, discussing challenges like non-convergence for some

agents and the complexities introduced by dynamic task sets, and outlining steps taken

to enhance robustness. The results demonstrate that MOHITO significantly outperforms

baseline policies, showing superior adaptability and efficiency in dynamic, task-open envi-

67

ronments. Additionally, MOHITO-trained agents quickly adapt to new tasks as they arrive,

maintaining high performance and demonstrating the algorithm’s robustness in handling the

unpredictability inherent in task-open systems.

6.1 Experimental Setup

This section discusses the dynamic ridesharing training and testing setups employed for the

results presented in this chapter.

Section 6.1.1 details the training and evaluation setup, describing the configurations and

parameters used to train the agents. This includes an explanation of the environment, the

initialisation of agents and tasks, and the criteria used to evaluate the performance of the

learned policies during training. Section 6.1.2 focuses on the testing setup, outlining the

procedures and configurations used to test the trained agents in various task-open scenarios.

6.1.1 Training and Evaluation Setup

Each training experiment involves agents being initialised at random locations within the

dynamic ridesharing grid, alongside a few passengers with varying start and endpoints.

Throughout the episode, additional passengers with distinct start and endpoints are grad-

ually introduced. At the start of training, agents are initialised with random policies in a

task-open ridesharing environment. The training progresses as the episode unfolds, following

the algorithm outlined in Section 5.2. Each episode lasts for 100 steps, with tasks introduced

during the first 70% of the episode’s duration. The number of tasks is kept proportional to

the number of agents present in the environment to ensure that agents aren’t overloaded with

options during training. The results reported in subsequent sections have used environments

containing three times the number of passengers for training. At the end of each episode,

the environment is reset for a new episode, while the agents’ policies carry forward.

68

Although agents are trained to navigate task-open environments where they may en-

counter an unpredictable set of tasks, the training process is carried out within a singular,

consistent environment. This means that every time the environment is reset during train-

ing, it is reset with the same episode as before. Agents face a fixed set of tasks that recur

at the same locations, episode after episode, during training. This consistency helps focus

the training on fostering the ability to interpret graphs and make informed decisions based

on them. Particularly, considering that agents must figure out how to repeatedly perform a

pick or drop action for several timesteps to effectively complete the activity, the consistent

task setup aids in honing these skills.

As training progresses, after every few training steps, the learned policies are evaluated

in predefined evaluation environments containing tasks that were not encountered by the

agents during training. These evaluation environments consist of the same number of tasks

as used during training, which is three times the number of agents. The rewards accumulated

in these validation episodes are utilised to monitor policy convergence.

6.1.2 Testing Setup

Upon obtaining converged policies for agents, the performance of these policies are evalu-

ated in pre-determined test environments. Similar to the evaluation environments, the test

episodes contain tasks that were previously unseen by the agents in both training and vali-

dation setups. The test environments are configured with varying levels of openness. This

thesis reports performance across three predefined levels of openness:

• Openness Level 1 (OL1) - This setting has the lowest task entry rate and has about 6

tasks entering the environment during the episode.

• Openness Level 2 (OL2) - This setting has a medium level of task entry rate, with

about 9 tasks entering the environment during the episode.

69

• Openness Level 3 (OL3) - This setting has the highest task entry rate and is the

toughest setup that we have used for testing in this thesis. This setting has about 12

tasks entering the environment during the episode.

2
No. of
free seats

Direction
of travel

Agent (Driver)

Passenger
destination

Task (Passenger)

Task Entry Map - Openness Level 3

t=0
● start = (4, 1), end = (0, 8), fare = 32
● start = (0, 1), end = (5, 4), fare = 26
● start = (4, 8), end = (7, 2), fare = 28
● start = (6, 9), end = (9, 2), fare = 31

t=2
● start = (3, 7), end = (9, 0), fare = 39

t=4
● start = (3, 3), end = (2, 9), fare = 21
● start = (5, 8), end = (2, 4), fare = 21

t=9
● start = (7, 4), end = (8, 7), fare = 17

t=15
● start = (1, 0), end = (1, 5), fare = 17

t=16
● start = (7, 0), end = (8, 8), fare = 28

t=21
● start = (2, 2), end = (4, 7), fare = 22
● start = (1, 0), end = (1, 5), fare = 17

10X10 grid at timestep t = 0

Figure 6.1: Task entry map for an example test episode with 3 agents operating at openness
level 3

We test multi-agent setups involving 2, 3, and 4 agents across the three levels of openness

mentioned above. The results of these tests are detailed in the subsequent sections. Note that

agents have only been trained with a fixed number of tasks in the environment. The levels

of openness are only for testing to evaluate how well agents are able to adapt to varying task

entry rates and handle the dynamic nature of task-open environments. This approach helps

assess the robustness and flexibility of the learned policies in managing different degrees of

environmental complexity and task dynamism.

70

6.2 Performance Baselines

To establish the comparative efficacy of the MOHITO algorithm within the context of task

openness in multi-agent environments, we require baseline policies. Since there is no prior

research that explores learned policies in environments characterised by task openness, there

isn’t a state-of-the-art policy for the dynamic ridesharing domain that can be directly used

as a baseline. Thus, the aim is to find a reference point for the most straightforward au-

tonomous behaviors. The following static task allocation policies have been chosen due to

their elemental and interpretable nature, serving as benchmarks for autonomous decision-

making within the rideshare domain. They rely on predefined rules to distribute tasks among

agents. By comparing and contrasting the behaviors learned by agents using the MOHITO

algorithm against those exhibited by these baseline policies, we aim to emphasise the strate-

gic depth and adaptability of the model in handling the complexities and dynamic aspects

of task-open systems.

• First-come First-serve Policy (FCFS): Under this policy, the actions of the agents

are determined by the order of task entry in the environment. Agents give precedence

to tasks in the sequence they emerge, favoring the earliest tasks over newer ones.

Agents take actions to complete one task, before switching to the next one. This policy

encapsulates a rudimentary yet intuitive approach, aligning with human heuristics of

task prioritisation and is reflective of traditional queue-based processing systems.

• Greedy Distance Policy (NTF): In this policy, agents always choose the nearest

task, thereby minimising the distance traveled and consequently the effort expended.

Once an agent picks the nearest available task, it performs all actions required to

complete the task at hand, before considering the next task to take up. This policy

encapsulates an approach grounded in the principle of immediate gratification, disre-

garding longer-term strategic considerations for real-time, distance-based expediency.

71

While the static task allocation policies listed above serve as a baseline for simple au-

tonomous behaviors, they are not adequate for evaluating the performance of MOHITO-

trained policies, which incorporate task pooling. The areas of research closest to task open-

ness are lifelong learning and multi-task learning, as discussed in Chapter 2. Policy Gradient

Efficient Lifelong Learning Algorithm (PG-ELLA) Ammar et al. (2014a) is primarily a life-

long learning algorithm, though it also incorporates elements of multi-task learning. Thus,

the following adaptation of PG-ELLA has also been considered as a baseline:

• Open-task Policy Gradient Efficient Lifelong Learning Algorithm (OTPG-

ELLA): This algorithm is an adaptation of the original PG-ELLA to address environ-

ments with dynamically changing task sets, enabling agents to continuously adapt and

optimise their policies as new tasks emerge. OTPG-ELLA employs a policy gradient

framework enhanced for efficient lifelong learning, facilitating the integration of new

tasks without compromising performance on established ones. It excels in scenarios

where task predictability is low and adaptability is essential.

Implementation details of OTPG-ELLA can be found in the Appendix section. OTPG-

ELLA contrasts with static task allocation strategies by prioritising adaptability and com-

prehensive task engagement over simpler, more immediate task resolution strategies. Con-

sequently, it provides a good benchmark for evaluating MOHITO’s performance in dynamic

task-oriented environments.

6.3 Performance Evaluation

This section assesses the efficacy of the novel multi-agent RL algorithm MOHITO. Central to

the examination is the performance of the algorithm in the task-open Rideshare domain. In

this domain, each passenger dynamically added to the environment system equates to a new

72

task, creating a problem where agents’ adaptability and strategic foresight are paramount.

We subject the algorithm to a series of scenarios, gauging its capacity for knowledge transfer,

its proficiency in handling simultaneous tasks, and its overall reward optimisation.

We conduct a detailed analysis of trajectories to highlight the behavioral superiority

imparted by this training algorithm within the learned policies. This section emphasises both

the quantitative benefits, such as reward maximisation, and the qualitative improvements in

agent decision-making, establishing MOHITO as a significant advancement for multi-agent

task-open systems.

Section 6.3.1 discusses key training metrics, such as reward curves, to provide insights

into the learning process. Section 6.3.2 offers a detailed policy analysis, examining the be-

havioral outcomes of the learned policies and how agents handle dynamic tasks. Section

6.3.3 compares the performance of MOHITO-trained policies against the baseline policies,

highlighting the algorithm’s strengths and areas for improvement. Finally, Section 7.1 ad-

dresses the training limitations, discussing challenges like non-convergence for some agents

and the complexities introduced by dynamic task sets, and outlining steps taken to enhance

robustness.

6.3.1 Training Metrics

In this subsection, we discuss the key metrics that provide insights into the training process

of our novel multi-agent RL algorithm, MOHITO. We focus on two primary aspects: reward-

based convergence analysis and training losses.

The evaluation of MOHITO’s training process reveals a significant challenge: not all

agents converge to optimal policies. This challenge is illustrated in the following figures and

discussed in detail.

73

0 500 1000 1500 2000 2500 3000 3500 4000
Training Epoch

150

100

50

0

50

Re
wa

rd

Rewards by training epochs
mean
min-max range

Figure 6.2: Mean rewards achieved in validation episodes through training epochs for a setup
with 4 agents

Figure 6.2 shows the rewards obtained by agents in predetermined validation environ-

ments throughout training epochs. This figure reports the mean rewards, along with the

standard deviation, that the agents achieved by the agents during evaluation episodes in a

4-agent setup. The evaluation episodes used to record the rewards comprised a combination

of openness levels 1 and 2.

While the rewards appear to be converging to a stable point, the level of reward at the

point of convergence seems to be slightly lower than the reward before convergence. To gain

further understanding, Figure 6.3 displays the accumulated rewards by each agent in multi-

agent environments with 2-, 3-, and 4-agent setups. Note that the bottom plot, showing

rewards for a 4-agent setup, is the same as in Figure 6.2. This figure helps to understand the

reward levels that each agent converged to. It is observable that not all agents converged to

an improved policy.

74

0 500 1000 1500 2000 2500 3000
Training Epochs

80

60

40

20

0

20

40

60

Re
wa

rd

Average Rewards across validation episodes | 2 agents
Agent 1
Agent 2

0 250 500 750 1000 1250 1500 1750 2000
Training Epochs

100

75

50

25

0

25

50

75

Re
wa

rd

Average Rewards across validation episodes | 3 agents
Agent 1
Agent 2
Agent 3

0 500 1000 1500 2000 2500 3000 3500 4000
Training Epochs

80

60

40

20

0

20

40

60

Re
wa

rd

Average Rewards across validation episodes | 4 agents
Agent 1
Agent 2
Agent 3
Agent 4

Figure 6.3: Validation rewards across training epochs for 2, 3, and 4-agent setups, illustrating
the average rewards obtained by agents during validation episodes. The shaded region around
the mean denotes the standard deviation of rewards across different validation episodes.
These setups were trained with triple the number of passengers as the number of agents.

The bottom plot in Figure 6.3 shows the rewards obtained by the individual agents in the

same setup shown in Figure 6.2. Agents 2 and 3 demonstrate convergence to an improved

75

policy, while agents 1 and 4 converge to sub-optimal policies, with their rewards trending

towards zero or negative values at the point of convergence. As agents settle into a learned

policy, those that effectively learn to complete tasks manage to pick an optimal number

of tasks and complete them. Conversely, the agents that do not learn effectively resort to

performing no-operation action, resulting in penalties for all the incomplete tasks that have

remained in the environment for an extended duration. This behavior explains the drop in

overall reward levels at the point of convergence shown in Figure 6.2.

Similar behavior can be observed in the top and middle plots in Figure 6.3, which show the

rewards for a 2-agent and 3-agent setup, respectively. In the plot for the 2-agent setup, agent

2 converges to an optimal policy, while agent 1 explores various policies before ultimately

settling on a no-operation only policy. Similarly, in the plot for the 3-agent setup, agents 2

and 3 converge to an improved policy, while agent 1 fails to do so.

This inconsistent behavior is observed across all training setups, regardless of the number

of agents in the environment. In every training run, some agents converge to improved poli-

cies, while others settle into policies characterised by frequent execution of the no-operation

action. Initially, these agents attempt to complete tasks during the early training epochs but

almost immediately settle into learning a policy that predominantly performs no-operation

action. Additional reward convergence plots for setups with 2 and 3 agents are included in

the Appendix, demonstrating this behavior.

This convergence issue is a notable shortcoming of the algorithm, and further discussion

on this limitation is provided in the subsequent section on Limitations. However, the subset

of agents that successfully converge to an improved policy exhibit enhanced decision-making

capabilities. An analysis of the performance of the learned policies, along with a comparison

of their performance in various task-open dynamic ridesharing domains, is presented in the

subsequent sections.

76

6.3.2 Policy Analysis

While the previous subsection discussed training and convergence, in this subsection we get

into the behavioral analysis of the learned policy using MOHITO.

In evaluating the learned policies for the dynamic ridesharing domain, certain fundamen-

tal expectations are established to determine the effectiveness and optimality of the agent

behaviors. Firstly, an optimal agent policy should demonstrate the capability to learn and

complete tasks efficiently. In dynamic ridesharing, this involves understanding and execut-

ing the necessary steps to pick up and drop off passengers accurately. Secondly, since the

algorithm specifically addresses task-open environments, agents should be adept at handling

previously unseen tasks. They need to adapt quickly to new tasks introduced dynamically

during an episode, ensuring they maintain high performance without prior knowledge of

these tasks.

In addition to these fundamental expectations, there are advanced capabilities that can

help distinguish the performance of the algorithm from others. Agents should exhibit the

ability to commit to the most rewarding tasks based on their positioning within the en-

vironment. This strategic task selection is crucial for maximizing rewards and minimizing

inefficiencies. Furthermore, agents should display advanced planning abilities, particularly

in scenarios where they can complete multiple tasks simultaneously. The environment allows

for task pooling, and an optimal policy would enable agents to plan their routes efficiently

to pick up and drop off multiple passengers in a single journey, thereby enhancing overall

performance.

The following are the behaviors observed in the learned policies in the dynamic rideshar-

ing domain:

• Behavioral outcomes in the learned policy: Agents successfully navigate the

accept-pick-drop regime, understanding that executing pick or drop actions multiple

77

times consecutively is necessary to reach a passenger’s pick-up or drop-off location.

The pooling limit—the total number of passengers an agent can service at once—is

enforced not physically but through a significant penalty. Evidence of the model’s

learning is observed in the agents’ ability to avoid exceeding this limit, thereby avoiding

substantial penalties, and focusing on maximizing their rewards by not overly accepting

passengers.

• Handling unseen tasks in a dynamic environment: Although agents were trained

in a singular environment (as described in Section 6.1.1), the MOHITO-trained policy

exhibits the ability to take up and complete previously unseen tasks in a dynamic

ridesharing environment. Agents utilizing the MOHITO-trained policy accept passen-

gers as they arrive and complete these tasks efficiently compared to agents following

rule-based baselines, which struggle with the dynamic and unpredictable nature of task

arrivals. While agents were trained in environments with a fixed number of passen-

gers, they can also be seen performing well in environments with a higher number of

passengers than what they have seen in training. This behavior is not limited to tasks

present at the beginning of an episode but also includes tasks that appear dynamically

during the episode. This is evidenced by the high rewards accumulated by optimally

performing agents during the validation episodes, as shown in Figure 6.3.

• Task selection based on proximity: Beyond merely accepting and completing

tasks, agents demonstrate the ability to select the most advantageous tasks based on

their proximity to the task start points and/or the task endpoints that fall within

their current route. This behavior indicates a degree of long-term planning ability. We

showcase the outcome of this learned behavior by comparing the time taken to reach

passengers in the environment with that of the baselines in the subsequent section.

• Exhibiting long-term planning and ride pooling: Agents exhibit long-term

78

thinking and planning capabilities, notably in their approach to ride pooling. Rather

than completing one task at a time, agents are observed accepting multiple passengers

if they fall along their current route, effectively pooling tasks together. When oppor-

tunities arise, agents pick up multiple passengers at once until they reach their pooling

limit. This behavior showcases the agents’ ability to optimise their routes and max-

imise efficiency by integrating multiple tasks into a single journey. We demonstrate

this behavior in the following paragraphs.

To understand the task pooling behavior among the agents, we conduct evaluation

episodes for setups involving 2, 3, and 4 agents, each with varying degrees of openness

as described in the section discussing Experimental Setup. We then compare the average

number of steps in which agents either perform a single task or pool multiple tasks together.

Figure 6.4 provides insight into the average number of steps per agent for both single-task

execution and pooled-task execution. The proportion of pooled to single-task execution can

be seen increasing as the level of openness in the environment increases. This increase in

pooled task execution is beneficial as it indicates that agents are effectively optimizing their

routes and maximizing efficiency, thereby reducing idle time and improving overall service

quality in more dynamic and unpredictable environments.

79

Figure 6.4: Comparison of steps involved in task pooling versus single-task execution by
agents across various setups

Agents in EnvAgents in Env Pooling-to-Single Task Ratio
OL1 OL2 OL3

2 0.38 0.51 0.59
3 0.47 0.81 1.16
4 0.60 0.65 0.65

Table 6.1: Table displaying the pooling-to-single task ratio for agents across various openness
levels (OL)

The increase in the ratio of pooled-task to single-task execution steps can further be

observed in Table 6.1. This suggests that as the environment becomes more open, MOHITO

agents exhibit increased pooling behavior. This aligns with our expectations, as the algo-

rithm is designed to encourage long-term thinking and efficient task completion, allowing

80

agents to effectively manage and complete tasks in the shortest possible time.

These findings highlight the strengths of the MOHITO algorithm in creating intelligent,

adaptive agents capable of strategic planning and efficient task management in dynamic

environments.

6.3.3 Comparative analysis against Baselines

To assess the performance of the policy learned by the MOHITO algorithm in comparison

to baseline policies, a series of predefined test episodes are created across varying levels of

openness, as mentioned in 6.1.2. We then obtain rewards from learned policies by deploying

agents in these environments. Concurrently, rewards are also logged for agents operating

in the environment according to the rule-based baseline policies introduced in the previous

section.

Note that due to the training limitation discussed in the previous sections, where not

all agents converged to an improved policy, the baseline comparisons were conducted in

environments with optimally trained agents. Specifically, optimally trained agents from

different training runs were combined to work in the environment. This ensures a fair

comparison between the MOHITO algorithm and the baselines.

81

2 agents 3 agents 4 agents

100

50

0

50

100

8.79
9.25

5.734.25 7.02 9.484.61
10.80

9.55

21.11

44.59
41.60

Openness Level 1
MOHITO
FCFS
NTF
OTPG-ELLA

2 agents 3 agents 4 agents

200

150

100

50

0

50

100 23.89 13.96 10.26

10.93
8.31 8.97

17.25 10.15 11.82

25.51

94.35

65.53

Openness Level 2

2 agents 3 agents 4 agents

500

400

300

200

100

0

100 7.36
6.24 13.72

30.06
14.94

12.299.95
7.10 8.61

12.16

2.28

40.45

Openness Level 3

M
ea

n
Re

wa
rd

 (w
ith

 S
td

 D
ev

)

Figure 6.5: Comparison of average episodic rewards across different openness levels for poli-
cies based on MOHITO algorithm, First-come First-serve (FCFS), Nearest Task First (NTF),
and Open-task Policy Gradient Efficient Lifelong Learning Algorithm (OTPG-ELLA)

Figure 6.5 shows the average episodic rewards resulting from several experiments. This

plot shows the performance of the 3 policies in 2, 3, and 4 agent setups, across varying levels

of openness. The evident observation is that MOHITO performs better than the static task

allocation baselines (FCFS and NTF) on average in all setups. Additionally, MOHITO also

performed better than OTPG-ELLA, which allows agents to pool multiple passengers. Not

82

only does MOHITO generally achieve higher average rewards, but it also often exhibits lower

standard deviation in rewards, indicating more consistent performance.

While the difference in performance between MOHITO and OTPG-ELLA is evidently

significant, we conducted a Wilcoxon significance test to validate the observed differences

in rewards between MOHITO and the two static baselines (NTF and FCFS). The test

confirmed that the differences between MOHITO’s mean rewards and those of the other

policies (NTF and FCFS) are statistically significant, with p-values of 1.25e-12 and 1.73e-

13, respectively. This confirms that MOHITO’s superior performance is not incidental.

Quantitatively, MOHITO achieves average rewards that are 54.73% and 4.83% higher than

the two static baseline policies, FCFS and NTF, respectively.

The following observations can be drawn from the comparisons illustrated in Figure 6.5

• Analysis based on Openness Level: In the 2-agent setup, the average rewards

of the three policies (MOHITO, FCFS, NTF) are comparable. This similarity can

be attributed to the limited number of agents and the sparse distribution of tasks,

where the distance needed to reach the passengers outweighs the advantage gained by

a superior decision-making policy. However, as the level of openness increases, the dif-

ference between the rewards of MOHITO and its baselines becomes more pronounced.

This trend suggests that MOHITO’s decision-making abilities are superior to those of

the rule-based baselines, a pattern that is also evident in the 3 and 4-agent setups.

Interestingly, OTPG-ELLA shows a significant deviation, with notably lower perfor-

mance compared to MOHITO, especially at higher levels of openness. This highlights

MOHITO’s robustness and effectiveness in handling dynamic task environments where

traditional algorithms like OTPG-ELLA struggle.

• Analysis based on Agent Count: Within each level of openness, the difference in

rewards between MOHITO and the baselines tends to decrease as the number of agents

83

increases. This observation implies that rule-based baselines can perform comparably

well in environments with a higher number of agents. While MOHITO handles in-

creased complexity effectively and maintains efficient task pooling and coordination

among multiple agents, there is still room for improvement to consistently outperform

the baselines in all scenarios. Notably, OTPG-ELLA, despite its poor performance in

lower agent setups, shows slightly better results in the 4-agent setup at higher open-

ness levels. However, it still lags behind MOHITO, underscoring MOHITO’s superior

adaptability and efficiency in dynamic, task-open environments.

While reward comparison is crucial in multi-agent reinforcement learning (MARL) sys-

tems, MOHITO, being a MARL algorithm designed for task-open systems, necessitates

evaluating how effectively agents process new tasks arriving in the environment. This evalu-

ation is essential because task-open systems continuously introduce new and dynamic tasks,

challenging agents to adapt and respond efficiently. Understanding how well agents handle

these new tasks provides insight into the algorithm’s ability to manage the dynamic nature of

task-open environments, ensuring robustness and flexibility in real-world applications. One

way to quantify this effectiveness is by examining the rate at which agents respond to new

tasks, specifically the average time agents take to accept a newly arrived task, pick up a

passenger, and complete the task.

Figure A.2 shows a comparison of the average task acceptance time, average task pick-up

time, and average task completion time across the three policies. This figure illustrates the

duration from task entry to the respective action points. In contrast, Figure A.1 in the

Appendix provides a stacked plot, depicting the average number of steps agents spend on

each of these actions.

MOHITO shows competitive average task pick-up times, especially outperforming the

baselines by a lot at higher levels of openness. This indicates MOHITO’s efficiency in not

only accepting tasks quickly but also in moving towards and picking up passengers effectively.

84

Beyond merely accepting and completing tasks, agents demonstrate the ability to select the

most advantageous tasks based on their proximity to the task start points and/or the task

endpoints that fall within their current route. This behavior indicates a degree of long-term

planning ability.

1 2 3
Openness Level (OL)

0

2

4

6

8

Av
g

ta
sk

 a
cc

ep
ta

nc
e

tim
e MOHITO

FCFS
NTF

1 2 3
Openness Level (OL)

0

5

10

15

Av
g

ta
sk

 p
ick

-u
p

tim
e

1 2 3
Openness Level (OL)

0
5

10
15
20
25
30

Av
g

ta
sk

 c
om

pl
et

io
n

tim
e

Figure 6.6: Average task acceptance, task pick-up and task completion time in MOHITO,
First-Come First-Serve (FCFS) and Nearest Task First (NTF) policies

85

MOHITO consistently shows lower task acceptance times across all levels of openness,

indicating its superior efficiency in quickly accepting tasks compared to the baseline poli-

cies. This is especially beneficial in a domain like dynamic ridesharing because passengers

typically expect prompt service. Faster task acceptance times translate to shorter waiting

periods for passengers, leading to higher customer satisfaction. However, MOHITO exhibits

a higher average task completion time across all levels of openness. This can be attributed to

MOHITO’s complex and strategic approach to task management, which involves more plan-

ning and coordination. In contrast, the baselines, being rule-based policies, follow simpler

and more direct strategies, resulting in faster task completion times.

Additionally, MOHITO-trained agents are, to some extent, competing with each other

to maximise their rewards. There are instances where multiple agents accept the same

passenger, but the passenger is only allocated to the closest driver. As a result, the other

agents lose a timestep. It is also noteworthy that while rule-based baselines avoid confusion

or incorrect decision-making, decision-making policies like MOHITO may occasionally make

mistakes. A mistake, in this context, can occur when an agent’s evaluation of which task to

prioritise changes from one step to the next. For example, an agent might decide that task

1 is the best focus at one timestep but then switch to task 2 in the subsequent step. These

decisions can lead to inefficiencies, but MOHITO consistently recovers from such occasional

mistakes and completes the tasks efficiently. This adaptability is a significant advantage over

rule-based policies, which do not experience such decision-making fluctuations but also lack

the flexibility to optimize in a dynamic environment.

There is still room for improvement in MOHITO regarding smoother task completion,

which could result in comparable completion times with the baselines. Despite this, MO-

HITO’s strategic approach and recovery ability highlight its robustness in dynamic and

task-open environments.

86

Chapter 7

Conclusion

The property of openness in real-world environments complicates multi-agent decision-making

due to the continuous changes in the set of agents, tasks, and the agents’ capabilities. Dy-

namic ridesharing exemplifies these challenges, as it requires efficient decision-making in real

time amidst the unpredictability of passenger requests. Traditional approaches in multi-agent

systems and reinforcement learning struggle to effectively address these dynamic aspects.

First, we introduced the concept of Task-Open Markov Decision Processes (TaO-MDPs)

to formally represent decision-making in environments where the task set can dynamically

change. This framework extends traditional MDPs to accommodate task openness, with

detailed descriptions of the state, action, transition, and reward functions. We then instan-

tiated the dynamic ridesharing domain as a TaO-MDP, illustrating how this framework can

handle the complexities of real-world ridesharing scenarios, including adaptive action spaces

and dynamic task entry and exit.

We introduced the novel MOHITO (Models of Hyper Interactions under Task Openness)

algorithm, which leverages centralised training and decentralised execution to enable agents

to efficiently learn in dynamic environments. The algorithm utilises interaction graphs to

represent the state, task, and action information of an environment. The graph convolutional

87

networks, integral to the MOHITO algorithm, process the interaction graphs to select the

best action from the available actions at each time step. This represents a paradigm shift

from conventional RL, which relies on a fixed action space. We detailed the architecture and

training process of MOHITO, demonstrating its ability to adapt to new tasks and optimise

decision-making in a dynamic environment.

MOHITO was used to train agent policies in the dynamic ridesharing environment, where

passenger requests can appear dynamically. Agents trained with MOHITO were not only

able to complete previously seen and unseen tasks, but also strategised to maximise their

rewards by pooling multiple passenger requests. The agents exhibited advanced planning

capabilities, such as task pooling, and showed superior adaptability and efficiency. Our

experimental results demonstrated that MOHITO significantly outperforms baseline policies

in dynamic, task-open environments.

7.1 Training Limitations

The training process of MOHITO revealed a significant challenge: not all agents converged

to an optimal policy. This issue, previously discussed and illustrated in Figure 6.3, shows

that while some agents converge to optimal policies, others settle into a no-operation action

policy.

In the Dynamic Ridesharing domain, actions such as accept, pick, and drop are used.

Unlike previous literature Jiao et al. (2021); Oda (2021), which has modeled ridesharing

with temporally extended actions through Semi-Markov Decision Processes or SMDPs

Baykal-Gürsoy (2010), we have modeled pick and drop as one-step actions. This design choice

facilitates task pooling, allowing agents to handle multiple passengers concurrently. While

temporally extended actions could simplify the learning process by bundling multiple steps

into a single high-level action, our approach requires agents to perform pick and drop actions

88

repeatedly over several timesteps to complete a task and realise the reward. This results

in a traditionally hard-to-manage delayed reward environment, significantly increasing the

complexity of the learning process. The requirement for multiple consecutive actions to

complete a task introduces a much larger state space, as agents must track and optimise

each step in the sequence over time, making efficient learning and decision-making more

challenging.

Agents encounter only negative rewards for moving until a task is completed. To achieve

a positive reward, an agent must successfully execute the accept-pick-drop sequence for a

passenger, particularly mastering the repeated selection of pick or drop actions to see the

task to completion. This challenge is compounded by the presence of several other actions

for different passengers in the agent’s action space, especially as new passengers continue

to appear. While the domain already has a delayed reward problem, the design of one-step

actions significantly reduces the probability of encountering the delayed reward, increasing

the complexity of the learning process.

Some agents, due to early lucky explorations, learn to effectively transport passengers

despite these complications. Changing the seed affects the number and the set of agents that

reach a converged policy. Once a few agents figure out the accept-pick-drop sequencing, they

dominate the environment, grabbing all passengers and reducing learning opportunities for

slower agents. Consequently, these slower agents adopt a no-operation policy, as it offers a

higher reward (0) compared to the negative costs associated with task-related actions like

fuel cost for moving. Even epsilon-greedy exploration fails to shift these agents from the

no-operation policy, as the potential rewards from exploration are lower than the rewards

from sticking to their current policy. This makes it nearly impossible for exploration alone

to lead these agents to successful task completion at this stage.

We investigate many training strategies to address this issue:

• Increasing task count to avoid agent dominance: We attempt to mitigate the

89

convergence issue by increasing the number of passengers in the environment. The

idea is to ensure that even if some agents dominate, others will still have opportunities

to learn and improve. However, this approach results in extremely large interaction

incidence graphs, significantly increasing the complexity of the learning process. We

also experimented with a gradual increase in passenger count during training, allowing

agents ample time to adapt to the increasing size of the interaction incidence graphs.

Specifically, the passenger count was increased from twice the number of agents to 4.5

times the number of agents over the training period, with the number of introduced

passengers gradually increasing every few episodes. Despite this adjustment, slow-

learning agents that had already resorted to a no-operation policy did not benefit from

the gradual increase. Instead, their failed explorations only reinforced their inclination

to do nothing.

• Use of expert trajectories: Similar to the exploration component introduced by

epsilon-greedy training, we introduce an expert trajectory component where, for a

small proportion of steps spread throughout training, an expert policy determines the

action for the agent. Specifically, for 10% of the steps in an episode, an expert agent

dictates the action, providing additional guidance. This proportion remains constant

while epsilon is reduced exponentially as training progresses. In another schedule,

both epsilon and the expert-guided proportion are reduced over time. Despite these

adjustments, some agents still resort to a no-operation policy for reasons similar to

those discussed earlier

• Non-Singular Training Environments: Section 6.1.1 describes the training setup

used to learn the optimal policies discussed in the previous sections. A singular en-

vironment is used. To address the convergence limitations, we also explore training

agents in non-singular environments with varying task sets. However, this approach

90

does not yield significant improvements. The inherent complexity of the tasks and the

need to understand them from start to finish prove too challenging, and the changing

task sets further complicate learning. Another strategy we employ is gradually chang-

ing the singular environment. However, this leads to sudden changes in agent behavior

during training, indicating that the approach might introduce additional instability

rather than promoting steady learning.

Ultimately, the limitations observed appear to be closely tied to the inherent complexity

of the tasks themselves. Modeling pick and drop actions as one-step actions, rather than

using temporally extended actions, creates a challenging learning environment. This design

choice, aimed at facilitating task pooling, introduces a significant delay in realizing the

benefits of actions, making it difficult for agents to consistently converge to optimal policies.

The delayed rewards inherent in this setup complicate the learning process, as agents must

navigate an environment where the positive outcomes of their actions are not immediately

apparent, especially when the probability of successfully executing the rewarding sequence

of actions is very low.

7.2 Future Work

This thesis has laid the foundation for understanding and addressing the complexities of task

openness in a multi-agent system using the novel TaO-MDP framework and the MOHITO

algorithm. However, several avenues for future research can further enhance and expand

upon these initial findings.

One promising direction for future work is to modify the ridesharing domain by replacing

the one-step actions with temporally extended actions. Simplifying the action space in

this manner could reduce the complexity of the domain, making it easier for agents to

learn optimal policies. Future research should carry out comprehensive tests to determine if

91

these modifications can solve the convergence issues currently observed with the MOHITO

algorithm.

The principles and algorithms developed in this thesis can be extended to other dynamic

and open environments. One such domain is wildfire firefighting, where fires (tasks) appear

and evolve unpredictably, requiring quick and strategic responses from firefighters (agents).

Unlike the ridesharing domain, this domain will be a fully co-operative one. Applying the

TaO-MDP framework and MOHITO algorithm to this domain could provide valuable insights

and further validate the robustness of these methods in diverse scenarios.

Another vital area for future research is to extend the architecture of MOHITO to handle

not just task openness but also agent openness and type openness. Developing a comprehen-

sive framework that accommodates these additional dimensions of openness will significantly

enhance the applicability of MOHITO to a wider range of real-world multi-agent systems.

These directions offer exciting opportunities to build upon the current work, addressing

its limitations and expanding its applicability to more complex and varied real-world sce-

narios. Future research in these areas promises to further advance the field of multi-agent

reinforcement learning in dynamic and open environments.

In conclusion, this thesis has made significant strides in understanding and solving the

complexities of task openness in multi-agent systems. The development of the TaO-MDP

framework and the MOHITO algorithm represents a substantial contribution to the field of

multi-agent reinforcement learning, offering a robust solution for dynamic task environments

and paving the way for future advancements.

92

Bibliography

David Abel, Alekh Agarwal, Fernando Diaz, Akshay Krishnamurthy, and Robert E Schapire.

2018. Policy and Value Transfer in Lifelong Reinforcement Learning. In Proceedings of the

35th International Conference on Machine Learning, Vol. 80. PMLR, 20–29.

Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. 2024. Multi-Agent Re-

inforcement Learning: Foundations and Modern Approaches. MIT Press. https:

//www.marl-book.com

Stefano V. Albrecht and Subramanian Ramamoorthy. 2013. A Game-Theoretic Model and

Best-Response Learning Method for Ad Hoc Coordination in Multiagent Systems. In Pro-

ceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent

Systems (St. Paul, MN, USA) (AAMAS ’13). International Foundation for Autonomous

Agents and Multiagent Systems, Richland, SC, 1155–1156.

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. 2014a. Online Multi-

Task Learning for Policy Gradient Methods. In Proceedings of the 31st International Con-

ference on Machine Learning (Proceedings of Machine Learning Research, Vol. 32), Eric P.

Xing and Tony Jebara (Eds.). PMLR, 1206–1214.

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. 2014b. Online

Multi-Task Learning for Policy Gradient Methods. In Proceedings of the 31st Inter-

national Conference on Machine Learning (Proceedings of Machine Learning Research,

93

Vol. 32), Eric P. Xing and Tony Jebara (Eds.). PMLR, Bejing, China, 1206–1214.

https://proceedings.mlr.press/v32/ammar14.html

Jacob Andreas, Dan Klein, and Sergey Levine. 2017. Modular Multitask Reinforcement

Learning with Policy Sketches. In Proceedings of the 34th International Conference on Ma-

chine Learning - Volume 70 (Sydney, NSW, Australia) (ICML’17). JMLR.org, 166–175.

Thom Badings, Thiago D. Simão, Marnix Suilen, and Nils Jansen. 2023. Decision-making

under uncertainty: beyond probabilities. International Journal on Software Tools for

Technology Transfer (2023). https://doi.org/10.1007/s10009-023-00704-3

P. G. Balaji and D. Srinivasan. 2010. An Introduction to Multi-Agent Systems.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1–27. https://doi.org/10.1007/

978-3-642-14435-6_1

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,

Vińıcius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam

Santoro, Ryan Faulkner, Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin

Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R. Allen, Charles Nash, Victoria

Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matthew M.

Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. 2018a. Relational inductive bi-

ases, deep learning, and graph networks. CoRR abs/1806.01261 (2018). arXiv:1806.01261

http://arxiv.org/abs/1806.01261

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,

Vińıcius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam

Santoro, Ryan Faulkner, Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin

Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R. Allen, Charles Nash, Victoria

Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matthew M.

94

Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. 2018b. Relational inductive bi-

ases, deep learning, and graph networks. CoRR abs/1806.01261 (2018). arXiv:1806.01261

http://arxiv.org/abs/1806.01261

Melike Baykal-Gürsoy. 2010. Semi-Markov Decision Processes. Wiley Encyclopedia of Oper-

ations Research and Management Science (2010).

Samir Bouabdallah. 2007. Design and control of quadrotors with application to autonomous

flying. Ph.D. Dissertation. École Polytechnique Fédérale De Lausanne. https://doi.

org/10.5075/epfl-thesis-3727

Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. 2010. Reinforcement

Learning and Dynamic Programming Using Function Approximators (1st ed.). CRC Press,

Inc., USA.

J. Calmet, A. Daemi, R. Endsuleit, and T. Mie. 2004. A Liberal Approach to Openness in

Societies of Agents. In Engineering Societies in the Agents World IV, Lecture Notes in

Computer Science, Vol. 3071. 81–92.

Lorenzo Canese, Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino,

Marco Re, and Sergio Spanò. 2021. Multi-Agent Reinforcement Learning: A Review of

Challenges and Applications. Applied Sciences 11, 11 (2021). https://doi.org/10.

3390/app11114948

Muthukumaran Chandrasekaran, Adam Eck, Prashant Doshi, and Leenkiat Soh. 2016. In-

dividual Planning in Open and Typed Agent Systems. In Proceedings of the Thirty-

Second Conference on Uncertainty in Artificial Intelligence (Jersey City, New Jersey, USA)

(UAI’16). AUAI Press, Arlington, Virginia, United States, 82–91. http://dl.acm.org/

citation.cfm?id=3020948.3020958

95

charlesdognin. 2018. Online Multi Task Learning. https://github.com/cdcsai/Online_

Multi_Task_Learning.

B. Chen, A. Eck, and L.-K. Soh. 2016. Collaborative Human Task Assignment for Open

Systems (Extended Abstract). In International Conference on Autonomous Agents and

Multiagent Systems (AAMAS). 1441–1442.

Zhiyuan Chen and Bing Liu. 2018. Lifelong Reinforcement Learning. Springer International

Publishing, Cham, 139–152. https://doi.org/10.1007/978-3-031-01581-6_9

Adam Eck, Maulik Shah, Prashant Doshi, and Leenkiat Soh. 2020. Scalable Decision-

Theoretic Planning in Open and Typed Multiagent Systems. In Proceedings of the Thirty-

Fourth AAAI Conference on Artificial Intelligence (New York City, New York, USA)

(AAAI’20).

Adam Eck, Leen-Kiat Soh, and Prashant Doshi. 2023a. Decision making in open agent

systems. AI Magazine 44, 4 (2023), 508–523. https://doi.org/10.1002/aaai.12131

Adam Eck, Leen-Kiat Soh, and Prashant Doshi. 2023b. Decision making in open agent

systems. AI Magazine (09 Oct 2023). https://doi.org/10.1002/aaai.12131

EllaBot. 2015. PG-ELLA. https://github.com/EllaBot/PG-ELLA.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon

Whiteson. 2017. Counterfactual Multi-Agent Policy Gradients. arXiv:1705.08926 [cs.AI]

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.

Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proceedings of the

34th International Conference on Machine Learning (Proceedings of Machine Learn-

ing Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR, 1263–1272.

https://proceedings.mlr.press/v70/gilmer17a.html

96

Tom Haider, Karsten Roscher, Felippe Schmoeller da Roza, and Stephan Günnemann.

2023. Out-of-Distribution Detection for Reinforcement Learning Agents with Probabilistic

Dynamics Models. In Proceedings of the 2023 International Conference on Autonomous

Agents and Multiagent Systems (London, United Kingdom) (AAMAS ’23). International

Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 851–859.

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation Learning

on Large Graphs. In Proceedings of the 31st Conference on Neural Information Processing

Systems (Long Beach, California, USA) (NIPS’17). 1025–1035.

W. Jamroga, A. Meski, and M. Szreter. 2013. Modularity and Openness in Modeling Multi-

Agent Systems. In Fourth International Symposium and Games, Automata, Logics and

Formal Verification (GandALF). 224–239.

Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. 2020. Graph Convolutional

Reinforcement Learning. In International Conference on Learning Representations.

Yan Jiao, Xiaocheng Tang, Zhiwei Qin, Shuaiji Li, Fan Zhang, Hongtu Zhu, and Jieping

Ye. 2021. Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement Learn-

ing. arXiv preprint arXiv:2103.04555 (2021). https://doi.org/10.48550/arXiv.2103.

04555

J. Jumadinova, P. Dasgupta, , and L.-K. Soh. 2014. Strategic Capability-Learning for Im-

proved Multi-agent Collaboration in Ad-hoc Environments. IEEE Transactions on Sys-

tems, Man, and Cybernetics-Part A 44, 8 (2014), 1003–1014.

Anirudh Kakarlapudi, Gayathri Anil, Adam Eck, Prashant Doshi, and Leen-Kiat Soh. 2022.

Decision-theoretic planning with communication in open multiagent systems. In Proceed-

ings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence. 938–948.

97

W.-R. Kong, D.-Y. Zhou, Y.-J. Du, Y. Zhou, and Y. y Zhao. 2023. Hierarchical multi-agent

reinforcement learning for multi-aircraft close -range air combat. IET Control Theory and

Applications 17 (2023), 1840–1862.

Martin Lauer and Martin A. Riedmiller. 2000. An Algorithm for Distributed Reinforcement

Learning in Cooperative Multi-Agent Systems. In Proceedings of the Seventeenth Interna-

tional Conference on Machine Learning (ICML 2000), Stanford University, Stanford, CA,

USA, June 29 - July 2, 2000, Pat Langley (Ed.). Morgan Kaufmann, 535–542.

Hui Li, Xuejun Liao, and Lawrence Carin. 2009. Multi-task Reinforcement Learning in

Partially Observable Stochastic Environments. J. Mach. Learn. Res. 10 (jun 2009),

1131–1186.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. 2017. Multi-

Agent Actor-Critic for Mixed Cooperative-Competitive Environments. Neural Information

Processing Systems (NIPS) (2017).

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.

2020. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.

arXiv:1706.02275 [cs.LG]

Laëtitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat. 2012. Indepen-

dent reinforcement learners in cooperative Markov games: a survey regarding coordi-

nation problems. The Knowledge Engineering Review 27 (2012), 1 – 31. https:

//api.semanticscholar.org/CorpusID:220758222

Laetitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat. 2007. Hysteretic Q-

learning : an algorithm for Decentralized Reinforcement Learning in Cooperative Multi-

Agent Teams. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems. 64–69. https://doi.org/10.1109/IROS.2007.4399095

98

J.A. Mendez, H. van Seijen, and E. Eaton. 2022. Modular Lifelong Reinforcement Learning

via Neural Composition. In Proceedings of the Tenth International Conference on Learning

Representations (ICLR’2022).

Stefano Moroni and Daniele Chiffi. 2022. Uncertainty and Planning: Cities, Technolo-

gies and Public Decision-Making. Perspectives on Science 30, 2 (04 2022), 237–259.

https://doi.org/10.1162/posc_a_00413 arXiv:https://direct.mit.edu/posc/article-

pdf/30/2/237/2005006/posc a 00413.pdf

Takuma Oda. 2021. Equilibrium Inverse Reinforcement Learning for Ride-hailing Vehicle

Network. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21).

Association for Computing Machinery, New York, NY, USA, 2281–2290. https://doi.

org/10.1145/3442381.3449935

Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and John Vian.

2017. Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial

Observability. arXiv:1703.06182 [cs.LG]

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. 2021.

Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative

Tasks. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and

Benchmarks Track (Round 1). https://openreview.net/forum?id=cIrPX-Sn5n

Jan Peters and Stefan Schaal. 2008. Natural Actor-Critic. Neurocomputing 71, 7 (2008),

1180–1190. https://doi.org/10.1016/j.neucom.2007.11.026 Progress in Modeling,

Theory, and Application of Computational Intelligenc.

Zhiwei (Tony) Qin, Hongtu Zhu, and Jieping Ye. 2022. Reinforcement learning for rideshar-

ing: An extended survey. Transportation Research Part C: Emerging Technologies 144

(2022), 103852. https://doi.org/10.1016/j.trc.2022.103852

99

Muhammad A Rahman, Niklas Hopner, Filippos Christianos, and Stefano V Albrecht. 2021.

Towards Open Ad Hoc Teamwork Using Graph-based Policy Learning. In Proceedings of

the 38th International Conference on Machine Learning (Proceedings of Machine Learning

Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 8776–8786.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. 2017.

EPOpt: Learning Robust Neural Network Policies Using Model Ensembles. In 5th In-

ternational Conference on Learning Representations, ICLR 2017, Toulon, France, April

24-26, 2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/

forum?id=SyWvgP5el

Stuart Russell and Peter Norvig. 2010. Artificial Intelligence: A Modern Approach. Pearson

Education.

Paul Ruvolo and Eric Eaton. 2013. ELLA: An Efficient Lifelong Learning Algorithm. In Pro-

ceedings of the 30th International Conference on Machine Learning (Proceedings of Ma-

chine Learning Research, Vol. 28), Sanjoy Dasgupta and David McAllester (Eds.). PMLR,

Atlanta, Georgia, USA, 507–515. https://proceedings.mlr.press/v28/ruvolo13.

html

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas

Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob Foerster, and

Shimon Whiteson. 2019. The StarCraft Multi-Agent Challenge. In Proceedings of the 18th

International Conference on Autonomous Agents and MultiAgent Systems (Montreal QC,

Canada) (AAMAS ’19). International Foundation for Autonomous Agents and Multiagent

Systems, Richland, SC, 2186–2188.

Andreas Sedlmeier, Thomas Gabor, Thomy Phan, Lenz Belzner, and Claudia Linnhoff-

Popien. 2020. Uncertainty-based Out-of-Distribution Classification in Deep Reinforce-

100

ment Learning. In Proceedings of the 12th International Conference on Agents and Arti-

ficial Intelligence (ICAART’2020). SCITEPRESS - Science and Technology Publications.

https://doi.org/10.5220/0008949905220529

O. Shehory. 2000. Software Architecture Attributes of Multi-agent Systems. In 1st Interna-

tional Workshop on Agent-Oriented Software Engineering, Revised papers. ACM, 77–89.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. 2021. Multi-Task Reinforcement Learning

with Context-based Representations. In Proceedings of the 38th International Conference

on Machine Learning (Proceedings of Machine Learning Research, Vol. 139), Marina Meila

and Tong Zhang (Eds.). PMLR, 9767–9779. https://proceedings.mlr.press/v139/

sodhani21a.html

Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An Introduction.

MIT Press.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999. Pol-

icy Gradient Methods for Reinforcement Learning with Function Approximation. In Ad-

vances in Neural Information Processing Systems, S. Solla, T. Leen, and K. Müller (Eds.),

Vol. 12. MIT Press. https://proceedings.neurips.cc/paper_files/paper/1999/

file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

F. Tanaka and M. Yamamura. 2003. Multitask reinforcement learning on the distribution of

MDPs. In Proceedings 2003 IEEE International Symposium on Computational Intelligence

in Robotics and Automation. Computational Intelligence in Robotics and Automation for

the New Millennium (Cat. No.03EX694), Vol. 3. 1108–1113 vol.3. https://doi.org/10.

1109/CIRA.2003.1222152

S. Thrun and T.M. Mitchell. 1995. Lifelong Robot Learning. Robotics and Autonomous

Systems 15, 1-2 (1995), 25–46.

101

Prashant Trivedi and Nandyala Hemachandra. 2021. Multi-agent Natural Actor-critic

Reinforcement Learning Algorithms. CoRR abs/2109.01654 (2021). arXiv:2109.01654

https://arxiv.org/abs/2109.01654

Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement Learning

with Double Q-learning. arXiv preprint arXiv:1509.06461 (2016). https://doi.org/

10.48550/arXiv.1509.06461

Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Embedding. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (KDD ’16). Association for Computing Machinery, 1225–1234.

Wikipedia contributors. 2024. Hypergraph — Wikipedia, The Free Encyclopedia. https:

//en.wikipedia.org/wiki/Hypergraph. [Online; accessed 29-May-2024].

R. J. Williams. 1992. Simple statistical gradient-following algorithms for connectionist rein-

forcement learning. Machine Learning 8 (1992), 229–256.

Lixiang Zhang, Jingchen Li, Yi’an Zhu, Haobin Shi, and Kao-Shing Hwang. 2022. Multi-

agent reinforcement learning by the actor-critic model with an attention interface. Neu-

rocomputing 471 (2022), 275–284. https://doi.org/10.1016/j.neucom.2021.06.049

Ziqian Zhang, Lei Yuan, Lihe Li, Ke Xue, Chengxing Jia, Cong Guan, Chao Qian, and

Yang Yu. 2023. Fast teammate adaptation in the presence of sudden policy change. In

Uncertainty in Artificial Intelligence. PMLR, 2465–2476.

102

Appendix A

Task Completion Time Metrics

1 2 3
Openness Level (OL)

0

5

10

15

20

25

30

Av
er

ag
e

Ti
m

e

Time Analysis

MOHITO - Accept time
MOHITO - Pick-up time
MOHITO - Ride time

FCFS - Accept time
FCFS - Pick-up time
FCFS - Ride time

NTF - Accept time
NTF - Pick-up time
NTF - Ride time

Figure A.1: Stacked bar plot showing the average time spent on each task phase across the
three policies (MOHITO, FCFS, NTF). The plot illustrates the breakdown of time from task
entry to acceptance, from acceptance to pick-up, and from pick-up to completion

103

1 2 3
Openness Level (OL)

5

0

5

10

15

Av
g

ta
sk

 a
cc

ep
ta

nc
e

tim
e

MOHITO
FCFS
NTF

1 2 3
Openness Level (OL)

5

0

5

10

15

20

25

30

35

Av
g

ta
sk

 p
ick

-u
p

tim
e

1 2 3
Openness Level (OL)

0

10

20

30

40

50

Av
g

ta
sk

 c
om

pl
et

io
n

tim
e

Figure A.2: Average task acceptance, task pick-up and task completion time in MOHITO,
First-Come First-Serve (FCFS) and Nearest Task First (NTF) policies. The standard devi-
ation has been marked as error bars

104

Appendix B

Training parameters

This section lists the training parameters used to attain the converged policies used in this

results’ section of this thesis

• Number of agents = 2, 3, 4

• Number of training epochs = 10000

• Length of each training episode = 100 steps

• Batch size = 20

• Grid dimensions = 10x10

• Rewards

– Cost to accept a passenger = 0

– Cost to move to pick/drop = -1.2/(number of active passengers)

– Cost to pick up a passenger = -0.1

– Cost to drop off a passenger = ridefare

105

– Cost to an agent if it accepts a passenger that was accepted by other agents as

well and didn’t get the passenger = -2

– Cost to accept a passenger beyond the agent’s pooling limit = -2

• Gamma (for loss function) = 0.9

• Range of epsilon for epsilon-greedy = [0.9, 0.05]

• Epsilon decay rate = 0.00035

• Epsilon decay function [/epsilon fn = lambda epoch: min(epsilon range) + (max(epsilon range)

- min(epsilon range)) * math.exp(-epsilon decay * epoch)/]

• Actor parameters

– Number of hidden layers = 20

– Learning rate = 0.001

– Regularisation lamdba = 0.1

– Soft update rate = 0.05

• Critic parameters

– Number of hidden layers = 20

– Learning rate = 0.01

– Regularisation lamdba = 0.01

– Soft update rate = 0.05

– Gradient clip = 5

The implementation of MOHITO and Dynamic Ridesharing can be found at

https://github.com/oasys-mas/MOHITO/tree/Gayathri-Anil

106

Appendix C

OTPG-ELLA

C.1 PG-ELLA

First described by (Ammar et al., 2014b), PG-ELLA, as depicted in Alg. 3, is an extension

of the authors’ previous work in linear regression Ruvolo and Eaton (2013) which greatly

expands the variety of practical applications by using an internal policy gradient approach

Sutton et al. (1999); Peters and Schaal (2008); Li et al. (2009). Notably, it features a modular

structure capable of utilizing learning a variety of base learners Williams (1992); Peters and

Schaal (2008) to individually learn policies for like tasks Busoniu et al. (2010); Bouabdallah

(2007). As they are learned, these task-specific policies are efficiently combined by the main

algorithm to form a partially unified set that shares some policy information across tasks.

This partial unification comes from the structure of the algorithm’s latent-space-defined

policy parameters, which are divided into one large latent space L shared between tasks and

another, smaller latent space s(t) unique to each task t. For each learned task, the policy

parameters θ(t) are defined as follows: θ(t) = Ls(t). (Ammar et al., 2014b) describe the

benefits of this shared latent space in greater detail, but for purposes related to open-task

environments, this efficient and task-based approach to learning presents an opportunity to

107

lead into learning a policy capable of operating in environments that have a variety of tasks

present at any given moment.

Algorithm 3 PG-ELLA (k, λ, µ)

T ← 0 A ← zerosk×d,k×d b ← zerosk×d,1 L ← zerosd,k some task t is avail-
able isNewTask(t) T ← T + 1 (T (t), R(t)) ← getRandomTrajectories() (T (t), R(t)) ←
getTrajectories(α(t)) A← A− (s(t)s(t)

⊤
)⊗Γ(t) b← b−vec(s(t)

⊤ ⊗ (α(t)⊤Γ(t))) compute α(t)

and Γ(t) from (T (t), R(t)) L ← reinitializeZeroColumns(L) s(t) ← argminsℓ(L, s, α
(t),Γ(t))

A← A+ (s(t)s(t)
⊤
)⊗ Γ(t) b← b+ vec(s(t)

⊤ ⊗ (α(t)⊤Γ(t))) L← mat((1
T
A+ λIk×d,k×d)

−1 1
T
b)

C.2 Adapting PG-ELLA

As presented by (Ammar et al., 2014b), PG-ELLA falls short of direct open-task application

in three key aspects. First, the base learners described (Williams, 1992; Peters and Schaal,

2008) and implemented (Peters and Schaal, 2008; EllaBot, 2015; charlesdognin, 2018) are

all specific to single-agent environments. While these are certainly capable of learning and

operating in multi-agent environments, they lag behind newer methods of addressing multi-

agency Lowe et al. (2020); Trivedi and Hemachandra (2021); Zhang et al. (2022) by only

considering other agents as part of the environment, rather than as agents in their own

right Russell and Norvig (2010). This limits the efficacy of any learned policy Matignon

et al. (2012). Second, the nature of this single-agent implementation and traditional single-

task environments trivialises trajectory generation explicitly featuring one agent working

on a specific task, but such triviality is lost when attempting to account for the actions of

other agents or the presence of other tasks. This makes iterating by task and generating

trajectories over specific tasks impractical, resulting in both inefficiency should each agent

need to generate a trajectory set for each task where they must work on that task, failing

to learn from other tasks present in the environment or trajectories in which that task was

taken by another agent. Third, the trajectory-related complications just described extend

108

further when the exact tasks to be present in a newly-generated trajectory are uncertain, as

in an open-task environment Eck et al. (2023b). This also limits the ability for task-by-task

iteration as it is difficult to generate trajectories that contain a particular task if the tasks

present in a given trajectory cannot be known prior to generation.

C.2.1 Multi-agency

Beginning with the change that requires the least modification to PG-ELLA, multi-agency

can largely be addressed through the base learner, with minimal alterations to the larger

algorithm. Existing implementations of PG-ELLA EllaBot (2015); charlesdognin (2018) have

generally used REINFORCE Williams (1992) as a simple base-learning algorithm, with the

original authors Ammar et al. (2014b) having utilised a natural actor-critic implementation

Peters and Schaal (2008). The former is a purely single-agent learning approach, and while

actor-critic strategies Lowe et al. (2020); Trivedi and Hemachandra (2021); Zhang et al.

(2022) have been developed for multi-agent learning, such adaptations are not discussed in

Ammar et al. (2014b). As described previously, this does not prohibit an agent’s ability to

learn and operate in a multi-agent environment, but it does limit the potential efficacy of

any policy learned Matignon et al. (2012). Looking to resolve this through modern policy-

gradient approaches that both effectively and efficiently learn multiple agents’ worth of

policies in a multi-agent setting, multi-agent deep deterministic policy gradient (MADDPG)

Lowe et al. (2020) presents itself as an actor-critic derived strategy that allows for centrally-

trained yet independent critics with decentrally-executing actors as final in-environment

policies. This methodology permits the use of a base-learning algorithm that can learn task-

specific policies through an actor-critic approach, similar to the original paper’s PG-ELLA

implementation Ammar et al. (2014b), while gaining the benefits of multi-agent learning and

improving the resulting policies Russell and Norvig (2010). Furthermore, MADDPG Lowe

et al. (2020) in particular makes use of the distinction between the training and operating

109

environments to gain the benefits of centralised training, normally only available in co-

operative settings where agents share rewards Lauer and Riedmiller (2000); Matignon et al.

(2007); Omidshafiei et al. (2017), and still use an individual policy for each agent.

This centralised training with decentralised execution (CTDE) is achieved by taking tra-

jectories generated through the independent actions of all the agents therein, and generating

critical inputs across the joint observations and actions of all agents. These joint inputs are

then used with each agent’s individual rewards to create an agent-specific score, or Q-value,

for a critic unique to that agent. This differs from traditional centralised training which

would have a single score over all agents using a shared reward value, thus limiting its effec-

tiveness to co-operative environments Lauer and Riedmiller (2000); Matignon et al. (2007);

Omidshafiei et al. (2017), and extends those benefits to competitive or mixed co-opetitive

settings Lowe et al. (2020). Each agent’s actor can then learn a separate policy from their

individual observation-action inputs and their respective critic’s joint score. These separate

policies are then used in the next round of trajectory generation to continue the cycle until

convergence or end of iteration. This strategy, depicted in Fig. C.1, has been shown by Lowe

et al. Lowe et al. (2020) to have great improvements in policy efficacy and agent coordination

when compared to individually-learned agents.

C.2.2 Environments as Sets of Tasks

With multi-agent environments now addressed through the base learner, the next step in

adapting PG-ELLA to open-task environments is enabling the operation of PG-ELLA in en-

vironments with multiple, simultaneously-existing tasks, and efficiently learning from such

environments. For closed environments, the simplest approach does not require any alter-

ations to the main algorithm, as any group of tasks can be presented as a single joint task

Russell and Norvig (2010). That said, in the context of PG-ELLA, defining learnable tasks

as the joint set of smaller, functional tasks that can be found in an environment containing

110

Figure C.1: Centralised training of critics over the joint-actors’ observations and action
choices with decentralised execution of actors from their individual observations, as described
for MADDPG Lowe et al. (2020).

many is inefficient. For example, using the ride-sharing domain, if an environment contains

three passengers t1, t2, and t3, then PG-ELLA would learn task t∗1,2,3. This simple solution

does provide a working approach to the closed version of the domain, but falls prey to limited

practical applicability Eck et al. (2023b) and excessive learning complexity. For the former,

this clearly falls within the problems of a closed domain, not permitting the entry or exit of

passengers, but it also limits the scope of applicable domains to those with a specific number

of passengers. This occurs due to the structure of PG-ELLA’s latent spaces, which requires

all policies to have the same sized observation and action spaces Ammar et al. (2014b). As

such, either agents would be unable to observe any passenger-specific information, or they

would need to always have the same fixed number of passengers to preserve observation size.

Problems with this way of defining tasks continue into the learning aspect, where a greater

number of tasks must be learned overall with more complex policies. Continuing the pre-

vious example and assuming no relevance to the ordering of passengers represented in the

environment, giving a mere two new passengers, t4 and t5, the possibility of appearing in the

111

environment would require PG-ELLA to learn an additional nine tasks to ensure operability

in all possible environments. Furthermore, because the tasks PG-ELLA aims to learn are

defined by the set of several passengers, the policies required to operate in this environment

must similarly be more complex than would be the case for learning individual passengers, re-

sulting in more policies overall that are each more complex than if tasks were instead defined

by individual passengers. This all-as-one approach rapidly becomes intractable with either

an increasing pool of possible passengers or an increasing number of passengers defining a

task.

A better solution, one that makes use of PG-ELLA’s task-based architecture, would be to

define the environment not by one large task, but by a set of smaller tasks. These task sets

can be retained for trajectory generation, but PG-ELLA is able to learn simpler task-specific

policies, then join them to form a larger policy over the whole set only in execution. This

alternate strategy allows for both a reduced learning load, as sufficient coverage of the base

tasks may be achieved without exhaustive exploration of all possible joint task sets Russell

and Norvig (2010), and a broader selection of operable environments, as combining individual

tasks need not be limited to a specifically-sized joint set. Additionally, this approach acts as

a first step toward adapting PG-ELLA for open environments, as they necessarily require this

task set representation to depict the dynamic changes therein. However, the current design

of PG-ELLA limits this approach by lacking a way to join these task-specific policies to

form a larger joint policy and requiring task-by-task iteration with task-specific trajectories

generated for each learned task-specific policy.

C.2.3 Forming Joint Policies

Before trajectories can be generated in environments with these sets of tasks, PG-ELLA

needs a policy form capable of combining several task-specific policies into a joint policy over

the full set of tasks present. To this end, one naive approach is to concatenate individually-

112

learned task-specific policies. In practice, this means taking the shared latent space L and,

for each task ti present in an environment with n tasks, multiplying L by the relevant task-

specific latent space s(ti) as described by Ammar et al. Ammar et al. (2014b) for a set of

task-specific policy parameters θ(t[1:n]). From there, the agents’ observations can be passed

through the corresponding policies π
θ
(t[1:n]) and the resulting action values concatenated to

form the final joint policy π(o) of each agent. This overall joint policy design can be seen in

Fig. C.2.

Figure C.2: Joining PG-ELLA’s task-specific policies together to create a single policy for an
environment with a set of tasks. Note that this initial approach requires a fixed observation
space, to be addressed later.

Relativizing Action Values

Notably, this design relies heavily upon maintaining action values that are not only relative

to the others within a task, but also to those of other tasks. Thankfully, PG-ELLA already

utilises a large latent space shared between tasks which can be used in tandem with base

learner design and implementation to enforce an effective relativity between tasks. Using

the base learner model previously described in section C.2.1, two such strategies have been

designed.

113

The first of these relies upon the shared latent space between tasks to maintain relative

action scores over the course of learning. This includes exploiting the overall task policy

shaping from the natural convergence of the shared latent space as a greater portion of

possible tasks are learned Ruvolo and Eaton (2013), and using those same values to initialise

both the actor and critic policies of newly-encountered tasks. For the applications explored

in section 6.3, this solution demonstrated sufficient efficacy, allowing agents to make decisions

with multiple simultaneous tasks available. That said, the environment examined therein

utilises a relatively simple action scheme, so in consideration of the potential need for greater

interconnection a more robust solution has also been devised.

In this second approach, rather than rely on the similarities of otherwise-independent

task-specific critics merely initialised through the actors’ shared latent space, two instances

of PG-ELLA are run in tandem. The first, as before, is used to learn actor policies for

execution with their shared latent space and task-specific elements, gaining all the benefits

of the previously described strategy. The second, co-running implementation of PG-ELLA

maintains another shared latent space among critics, each bearing their own additional task-

specific elements. This further increases the inter-connectivity of each task-specific policy

by connecting not only the actors operation in execution, but also the critics as policies are

learned. One consequence of this second relativisation strategy is a substantial increase in

the memory required for learning each task. Before, while a critic either had to be kept in

connection with each task policy or reinitialised each encounter, this new strategy requires

the full suite of additional information required for PG-ELLA be stored for each critic. This

includes the local optimal, hessian gradient thereon, and a task-specific latent space. These

can be estimated Ammar et al. (2014b), but that requires effectively re-learning them from

scratch over new trajectories each time their respective task is encountered during learning,

substantially increasing both the time needed for each encounter, and it is not guaranteed

that the local optimal or gradient thereover will be the same for a given task within one

114

set to another. Such cost increases did not go unnoticed in evaluation, and the greater

requirements consistently exceeded that of practical use, resulting in frequent crashes. This,

and the sufficient relativity from the first strategy, ultimately led to the second approach’s

disuse.

Fixing Size Variability

This overall joint policy design works well so long as the observation space is fixed between

sets. This limitation is not strictly a problem in closed environments, but to broaden applica-

bility to a greater number of environments containing either variously-sized task sets or task

openness, the fixed-size observations require substantial limitation over the available task-

specific information. At worst, it must rely on features shared between or derived from the

collectivisation of tasks, in which case many potential state spaces may risk indistinguisha-

bility. To avoid that and retain some task-specific information in a fixed-sized observation

space, the space may instead afford some maximum number of observable tasks, resulting in

a large observation space that has the potential to be largely wasted in any given applica-

tion should there be far fewer tasks than the maximum observable, or worse: insufficient for

applications containing more tasks than was space prepared for. As such, operation in an

unfixed-size observation space is a more general and practical approach, but some alteration

will be needed to adapt an uncertainly-sized observation to a fixed-size observation for use

in PG-ELLA’s task-specific policies.

To that end, one solution is to treat the observation as PG-ELLA treats its latent spaces.

Using similar terminology, this involves dividing the observation space between shared fea-

tures OL and those that are task-specific O
(t[1:n])
s , then passing only the shared and task-

relevant parts to each task such that O(ti) = concat(OL, O
(ti)
s). This strategy is demonstrated

below in Fig. C.3.

115

Figure C.3: In OTPG-ELLA, a variable observation space is partitioned into a set of fixed-
size task-specific observations. These are defined by the concatenation all elements not
specific to any task and the task-specific elements relevant to one task each of those present
in the environment. After that, each observation can be passed through the appropriate
task-specific policy for task-specific action values. Combining those results in the full policy
for the agent at that step in the environment.

Joining Learned and Unlearned Policies

One final note in regards to this joint policy definition, it may be the case over the course

of operation that an environment is encountered in which only a subset of the tasks therein

actually have learned policies. In this case the joint policy can either ignore new tasks for

safe operation over known tasks, or it can use a random policy for each unknown task tnewi

as a basis for learning as in the work of Ammar et al. Ammar et al. (2014b). To preserve

inter-task relativity, these random policies can be formed through the existing shared latent

space L and a randomly-initialised task-specific latent space s(r) for the policy parameters

θ(t
new
i) = Ls(r).

116

C.2.4 Learning Tasks by Set

With the updated policy form now operable in environments defined by sets of tasks, tra-

jectories may be generated and learned for the tasks therein. However, PG-ELLA has a

particular inefficiency with regards to joint-set trajectories which becomes apparent here.

As presented, PG-ELLA iterates task-by-task and generates trajectories for only the rele-

vant task. In a closed environment, this behavior can be replicated directly, by generating

trajectories using only sets that contain task in question, but this leaves a glaring waste

of trajectories for all the other tasks present, and it further leaves open the possibility of

actions only being chosen for unrelated tasks, effectively wasting the trajectory. Considering

the previous decision to adapt PG-ELLA from learning one large task into a set of several

smaller ones, using the older behavior of iterating over the whole, set-by-set would prevent

the need to regenerate trajectories for tasks already visited, and allow each trajectory to ef-

fect learning of at least some task in the set. While that iteration alone is a direct reflection

of PG-ELLA operating over the one joint task, learning the smaller tasks internal to the

broader set requires some modification. Looking at what else can be moved to this set-by-

set iteration, trajectory generation is the only step that needs to move, but the zero-column

re-initialisation and final reconstruction of the shared latent space L can also reasonably be

calculated at this frequency, as shown by Ruvolo and Eaton Ruvolo and Eaton (2013). Given

this basis of set-by-set iteration, the tasks internal to each set t[1:n] can then be iterated over

to perform for each task: base learning, defining their task-specific latent spaces s(ti), and

adjusting the task-relevant elements of the shared latent space components T , A, and b.

Trajectory Filtering

From this set-task divided iteration, generated trajectories still require one further step to

preserve task-relevance: trajectory filtering. This concept is necessary, due to the task-

divided action space, to ensure trajectories contain only action choices for the task currently

117

being learned. It also avoids wasting algorithmic time that would be spent attempting to

evaluate the generated trajectories with respect to tasks for which no relevant actions were

chosen. Trajectories can be filtered simply by removing steps with foreign actions, those

chosen for tasks other than the one in question. Such a simple filter does preserve im-

mediate rewards and task-cumulative rewards, but may be inaccurate to the joint set and

environment-cumulative rewards as the full, unfiltered trajectory’s rewards are not neces-

sarily represented. An alternative which can preserve the full trajectory for each task is

possible through limiting task definition such that each individual task has a no-op action,

then converting any foreign actions into no-ops of the current task. This second approach also

puts forward another point of contact between tasks that may contribute towards inter-task

relativisation.

Learning Uncertain Tasks

With multiple tasks now learnable through a single trajectory generated from a known

set and iteration split between that set and its internal tasks, a greater problem presents

itself: how is an agent to know which tasks are present in an open environment? Unlike

the closed environments described previously which may be initialised with a particular

task set, open-task environments can, in addition to their initialised task set, add tasks in

execution. The resulting uncertainty regarding tasks present emerges both in operation, from

the step-by-step observation, and in learning, through task-by-task iteration over generated

trajectories. One option would be to include an additional task space in the environment

of which the current subset is stored and passed to the agents alongside their observations,

but this greatly limits the applicability of the resulting agents to environments explicitly

designed for them. To avoid such limited usability, a method of interpreting tasks provided an

observation or trajectory as a whole would be preferable. In cases where there exist discrete

elements in task-specific parts of the observation, such interpretation can be achieved by

118

selecting a particular subset of those elements and defining tasks by that subset. This method

was utilised successfully for the experiments conducted in section 6.3. Unfortunately, this

strategy falls short for environments where the observation relies exclusively on continuous

task-specific elements, though a similar effect may be achievable through discretisation, or

environments which lack task-specific observation.

Regardless, the implementation of such an interpreter then provides a starting point

for the observational divisions described in section C.2.3. From there, trajectories may be

generated without a pre-planned task set using the joint policy method depicted in Fig. C.3

to divide the variably-sized observations according to the interpreted tasks. Said trajectories

can then be expanded into a set of iterable tasks from those interpreted observations or a

separate task list. Observation matching and action filtering can then be performed over

the generated trajectories using the now-identified set of tasks present, creating fully task-

specific learnable trajectories for each task encountered over the course of operation in an

open-task environment. The full process of this open-task PG-ELLA (OTPG-ELLA) can be

seen in Alg. 4.

Algorithm 4 OTPG-ELLA (k, λ, µ)

T ← 0 A ← zerosk×d,k×d b ← zerosk×d,1 L ← zerosd,k some task t is available
(T,R) ← getTrajectories(α) L ← reinitializeZeroColumns(L) t[1:n] ← getTasks(T,R)
ti ∈ t[1:n] (T

(ti), R(ti)) ← filterTrajectories(T,R, ti) isNewTask(ti) T ← T + 1 A ← A −
(s(ti)s(ti)

⊤
)⊗Γ(ti) b← b−vec(s(ti)

⊤⊗ (α(ti)
⊤
Γ(ti))) compute α(ti) and Γ(ti) from (T (ti), R(ti))

s(ti) ← argminsℓ(L, s, α
(ti),Γ(ti)) A← A+(s(ti)s(ti)

⊤
)⊗Γ(ti) b← b+vec(s(ti)

⊤⊗(α(ti)
⊤
Γ(ti)))

L← mat((1
T
A+ λIk×d,k×d)

−1 1
T
b)

• The implementation of OTPG-ELLA can be found at

https://github.com/oasys-mas/otpg-ella

119

