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ABSTRACT 

Extreme air temperatures are responsible for economic losses in crops and livestock of 
agricultural producers. Freezing temperature during the growing season damage floral buds of 
fruit trees and extreme heat can wither plants and lead to heat stress in livestock. Suitable air 
temperature predictions can provide farmers and producers with valuable information when they 
face decisions regarding the use of mitigating technologies such as orchard heaters or irrigation. 
The research presented in this thesis developed artificial neural networks models for the 
prediction of air temperature up to 12 hours ahead. The predictions of the final models are now 
available year-round for all sites in the University of Georgia’s Automated Environmental 
Monitoring Network via the network’s website, www.georgiaweather.net.   
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

 Damage to plants caused by extremely high or low temperatures is a serious 

concern for farmers in the state of Georgia and elsewhere in the southeastern United 

States. When bud formation and flowering occur during late-winter and early-spring, 

frost damage is a significant problem. For example, in early 1996 unseasonably cold 

temperatures damaged floral buds of peaches, leading to reduced fruit harvests (Okie, et 

al., 1998). Orchard heaters or irrigation can protect fruit trees and bushes from the worst 

frost damage provided that growers are given adequate warning of freezing conditions. 

Extreme heat can not only damage plants, but cause heat exhaustion in both livestock and 

farmers themselves (National Agricultural Statistical Service, 2005). The goal of the 

research described in this thesis was the development, using artificial neural networks 

(ANNs), of air temperature prediction models suitable for frost protection and the 

development of similar models for inclusion in general, year-round decision support 

aides.  

 The University of Georgia’s Automated Environmental Monitoring Network 

(AEMN) was initiated in 1991 and has grown to more than 70 weather stations 

throughout the state of Georgia. The stations cover the breadth of the state’s geographic 

diversity, from the coastal plain in the southeast, through the Piedmont, and into the Blue 

Ridge Mountains in the north (Hoogenboom, 2000). The automated, solar-powered 
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stations are primarily situated in rural areas where the National Weather Service does not 

provide detailed local observations. A number of environmental variables are monitored, 

including air temperature, relative humidity, wind speed, wind direction, solar radiation, 

and rainfall. Since March 1996 these observations have been aggregated into 15-minute 

summaries that include averages, totals, and extremes, depending on the nature of the 

variable. Prior to March 1996, these summaries were aggregated hourly. The whether 

data and associated predictors and tools are disseminated via the AEMN website, 

www.georgiaweather.net. 

 The data provided by the AEMN have been used to develop a number of ANN 

models for the prediction and estimation of atmospheric variables. Along with three out-

of-state sites, observations from the Tifton were used in the development of ANNs to 

estimate daily solar radiation (Elizondo et al., 1994). Bruton et al. (2000) developed ANN 

models to estimate daily pan evaporation using AEMN data, improving slightly over the 

accuracy of predictions resulting from regression models. Li (2002) used AEMN 

observations to train both site-specific and general-use ANNs to estimate daily maximum 

and minimum air temperature as well as total solar radiation.  

 Several studies have used AEMN data to develop ANN models to aid in frost 

protection decision support. Ramyaa (2004) developed ANNs to classify an upcoming 

12-hour period as a freeze, near-freeze, or non-freeze event. These classification 

networks included current and prior observations for air temperature, solar radiation, 

wind speed, relative humidity, and rainfall. Dew point predictions can help assess the 

severity of frost and freeze events when coupled with accurate air temperature 
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predictions. Ward-style ANN models to predict dew point temperatures up to twelve 

hours in advance were developed by Shank (2006).  

 Among the online decision support tools available on the AEMN are short-term 

air temperature predictions. Prior to July 2006, winter and early spring air temperature 

prediction ANNs developed by Jain et al. (2003) and Jain (2003) were implemented to 

provide these predictions. That work had found that air temperature, solar radiation, wind 

speed, and relative humidity were suitable meteorological inputs to such models. The 

final networks predicted air temperature from one to 12 hours ahead and included not 

only current observations, but up to six hours of prior observations for each input series. 

Jain et al. (2003) also used four cyclic input variables to encode the time of day at the 

point of prediction. They also faced software constraints that limited the number of 

patterns used in model development to 32,000. The work also relied on preliminary 

experiments that trained and evaluated a single network to determine the effects of 

changes to model inputs and parameters. 

 Chapter 1 introduces the problem of air temperature prediction via ANN models 

and describes the AEMN system from which development and evaluation data were 

obtained. The introduction also describes a number of studies that used AEMN data to 

develop ANN predictors and outlines the structure and organization of the thesis.  

 Chapter 2 describes the development of temperature prediction models using 

more advanced and flexible neural network technologies than those used by Jain et al. 

(2003). The research in chapter 2 resulted in general, i.e., not site-specific, air 

temperature prediction models for use one to 12 hours ahead. The models were developed 
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for the winter and early spring months and were more accurate than those of Jain et al. 

(2003). 

 Chapter 3 presents research leading to the development of a set of general, year-

round ANN models for air temperature prediction for one to 12 hours ahead. The 

research is based on the techniques developed in Chapter 2 and examines the effects of 

applying bootstrapping techniques from the field of machine learning. In addition, an 

analysis of prediction errors based on the day of year and the time of day was performed. 

The resulting models have been implemented on the AEMN website, 

www.georgiaweather.net.  

 Chapter 4 summarizes the research conducted in this study and presents final 

conclusions. It also suggests avenues of future research to improve the performance of air 

temperature prediction models with ANNs. 
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1 Smith, B.A., R. W. McClendon, and G. Hoogenboom.  Published in International Journal of 
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ABSTRACT 

 The mitigation of crop loss due to damaging freezes requires accurate air 

temperature prediction models. Previous work established that the Ward-style artificial 

neural network (ANN) is a suitable tool for developing such models. The current research 

focused on developing ANN models with reduced average prediction error by increasing 

the number of distinct observations used in training, adding additional input terms that 

describe the date of an observation, increasing the duration of prior weather data included 

in each observation, and reexamining the number of hidden nodes used in the network. 

Models were created to predict air temperature at hourly intervals from one to 12 hours 

ahead. Each ANN model, consisting of a network architecture and set of associated 

parameters, was evaluated by instantiating and training 30 networks and calculating the 

mean absolute error (MAE) of the resulting networks for some set of input patterns. The 

inclusion of seasonal input terms, up to 24 hours of prior weather information, and a 

larger number of processing nodes were some of the improvements that reduced average 

prediction error compared to previous research across all horizons. For example, the four-

hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction 

MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, 

improvements of 7.4% and 5.9% over the existing model at these horizons. Networks 

instantiating the same model but with different initial random weights often led to 

different prediction errors. These results strongly suggest that ANN model developers 

should consider instantiating and training multiple networks with different initial weights 

to establish preferred model parameters. 
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INTRODUCTION 

 Frost damage is a significant concern for horticultural producers in Georgia and 

elsewhere in the southeastern United States, especially when bud formation and 

flowering occur during late-winter and early-spring. For example, unseasonably cold 

temperatures during early 1996 and 2002 damaged floral buds and were responsible for 

reduced fruit harvests (Salehi et al., 1998). Growers can take steps to lessen the effects of 

frost by using orchard heaters or irrigation to protect their trees and bushes from the 

worst damage, but these methods require advance warning of freezing conditions. 

 The University of Georgia’s Automated Environmental Monitoring Network 

(AEMN) was created in 1991 and currently consists of 68 automated weather stations 

throughout the state of Georgia. The stations cover the breadth of the state’s geographic 

diversity, from the coastal plain in the southeast, through the Piedmont, and into the Blue 

Ridge Mountains in the north (Hoogenboom, 2000). The solar-powered stations are 

primarily situated in rural areas where the National Weather Service does not provide 

detailed local observations. The monitoring stations collect weather data such as air 

temperature, relative humidity, wind speed, wind direction, solar radiation, and rainfall at 

one-second intervals. Since March 1996 these observations have been aggregated into 15-

minute averages, totals, and extremes, depending on the nature of the variable. Previous 

observations were aggregated hourly. 

 Among the online decision support tools made available by the AEMN are short-

term air temperature predictions. These hourly predictions range from one to 12 hours 

ahead and are available on the AEMN website, www.georgiaweather.net, during winter 

and early spring. The temperature predictions are generated by artificial neural network 
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(ANN) models developed by Jain et al. (2003) and Jain (2003). To predict temperature 

for a location, the ANNs use as inputs up to six hours of prior weather observations from 

the site. The models incorporate the time of day, as well as measurements of air 

temperature, humidity, wind speed, and solar radiation, and were developed for use from 

January through April. Classification models using ANNs to predict freeze events were 

developed by Ramyaa (2004). These networks classify observations into one of three 

classes depending on whether the model predicts freezing, near-freezing, or non-freezing 

conditions over a 12-hour prediction period. For the classification problem, the addition 

of recent rainfall observations as input variables was found to improve performance. 

ANN models have also been used to predict inputs to a special frost deposition model in 

order to more accurately predict frost and ice on roads and bridges (Temeyer et al., 2003). 

 The previous temperature prediction and classification networks faced software 

constraints limiting the number of patterns used in model development to 32,000 (Jain et 

al., 2003, Jain, 2003, Ramyaa, 2004). These studies also relied on preliminary 

experiments that trained and evaluated a single network to determine the effects of 

altering model inputs or parameters. The goal of the current research is to improve these 

temperature prediction models using more advanced and flexible neural network 

technologies. Specifically, this research explores four possible methods of improving 

prediction accuracy: (1) increasing the number of training patterns, (2) including input 

variables encoding seasonal information, (3) extending the duration of the prior data used 

as inputs, and (4) varying the number of nodes in the hidden layer. 
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METHODOLOGY 

A. Data Sets 

 The previous temperature prediction work in the AEMN domain by Jain (2003), 

trained networks using a development set drawn from sites which were selected so as to 

encompass a broad range of conditions. Model evaluation was performed using a data set 

composed of sites collectively representative of the southern and central growing regions 

of Georgia. The same sites and years were used herein allowing for a comparison of these 

new results with the previous study. The model development sites included Alma, 

Arlington, Attapulgus, Blairsville, Fort Valley, Griffin, Midville, Plains, and Savannah, 

which have relatively long histories of weather data. For these nine stations the data up to 

and including the year 2000 were included in the development set. Model evaluation data 

were from 2001 to 2005, and included patterns from Brunswick, Byron, Cairo, Camilla, 

Cordele, Dearing, Dixie, Dublin, Homerville, Nahunta, Newton, Valdosta, and Vidalia. 

The previous work used the same locations for the years 2001-2003 for evaluation (Jain 

2003). To allow for a direct comparison to this previous work, the evaluation data in this 

study was divided into two sets: the first composed of the data from 2001-2003 and the 

second composed of the 2004-2005 patterns. The development and evaluation sets were 

restricted to patterns from the first 100 days of the year, through April 9 or 10 for leap 

and non-leap years, respectively. This range includes winter observations and the early 

growing season. The data sets were restricted to “low-temperature” patterns, those with 

current temperature measurements below 20°C. Temperatures above 20°C were found 

not to be associated with freeze events within a 12-hour prediction horizon, the longest 

such horizon considered in this research. 
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 Model inputs included five weather variables: temperature, relative humidity, 

wind speed, solar radiation, and rainfall. In addition to the current values for each 

observation on record, prior data, spaced at one hour intervals, were also included in each 

training pattern. Hourly first-difference terms for the current and prior weather variables 

were also included. Note that the information contained in the first-difference variables is 

implicit in the current and prior data, but providing this information explicitly was found 

to improve model performance. 

 Each training and evaluation pattern contained two sets of cyclic variables 

associated with the time and the date of the observation. Because the time of day and year 

are periodic variables, simply representing each with a single input fails to capture all 

information inherent in a measurement. To overcome this limitation, cyclic variables 

were constructed using fuzzy logic membership functions. For the time variable, four 

such triangular functions with an output range of 0 to 1 were used over the domain 0000 

to 2400 hours (Figure 2.1). Note that one of the variables, corresponding to the concept 

midnight, “wraps around” the domain’s upper and lower bounds. An analogous approach 

was taken to convert the day-of-year for each observation to four seasonal variables.  

B. Model Development 

 Software constraints restricted the previous AEMN temperature prediction models 

to 32,000 development patterns. To overcome this limitation, a neural network suite was 

written in the Java programming language. This suite placed no limits on the size of the 

sets used in the training or evaluation process. All networks were trained via the well-

known error backpropagation (EBP) algorithm as described by Haykin (1999). EBP 
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training was successfully applied in previous ANN research involving temperature 

prediction using AEMN data (Jain et al., 2003, Jain, 2003, Ramyaa, 2004). 

 Throughout this paper, the term model is understood to be an ANN architecture 

and a set of associated parameters. A model is instantiated as a network by using a 

random seed to assign initial weight values and a training set order and subsequently 

training the network. That is, a model is a description of a group of potential networks 

differing only in the set of initial weights assigned before training and the order in which 

training patterns are presented. All models explored in this research were based on the 

Ward-style network architecture used in previous research by Jain et al. (2003) and Jain 

(2003). The Ward network is an ANN with multiple node types that implement multiple 

activation functions (Ward Systems Group, 1993). The models used a linear input layer, 

three equally-sized, parallel “slabs” in the hidden layer, and a single, logistic output node, 

interpreted as the temperature at some prediction horizon.  

 A linear transformation carried out by the input layer was determined for the 

entire model development set. Each data series used as an input was transformed to the 

range 0.1 to 0.9. As the transformation made use of the maximum and minimum values 

of each series in the development set, this range may not hold when an evaluation pattern 

is presented. The hidden layer contained three slabs using the Gaussian, Gaussian 

complement, and hyperbolic tangent activation functions. Fully connected, biased weight 

matrices connect the input layer to the hidden layer and the hidden layer to the output 

node. 

 The networks used in this research provide a mapping of a vector of I real-valued 

inputs, x, ranging over the values [0.1, 0.9] onto a real value z such that 
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 Instantiating a Ward-style architecture requires specifying a number of network 

parameters including the learning rate and momentum, initial weight range, size of the 

training and testing sets, number of hidden nodes in each slab, and the included input 

series. Variations in the learning rate, momentum, and the initial weight range were 

considered in preliminary studies, but these parameters were found to have a relatively 

small effect on model accuracy. For all models considered in this research, a learning rate 

of 0.1 and an initial weight range of    -0.1 to 0.1 were used. A momentum term was not 

included. 

 ANN models are typically evaluated by instantiating a single network and 

measuring the resulting accuracy of the trained network for a set of patterns. Such an 

evaluation scheme assumes that the performance of a single network is an accurate 

measure of any network that may instantiate the model. However, due to the random 

nature of the initial weights and the training pattern ordering, there is no guarantee that 

two networks instantiating the same model will converge to the same final state from 
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distinct starting points in the multidimensional weight space (Salehi et al., 1998). This 

suggests that another method of model evaluation, involving multiple networks, is 

warranted. 

 The previous temperature prediction models developed by Jain et al. (2003) and 

Jain (2003) relied on single-network evaluation. An alternative approach was taken in 

this research whereby multiple ANNs were trained for identical model configurations. 

These networks, referred to as instantiations, differed only in the initial random weights 

and the order of the patterns presented. Each network was trained on a set of patterns 

independently constructed from all available development patterns via random selection 

without replacement for four million learning events prior to evaluation. Preliminary 

work using this approach showed that the use of a testing set to determine when to stop 

training was not helpful. Test set accuracies mirrored those of the training sets and it was 

rare for an instantiated network’s accuracy to decrease. In addition, rare occurrences of 

increasing error for the testing set during training corresponded to the presence of 

increasing error for the training set as well. This phenomenon was also associated with 

poorly performing networks. After training, the mean absolute error (MAE) associated 

with each network’s temperature prediction was calculated for the entire development set. 

Because the goal of the research was to develop a single, highly accurate ANN, the 

network with the minimum MAE of this group was selected as the appropriate 

performance measure for a model.  

 The error for the development set was used to decide between models so that 

comparisons between the final model and the previous research would not be biased in 
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favor of the current work. A retrospective evaluation indicated that network MAEs for 

the development set are highly predictive of performance for the evaluation set.  

Network training took place using 30 Dell Pentium IV workstations in a University of 

Georgia computer laboratory. Training was stopped after four million events because 

preliminary work suggested that epoch-by-epoch improvements were generally 

inconsequential by this time. Processing time was also a factor in the determination of the 

number of learning events. Using the threshold of four million learning events allowed 

the fastest of the machines used to train and evaluate two instantiated networks in a 

typical 12-hour run.  

C. Experiments 

 To explore the effects of increased training set sizes on model performance, six 

models, differing only in the number of training patterns used, were instantiated by thirty 

networks each. Training set sizes of 10K, 25K, 50K, 100K, 200K, and 400K were 

considered. All weather variables and related first-difference series, as well as the four 

diurnal variables, were used as inputs. A six-hour duration of prior data was used for this 

experiment. Next, to determine the effect of adding time-of-year information to the input 

vector, these models were compared to a second group, modified to include the four 

seasonal variables. All other inputs and parameters were the same, including the six hours 

of prior data. A third experiment explored the effect of variations in the number of prior 

hourly observations for the environmental inputs by instantiating multiple models with 

seasonal variables for durations of two, four, six, 12, 18, 24, 30, 36, and 48 hours to 

determine if increasing the duration beyond six hours improved prediction accuracy. A 

fourth experiment was conducted comparing the accuracy of models with seasonal inputs 
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and hidden layer sizes of six, 15, 30, 45, 60, 75, 105, 120, 150, 180, and 225. To allow a 

single parameter to represent the number of nodes, the three slabs were constrained to be 

of equal size, so that the hidden layer sizes considered ranged between two and 75 nodes 

per slab. 

 Finally, the best-performing model was instantiated thirty times for each 

prediction horizon from one to 12 hours ahead. The instantiation with the lowest MAE 

for the development set was selected to represent the model. These final models were 

then run over an evaluation set consisting of all cold-weather patterns from 2001 through 

2003. The relationships between target temperature, predicted temperature, and 

prediction error for the Ft. Valley site were evaluated for these ANNs. Additionally, the 

performance of the models over the damaging freeze events of late-February and early-

March 2002 was examined. Each model was also evaluated over a final set that consisted 

of all of the low-temperature patterns from the evaluation sites during winter 2004 and 

2005 (those with a temperature no greater than 20°C at the time of the prediction).  

 

RESULTS AND DISCUSSION 

 The results discussed here are for experiments with four-hour prediction models. 

Results for other horizons were qualitatively similar. Overfitting was exceedingly rare 

and occurred only during runs with poor prediction accuracy. An MAE for the 

development data was calculated for networks associated with six different models, 

corresponding to training set sizes that ranged from 10K and 400K unique patterns. Each 

model was instantiated by thirty networks (Figure 2.2). The most accurate network was 

trained over 50K patterns and had an MAE of 1.51°C. However, the minimum MAEs 
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associated with the most accurate instantiations of the 50K and 200K-pattern models 

differed by less than 0.006°C. These training set sizes were capable of yielding similar 

minimum MAEs over 30 network instantiations. Furthermore, there was no clear 

relationship between minimum network MAE and training set size for large sets. The use 

of single-network evaluation allows for the possibility of misleading approximations of 

model accuracy. In general, each model MAE would be approximated by making a single 

draw from the distribution of MAEs associated with the model. However, the range of 

MAE values for each model is sizable. When drawing a single MAE value for each 

model, any combination of values is possible, many of which could suggest markedly 

different interpretations of the results.  

 The second experiment evaluated six additional models with seasonal input terms, 

corresponding to the six distinct training set sizes. These models were more accurate than 

those without seasonal inputs for all the different sizes of the training set (Figure 2.3). 

The most accurate model with seasonal inputs had an MAE of 1.48°C for the entire 

development set. This was an improvement of more than 0.03°C compared to the best 

model that did not consider seasonal inputs. Again there was no convincing evidence for 

a relationship between training set size and performance for sufficiently large sets. The 

difference between the most and least accurate model MAE was 0.02°C. Similar to the 

non-seasonal case, the 50K-pattern model using seasonal data exhibited higher accuracy 

than the other models. To explore whether this was typical, the seasonal experiment was 

repeated. This involved the instantiation of 30 new networks for each of the six models. 

In the second trial, the 50K-pattern model using seasonal data was slightly outperformed 

by the three seasonal models using larger training sets. With no evidence to suggest a 
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preference for training set size, subsequent experiments made use of all available 

development patterns. All subsequent experiments continued to employ four million 

learning events during training. 

 Six hours was the preferred duration of prior data for prediction horizons of four 

hours or more in the prior temperature prediction study (Jain, 2003). The current research 

compared various models with seasonal terms that differed only in the number of hours 

of prior data included as inputs. The results of the experiment indicate that a prior 

duration of six hours is clearly suboptimal for this horizon (Figure 2.4). In fact, with an 

MAE of 1.48°C, the six-hour model was outperformed by all of the longer-duration 

models considered. The inclusion of 24 hours of prior data resulted in an MAE of 1.38°C, 

the lowest observed in the experiment. Models with data from more than 24 prior hourly 

observations were less accurate. The success of the 24-hour model makes intuitive sense 

as such a history is capable of generalizing over trends associated with the familiar daily 

cycle. The decision in previous research to use six hours of prior data was likely due to 

the method of increasing the duration by short increments until evaluation errors began to 

increase (Jain, 2003). Because that work relied on single-network evaluations and found 

that a network with eight hours of prior information was less accurate than a six-hour 

network, the experiment was stopped before exploring longer durations of prior data. The 

results of the research reported herein suggest that the use of multiple-network evaluation 

can avoid such errors. 

 The final experiment instantiated networks for models with seasonal inputs that 

differed in hidden layer size. Even if a 75-node hidden layer (25 nodes per slab) was 

optimal for a model with six hours of prior data, there was no guarantee that it would be 
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best for a model with 24 hours of prior data and seasonal inputs. The results of the 

experiment, which evaluated each model over 30 instantiations, revealed that for models 

with 24 hours of prior data, a larger network with 120 hidden nodes (40 per slab) led to 

an instantiation with an MAE of 1.35°C, the smallest of the models considered (Figure 

2.5). Increasing the total number of hidden nodes beyond this level did not reduce 

average prediction error for any of the models considered. The time-consuming nature of 

the training process precluded the possibility of evaluating all possible models. 

 To establish a direct comparison between the models developed here and those 

obtained by Jain (2003), 30 networks were instantiated for each prediction period 

between one and 12 hours. For each horizon, the network having the lowest MAE for the 

development set was selected to represent the model. The selected networks were 

evaluated with the same 2001-2003 weather data for the Brunswick, Byron, Cairo, 

Camilla, Cordele, Dearing, Dixie, Dublin, Homerville, Nahunta, Newton, Valdosta, and 

Vidalia sites used by Jain (2003). These data did not include input patterns with a 

temperature greater than 20°C at the time of prediction. 

 The prediction accuracies of the best ANN models developed in this study are 

compared to those obtained by Jain (2003) in Table 2.1. The models developed in the 

current research made use of seasonal input terms, 24 hours of prior observations, and 

120 hidden nodes and led to an improvement in model MAE over all horizons. For 

example, the four-hour prediction MAE of 1.40°C is an improvement of 0.20°C, or 

12.5%, compared to the previous model. The MAE improvements at the one-, eight-, and 

12-hour horizons of 0.09°C, 0.17°C, and 0.16°C respectively, do not provide a clear 

pattern relative to forecast horizon. However, the percent improvement in the MAE 
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compared to the previous model decreases as the prediction period increases, from a more 

than 14% improvement at the one-hour horizon to less than 6% at the 12-hour horizon. 

The new networks were also evaluated for a data set consisting of the same sites with 

patterns from 2004-2005. For this set the magnitudes of the errors were, in general, 

slightly smaller than those associated with the 2001-2003 period. 

 The distribution of prediction errors across all horizons is centered near zero, 

while the variance of these error distributions increases relative to horizon length. The 

increased divergence between predicted and observed temperatures at longer horizons is 

apparent in the plots of Figure 2.6. As prediction horizon increases, so does deviation 

from the line of perfect fit. The trend holds, specifically, in cases where a model fails to 

predict freezing temperatures. At the other extreme, the use of a logistic activation 

function in the output node, and the inverse of the scaling function to convert the output 

to a temperature, placed an upper bound on the model predictions. Because the scaling 

range was smaller than the output range of a logistic node, this bound was several degrees 

higher than the 20°C threshold used to select observations for the development and 

evaluation sets. As a result, models were constrained from predicting temperatures above 

25°C. At temperatures near 25°C, models are more likely to under-predict. As the 

prediction horizon increases, the number of observed temperatures above this threshold 

increases. The February 25 – March 1, 2002 time frame for the Fort Valley site provides 

an illustration of the relative performance of the final models. This period included three 

freeze events during the mornings of February 27 – March 1. The first of these freezes 

occurred shortly after 0200 on the 27th. This freeze, however, was not predicted by the 

12-hour model (Figure 2.7a). Instead, the 12-hour model predicted a near freeze shortly 
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after the observed temperature dropped below freezing. The model performed much 

better over the second freeze period: both the time of onset and the severity of the freeze 

were accurately predicted. While the predicted onset of the third freeze was off by several 

hours, it still indicated an approaching, sustained freeze more than six hours prior to the 

temperature falling below zero. 

 The eight-hour model predicted a brief freeze during the morning of February 

27th (Figure  2.7b). Though the time of onset and severity of the freeze were not perfect, 

the model predicted several hours of near-freezing temperatures, a noticeable 

improvement over the 12-hour model. The predictions for the second and third freeze 

events were similar to the 12-hour model. As a practical matter, the prediction of a near-

freeze event by a long-horizon model would alert the user to the possibility of damaging 

temperatures. 

The four-hour model predicted the first freeze event, though the time of onset was off by 

nearly three hours (Figure 2.7c). Subsequently, however, the model’s prediction of the 

severity of the first freeze event was quite close to the true minimum temperature. The 

four-hour model also correctly predicted the time of onset of the second freeze, which 

began later that evening and lasted well into the 28th. The freeze event ending March 1st 

was predicted with much better accuracy than either the 12- or eight-hour models 

managed, though time of onset was two hours late. 

 The most useful measure of model performance, however, comes from evaluating 

the sequence of 12 predictions leading to severe freeze events such as those in February 

and March 2002. Such a sequence is comprised of a chain of predictions generated at the 

same time for all 12 prediction horizons.  The observed temperatures for Fort Valley 



 

 21

during the period from 1400, February 28 to 1000, March 1, 2002 and the series of 

chained predictions generated at 1600 on February 28 are shown in Figure 2.8. These 

predictions suggest a shallow freeze beginning sometime between 0300 and 0400 the 

following morning. In fact, overnight temperatures would dip below freezing by 2200 

and bottom out below -4°C. This early, imprecise, series of predictions is subsequently 

refined in the presence of new data. The user, already alerted to the potential of damaging 

temperatures, could receive a much more accurate sequence of predictions four hours 

later. The predictions made using the data available at 2000 on February 28 correctly 

indicate a sustained freeze lasting at least until the end of the 12-hour horizon (Figure 

2.8). These sequences of predictions show that the model was able to provide useful and 

actionable information to its users, even when early predictions were imperfect. The 

retrospective application of the final temperature prediction models to patterns from 

outside the development set suggests that users, once made aware of freezing or near-

freezing temperature predictions, would be well served by checking for updated 

predictions throughout the day. 

 

SUMMARY AND CONCLUSIONS 

 The research presented in this paper explored improvements for the ANN models 

that are currently used to predict temperature for the Georgia AEMN data. Improvements 

included larger training set sizes, seasonal input terms, an increased duration of prior 

observations, and varying the size of the hidden layer. Increases to the size of the training 

set slightly reduced the prediction errors. However, the inclusion of seasonal variables 

corresponding to membership in the fuzzy sets winter, spring, summer, and fall did 
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improve model accuracy, even though all observations were from the January-April 

period. Similar improvements resulted from extending the duration of historical data in 

the input vector from six to 24 hours. Models with a hidden layer with 40 nodes per slab 

were more accurate than other models over repeated instantiations. 

 The results of this work suggest avenues for further study. The introduction of 

seasonal terms may provide a means of implementing an accurate year-round temperature 

prediction model. Likewise, ensemble network approaches are worth investigating, as 

networks with similar MAEs over the same prediction horizon often make different 

predictions. Finally, when applied to data-rich environments, a clear distinction should be 

maintained between abstract neural network models and actual instantiations of these 

models. The performance of a single instantiated network is not likely to be a valid 

measure of model performance. In this study, model evaluation over multiple 

instantiations led to better parameter selection by presenting more accurate comparisons 

of distinct models than those afforded by single-network evaluation. 
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Table 2.1 
Comparison of model prediction accuracy over the evaluation dataset 
 

Horizon 
length,  

 
hours 

Previous 
model* 

 
2001-3 
 MAE, 

°C 

Current 
model 

 
2001-3 
MAE, 

°C 

 
Improvement, 
___________  
°C                 % 

Current 
model 

 
2004-5 
MAE, 

°C 

1 0.62 0.53 0.09      14.5%  0.53 

2  0.88 0.86 

3   1.17  1.12 

4  1.60 1.40 0.20      12.5% 1.34 

5  1.62 1.55 

6  1.81 1.72 

7   1.99  1.87 

8  2.30 2.13 0.17      7.4% 2.01 

9  2.24 2.09 

10  2.36 2.19  

11   2.44  2.25 

12  2.69 2.53 0.16      5.9% 2.33 
  *Jain [4] 
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Figure 2.1: 1 Four fuzzy logic membership functions ranging over the time of day 
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Figure 2.2:  Multiple-network evaluation for four-hour prediction models distinguished 
by training set size. Each point corresponds to the MAE, calculated for all patterns in the 

development set, of one of the 30 networks instantiating each model. 
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Figure 2.3:  A comparison of four-hour prediction models with and without seasonal 
input terms using minimum-error, multiple-network evaluation. Each point corresponds 

to the minimum MAE obtained over 30 networks instantiating each model. 
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Figure 2.4:  A comparison of four-hour prediction models distinguished by the duration 
of prior data using minimum-error, multiple-network evaluation. Each point corresponds 

to the minimum MAE obtained over 30 networks instantiating each model. 
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Figure 2.5: A comparison of four-hour prediction models distinguished by hidden layer 
size using minimum-error, multiple-network evaluation. Each point corresponds to the 
minimum MAE obtained over 30 networks instantiating each model. All models use 

three equally-sized slabs per hidden layer. 
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Figure 2.6: A comparison of predicted and observed temperatures for the 2001-2003 evaluation 

set for the final (a) one-hour model, (b) four-hour model, (c) eight-hour model, and       
(d) 12-hour model. A solid diagonal line indicates a hypothetical perfect model.
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Figure 2.7: Time-series plots of observed and predicted temperatures from the final (a) 
one-hour model, (b) four-hour model, (c) eight-hour model, and (d) 12-hour model for 

the period of February 25-March 1, 2002. 
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Figure 2.8: A time-series plot of observed temperatures and 12-hour prediction tracks 
during February 28-March 1, 2002. 
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CHAPTER 3 

ARTIFICIAL NEURAL NETWORKS FOR YEAR-ROUND TEMPERATURE 

PREDICTION2 

                                                 
2 Smith, B. A., G. Hoogenboom, and R. W. McClendon.  To be submitted to Agricultural and Forest 
Meteorology. 



 

 34

ABSTRACT 

 Crops and livestock of farmers in much of the southeastern United States are 

susceptible to damage from extreme cold and heat. Given suitable warning, agricultural 

and horticultural producers can mitigate the damage of extreme temperature events 

through appropriate techniques such as orchard heating or irrigation. To provide such 

warning, air-temperature prediction models were developed for use as general, year-

round decision support tools in the state of Georgia using a Ward-style artificial neural 

network (ANN) architecture. The final models were applied to prediction horizons of one 

to 12 hours ahead. The year-round ANN models reduced mean absolute error (MAE) for 

winter observations relative to an existing winter-specific model. Prediction MAEs for a 

final, year-round evaluation set ranged from 0.516°C at the one-hour horizon to 1.873°C 

at the 12-hour horizon. MAEs of the final models during the winter months were less 

than those resulting from the application of previously-developed winter-specific models 

(Smith et al., 2006).  

A detailed analysis of MAE by time of year and time of day was performed. A 

tendency to over-predict temperatures during summer afternoons was associated with 

localized cloud cover during that period. The results from this study suggest that accurate 

cloud cover predictions could be used to reduce the errors of the air temperature 

predictions. The inclusion of rainfall variables as inputs to the model was shown to 

improve prediction accuracy. Bootstrapping techniques were explored and neither 

bagging nor boosting was found to reduce prediction errors.  
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INTRODUCTION  

 Artificial neural networks (ANNs) have been used in a number of prediction 

studies involving atmospheric time series. Yi and Prybutok (1996) predicted daily 

maximum ozone levels in Texas metropolitan areas with a simple three-layer ANN model 

with nine inputs and four hidden nodes and found it to be superior to statistical methods. 

A three-layer ANN model with 17 inputs was developed by Jiang et al. (2004) to predict 

the air pollution levels of cities in China. Inputs to the models were not site-specific, 

allowing the model to be applied to a number of locations across China. Air temperature, 

wind spend, and relative humidity in Saskatchewan, Canada were predicted 24 hours in 

advance by ANN models developed and applied by Maqsood et al. (2004). They found 

that combining the outputs of a standard feed-forward ANN, a recurrent ANN, a radial 

basis function network, and a Hopfield network into a simple “winner-take-all” ensemble 

led to more accurate predictions of wind speed, relative humidity, and air temperature 

than any of the component networks. ANNs have also been used to predict indoor air 

temperature. Ruano et al. (2005) used a multi-objective genetic algorithm to develop a 

radial basis function neural network model for the prediction of building temperature in a 

secondary school in Portugal. Air-conditioning control scheme simulations indicated that 

temperatures could be more consistently managed and that air conditioner run times 

could be reduced using the model. 

 In 1991, the University of Georgia initiated the Georgia Automated 

Environmental Monitoring Network (AEMN) to collect weather data from sites across 

the state (Hoogenboom, 2000). This network has expanded to more than 70 sites that 

gather local information on a variety of environmental variables. The data are obtained at 
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one-second intervals and aggregated into 15-minute summaries. Each site consists of an 

automated, solar-powered station that periodically downloads the data to a central server 

located at the University of Georgia Griffin Campus. The weather data are gathered 

primarily from locations for which detailed observations from the National Weather 

Service are unavailable. The data are disseminated via the AEMN website, 

www.georgiaweather.net. The website also provides a number of calculators, maps, and 

decision support tools to assist agricultural producers and other users. Twelve-hour air 

temperature predictors are available during the winter and early spring. Accurate 

temperature predictions during this time of year can provide advance warning of 

upcoming freezes, allowing fruit growers to employ mitigation techniques, such as 

irrigation or orchard heating, to reduce the damage to the developing flowers and fruits. 

 The data provided by the AEMN have been used to develop ANN models for the 

prediction or estimation of atmospheric variables. Weather observations from the Tifton 

site along with three out-of-state sites were used to develop ANNs to estimate daily solar 

radiation based on daily minimum and maximum air temperatures, rainfall, and 

calculated values of clear-sky radiation and length of day (Elizondo et al., 1994). Data 

from three AEMN sites were used by Bruton et al. (2000) to develop ANN-based models 

to estimate daily pan evaporation. The predictions of the final model were a slight 

improvement over those of regression models. Li et al. (2004) developed ANNs to 

estimate daily maximum and minimum air temperature as well as total solar radiation for 

sites in Tifton and Griffin, Georgia using AEMN data from nearby sites.  

 Several studies have used AEMN data to develop ANN models to aid in frost 

protection decision support. Air temperature, solar radiation, wind speed, and relative 
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humidity were found to be suitable meteorological inputs for air temperature prediction 

ANNs during the winter and early spring (Jain et al., 2003; Jain 2003). Inputs to the final 

networks, which predicted air temperature from one to 12 hours ahead, included up to six 

hours of prior observations for each input series. In addition, the work encoded the time 

of day at the point of prediction using four cyclic input variables. Ramyaa (2004) 

developed classification ANNs to predict freeze events rather than air temperature. The 

networks were trained to classify an upcoming 12-hour period as a freeze, near-freeze, or 

non-freeze event. In addition to the inputs identified by Jain (2003), these classification 

networks included current and prior rainfall observations. Ward-style ANN models to 

predict dew point temperatures up to twelve hours in advance were developed by Shank 

(2006). Predictions of dew point temperature can help assess the severity of frost and 

freeze events when coupled with accurate air temperature predictions. 

 Smith et al. (2006) found that instantiating each model with multiple networks 

increased the likelihood that ANN design alternatives were evaluated accurately. This 

approach was applied to the development winter-only air temperature prediction models 

with the goal of developing more accurate models than those of Jain et al. (2003). The 

predictors were developed with prediction horizons from one to 12 hours ahead using the 

Ward-style ANN architecture and AEMN weather data. Observations from January 

through early April, at which the temperature at the time of prediction was less than or 

equal to 20°C, were used for ANN development and evaluation. Rainfall observations 

were included as inputs based on the results of Ramyaa’s (2004) freeze classification 

approach. Smith et al. (2006) found that models which included cyclic, day-of-year 

variables and 24 hours of prior data as inputs produced more accurate predictions, as 
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measured by mean absolute error (MAE), than models without such inputs. The inclusion 

of day-of-year variables suggested the possibility of extending the methodology to a year-

round prediction scheme. 

 The goal of the research presented herein was to develop a set of year-round ANN 

models for air temperature prediction for one to 12 hours ahead for inclusion in general, 

year-round decision-support aids. The objectives related to this goal were: (1) a 

comparison of the accuracy of year-round models to that of existing winter models, (2) a 

determination of the effect on accuracy of including rainfall input terms, (3) an 

examination of bootstrapping techniques from the field of machine learning in order to 

improve prediction accuracy, and (4) an analysis of prediction errors based on the day of 

year and the time of day to assess the suitability of the models for general decision 

making. 

 

METHODOLOGY 

A. Data sets 

 Raw data observations delivered by the automated stations of the AEMN system 

were formatted and scaled into input-target patterns. Three sets of patterns were created: 

a development set, a selection set, and an evaluation set. The development set was used to 

train multiple networks for each model and select a preferred network from among those 

instantiating the same model. Distinct instantiations of the same model differed in the 

initial random weights assigned to the network and the order of presentation of training 

patterns. The development set was created from observations recorded during the years 

1997-2000 and consisted of approximately 1.25 million patterns. The patterns in the 
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development set were drawn from the stations located in Alma, Arlington, Attapulgus, 

Blairsville, Fort Valley, Griffin, Midville, Plains, and Savannah. These sites are located 

across the state and represent both geographical and agricultural diversity. For example, 

Arlington and Attapulgus are in the Georgia Coastal Plain, Blairsville is located in 

northern Georgia’s Appalachian Mountains, Griffin is in the central Piedmont, and 

Savannah is located on the Atlantic coast. 

 Observations from Brunswick, Byron, Cairo, Camilla, Cordele, Dearing, Dixie, 

Dublin, Homerville, Nahunta, Newton, Valdosta, and Vidalia were used for model 

selection and evaluation. Collectively, these stations were drawn from important 

agricultural production areas in the southern and central parts of the state of Georgia. The 

selection set patterns were drawn from 2001-2003 and numbered approximately 1.25 

million. The MAE for this set was used to select between competing ANN design 

alternatives. The evaluation set from the years 2004 and 2005 consisted of approximately 

800,000 patterns. This data set was used to evaluate the accuracy of the final model. Both 

the model development and evaluation sites were the same as those used by Smith et al. 

(2006). 

 Previous models developed by Jain (2003) and Smith et al. (2006) predicted air 

temperature to aid in frost prediction and were trained on patterns generated from 

observations that occurred during the first 100 days of the year. The observations used 

were also restricted to those in which the temperature at the time of the prediction was 

less than or equal to 20°C. As a result of these constraints, the models would not be 

expected to perform well at higher temperatures or during other times of the year. In fact, 
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the models developed by Smith et al. (2006) were incapable of predicting temperatures 

above 25°C.  

 The goal of the current research was to develop models that perform well over the 

entire year without sacrificing accuracy over winter observations. Therefore, winter-

period subsets of the development, selection, and evaluation sets were created. Decisions 

regarding preferred networks and models were based on the MAE for year-round data 

sets, but the MAE calculated using the winter subsets was considered as an indication of 

model accuracy during the winter months. 

 Current values and a 24-hour duration of prior observations for air temperature, 

solar radiation, wind speed, rainfall, and relative humidity from the time of prediction 

were used as inputs for the ANN models. The hourly rate of change in each of the five 

weather variables at the prediction point and at one-hour intervals over the previous day 

were also included as inputs for the models. These 250 inputs were rescaled using a linear 

transformation such that all observations used in model development were in the range 

[0.1, 0.9]. The scaled value, xscaled, of an observation, x, was given by  

1.08.0
minmax

min
scaled +⋅

−
−

=
xx

xx
x ,                                          (1) 

where xmin and xmax were the minimum and maximum values of the variable found in the 

development data set. Because the output of the network was restricted to the domain    

[0, 1], it was necessary to map the output signal back to the range of expected 

temperatures. The inverse of the linear function used to scale the input temperature was 

used for this purpose. 

 The time of day and the day of year were each encoded as four cyclic variables 

using triangular fuzzy-logic membership functions in the range [0, 1]. The four time-of-
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day membership functions are presented in Figure 3.1. The variable midnight “wraps 

around” the day, with a maximum value at 2400 hours. The figure is a smooth, 

continuous representation of the membership functions. In practice AEMN observations 

are aggregated at fifteen-minute intervals beginning at the top of the hour. The values of 

the time-of-day membership functions were determined by the hour in which the 

observation occurred. Day-of-year variables were treated in a similar manner, using four 

membership functions to represent seasonality. With the inclusion of these eight cyclic 

variables, each model that was considered had a total of 258 inputs.  

B. Model development 

 Ward-style ANNs were used for model development, as in previous studies of air 

temperature prediction with AEMN data (Jain et al., 2003, Ramyaa, 2004, and Smith et 

al., 2006). These are feed-forward, backpropagation networks that implement multiple 

activation functions in a single hidden layer. In the Ward-style networks used in this 

study, the signal of the kth output node, zk, iss given by  

∑
=
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J
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jkjk ygz

0
)( β , where 
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n
ng

−+
= .                       (2) 

The term y0 is set to a constant value of 1 and the coefficient βk0 is the bias of the kth 

output node. The value of the summation over the J hidden nodes is referred to as the 

induced local field of the node (Haykin, 1999). Some ANN architectures use the same 

activation function, g, for each node in the hidden layer. The Ward-style architecture, in 

contrast, makes use of multiple activation functions in the hidden layer. The value of yj, 

the jth hidden node in a Ward-style network, is given by  
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As in Equation 2, x0 = 1, so that each αj0 serves as a bias for its respective hidden node. 

All “slabs” of nodes with the same activation function were constrained to be of an equal 

size. As the models were used to predict a single output, temperature, there was only a 

one output node z.  

 The α and β terms in Equations 2 and 3 are adjustable weight coefficients. 

Training a neural network via error back propagation (EBP) is an attempt to identify a set 

of weights that reduces the mean squared error (MSE) of the output node over a 

development set. EBP performs a local gradient search in the space of possible weights. 

The algorithm was applied after the presentation of each training pattern and a single 

feed-forward pass followed by a weight adjustment constituted a learning event. For a 

training pattern n with target t(n), the prediction error and error energy of a network with 

output z(n), are e(n) and E(n), respectively, where 

nzntne ()()( −= ) ,                                                      (4) 

and 

2)(
2
1)( nenE ⋅= .                                                        (5) 

The change to a weight w in light of a training pattern, n, and a learning rate, η, was given 

by the delta rule: 

w
nEw

∂
∂
⋅−=∆

)(η  .                                                  (6) 

The value of the last term in Equation 6, the partial derivative of the network error energy 

with respect to a selected weight w, depends on whether the weight in question feeds a 
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signal into the output layer or the hidden layer. In the former case, w is βkj. 

Differentiating Equation 2 yields 
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For weights leading into the hidden layer, 
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Such weight adjustment equations can be calculated for a network with any number of 

layers. In practice, the networks in this research implemented a local gradient signal 

which was propagated back through the network during learning. A local gradient of a 

node is the partial derivative of error energy, E(n), with respect to the induced local field 

of a node. Haykin (1999) provides a concise presentation of local gradient calculation. 

 The temperature-prediction models made use of several constant parameters 

selected from Smith et al. (2006). All networks had a hidden layer consisting of 120 

nodes that were distributed equally among the three slabs comprising the layer. All initial 

weights were in the range [-0.1, 0.1]. The learning rate, η, was set to 0.1 and no 

momentum term was used. 

 Smith et al. (2006) established that comparing alternative ANN models by 

instantiating and training multiple networks for each model led to improved parameter 

selection and a reduction in prediction error when compared to previous air temperature 

prediction research (Jain, 2003). Because the EBP algorithm attempts to minimize 

prediction error by performing gradient descent in the space of possible weights, 

networks tend to converge towards local optima. Making use of repeated instantiations of 

the same model, differing only in the random seed used to generate initial weights and the 
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order of training pattern presentation, is analogous to making repeated draws from the 

distribution of possible local optima. 

C. Experiments 

 Each network created during the course of this research required between six to 

20 hours to train and evaluate using one of 30 Dell Pentium IV workstations in a 

University of Georgia computer laboratory. When evaluating the accuracy of competing 

ANN models, each alternative was instantiated 30 times for the four-hour prediction 

horizon. The most accurate network for each competing model, measured in terms of 

MAE over the development set, was used to represent the performance of that model. 

 Once a representative instantiation was assigned to a model, it was evaluated over 

the selection set. When comparing among alternatives, the model with the lowest MAE 

over the selection set was preferred. All model comparisons were made on the basis of 

the four-hour horizon and then implemented across all other horizons. While it was 

possible that other horizons might have benefited from alternative design decisions, the 

amount of processing time necessary to investigate all horizons was prohibitively large 

and beyond the scope of this study. Prior work had shown that selecting model 

parameters on the basis of the four-hour horizon reduced MAE across all horizons (Smith 

et al., 2006). 

 One aspect of this research involved comparing the accuracy of winter and year-

round models. Networks instantiating the year-round model were trained over a data set 

of 300,000 patterns for 15 epochs, or 4.5 million learning events. For each instantiation, 

the year-round model randomly selected a different subset from the more than 1.25 

million training patterns available. Year-round instantiations, therefore, differed from one 
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another not only in the initial weights and the order of the training patterns, but in the 

subset of training patterns itself. This constraint on the number of training patterns was 

used to allow for a fair comparison between the year-round and winter models. Winter 

networks made use of all of the approximately 300,000 patterns in the winter-specific 

subset of development patterns for training. 

 Jain (2003) found that the inclusion of rainfall variables did not increase the 

accuracy of temperature prediction, while Ramyaa (2004) concluded that rainfall was 

helpful in classifying upcoming temperature events as a freeze, near-freeze, or non-freeze 

event. Both studies relied on single-network evaluation to select inputs. Smith et al. 

(2006) did not address this issue, but arbitrarily included rainfall data as inputs. An 

experiment was conducted herein to determine the effects of using rainfall variables as 

inputs to the year-round model. Thirty networks were trained over randomly-selected, 

300,000-observation subsets of the development set for 15 epochs. These ANNs 

instantiated a model without rainfall variables as inputs. 

 Several additional experiments were conducted to determine the utility of changes 

to the input vector and the output range. A model was instantiated that included 

additional values and rates of change for observations 15, 30, 45, 75, 90, and 105 minutes 

prior to the point of prediction. Because of the additional temperature, solar radiation, 

wind speed, humidity, and rainfall variables, the model used an input vector with 318 

values. Networks developed with these additional inputs did not provide more accurate 

predictions. Likewise, no improvement in accuracy was found in a model with the values 

and rates of change corresponding to 13, 15, 17, 19, 21, and 23 hours prior to the 

prediction point removed from the input vector. A model was also developed with the 
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hyperbolic tangent function, rather than the logistic function, used for the activation 

function of the output node. This change, which doubled the output range of the network 

from [0, 1] to [-1, 1] did not improve accuracy. 

 Two common bootstrapping techniques from machine learning, boosting and 

bagging (Mitchell, 1997), were also investigated. Boosting involves improving the output 

of a single model by training a second model on the output of the first and combining 

their outputs in some fashion. Bagging involves the development of a meta-model that 

aggregates the outputs of several primary models. Boosting was implemented by training 

a network to predict the errors of the most accurate year-round ANN, as measured by 

development set MAE. Thirty instantiations of the four-hour boosting model were trained 

using randomly-selected, 400,000-observation subsets of the development set for 10 

epochs, or 4 million learning events. An investigation of the effect of bagging, in which 

the outputs of the five most accurate existing networks were given as additional inputs to 

a new model, was also conducted. Thirty networks instantiating a four-hour bagging 

model were trained for eight epochs over the entire development set, approximately 10 

million learning events per network. 

 

RESULTS AND DISCUSSION 

 The first experiment compared the accuracy of year-round and seasonal models, 

each of which was instantiated by 30 distinct initial networks differing only in the initial 

random weights and the order of presentation of training patterns. The representative 

network for any model was the instantiation that minimized MAE over its development 

set. The winter model differed from other models in that its development set was 
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restricted to the winter subset of development patterns. As expected, the winter model 

was less accurate than the year-round model over the year-round selection set. When 

evaluated over the year-round selection set, the winter model MAE was 1.518°C, 

compared to 1.239°C for the year-round model. Over the winter subset, the winter model 

MAE was 1.414°C, only slightly lower than the 1.416°C winter selection MAE for the 

year-round model. This result suggested that expanding the coverage of ANN models to 

the entire year would not sacrifice the accuracy of temperature prediction in the winter. 

 In the second experiment, the year-round model was compared to a similarly 

trained model that did not include rainfall as an input. Removing rainfall variables 

reduced the number of inputs from 258 to 208 and the number of weights from 31,210 to 

25,201. The year-round model including rainfall as an input produced a selection data set 

MAE of 1.239°C. The model without rainfall inputs produced a selection data set MAE 

of 1.259°C. The no-rainfall model was also less accurate for the winter selection subset, 

generating an MAE of 1.428°C compared to 1.416°C. It is likely that the use of single-

network evaluation by Jain (2003) led to the exclusion of rainfall variables as inputs in 

that study. 

 In the first experiment, ANNs were trained over a randomly-chosen subset of 

300,000 development patterns of the more than 1.25 million patterns available. Such a 

restriction was necessary for an accurate comparison of year-round models with winter 

models. Having shown that the year-round model was a suitable replacement for the 

winter model, training was performed with no restriction on the number of training 

observations. The accuracy improvements of the year-round model were consolidated by 

training networks over the 1.25 million available development patterns for eight epochs. 
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For the four-hour prediction horizon, 30 year-round networks were, therefore, trained 

using the entire development set for approximately 10 million learning events. The 

selection data set MAE of the representative network, referred to hereafter as the standard 

network, was 1.226°C, an improvement of 0.013°C over the results of the first 

experiment. 

 In the first of two bootstrapping experiments conducted for the four-hour horizon, 

the standard network was boosted. A group of 30 networks were trained to predict the 

errors of the standard network. The boosting model made use of 259 inputs: the original 

258 as well as the standard network’s output. By combining the boosting network’s 

output with that of the standard network, accuracy would be improved to the extent that 

the boosting model was successful in predicting the standard network’s prediction errors. 

Following 10 epochs of training over a randomly-selected subset of 400,000 development 

patterns (4 million learning events), the selection MAE decreased by less than 0.004°C 

relative to the standard network. Though errors did decrease slightly, the reduction in 

error was negligible while the training was time-consuming. As such, boosting was not 

deemed to be a useful method of improving prediction accuracy for this problem. 

 An experiment to explore the second technique, bagging, was implemented by 

training a four-hour prediction model with 263 inputs: the 258 provided to the year-round 

model as well as the output of the five most accurate year-round networks from the 

consolidation phase, as measured by development MAE. After training was complete, the 

final networks had undergone more than 10 million learning events. The 1.220°C 

selection MAE of the representative network for the bagging model improved upon the 

four-hour standard network by approximately 0.006°C. These improvements did not 
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merit the additional complexity and computational time required to implement the 

bagging model across all horizons. 

 Final models were then developed for the other prediction horizons from one to 

12 hours ahead. These models made use of 258 inputs, including air temperature, wind 

speed, relative humidity, solar radiation, and rainfall and hourly rates of change at the 

time of prediction as well as the history of prior observations at one-hour intervals going 

back 24 hours. Also among the models’ inputs were four cyclic time-of-day and four 

cyclic day-of-year terms. For each model, 30 networks were trained over all available 

development observations for eight epochs. Due to the computational time required to 

train and evaluate so many networks over such a large number of patterns, poorly 

performing networks were discarded at two stages of the training process. Following two 

epochs of training (approximately 2.5 million learning events), each network was 

evaluated over a 100,000-pattern subset of development patterns and the 15 networks 

with the highest MAEs were discarded. Following another two epochs the process was 

repeated and five of the remaining 15 networks were discarded. The remaining networks 

were trained for an additional four epochs, for a total of more than 10 million learning 

events each. 

 The MAEs of the final models at all prediction horizons for both the selection and 

evaluation sets are presented in Table 3.1. The MAE of the selection data set increased 

monotonically from 0.525°C at the one-hour horizon to 1.908°C at the 12-hour horizon. 

The trend was also apparent for the MAEs of the evaluation data set calculated for the 

same sites during 2004 and 2005. The MAEs associated with the models during this 

period were slightly lower than those for the selection set, from 0.516°C for the one-hour 
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model to 1.873°C for the 12-hour model. The four-hour horizon used as the basis for 

experimentation in this research resulted in an MAE of 1.187°C for the evaluation data 

set.  

 The final year-round models were also evaluated over the winter selection and 

winter evaluation subsets (Table 3.2), allowing for a direct comparison with the winter 

models developed by Smith et al. (2006). When compared to these winter models, the 

year-round ANN errors were less than or equal to winter selection and winter evaluation 

MAEs at all horizons. Winter MAEs proved to be higher than those for the entire year 

across all horizons, increasing along with horizon length. The winter selection and winter 

evaluation MAEs for the one-hour model were 0.529°C and 0.522°C, respectively. At the 

12-hour horizon they were 2.495°C and 2.299°C. These results indicate that the year-

round air temperature prediction models, developed to be included in general decision 

support aids, would be suitable for use during the winter months. 

   The plots in Figure 3.2 present the changes in prediction error for four prediction 

horizons. Differences between predicted and observed temperatures at the one-hour 

horizon remain small, increasing along with horizon length. The higher MAEs are 

reflected in the greater dispersion about the 1:1 line of a hypothetical, perfect model. 

Likewise, as horizon length increases, the value for R2, denoting accuracy of a simple 

linear regression of predicted on observed temperatures, decreases. The regression 

analysis also suggested that models for longer horizons have a tendency to over-predict 

low-temperature observations and under-predict high temperature observations. 

 The accuracy of the final model was also evaluated in relation to the day of year 

and time of day at three different prediction horizons: four, eight, and 12 hours. Figure 
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3.3 presents a contour plot of MAE for the combined selection and evaluation sets 

partitioned by week of year and hour of day. Both data sets were combined to reduce the 

impact of weather trends from any single year. Each point corresponds to the mean of all 

absolute errors associated with a particular week of the year and hour of the day. For 

example, the MAE during the third week at 1200 hours was calculated over all 

predictions made during January 15-21 at 1200, 1215, 1230, and 1245 hours for the years 

2001-2005 at each of the 13 sites in the combined data set. At the four-hour horizon 

(Figure 3.3a), the final model was most accurate when predicting overnight/early-

morning temperatures, especially during the summer. Most of the MAEs for summer 

nights and early mornings were less than 1°C. Prediction MAEs were highest for the 

four-hour model between 0900 and 1445 hours from fall through early spring and 

between 1400 and 1945 hours during the summer.  

 The magnitudes of the prediction errors during summer nights and mornings were 

also smaller, relative to the rest of the day, for the eight and 12-hour horizons shown in 

Figure 3.3b and 3.3c. During the summer, the eight and 12-hour horizons also showed the 

highest MAEs of the day during the afternoons. Behavior of the final eight- and 12-hour 

model differed substantially from the four-hour horizon during the rest of the year. 

Mornings during fall and winter had noticeably larger errors for the eight-hour horizon 

than for the four-hour horizon. Errors for the 12-hour horizon were of even greater 

magnitude. Periods of higher-than-average MAE for the four-hour horizon occurred in 

the morning and early-afternoon outside of the summer. At the eight- and 12-hour 

horizons, these periods of lower accuracy persisted until early evening. 
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 The bias of the final models as measured by mean error partitioned by week and 

hour is presented in Figure 3.4. A negative mean error indicates a tendency to under-

predict, while a positive mean error is evidence of over-prediction. Figure 3.4a shows that 

the two areas of greatest MAEs identified at the four-hour horizon, fall/winter midday 

and summer afternoon, were associated with at least two distinct phenomena. During fall 

and winter at midday, the largest errors showed a negative bias, suggesting that the 

unanticipated weather events were warming events. During the summer afternoons, bias 

was positive, suggesting the presence of unpredicted cooling events. For the eight and 12-

hour horizons (Figures 3.4b and 3.4c) the summer afternoons were also associated with a 

positive bias and periods of maximum bias were closely associated with high MAEs. 

Biases associated with winter errors for each of these horizons were also largely positive.  

 The unanticipated cooling events that occurred during the summer afternoons 

across all horizons are likely associated with rain showers and thunderstorms. Figure 3.5 

presents mean rainfall partitioned by week and hour for the same sites and periods. 

Summer afternoons and evenings clearly accounted for the most active periods of 

rainfall. Moreover, these times corresponded to the weeks and hours associated with 

relatively higher MAEs and biases in the four-, eight-, and 12-hour horizons. This 

strongly suggests that the unanticipated summer cooling events were associated with 

rainfall or the corresponding cloud cover. 

 The air temperature predictions provided on the AEMN website 

(www.georgiaweather.net) are presented to users as a sequence of 12 temperatures 

generated at the same time, each corresponding to a different horizon. Two such 

sequences are presented alongside observed air temperature in Figure 3.6 for March 1 and 
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2, 2005 at Dearing. A sustained freeze began at 2300 hours on March 1 and lasted until 

0830 hours the following day. A minimum temperature of -2.564°C occurred at 0700 on 

March 2. The first of the two prediction sequences was generated at 1800 hours on March 

1, five hours before the first freezing temperature was recorded. This sequence accurately 

predicted the time of onset and had absolute errors less than 1°C for the first ten hours of 

prediction. Such a sequence of predictions would provide time for fruit growers who use 

the AEMN website to obtain temperature predictions for their local area and take steps to 

mitigate crop damage. The second prediction sequence was generated at midnight, one 

hour after the beginning of the freeze, and was remarkably consistent with the first. Both 

sequences under-predicted temperatures during the early morning hours. The prediction 

sequence generated at midnight continued to under-predict observed air temperature by 

1°C to 2°C from 0500 to 1200 hours on March 2.    

 The observed air temperatures and prediction sequences for July 28 and 29, 2005 

at Homerville are displayed in Figure 3.7. During this period, high temperatures caused 

heat exhaustion in several farmers and degraded pesticides in the south-central Georgia 

Agricultural Statistical District that includes Homerville (NASS, 2005). On July 28th in 

Homerville, temperatures climbed above 35°C with two periods of cooling during the 

afternoon, the first between 1445 and 1545 hours and a second, more rapid cooling event 

beginning at 1645 hours. Each of these cooling periods was associated with a brief 

decrease in solar radiation not typical of clear-sky conditions. The cause of this reduction 

in solar radiation was presumably cloud cover. A brief rainfall of more than 5mm 

occurred between 2130 and 2200 hours on the night of the 28th. The first prediction 

sequence, generated at 0600 hours on the 28th, accurately predicted observed 
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temperatures within ±1.1°C for all but the final prediction at 1800 hours. The second 

sequence was generated at noon and also closely predicted observed temperatures. 

Prediction errors were within ±0.5°C for the five temperature predictions prior to 1800 

hours. Following the second cooling event, the prediction error at 1800 hours was more 

that 3.4°C, with subsequent, late-night observed air temperatures more closely reflecting 

the 1200 prediction sequence. 

 

 SUMMARY AND CONCLUSIONS 

  Year-round air temperature prediction models were developed for 

prediction horizons of one to 12 hours using Ward-style ANNs. These models were 

intended for use in general decision support and are currently implemented on the AEMN 

website, www.georgiaweather.net. Suitable ANN design modifications made it possible 

to meet or exceed the accuracy of previously-developed, winter-specific models during 

the winter period. It was shown that models that included rainfall terms in the input 

vector were more accurate than those that did not. Applying the bootstrapping techniques 

of boosting and bagging to single-network models was not found to be useful for this 

problem domain, as the very modest improvements in prediction accuracies came with a 

heavy computational cost. The accuracy of the final four, eight, and 12-hour models was 

analyzed, showing that unanticipated cooling events were the most significant obstacle 

faced, especially at longer horizons. 

 The results suggest that accurate cloud cover predictions might aid in the 

prediction of associated cooling events, especially during the summer. Further study 

might also determine if models specifically tailored to the periods of greater-than-average 
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prediction errors might be useful in an ensemble approach. Because of the focus on 

developing models applicable to a broad range of locations, temperature prediction work 

in the AEMN domain has not made use of geographic information. Future work could 

focus on the possibility of adding the information in such a manner as to preserve the 

general applicability of the model.   
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Table 3.1 
Final year-round model prediction accuracies over the selection and evaluation datasets 
 

Mean absolute error (°C) Horizon 
length 

 
(hours) 

Selection data set, 
2001-3 

Evaluation data set, 
2004-5 

1 0.525 0.516 
2 0.834 0.814 
3 1.046 1.015 
4 1.226 1.187 
5 1.404 1.356 
6 1.483 1.432 
7 1.577 1.532 
8 1.669 1.623 
9 1.734 1.686 
10 1.801 1.755 
11 1.865 1.815 
12 1.908 1.873 
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Table 3.2 
Comparison of model prediction accuracies over the winter selection and evaluation 
subset 
 

Winter Selection MAE, 
2001-3 

(°C) 

Winter Evaluation MAE, 
2004-5 

(°C) 

Horizon 
length, 

 
 

(hours) 
Winter model* Year-round 

model 
Winter model* Year-round 

model 

1 0.534 0.529 0.527 0.522 
2 0.884 0.883 0.864 0.860 
3 1.167 1.167 1.118 1.117 
4 1.401 1.398 1.338 1.331 
5 1.624 1.615 1.546 1.535 
6 1.811 1.793 1.715 1.695 
7 1.987 1.930 1.874 1.831 
8 2.126 2.081 2.007 1.958 
9 2.243 2.213 2.091 2.055 
10 2.362 2.311 2.191 2.161 
11 2.443 2.417 2.250 2.239 
12 2.526 2.495 2.333 2.299 

* Smith et al. (2006) 
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Figure 3.1:  Triangular fuzzy logic membership functions for time-of-day that are used as 

inputs to the models 
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Figure 3.2:  Predicted and observed temperatures for the Byron site during 2004-2005 for 
the final model at the (a) one-hour horizon, (b) four-hour horizon, (8) eight-hour horizon, 

and (d) 12-hour horizon. A solid diagonal line indicates a hypothetical perfect model. 
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Figure 3.3:  Prediction MAE across all evaluation sites during 2001-2005. Errors 

partitioned by week and hour. 
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Figure 3.4:  Prediction mean errors across all evaluation sites during 2001-2005. Errors 

partitioned by week and hour. 
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Figure 3.5:  Mean rainfall across all evaluation sites during 2001-2005 partitioned by 

week and hour 
 
 



 

 65

 
 
Figure 3.6:  Observed and 12-hour prediction sequences of temperature during March 1-

2, 2005, for Dearing, Georgia 
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Figure 3.7:  Observed and 12-hour prediction sequences of temperature during July 28-
29, 2005, for Homerville, Georgia 
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CHAPTER 4 

SUMMARY AND CONCLUSION 

 

  This thesis was focused on the development of ANN models for air 

temperature prediction over the AEMN domain. Though primarily oriented towards 

agricultural users, the predictions of the final, year-round models may be useful to a 

broad range of users. The research in chapter 2 built upon the work of Jain et al. (2003) 

and Jain (2003). It explored ANN model improvements including larger training set sizes, 

the inclusion of seasonal input terms, an increased duration of prior observations as 

inputs, and varying the size of the hidden layer. Slight reductions in prediction errors 

were obtained by increasing the size of the training set. The inclusion of seasonal 

variables corresponding to membership in the fuzzy sets winter, spring, summer, and fall 

improved model accuracy. Extending the duration of historical data in the input vector 

from six to 24 hours led to similar improvements. Hidden layers with 120 nodes, or 40 

nodes per slab, were more found to be more accurate than other models. Finally, when 

applied to data-rich environments, a clear distinction should be maintained between 

abstract neural network models and actual instantiations of these models. The 

performance of a single instantiated network is not likely to be a valid measure of model 

performance. Model evaluation over multiple instantiations led to better parameter 

selection by presenting more accurate comparisons of distinct models than those afforded 

by single-network evaluation. 
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 In chapter 3, year-round air temperature prediction models were developed using 

Ward-style ANNs for prediction horizons of one to 12 hours. These models were 

intended for use in general decision support and are currently implemented on the AEMN 

website, www.georgiaweather.net. These year-round networks met or exceed the 

accuracy of previously-developed, winter-specific models during the winter period. The 

inclusion of rainfall terms in the input vector led to more accurate ANN models without 

increasing computational cost, while the application of bootstrapping techniques to 

single-network models did not. The most significant obstacle faced, especially at longer 

horizons, were unanticipated cooling events. 

 While the simple ensemble approach examined in chapter 3 did not lead to useful 

reductions in model error, networks that have been specifically trained to predict air 

temperature during periods of greater-than-average error might be successfully combined 

in an ensemble approach. The results of chapter 3 also suggest that a cloud cover 

predictor could increase the accuracy of air temperature predictors if used as an input to 

such models. Since this thesis developed general prediction models that were not specific 

to a particular site, neither geographic information nor observations from multiple sites 

were used. Future work could focus on the possibility of adding the information in such a 

manner as to preserve the general applicability of the developed models.   
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