
The NED Forest Management DSS: The Integration of Growth and

Yield Models

by

Astrid Glende

(Under the direction of Donald Nute)

Abstract

NED-2 is a robust, intelligent, goal-driven ecosystem management decision sup-

port system that integrates a wide variety of modeling tools. These tools include

vegetation growth and yield models, wildlife models, silvicultural models, GIS, and

visualization tools.

Integrating growth and yield models is one of the key elements in the NED-

2 system. Without its integration goal analysis for projected data is impossible.

This paper addresses implementation issues for FVS, the simulation model currently

included in NED-2

Index words: Decision support systems, ecosystem management, FVS,

knowledge based systems, NED, Prolog, treatment definition

The NED Forest Management DSS: The Integration of Growth and

Yield Models

by

Astrid Glende

Vordiplom, The University of Koblenz Germany, 2000

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2004

c© 2004

Astrid Glende

All Rights Reserved

The NED Forest Management DSS: The Integration of Growth and

Yield Models

by

Astrid Glende

Approved:

Major Professor: Donald Nute

Committee: Walter D. Potter

Allen R. Partridge

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2004

Acknowledgments

I thank Dr. Donald Nute, my major professor, and Drs. Walter D. Potter and Allen

Partridge for devoting their time to proofreading my thesis.

I thank Drs. H. Michael Rauscher and Mark J. Twery, and Scott Thomasma and

Pete Knopp - members of the the Forest Service - for their support during the work

on the NED project.

A special thanks to the U.S.D.A. Forest Service who made my studies at the AI

Center possible by funding me.

I also like to thank my friends and classmates in the AI center - especially

Abhishek, Jason, Chris, Sarah, Mayukh, John, Georgia, Emily, Laura, Manuela,

Pascal, Markus, Jonny, and Andi - for helping me to stay calm.

Thanks to my family members; without their support I would have not got this

far in my life.

This work was funded by U.S.D.A. Forest Contract 01-CA-11242343-009.

iv

Table of Contents

Page

Acknowledgments . iv

List of Figures . vii

Chapter

1 An Introduction To NED . 1

1.1 Overview . 1

1.2 The Decision Process in NED 1

1.3 The NED-1 Architecture 2

1.4 The NED-2 Architecture 4

2 The Integration of Growth and Yield Models 7

2.1 A Basic Description of FVS 7

2.2 An Overview of the Simulation Process 8

2.3 The NED-2 Treatment Development Agent 11

2.4 The NED-2 Treatment Set Selection Agent 20

2.5 The NED-2 Simulation Agent 22

3 Dialog Related Problems and Solutions 41

3.1 Screen Resolution . 41

3.2 Disappearing Dialogs 42

4 Debugging . 44

5 Conclusion and Future Directions 45

v

vi

Appendix

A An Index of Predicates . 47

A.1 trt edit.dcm . 47

A.2 trtparam wnd.dut . 51

A.3 trtimport wnd.dut . 63

A.4 trt sel.dcm . 65

A.5 simulator.dcm . 67

A.6 fvs bulletproof.dut 78

A.7 mdb2fvs.dut . 84

A.8 fvs2mdb.dut . 89

Bibliography . 94

List of Figures

1.1 NED-1 Architecture . 3

1.2 NED-2 Architecture . 5

2.1 Develop Treatment Plans Dialog . 10

2.2 Create/Edit Treatment Sets . 12

2.3 Parameter Settings . 14

2.4 Treatment Icon Selection . 16

2.5 Treatments Table . 21

2.6 Treatment Set Selection . 22

2.7 Scenario Designs Table . 24

2.8 Program Execution: Baseline Generation 28

2.9 Program Execution: Plan Simulation 30

2.10 The Tree Data File . 33

2.11 The Keyword File . 35

2.12 The Tree List File . 38

vii

Chapter 1

An Introduction To NED

1.1 Overview

NED-2 is a decision support system (DSS) for ecosystem management. It was devel-

oped through collaboration between the USDA Forest Service and the Artificial

Intelligence Center of the University of Georgia. The idea of the project arose in 1987

with the motive to design a single, easy-to-use software system which would provide

an interface for independently developed forest management tools. The objective was

to support forest managers to develop goals, to assess current and future conditions,

and to produce sustainable management plans for forest properties [12].

A management unit (MU) is a piece of forested land that combines several stands.

Each stand is a contiguous section of land representing a single forest type. A man-

agement plan for a forest consists of overall goals for the entire management unit and

decisions about how each stand in the unit is to be managed. The management plan

is used to recommend short-term treatments for individual stands in the forest [7].

1.2 The Decision Process in NED

The decision process for NED is described as follows. Usually a forest manager starts

with acquiring and entering the data of the management unit. This data include the

location and number of stands in the forest. For each stand inventory data (i.e., size,

shape, species and size classes of trees in overstory, overstory closure, understory den-

sity, presence or absence of water, etc.) are needed. Subsequently, the management

1

2

objectives for the management unit need to be identified. The objectives supported

by NED are timber, wildlife, water, ecological, landscape, and recreational. The

next important step in the decision process is goal satisfaction analysis to deter-

mine how well the forest currently satisfies the objectives. But goal analysis can

also be performed later in the process on any scenario generated for the forest to

see how well it will satisfy the goals. Involved with goal satisfaction analysis is goal

conflict analysis. This determines whether it is possible to achieve all objectives

set in the previous step. Any goal conflicts should be resolved before advancing to

the following step. Next, the forest manager should receive recommendations about

how to manage the forest in order to reach the desired stand structure. For those

stands that have already reached the desired structure, silvicultural methods will

be assigned to generate specific treatment recommendations. These recommenda-

tions include when and how to regenerate, thin, fertilize, and harvest a stand. These

previously described steps do not necessarily require a certain order. The manager

always has the option to return to an earlier step in the process and to change the

parameters [7].

This describes the original design for NED; not all of these steps have been

implemented.

1.3 The NED-1 Architecture

NED-1 is the first release of NED. It supports the functionality of data acquisition

and analysis, goal selection, and goal satisfaction analysis for current inventory. The

architecture of NED-1 envisions a subdivision of the front-end functionalities, which

are programmed in C++, and the inference server Prolog application (see Figure

1.1). The front-end primarily consists of the user interface, the data engine, the

report generator, and the model manager.

3

Figure 1.1: NED-1 Architecture

The NED-1 front-end communicates with Prolog through an Inference Server

Interface. The Prolog component consists of one or more knowledge bases, several

domain control modules (DCMs), inference engines, and a blackboard. The DCMs

are semi-autonomous agents which means that they have limited knowledge about

the tasks other agents perform and what information they need. They have access to

the blackboard and can call any inference engine available in the Prolog component.

The blackboard is a global storage area for user input information, inference results,

and task requests. DCMs do not communicate directly with each other. Instead,

they write their results to the blackboard where every DCM has access to them.

At each given time only one DCM is active. After the termination of a DCM, each

DCM has the chance to examine the blackboard. The first DCM whose activation

conditions are satisfied becomes active and performs its assignment [7].

In the case of a user wanting to perform a task, the NED-1 front-end program

sends a request to the Logic Kernel DCM. All management unit data are stored

within the NED-1 front-end program. Therefore, the Logic Kernel DCM has to

4

consult its metaknowledge base to determine which knowledge base contains the

facts and rules required to complete the request. It loads this knowledge base and

places a request on the blackboard. The appropriate DCM sees the request and

performs the necessary calculations. Since the inference server does not have access

to the forest data it requests this information from the NED-1 front-end program

as needed. The NED-1 front-end is informed as soon as the task is complete. It can

then call the Inference Server Interface to read the results from the blackboard. As

soon as the Logic Kernel DCM receives a new request, it deletes all data from the

blackboard to ensure that previous inferences will have no affect [7].

1.4 The NED-2 Architecture

Many of the NED-2 components are still written in C++, but different from NED-

1 the Prolog components control the application. Execution of the C++ modules

(DLLs) are managed using the NEDpnp.dll. User interactions are sent via messages

from the PnP interface to Prolog. In response, Prolog can notify the PnP which of

the other modules to run [5].

To keep the system flexible and open for future extensions, the NED-2 architec-

ture is distributed. NED-2 is a community of intelligent, semi-autonomous agents

each of which know how to use a class of decision support tools. A blackboard archi-

tecture is used to coordinate the behaviors and communication of the agents. Unlike

object oriented architectures, agents in a blackboard architecture do not need to

know what tasks other agents perform or what information other agents need in

order to perform those tasks [8] and [9]. The blackboard consists of an MS Access

database, and Prolog clauses as depicted in fig. 1.2.

Since a stand is not static, the information about a stand is stored as a snapshot

representing a stand at a point in time under a particular treatment regime.

5

Figure 1.2: NED-2 Architecture

Persistent information is stored either in the database or in Prolog knowledge

bases. Temporary information, represented as facts, is stored as a set of Prolog

clauses on the blackboard. Facts are represented as Attribute-Object-Value (AOV)

triples. For example, the triple:

tpa([snapshot(17),species(oak),size(6)],24)

indicates that there are 24 six-inch oaks per acre in snapshot 17.

Facts, either stored as a record of the database or as a Prolog clause, can be

retrieved from the blackboard by using the Prolog query:

known(Attribut(Object,Value)).

This predicate first tries to satisfy the request by looking for a corresponding Prolog

fact. If this does not exist, it proceeds to determine if the information is stored in

the NED-2 database.

6

Requests are also stored on the blackboard as Prolog clauses. The request

request([fvs_baseline])

requests that the NED-2 simulation agent initiates the generation of the baseline [9].

To date, the following agents are implemented:

• NED-2 interface agent

• NED-2 treatment development agent

• NED-2 treatment set selection agent

• NED-2 simulation agent

• NED-2 goal analysis agent

• NED-2 GIS agent

• NED-2 report writer agent

• NED-2 planning agent

In the following chapter the implementation of the NED-2 treatment development

agent, the NED-2 treatment set selection agent, and the NED-2 simulation agent will

be discussed in detail. The description is based on the currently released beta-version

of NED-2.

Chapter 2

The Integration of Growth and Yield Models

To assist the decision making in forest ecosystem management a substantial and

integral part of the decision process is the integration of growth and yield models.

A forest growth and yield model represents the development of tree crops as they

increase in age, or as time changes. Therefore, the ability to project inventory data

to any future scenario, lets goal satisfaction analysis be performed at any point in

time, instead of being restricted to the time of the inventory.

The simulation model currently supported by NED-2 is the Forest Vegeta-

tion Simulator (FVS) utilized nationally by the USDA Forest Service. Presently,

NED-2 integrates the Northeastern variant, based on NE-TWIGS [11], and the

Southern variant. We envision that other growth simulators, including SILVAH [6],

will be incorporated in the future.

Previous work on the integration of FVS has been done by Jin Wang and is

described in [14].

2.1 A Basic Description of FVS

As described in [2], FVS requires two input files in order to run, a keyword file

and a tree data file. The keyword file (*.key) controls the simulation. It describes

any treatments to be simulated, controls the printing of output, computes custom

variables, and adjusts model estimates. It is also used to enter stand level parameters

(e.g., slope, aspect, elevation, sampling design specifications, location such as forest

7

8

and district, and site productivity). The tree data file (*.fvs) contains tree level

information. For each tree record, species and diameter at breast height (dbh) are

required. Optionally, tree count, diameter growth, height, height growth, crown ratio,

and various other inventory data can be specified.

Up to four output files can be created by FVS. The main output file (*.out) con-

tains information about keyword interpretation and scheduled activities, informa-

tion about model calibration to the input data, stand composition statistics through

time, individual sample trees through time, a stand summary table of the entire

simulation, and a summary of the management activities that were simulated. The

tree list file (*.trl) gives detailed information about all the individual tree records

being projected. The third file (*.sum) outputs the summary table information from

the main output file only. Information needed when running the economics model

linked to FVS can be processed to a fourth output file (*.chp). The main output

file is generated automatically while the last three files are optional and must be

requested via keywords in the keyword file.

In FVS the length of time over which simulation results are desired is specified

in terms of “cycles”. A cycle is a period of time for which increments of tree char-

acteristics are predicted. All silvicultural treatments for a stand scheduled within

a cycle occur at the beginning of the cycle. Growth and mortality are based on

post-treatment conditions.

2.2 An Overview of the Simulation Process

The simulation process in NED-2 is usually composed of:

1. Defining treatments

2. Selecting a set of treatment definitions for a management unit

3. Generating a baseline

4. Developing one or more treatment plans

9

5. Simulating treatment plans

Treatments in FVS are controlled by setting the values of the parameters of a

keyword. To achieve the desired outcome of a treatment, the user needs to be able

to access and modify the default values of these parameters. This is accomplished

by the NED-2 treatment development agent.

Some circumstances require the user to maintain multiple treatment definition

sets (e.g., users managing more than one management unit). For this reason it is

necessary to offer a comfortable way to associate the appropriate treatment definition

set with the current management unit. This is done by the NED-2 treatment set

selection agent.

Typically inventory for different stands are taken in different years. But a design

decision, made by the NED team, requires that all plans start in a given year. The

motive behind this is to simplify the plan development dialog, goal analysis at the

stand level, and plan comparison. This makes the generation of a baseline necessary

which is achieved by the NED-2 simulation agent.

Before treatment plans can be simulated, they need to be developed within the

Plan Development dialog (see fig. 2.1). This dialog allows the user to specify the

length of each cycle, which is defined by the difference of years between consecutive

columns. By double-clicking a cell the user can choose the silvicultural treatments

from the set of defined treatments associated with the management unit. The treat-

ment will take effect in the year and for the stand the cell is linked to [13]. There

are two cases where adding a treatment is problematic and therefore, a design choice

has been made to prevent the user from the following:

1. Adding a clearcut to the baseline year in the Baseline Development process:

If a clearcut is added to the baseline year for baseline generation, all trees

10

Figure 2.1: Develop Treatment Plans Dialog

will be removed from a stand. Therefore, there will be no trees to grow when

simulating treatment plans.

2. Adding a treatment to the baseline year in the Plan Development process:

Treatments in FVS are attempted in the first year of a cycle. Then the stand

grows for all years in the cycle, including the year in which the treatment

is performed. In other words, a stand grows for at least one year. Adding a

treatment to the baseline year for treatment plan simulation would automati-

cally grow the stand after the treatment is performed. Since the baseline year

overlaps baseline generation and treatment plan simulation, growth has already

happened when generating the baseline. So if treatments were allowed in treat-

ment plans during the baseline year, the affected stand would be grown twice

for that year.

11

Additionally, the user is required to select the simulation models for each stand

by double-clicking the cells in the models column. Without this information the

NED-2 simulation agent does not know which simulator to run.

As soon as the user triggers another action in the Navigation Pane of the NED-2

interface the plan information is saved in the [Scenario designs] table of the man-

agement unit database.

Subsequently, the simulation process can be started for any chosen plan. When

the NED-2 simulation agent is activated, the necessary data to build the two input

files are retrieved from the management unit database and the FVS program is

launched through a batch file. Finally, the projected tree data output by FVS has

to be read back into the database.

2.3 The NED-2 Treatment Development Agent

Silvicultural treatments play an essential part in the development of NED-2 treat-

ment plans. But before treatments can be added to a treatment plan, the user needs

to create a treatment knowledge base (stored in a *.tkb file), that includes the defi-

nitions of available treatments. The NED-2 treatment development agent assists the

user in this process. Consulting a default knowledge base (trt def.kb) the agent offers

the treatments specific to each simulator to the user in an easy-to-use interface (see

fig. 2.2).

Selecting a simulator in the Create/Edit Treatment Sets dialog, displays the treat-

ment templates and if applicable the user defined treatments for that simulator. The

parameters of a selected treatment are displayed in the Parameter Settings listbox.

This allows the user to review the parameter settings before accepting or modifying

them. With the Import... function, users responsible for managing more than one

12

Figure 2.2: Create/Edit Treatment Sets

management unit can import treatment definitions developed for other management

units.

The treatment definitions are saved by default in the User KBs folder under

the root directory for NED-2 in a *.tkb file. The format in which the treatments

are stored depends on the simulator the treatments are defined for. Since the FVS

simulator encodes treatments in a keyword record consisting of a keyword and its

parameters within the *.key file, the format for the treatment (stored in a user

defined *.tkb file) is as follows:

treatments(fvs(+Variant),+TREATMENTID,+Icon,+Description,+TrtType,

[[keyword(+KEYWORD_1),

field(+FieldNr_1, +ParamName, +ParamValue)
...

13

field(+FieldNr_n, +ParamName, +ParamValue)

],
...

[keyword(+KEYWORD_n),

field(+FieldNr_1, +ParamName, +ParamValue)
...

field(+FieldNr_n, +ParamName, +ParamValue)]]).

The formats for the default treatments, which are stored in NED-2/prolog/kbs/

trt def.kb are essentially the same. Basically, the only difference is the predicate name

which is def treatment/6.

When a *.tkb file is associated with the current management unit, a link to each

treatment in the file is stored in the [Treatments] table of the management unit

database. This link is used later on in the NED-2 decision process to add treatments

to the treatment plans.

2.3.1 Defining Treatments

Creating The Window

To set or edit the parameters of a selected treatment, the NED-2 treatment devel-

opment agent provides a self-explanatory dialog (see fig. 2.3). This dialog displays

the parameters particular to that treatment. But each treatment consists of dif-

ferent parameters. Therefore, the appearance of the Parameter Settings dialog is

individual for each treatment. To create the window on the fly the agent consults a

metaknowledge base and selects the layout of the window depending on the treat-

ment type stored in the knowledge entry for the treatment. The format for the

window type predicate, which is defined in trt def.kb, is as follows:

14

Figure 2.3: Parameter Settings

wnd_type(+TrtType, +Width, +Height,

[[+ParamName, +EditableFlag, +OffsetX, +OffsetY],
...

[+ParamName, +EditableFlag, +OffsetX, +OffsetY],

[‘Reset‘, _, +OffsetX, +OffsetY],

[‘Cancel‘, _, +OffsetX, +OffsetY],

[‘OK‘, _, +OffsetX, +OffsetY]]).

For each ParamName in the wnd type/4 predicate, which is equivalent to one

parameter in the treatment, the agent consults the parameter template predicate,

also defined in trt def.kb, to create the control windows:

param_template(+ParamName,+ValueRange,+Dimension,

15

[[+WndClass_1,+Text,+OffsetX,+OffsetY,+Width,+Depth,+Style],
...

[+WndClass_n,+Text,+OffsetX,+OffsetY,+Width,+Depth,+Style]]).

For example, the parameter Minimum DBH consists of a static window dis-

playing the parameter name, an edit window taking values in the range specified in

ValueRange, and another static window denoting the unit.

Once the control windows are created the default values need to be inserted.

There is no particular predicate concerned with this task. The predicate responsible

for this task depends on the control window type and the parameter name.

Windows Handling

Since the windows are created on the fly, the numbers for the window handlers

cannot be predefined. Whenever a control window is created, the number associated

with this window is stored in a list. Window handler numbers concerned with one

parameter are grouped together and stored within the predicate hndl/2.

To handle windows messages, the predicate hndl paramdef/4 needs to be

asserted when the window is created:

assert((hndl_paramdef((param_def,+Hndl),Message,Data,Result) :-

predicate))

In the case of a window handler receiving a windows message, the handler number

of this window has been obtained. This can be passed to the predicate handling

the window, where the handler list for a parameter can be obtained through the

param get hndllist/2 predicate for further processing:

16

Figure 2.4: Treatment Icon Selection

param_get_hndllist(Hndl,HndlListCur) :-

findall(

HndlList,

(

hndl(_,HndlList),

member(Hndl,HndlList)

),

List

),

List = [HndlListCur|_].

This predicate finds all handler lists stored in memory in which the current

handler is a member. The first list found is then returned.

Treatment Icon Selection

An appropriate icon for a treatment can be selected from the icon library shown

in fig. 2.4. This icon is displayed in a matrix during plan development, making it

easy for the user to understand a plan at a glance. The icon selection dialog can be

accessed by clicking the image button in the Parameter Definition dialog. The call

to the icon library is performed by a dynamic link library (DLL) written in C++.

17

Prolog provides the command winapi/3 to execute external WIN32 API or 32-bit

DLL functions.

Before a DLL-function can be called the particular DLL has to be loaded. This

is done by the ‘Load LibraryA’ function provided by the kernel.dll. This function

takes the path to the DLL as an input parameter and returns a handle to the loaded

DLL. Then the functions of the loaded DLL can be executed. The PickTreatmen-

tIcon.dll has one function, named ‘PickTreatmentIcon’. This function takes a buffer

as its input parameter in which it returns the icon file name. For this reason, a

read/write buffer needs to be created with the fcreate/5 predicate. If the call to

the PickTreatmentIcon.dll is successful, the file name can be read out of the buffer

with the wintext/4 command. Afterwards the DLL needs to be freed, which is done

by the ‘FreeLibrary’ function from the kernel.dll. This function takes the handle of

the DLL to be freed as input. Following are excerpts from the param set icon/0

predicate, which is responsible for the execution:

param_set_icon :-
...

fcreate(iconfile,[],-2,256,0),

winapi((kernel32, ‘LoadLibraryA’), [DLLPATH], Handle),

winapi((‘PickTreatmentIcon’,‘PickTreatmentIcon’),[iconfile],R),

winapi((kernel32,‘FreeLibrary’),[Handle],_),

(

R = 1,

wintxt(iconfile,0,0,File),
...

)

fclose(iconfile).

18

The Help System

The Parameter Definition dialog incorporates a help system. This is achieved by

including the ws es contexthelp style to the style list for that dialog. This creates

the ?-button in the upper right corner of the window. When pushed, clicking on

any of the control windows within the dialog displays a context help specific to the

parameter the control window is associated with.

For each control window a handler handling the msg help message is asserted

which calls a predicate distinct to each parameter:

assert((hndl_paramdef((param_def,Hndl),msg_help,(HX,HY),_) :-

param_help(ParamName,HX,HY))),

This way, the proper context help text for the parameter is selected using the

help txt/3 predicate.

The Creation of Metaknowledge

As mentioned above, a silvicultural treatment in FVS consists of a keyword and

its parameters. To translate standard and customized treatments used in forestry

to the FVS keyword system, NED-2 has developed so-called treatment templates.

For example, a Clearcut can be achieved in FVS with the Thindbh keyword. This

keyword has the following parameters:

field 1: Year or cycle that thinning is scheduled

field 2: Smallest dbh to be considered for removal

field 3: Largest dbh to be considered for removal

field 4: Cutting efficiency parameter specific to

this thinning request

field 5: Species code for trees to be removed

field 6: Target trees per acre for the segment of

the dbh distribution of the species

field 7: Target basal area for the segment of the

dbh distribution of the species

19

Metaknowledge for a treatment template has to consider all knowledge essential

to a treatment. The simulator model for which the treatment is defined, the treat-

ment name, the icon associated with the treatment, a treatment description, and

the treatment type1 are necessary to generate the Parameter Settings dialog. A key-

word list includes knowledge about each parameter: the field number in FVS and its

default value. The information contained in the keyword list is used by the NED-2

simulation agent. The metaknowledge for a treatment template is incorporated in

the def treatment/6 predicate.

Each treatment template is matched to a different set of FVS keywords. Keywords

can have up to seven parameters. For this reason, the window size of the Parameter

Definition dialog varies depending on the treatment. To deal with the unknown,

information about Width and Height have to be maintained. As mentioned, the

treatment parameters differ for each treatment. Therefore, information about which

parameters and where to place each of them within the dialog has to be stored. The

wnd type/4 predicate is used to store this metaknowledge.

When displayed in the Parameter Definition dialog, each parameter is repre-

sented by several control windows. The metaknowledge for the control window

information for each parameter (i.e., class, label, left, top, width, depth, style) is

maintained in the param def/4 predicate.

In more complex treatment templates, like Custom Cut 1 and Shelterwood

Seed Cut, radio buttons control which thinning type is being defined. Since the thin-

ning types have different parameters, the window’s layout changes when switching

to another thinning type. The custom/2 predicate (defined in the trt def.kb file)

deals with this by retaining the layout of each parameter in a list. The thinning

types for which this predicate is defined are thinning from above using basal area

1A treatment is identified by its type instead of its name because treatments can be
renamed by the user.

20

(thinaba), thinning from above using trees per acre (thinata), thinning from below

using basal area (thinbba), thinning from below using trees per acre (thinbta), and

thinning using stand density index (thinsdi):

custom(+Type,[[ParamName,EditFlag,OffsetX,OffsetY],...]

A def treatment/6 or treatment/6 predicate maintains the parameter values

for only one thinning type. The parameter default values for the remaining thin-

ning types can be retrieved through the defaults/4 predicate, also defined in the

trt def.kb file:

defaults(+Type,+Icon,+Description,

[[keyword(+KEYWORD_1),

field(+FieldNr_1, +ParamName, +ParamValue)
...

field(+FieldNr_n, +ParamName, +ParamValue)

],
...

[keyword(+KEYWORD_n),

field(+FieldNr_1, +ParamName, +ParamValue)
...

field(+FieldNr_n, +ParamName, +ParamValue)]]).

2.4 The NED-2 Treatment Set Selection Agent

Selecting a treatment set (*.tkb file) for a management unit means:

• associating the treatment set to the management unit by inserting the path

of the treatment set in the mu treatment knowledge base column of the

[MU header] table of the management unit database, and

21

Figure 2.5: Treatments Table

• creating a link to the treatments defined in the treatment set in the [Treat-

ments] table of the management unit database. A link is created by populating

the table (see fig. 2.5). Treatment id, treatment simulator, and treatment icon

are acquired from the treatment/6 predicate. For silvicultural treatments,

the treatment function is always equal to ‘treatment’. Other treatment func-

tion names are used for non silvicultural treatments such as “construct road”,

and these are ignored by the simulation agent. A counter calculates the sort

order for the treatment. To keep track where the particular data was obtained

from a source code2 is entered into the source columns.

Only treatments linked to the [Treatments] table in the management unit

database are available to the user to add to a treatment plan. The NED-2 treatment

development agent creates treatment sets, but does not populate the management

unit database (unless saved to the treatment set already associated with the man-

agement unit). The system is designed this way because users might want to create

several treatment sets at a time. If saving the treatment set would associate the set

with the current management unit in any case, users were required to create and

save the treatment set to be associated last. This might not be intuitive to the user.

20=empty, 1=default, 2=default other, 3=default user, 4=calculated, 5=calculated out-
side NED, 6=imported, 7=user, 8=model, 9=program, 10=absolute

22

Figure 2.6: Treatment Set Selection

To eliminate this source of error, establishing the association is carried out by

the NED-2 treatment set selection agent in a separate process. A simple dialog (see

fig. 2.6) allows the user to select a pre-defined treatment set. The association process

is initiated by clicking the ok-button. This launches the associate file/1 predicate

defined in trt sel.dcm which is responsible for populating the database.

The association between the management unit database and a treatment set can

be broken when the *.tkb file is moved to another directory, deleted from the hard

drive, or overwritten by a new treatment set. In the case of the latter, this could

result in a state where the treatment plans and the treatment set are out of sync.

A bulletproofing process, initiated before the simulation attempt, will catch these

errors and report them to the user. In this case, this dialog might help to reestablish

the association.

2.5 The NED-2 Simulation Agent

As mentioned above, a design choice was made that requires all stands in a treatment

plan to begin in the same year. But the year the last inventory was taken for each

stand might differ. Especially with large management units, users like to spread

the expenses that are involved in taking inventory over several years. Therefore,

23

projected data have to be simulated for those stands that have no inventory data

available for a common baseline year. This process is called Baseline Generation.

In NED-2, a management unit is divided into several stands. Each stand is

in turn subdivided into several clusters, which again are subdivided into sev-

eral plots. Each cluster contains exactly one overstory plot, but it may have any

number of understory and ground plots. According to the tree’s dbh, the tree data

are stored in the [Overstory obs] table or [Understory obs] table of the management

unit database.

Trees in FVS are identified by their stand and plot. To simplify the process of con-

verting the tree data stored in the management unit database to a format readable

by FVS, all understory plots in a cluster are averaged into one understory pseudo-

plot and all ground plots in a cluster are averaged into one ground pseudo-plot. The

function ‘CreatePseudoSnapshot’ defined in the dynamic link library NEDcalc.dll

performs this calculation. This ensures that each cluster contains exactly one over-

story plot, at most one understory plot, and at most one ground plot which is

necessary to prepare the tree data input for FVS.

The call to NEDcalc.dll to execute the ‘CreatePseudoSnapshot’ function is ini-

tiated in the baseline generation process only. It is necessary to generate a baseline

before simulating treatment plans in any case.

The information for baseline and treatment plans is stored in the [Scenario designs]

table of the management unit database (see fig. 2.7). Plans are identified by their

scenario number. The scenario for baseline plan is zero. Treatment plans are

assigned increasing integer values. Within a stand the sequence of treatment events

are controlled by the sequence number. Since the sequence number of the base-

line year is zero, the sequence numbers are negative for baseline and positive for

treatment plans. As mentioned above, a snapshot represents a stand at a point in

time under a particular treatment regime. Therefore, with the aid of the snapshot

24

Figure 2.7: Scenario Designs Table

number pre and post treatment information can be retrieved. Initially, all snapshot

numbers are set to -999, which denotes that no calculations have been performed.

The NED-2 simulation agent is responsible for assigning unique snapshot values. A

value of -998 denotes that no simulation is required.

2.5.1 Baseline Generation

Before the NED-2 simulation agent starts simulating tree data for each stand in

the management unit, it first checks if all data necessary for FVS to function are

available (see section 2.5.3 for further details). If there is any information missing

the agent terminates and opens a Missing Data Error Report file in the default Web

25

browser. Otherwise, for every forested3 stand in the management unit the agent

calls NEDcalc.dll to create the pseudo-plots for understory and ground plots. The

input parameters for the function ‘CreatePseudoSnapshot’ are the source snapshot,

the destination snapshot, and a flag controlling a progress bar. Since the NED-2

simulation agent incorporates its own progress bar, the flag is set to zero to hide

the one provided by NEDcalc.dll. This is accomplished by the following winapi/4

command:

winapi((‘NEDcalc’,‘CreatePseudoSnapshot’),[Source,Destination,0],_)

Once the pseudo-plots are created the agent simulates the baseline plan for every

forested stand where the inventory year differs from the baseline year. To simulate a

baseline plan, the agent needs to consult the management unit database to retrieve

information required to set up the FVS controls:

• The baseline year is obtained by parsing the scenario desc column in the [Sce-

narios] table where scenario = 0, which is achieved by the fvs getBaseline-

Year/1 predicate.

• To retrieve the forest type, the is forested/2 predicate consults the stand co-

ver type column in the [Stand snapshots measures] table.

• The fvs getGModel/4 returns the growth simulator model and its variant

stored in the scenario models simulator column in the [Scenario models] table

for each stand.

• The treatments applied in the simulation period for a stand are returned in a

list of the form [[TreatmentId,TreatmentYear,TreatmentFunction],...]

3forest type ∈ {Forest, Broadleaf forest, Coniferous forest, Mixed Coniferous/Broadleaf
forest, Forested wetland}

26

by the fvs getTreatments/4 predicate. The treatment information is

retrieved from the [Scenario designs] table. For baseline generation, con-

secutive growth “treatments” are removed from the list. This treatment list is

used to determine the thinning keyword to be used and to calculate the cycle

lengths later on in the simulation process.

Next, the agent creates the FVS input files (i.e., the tree record file and the

keyword file) by executing the predicate mdb2fvs/6, which will be explained in

detail in section 2.5.4. Afterwards the agent runs the FVS module. The predicate

fvs run/2 is responsible for the execution.

As mentioned above, the variants currently integrated in NED-2 are the North-

eastern variant and the Southern variant. The executable programs for these variants

are located in the prolog/fvs folder, and are named NE1.exe and SN1.exe. To launch

these programs batch files for both of these variants are created. In the batch files the

command line is constructed, the program is executed, and temporary files concerned

with the simualation are deleted.

Since FVS is called as an external program, the NED-2 simulation agent does not

know when the simulator has finished processing. For this reason, the agent creates a

flag file before running the batch file and waits for it to be renamed from starting.flg

to finished.flg by the batch file. This gives the agent adequate control. The content of

the batch file fvs ne.bat, which launches the simulator for the Northeastern variant

without saving the output files for the user to review is as follows:

rem stdFVS run on DOS.

echo data.key >data.rsp

echo data.tre >> data.rsp

echo data.out >> data.rsp

echo data.trl >> data.rsp

echo data.sum >> data.rsp

echo data.chp >> data.rsp

27

NE1.exe < data.rsp

del data.rsp

del data.key

del *.fvs

ren starting.flg finished.flg

To execute an external Win32 API program, the kernel.dll provides the function

‘WinExec’. This takes the command line and a flag controlling the ‘ShowWindow’

function as its parameter. A flag value equal to zero denotes that the window is

hidden. The winapi/4 command is accordingly:

winapi((kernel32,‘WinExec’),[Command,0],0,_)

To retrieve the appropriate command line, fvs command/4 provides the nec-

essary metaknowledge. Currently, the FVS output files are saved, depending on the

mode the application is run in. If the application is run in stand-alone mode, the

batch files fvs ne.bat and fvs sn.bat are called. In development mode the batch files

fvs ne copy.bat and fvs sn copy.bat are executed in order to save the output to the

prolog/fvs/fvsfiles folder. Optimally, whether the output files are saved or not should

be controlled by the user via a user dialog.

Once FVS has generated the tree list file, including detailed information about all

individual tree records, the NED-2 simulation agent can proceed to read the infor-

mation into the management unit database. This is performed by the fvs2mdb/14

predicate and will be discussed in more detail in section 2.5.4.

Finally, after all forested stands have been simulated, the NED-2 simulation agent

calls the functions ‘ShuffleObservations’ and ‘CalcSnapshot’ defined in NEDcalc.dll.

The function ‘ShuffleObservations’ is responsible for moving overstory observations

whose dbh values are below the overstory/understory threshold to the [Under-

story obs] table. It will also move understory observations whose dbh values are

28

Figure 2.8: Program Execution: Baseline Generation

greater than or equal to the overstory/understory threshold to the [Overstory obs]

table. The overstory/understory threshold is defined by the user and stored in the

pref over under column in the [Preferences] table. The ‘CalcSnapshot’ function calcu-

lates basal area, volumes, and other values. Both functions have as their parameters

the snapshot the function should be performed on and the progress-bar controlling

flag. Following is a listing of the winapi/4 commands:

winapi((‘NEDcalc’,‘ShuffleObservations’),[Snapshot,0],_)

winapi((‘NEDcalc’,‘CalcSnapshot’),[Snapshot,0],_)

The previously described process is depicted in fig. 2.8.

29

2.5.2 Treatment Plan Simulation

As for Baseline Generation, the NED-2 simulation agent starts by checking if all nec-

essary data for FVS are available before simulating any treatment plans. Again, if any

information is missing the agent terminates and opens a Missing Data Error Report

file in the default Web browser. If all data exist, a simple dialog lets the user pick

the plans and the stands for simulation. This dialog displays only forested stands,

which have not been simulated in a previous simulation process. When the user

clicks the ok-button the predicate scenarios/1 is asserted with a list of plan-stand

associations of the form [[Scenario,[Stand_1,...,Stand_n]],...] as parameter.

For each scenario in the plan-stand associations list, the agent simulates the

tree data for each stand associated with this scenario. The simulation process is

only initiated if tree records exist either in the [Understory obs] table or in the

[Overstory obs] table.

Identically to the Baseline Generation process the NED-2 simulation agent

retrieves the information about the baseline year, the simulator model, and the

treatments applied in the simulation period from the management unit database.

Furthermore, the process of creating the input files for FVS, running the simulator,

reading the output file data to the management unit database, shuffling the obser-

vations, and performing the calculations on a snapshot corresponds to the process

described in section 2.5.1.

The complete process is illustrated in fig. 2.9

2.5.3 Bulletproofing

For the NED-2 simulation agent to function properly certain conditions have to be

satisfied. Therefore, a checkup is performed by the fvs bulletproof/2 predicate,

before the simulation process is triggered. If any information is missing either a

30

Figure 2.9: Program Execution: Plan Simulation

messagebox pops up letting the user know what has to be done, or a Missing Data

Error Report file is generated and opened in the default Web browser.

When generating a baseline it is possible that the user attempts to simulate data

that do not exist yet. For this reason, the utility function checks the [Stand header]

table for stand records. This checkup is skipped when simulating treatment plans.

Instead, the NED-2 simulation agent checks if treatment plans are developed. If

this is the case then there exist records with scenario > 0 in the [Scenarios]

table. Also, for a particular scenario to pass the test, there have to be treat-

ments (including growth) defined in the treatment plan. This is determined by the

fvsbp hasTreatments/1 predicate, which examines the [Scenario designs] table

for records where sequence > 0 and snapshot < 0.

31

To determine if a baseline has been generated, two conditions have to be met.

First, there has to be a record in the [Scenarios] table with scenario = 0. If this is

not the case, the user has not developed a baseline plan. Second, for each record in

the [Scenario designs] table where sequence = 0, an integer value greater than zero

has to be entered in the snapshot column. If the values in the appropriate snapshot

columns equal -999, a baseline has not been simulated.

If the user attempts to generate the baseline, but the baseline already exists,

the agent advises the user to advance to develop treatment plans and terminates. If

the user tries to simulate treatment plans and the baseline does not exist, the agent

warns the user to develop and/or generate the baseline first and terminates. In any

other case, the predicate fvsbp getMissingData/3 is called to check if the data

required by FVS are available.

To run FVS, characteristics of the site where the stand is located have to be

specified. The characteristics cover the location (nearest National Forest, and in

some cases Ranger District), habitat type or plant community code (ecological unit

code for the Southern variant), stand age, aspect, slope, elevation, species code, and

site index. The values for these parameters are retrieved from the management unit,

are calculated from known variables, or are hard-coded.

Values retrieved from the management unit database include the aspect, slope,

elevation, and site index. These values come from the stand aspect, stand slope,

stand elevation, and stand site index columns of the [Stand header] table. The stand

age is a calculated variable. It is computed by subtracting the contents of the

stand year origin column in the [Stand snapshots measures] table from the simu-

lation start year. The species code is also calculated. This variable is acquired by

converting the value contained in the stand site spp column of the [Stand header]

table to the alpha code used by FVS.

32

To ensure that FVS does not run into any errors, it is checked that the previ-

ously mentioned columns are filled with data. For each variable a list is created,

containing the stands where data are missing. Location and habitat are hard-coded

and therefore do not need checking.

The NED-2 simulation agent determines which growth simulator model to use

for each stand in a scenario from the scenario models simulator column in the

[Scenario models] table where scenario models function = ‘grow’. Hence, the

fvsbp getMissingGrowthModels/3 predicate has to check if this information is

provided. It returns a list of the stands which have no growth model defined.

When silvicultural treatments are defined in the [Scenarios designs] table, it

has to be guaranteed that the necessary treatment information are available to the

NED-2 simulation agent. Therefore, in the case that the treatment list returned by

the fvsbp getTrtId/3 predicate is not empty, the fvsbp getMissingTrtModels/3

predicate checks if a treatment simulation model is defined. Again the sce-

nario models simulator column in the [Scenario models] table is consulted. But

this time the content is matched to ‘treatment’. If stands exist for which no treat-

ment simulation model is defined, a list of these stands is returned by the predicate.

At present, FVS is also used to simulate treatments. This feature has been included

in case a later version of NED should allow users to specify different models for

growth and for treatment simulations.

As mentioned in section 2.4, the association between a *.tkb file and a manage-

ment unit can be broken. For this reason, it has to be confirmed that the treatment

set defined in the mu treatment knowledge base column in the [MU header] table

exists in the specified location. Furthermore, the fvsbp getMissingTrts/3 pred-

icate checks that there exists a definition for each treatment applied in the [Sce-

nario designs] table to discover any the states where treatment plans are out of sync

with the treatment set.

33

Figure 2.10: The Tree Data File

All missing data lists previously created in the subtasks are appended to one list

which is used to construct the output in HTML. The fvsbp writeErrorReport/3

predicate and its sub-predicates fvsbp writeHead/1, fvsbp writeTitle/2, and

fvsbp writeData/3 maintain the metaknowledge for the output format.

2.5.4 The Metaknowledge for FVS

Creating the Tree Record File

As stated in [2], the tree record file (*.fvs) inputs the tree information, from which

future tree heights and diameters are predicted.

Similar to the keyword file, a certain format has to be provided (see fig. 2.10).

The metaknowledge for this format is contained in the mdb2fvs fvsFileFormat/6

predicate. For each record in the [Overstory obs] table of the management unit

database the predicate generates a tree data input record to the file. Records from

the [Understory obs] table are only taken into account if the dhb is ≥ 0.05.

Each tree data input record, created by the NED-2 Simulation agent, consists of

the plot id (columns 1-4), the tree id (columns 1-7), the tree count (columns 8-13),

34

the tree history (column 14), the species alpha code (columns 15-17), and the dbh

(columns 18-21).

The plot id is equivalent to the cluster number. This value comes from the

cluster column of the appropriate observation tables. For overstory trees the tree id

is retrieved from the over obs field of the [Overstory obs] table. To determine the

tree id for understory trees the value 200 is added to the value obtained from the

under obs column of the [Understory obs] table.

The tree history denotes whether the tree is alive or not. The codes 6, 7, 8, and

9 indicate types of tree records that are not projected. All other codes assume a live

tree that is to be projected. For overstory trees this value is read from the tree alive

column of the [Overstory obs] table. This variable is set to 1 for understory trees.

The species code retrieved from the overstory tables have to be converted into the

FVS alpha code to be recognized. This is performed by the ned alpha species code/3

predicate. The tree count is retrieved from the * stems per column and the dbh

from the * dbh column of the appropriate observation tables.

To actually construct the tree record in the appropriate format, the predicate

mdb2fvs writeRecord xx/8 is consulted.

Creating the Keyword File

In FVS, the simulation of treatment plans is controlled by a logical set of keyword

records in the keyword file (*.key). These keyword records have a specific format

which needs to be followed precisely for FVS to recognize and run flawlessly. The

predicate mdb2fvs keyFileFormat/8 maintains the metaknowledge to create such

a file (refer to [2] and [3] for more detail on the keyword system). The keyword file

controls the simulation of one stand in a scenario.

As shown in fig. 2.11, the keywords specified for a simulation activated by NED-2

are StdIdent, InvYear, ModType, StdInfo, Design, SiteCode, NumCycle

35

Figure 2.11: The Keyword File

and TimeInt, NoTriple, TreeList, CutList, plus the keywords for the silvicul-

tural treatments specified in the scenario of a stand.

Usually, the parameter values for a keyword are retrieved as described in section

2.5.3. The construction of the critical keyword records is described below.

To be able to analyze the tree data generated by FVS in a later step of the NED-2

decision process, tree record information has to be output for each year specified in

a treatment plan. This is achieved by defining the TreeList keyword. Setting the

first parameter of the TreeList keyword to zero tells FVS to output a treelist for

each year in the plan. The plan development interface does not restrict the user to

a constant cycle length. Therefore, the keyword file has to be set up to account for

varying cycle lengths by defining the keywords NumCycle and TimeInt.

36

The NumCycle keyword denotes the number of projection cycles. This number

is determined by the mdb2fvs getCycles/2 predicate. For each cycle, the TimeInt

keyword indicates how long that cycle is (in years). The mdb2fvs writeKeyFile B/4

predicate calculates this value and creates a keyword record for each cycle. Both

predicates use a set of <TreatmentId,TreatmentYear,TreatmentFunction>-triplets

returned by the predicate fvs getTreatments/4 to perform their calculations.

For baseline generation, it is not necessary to output tree data information for

every year specified in a treatment plan. Usually, the baseline tree data are not

analyzed. But treatments are performed in the first year of a cycle. To guarantee

accuracy it is necessary to start a new cycle in every year in which a treatment

is applied. Otherwise, every treatment would be applied in the beginning of the

baseline plan.

To have FVS attempt the treatments specified in the scenario for a stand, the

appropriate silvicultural treatment keywords (including their parameters) have to

be listed. This is acquired by consulting the treatment set (*.tkb) linked to the

management unit. The mdb2fvs writeKeyFile C/3 predicate builds the keyword

record from the information available in the treatment/6 predicate defined for the

particular treatment.

To retrieve the harvested tree records triggered by a silvicultural treatment key-

word, the CutList keyword is specified. This appends the list of harvested tree

records to the treelist output file. This information can be used to compute post-

treatment tree data.

To read the tree input data records from the tree record file into FVS the keyword

Open has to be used in conjunction with the TreeData keyword. The Open

keyword tells FVS to open the declared file and associate it with the file reference

number specified in its first parameter. The TreeData keyword tells FVS to read

the tree records from the file referenced by the reference number.

37

Interpreting the Tree and Cut List File

The tree list file generated by FVS has to be read back to the management unit

database for NED-2 to handle the output. Hence, the tree records of the tree list file

have to be interpreted.

In the tree list file (see fig. 2.12), cycles are separated by a header line identifiable

by a preceding -999 (columns 1-4). Harvested tree data for a cycle are output in the

same file in a cut list, which has a similar header file. To distinguish between a tree

list and a cut list, column 81 in the header line denotes the list type: t for tree list

and c for cut list. To identify a cycle, columns 16-19 in the header line define the

starting year.

The set of tree data for a cycle follows the header line, one record for each tree.

The information relevant to NED-2 are the tree type (columns 1-2), the tree number

(column 6-8), the species alpha code (columns 15-16), the plot id (columns 27-29),

the trees per acre (tpa) (columns 31-38), and the dbh (columns 49-53).

To translate this knowledge into the NED-2 variables the predicate fvs2mdb read-

File/19 reads this file line by line. For each line it is checked if in column 1-4 the

number -999 is encountered. If this is the case, the agent knows that tree data from

a new cycle or from a cut list is about to be read. Therefore, it has to prepare

the tables in the management unit database for a new snapshot. Otherwise, the

agent consults the metaknowledge for the tree data, which is maintained in the

fvs2mdb readData/9 predicate.

The tables in the management unit database have dependencies. This means

some tables have to be updated first before other tables can be modified. As

a rule, first a new record for the new snapshot has to be added to the tables

[Stand snapshots treatment], [Stand snapshots volumes], [Stand snapshots meas-

ures], and [Stand snapshots nontimber]. Then, records can be added to the [Plot clus-

38

Figure 2.12: The Tree List File

39

ters] table. Next, the tables [Overstory plots], [Understory plots], [Ground plots],

and [Transects] can be updated. Finally, records can be added to the tables

[Ground obs], [Transect obs], [Overstory obs], and [Understory obs].

Since the NED-2 project is still expanding, the tables in the database might

change to accommodate new variables. To eliminate sources of errors and to stabilize

the agent’s access to the database, a design decision was made by the NED-2 team

to add new columns to a table only at the end of a record. Therefore, to add a record

to a table, the length of the record has to be determined first. This is achieved by

a conjunction of the predicates db get schema/2 and length/2. This knowledge

can then be used to read and add records to the table. This is demonstrated in the

following code excerpt:

db_get_schema(columns(‘TableName’),Col),

length(Col,ColN),

length([AVar_1,...,AVar_n|LRest],ColN),

db_tuple(‘TableName’,[PVar_1,...,PVar_n|LRest]),

db_add_record(‘TableName’,[Val_1,...,Val_n|LRest]).

The tree data records are interpreted by the fvs2mdb readData/9 predicate.

This predicate extracts the values of interest and translates these into values used

by the NED-2 system.

In FVS, trees are identified by their stand and their plot. But in NED-2 trees

are distinguished by stand, cluster, and an observation number (obs). Therefore,

the tree number and the plot id retrieved from the tree record have to be converted

into the NED-2 format. The cluster of a tree is calculated by subtracting 1 from the

plot id. The observation number results from subtracting 1 from the tree number.

The tree id is composed of the plot id, a colon, and the tree number (e.g., 1:17).

A tree type equal to es denotes that this is a new tree created by FVS through

regeneration. To ensure that this tree receives a unique tree id, 500 is added to its

tree number.

40

The tpa determines whether the tree is a live tree or not. Therefore, the variable

treeAlive is set dependent on the tpa as follows:

if tpa == 0

then treeAlive = 0

else treeAlive = -1

The species alpha code has to be converted back into the NED-2 species code by

the ned alpha species code/3 predicate.

When the tree data record read from a list of type t, the values for tpa and

dbh are as read from the tree data record. Otherwise, the new tpa is calculated by

subtracting the tpa read from the tree data record from the old tpa stored in the

previous snapshot. The dbh remains the same.

Depending on the value of the observation number (obs), a record is added to

the [Overstory obs] or to the [Understory obs] table. If a record with this obs value

already exists in the [Overstory obs] table or if obs ≥ 500, then the record is added

to the [Overstory obs]. Otherwise a record with this obs value must already exist in

the [Understory obs] table, and therefore it is added to the [Understory obs] table.

The original design was to write all trees to the [Overstory obs] table and then the

‘ShuffleObservations’ function in NEDcalc.dll moves them to the appropriate table.

But the design for the [Overstory obs] and the [Understory obs] table is not the

same. For this reason, trees have to be written to the table in which a record with

the according obs value already exists. The function ‘ShuffleObservation’ will then

take care of the conversion.

Chapter 3

Dialog Related Problems and Solutions

3.1 Screen Resolution

When working with dialogs, it has to be considered that users run their computers

with different screen resolutions. Especially when users have set up their computers

with a low resolution, some of the dialog windows might not fit on the screen.

To prevent this problem, the rwdcreate/9 and rwccreate/10 predicates have

been defined in prolog/Utilitis/wnd scale.dut. Both predicates calculate the new

dimensions of the dialog or control window by considering the screen resolution

of the user’s computer, the original screen resolution the dialog was built in, and

the original width and height of the window to be created. The new dimensions are

calculated as follows:

NewWidth is int(ScreenWidth * (OrigWidth/OrigScreenWidth))

NewLeft is ScreenWidth/2 - NewWidth/2

NewTop is ScreenHeight/2 - Depth/2

Then the window can be created, as usual, with the new dimensions using the

predicates wdcreate/7 and wccreate/8 provided by Prolog.

To retrieve the current screen resolution the predicate rcreate init/0 has

to be called before creating the windows. This predicate asserts the screen res-

olution, which has to be retracted after the windows are created by calling the

rcreate cleanup/0.

41

42

3.2 Disappearing Dialogs

Another problem related to dialogs is caused by using a combination of C++ and

Prolog modules. The problem occurs when a dialog, controlled by the Prolog compo-

nent, is opened within NED-2. When the user switches to another application and

returns to NED-2 again, the dialog did not reappear. But the underlying NED-2

interface (written in Visual C++) is locked since the dialog is still active. The only

way to access the Prolog dialog was by using alt-tab to go through the list of open

tasks.

The main NED-2 interface has no way to determine when Prolog opens a dialog.

So it must be told. When Prolog opens a dialog, it passes the handle of the window

to C++ by using the ‘SetActiveDialog’ function in NEDpnp.dll. If Prolog passes zero

to C++ as the window handle, the C++ module is reset to no existing children.

Then, when the C++ NED-2 interface has been suspended and receives an “in focus”

message, it sends Windows a message telling it to show the current Prolog dialog.

The predicate neddcreate/7, which is responsible for this action is defined below:

neddcreate(Window,Caption,Left,Top,Width,Depth,Style) :-

wdcreate(Window,Caption,Left,Top,Width,Depth,Style),

winapi((user32, ’FindWindowA’),[0,Caption],Hndl),

winapi((’NEDpnp’,’SetActiveDialog’),[Hndl],Result),

Result = 1.

This solves the problem of coordinating the C++ and the top-level Prolog dialogs.

But what happens when the top-level Prolog dialog has opened its own child dialog?

In this case, the parent window has to keep in mind which child window it has

created. Whenever a window gains focus it has to check if any child windows exist

and switches focus to it if it does. This process is repeated until no more children

are found.

43

The window that has received focus, calls the showChild/1 predicate, which

checks if a child window exists. If this is the case, the wfocus/1 predicate sets the

focus to it.

showChild(ChildWindow) :-

catch(ERROR,whandle(ChildWindow,_)),

(

ERROR = 0,

wfocus(ChildWindow)

;

!

).

The predicate whandle/2 is responsible for detecting whether a window exists

or not. It retrieves the caption of this child window using the wtext/2 predicate.

Using the winapi/3 predicate, the ‘FindWindowA’ function of the Windows system

user32.dll is able to obtain the handle for a window with the specified caption.

whandle(Window,Hndl) :-

catch(ERROR,wtext(Window,Caption)),

ERROR = 0,

winapi((user32, ’FindWindowA’),[0,Caption],Hndl).

Chapter 4

Debugging

Running NED-2 as a stand-alone application sometimes causes errors that have not

been detected by the compiler. These errors are extremely hard to trace, since they

do not occur when debugging the program.

The only way to catch these errors is by displaying a message box in order

to confine the error. The predicate developed for this purposes is the myspy/1

predicate defined in prolog/Utilites/nedutil.dut. It has either a string or a list as

input parameter. If the parameter is a string, this string will be displayed in a

message box. If the argument is a list, a string will be generated from the elements

of the list beforehand. The elements do not necessarily have to be strings, they can

be of any type. Most importantly, they can be variables that are instantiated during

execution. Thus, a message can be displayed that shows the developer the values of

variables at some point in program execution.

One of these errors, still inexplicable, occurs when accessing the management unit

database using a call to db sql/1. In some cases, inserting the myspy/1 predicate or

a counter in the form of forall(integer_bound(1,I,50),(write(I),nl)). before

the offending database access call helps the code to work properly. There seems to

be some sort of timing problem that can be eliminated by disconnecting from and

reconnecting to the database every time we run into a database read error. But since

the NED-2 application is data intensive, this clearly is only a work-around to some

deeper problem not yet resolved.

44

Chapter 5

Conclusion and Future Directions

NED-2 is a robust, intelligent, goal-driven decision support system, that includes

a wide variety of software tools available to support decision making in forest

ecosystem management. It allows the user to employ the integrated tools without

knowledge of the complex interfaces and the data formats inherent to each of

these [9].

The preceding chapters have demonstrated what is involved in integrating one

of the tools available to the NED-2 system: the Forest Vegetation Simulator. This

description can serve as a template for integrating further simulators like the SILVAH

model. SILVAH is expected to be the next simulation model to be integrated.

There still exist some unresolved issues concerning the FVS integration. When

creating the keyword file (input file for FVS), there are several variables that are

hard-coded. To create a more flexible system, efforts should probably be made to cal-

culate those values from known information stored in the management unit database.

At this point, the user picks a simulator. But there does not yet exist a checkup

that confirms that the chosen simulation model is able to grow the species included

in the management unit. Therefore, a checkup should be added to the bulletproofing

process that compares the species defined for a simulation model (a variant of FVS)

with the species stored in the stand site spp column of the [Stand header] table of

the management unit database.

45

46

It is anticipated to extend the metaknowledge of the NED-2 simulation agent

to handle additional variants for FVS. This will increase the geographical area the

simulation covers. Thereby, the NED-2 application can server a wider range of users.

As mentioned in [10] the regeneration model REGEN described in [1], which

is based on [4], is to be integrated into the NED-2 system. Since regeneration is

triggered by a treatment the NED-2 simulation agent must interleave the growth

model it is using with REGEN. In the case of regeneration being triggered, the

agent passes the snapshot number for the tree data identifying the treatment, the

REGEN model to be used in the simulation, and a snapshot number associated with

the results of the simulated data to the REGEN inference engine. After REGEN

completes, the NED-2 simulation agent proceeds to simulate the growth and the

silvicultural treatments of the stand. The remaining issue to be solved is how to

trigger the regeneration process.

Appendix A

An Index of Predicates

The following is a list of all predicates defined to integrate growth and yield model

integration. For each file the predicates are sorted in alphabetical order.

A.1 trt edit.dcm

dcm/1

dcm(treatments edit)

+AgentName <atom>

Comments: This initiates the NED-2 treatment development agent.

fill default list/1

fill default list(Window)

+Window <window handle>

Comments: This fills the Treatment Templates listbox with all default treatments
defined for the selected simulator.

fill sim list/1

fill sim list(Window)

+Window <window handle>

Comments: This fills the Simulator listbox with the names of all defined simulators.

47

48

fill user list/1

fill user list(Window)

+Window <window handle>

Comments: This fills the Available Treatments listbox with all user defined treat-
ments for the selected simulator.

get sim/2

get sim(Window,Simulator)

+Window <window handle>
-Simulator <atom>

Comments: This returns the simulator currently selected.

hndl trtdef/4

hndl trtdef(Windows,Message,Data,Return)

+Window <window handle>
+Message <atom>

+Data <atom>, <integer> or <conjunction>
?Return <variable> or <atom>

Comments: This provides the processing of window messages for the Create/Edit
Treatment Sets dialog, specified by the given Window handle, Message name and
Data item. In certain cases, it attempts to unify Result with an atom that is used
to indicate completion of a dialog.

if exist/2

if exist(Simulator,TreatmentId)

+Simulator <atom>

+TreatmentId <atom>

Comments: This predicate fails when no user defined treatments exist.

49

trt def/0

trt def

Comments: This creates the Create/Edit Treatment Sets dialog.

trtdef browse/0

trtdef browse

Comments: This lets the user browse for a *.tkb file to open.

trtdef cleanup/0

trtdef cleanup

Comments: This retracts all treatment/6 predicates and safely closes the dialog.

trtdef cpy treatment/0

trtdef cpy treatment

Comments: This copies all selected treatments in the Treatment Templates listbox
to the Available Treatments listbox.

trtdef create/0

trtdef create

Comments: This clears the Available Treatments listbox and retracts all user
defined treatments to start new.

trtdef define parameter/1

trtdef define parameter(Window)

+Window <window handle>

Comments: This initiates the generation of the Parameter Settings dialog.

50

trtdef del treatment/0

trtdef del treatment

Comments: This deletes all treatments selected in the Available Treatments listbox.

trtdef delall treatments/0

trtdef delall treatments

Comments: This deletes all treatments displayed in the Available Treatments
listbox.

trtdef import/0

trtdef import

Comments: This opens the Import dialog.

trtdef init/0

trtdef init

Comments: This initializes all variables necessary for the Create/Edit Treatment
Sets dialog.

trtdef save/0

trtdef save

Comments: This saves all treatments displayed in the Available Treatments listbox
back to the open *.tkb file.

trtdef saveas/1

trtdef saveas(Return)

-Return <atom>

Comments: This save the treatments displayed in the Available Treatments listbox
to a new file and closes the dialog.

51

trtdef write param/2

trtdef write param(Window,Treatment)

+Window <window handle>
+Treatment <atom>

Comments: This writes the parameters of the selected treatment to the Parameter
Settings listbox.

truncate/2

truncate(String,NewString)

+String <string>
-NewString <string>

Comments: This deletes all spaces at the end of a string.

A.2 trtparam wnd.dut

header/8

header(Simulator,TreatmentId,Icon,Description,Width,Height,
WindowType,Key)

+Simulator <atom>

+TreatmentId <atom>

+Icon <atom>

+Description <atom>

+Width <integer>
+Height <integer>
+WindowType <list>
+Key <list>

Comments: This creates the header for the Parameter Settings dialog.

52

param add species/1

param add species(Handle)

+Handle <integer>

Comments: This adds a species with its associated priority to the To Retain Species
listbox.

param all species/1

param all species(Handle)

+Handle <integer>

Comments: This deselects all species displayed in the To Retain Species listbox.

param cleanup/0

param cleanup

Comments: This retracts all dynamic predicates necessary for handling the Param-
eter Settings dialog and safely closes the dialog.

param close help/0

param close help

Comments: This closes the Help window.

param create defbutton/4

param create defbutton(Handle,ParamName,OffsetX,OffsetY)

+Handle <integer>
+ParamName <atom>

+OffsetX <integer>
+OffsetY <integer>

Comments: This creates the default buttons.

53

param create subwnd/11

param create subwnd(Handle,ParameterName,ValueRange,EditFlag,
OffsetX,OffsetY,ParamTemplate,KeywordList,TmpHndlList,HndlList,
HndlNew)

+Handle <number>
+ParameterName <atom>

+ValueRange <atom>

+EditFlag <boolean>
+OffsetX <integer>
+OffsetY <integer>
+ParamTemplate <list>
+KeywordList <list>
+TmpHndlList <list>
-HndlList <list>
-HndlNew <list>

Comments: This creates the control windows for the parameter base on the
ParamTemplate template.

param create wnd/4

param create wnd(Handle,WindowTemplate,KeywordList,HandleLast)

+Handle <integer>
+WindowTemplate <list>
+KeywordList <list>
+HandleLast <integer>

Comments: This creates the windows for the treatment parameters based on the
WindowTemplate template.

param cutcont combo/1

param cutcont combo(Handle)

+Handle <integer>

Comments: This fills the richtext control window with the pointer to the selected
item in the Cutting Control Flag combobox.

54

param cutcontflag changed/1

param cutcontflag changed(Handle)

+Handle <integer>

Comments: This changes the selection in the Cutting Control Flag combobox.

param cuteff radiobutton/2

param cuteff radiobutton(Handle,OldHandel)

+Handle <integer>
+OldHandle <integer>

Comments: This handles the changes of the radiobuttons controlling the Cutting
Efficiency for the treatment Row Thinning.

param cuteff0 changed/1 and param cuteff1 changed/1

param cuteff0 changed(Handle)

+Handle <integer>

Comments: This changes the value of the richtext control window to the value
associated with the Cutting Efficiency scrollbar.

param cuteff1 changed(Handle)

+Handle <integer>

Comments: This changes the radiobutton selection depending on the value dis-
played in the richtext control window controlling the Cutting Efficiency for the
treatment Row Thinning.

param cuteffedit/1

param cuteffedit(Handle)

+Handle <integer>

Comments: This changes the richtext control window depending on the radiobutton
selection controlling the Cutting Efficiency for the treatment Row Thinning.

55

param def/6

param def(Simulator,TreatmentId,Icon,Description,WindowType,Key)

+Simulator <atom>

+TreatmentId <atom>

+Icon <atom>

+Description <atom>

+WindowType <list>
+Key <list>

Comments: This initiates the generation of the Parameter Settings dialog.

param del species/1

param del species(Handle)

+Handle <integer>

Comments: This deletes all selected species from the To Retain Species listbox.

param edit/1

param edit(Handle)

+Handle <integer>

Comments: This ensures that only numbers are entered in an edit/richtext control
window.

param expectedsurv changed/1

param expectedsurv changed(Handle)

+Handle <integer>

Comments: This changes the value of the richtext control window to the value
associated with the Expected Survival scrollbar.

param fill combobox/3

param fill combobox(Handle,Key,ParamName)

56

+Handle <integer>
+Key <list>
+ParamName <atom>

Comments: This fills a combobox, selects the default value, and asserts the
hndl paramdef/4 predicate for this window.

param fill edit/4

param fill edit(Handle,EditFlag,Key,ParamName)

+Handle <integer>
+EditFlag <boolean>
+Key <list>
+ParamName <atom>

Comments: This fills an edit control window with its default value and asserts the
hndl paramdef/4 predicate for this window.

param fill listbox/4

param fill listbox(Handle,Key,ParamName,Style)

+Handle <integer>
+Key <list>
+ParamName <atom>

+Style <list>

Comments: This fills a listbox, selects the default value, and asserts the hndl paramdef/4
predicate for this window .

param fill rich/4

param fill rich(Handle,EditFlag,Key,ParamName)

+Handle <integer>
+EditFlag <boolean>
+Key <list>
+ParamName <atom>

Comments: This fills the richtext control window with its default value and asserts
the hndl paramdef/4 predicate for this window.

57

param fill static/3

param fill static(Handle,ParamName,Text)

+Handle <integer>
+ParamName <atom>

+Text <string>

Comments: This fills the static control window with its default text.

param get default/3

param get default(Key,ParamName,DefaultValue)

+Key <list>
+ParamName <atom>

-DefaultValue <atom> or <integer>

Comments: This returns the default value for ParamName in the Key list.

param get default key/2

param get default key(Key,DefaultKeyword)

+Key <list>
-DefaultKeyword <atom>

Comments: This returns the default tinning keyword contained in the Key list.

param get hndllist/2

param get hndllist(Handle,HandleList)

+Handle <integer>
-HandleList <list>

Comments: This returns the handle list associated with the current handler
(denoting a particular parameter).

58

param help/3

param help(ParamName,X,Y)

+ParamName <atom>

+X <integer>
+Y <integer>

Comments: This generates and popups a help context window for ParamName.

param init/4

param init(Simulator,TreatmentId,Icon,Description)

+Simulator <atom>

+TreatmentId <atom>

+Icon <atom>

+Description <atom>

Comments: This initializes all variables necessary to handle the Parameter Settings
dialog.

param method changed/1

param method changed(Handle)

+Handle <integer>

Comments: This changes the selection of the radiobuttons depending on the value
displayed in the richtext control window controlling the Method of Pruning.

param method radiobutton/1

param method radiobutton(Handle)

+Handle <integer>

Comments: This changes the value of the richtext control window depending on
the selection of the radiobuttons controlling the Method of Pruning.

59

param ok/1

param ok(Response)

-Response <atom>

Comments: This predicate ensures that the treatment name is not a NED-2 pro-
tected name, and that there are no empty control windows. It then builds the key-
word list and either asserts a new treatment/6 predicate or overwrites the old one.
If no errors occur ok is returned to close the dialog.

param paint/0

param paint

Comments: This repaints the graphics control window whenever necessary.

param priority changed/1

param priority changed(Handle)

+Handle <integer>

Comments: This changes the setting of the scrollbar depending on the value entered
in the richtext control window controlling the Priority.

param reset/0

param reset

Comments: This resets all control windows to their default values.

param residualedit/1

param residualedit(Handle)

+Handle <integer>

Comments: This enables/disables the control windows associated with Cutting Effi-
ciency depending on the value in Residual BA or Residual TPA. If either one of the
values is greater zero, the Cutting Efficiency windows are disabled.

60

param retain species/1

param retain species(Handle)

+Handle <integer>

Comments: This deselects all species displayed in the All Species listbox.

param rmtype0 radiobutton/1 and param rmtype1 radiobutton/1

param rmtype0 radiobutton(Handle)

param rmtype1 radiobutton(Handle)

+Handle <integer>

Comments: This changes the layout of the dialog depending on the selection of
the radiobuttons controlling the Removal Type for the treatments Custom Cut 1 or
Shelterwood Seed Cut.

param sbmcuteff changed/2

param sbmcuteff changed(Handle,Position)

+Handle <integer>
+Position <integer>

Comments: This changes the value of the richtext control window to the value
associated with the scrollbar controlling the Cutting Efficiency.

param sbmpriority changed/2

param sbmpriority changed(Handle,Position)

+Handle <integer>
+Position <integer>

Comments: This changes the value of the richtext control window to the value
associated with the scrollbar controlling the Priority.

61

param sbmproportion changed/2

param sbmproportion changed(Handle,Position)

+Handle <integer>
+Position <integer>

Comments: This changes the value of the richtext control window to the value
associated with the scrollbar controlling the Maximum Proportion.

param set button/3

param set button(Handle,ParamName,Text)

+Handle <integer>
+ParamName <atom>

+Text <string>

Comments: This asserts the hndl paramdef/4 predicate for this window.

param set icon/0

param set icon

Comments: This launches the PickTreatmentIcon.dll to let the user pick a treat-
ment icon.

param set radiodef/5

param set radiodef(ParamName,Key, HndlList,Hndl,HndlNew)

+ParamName <atom>

+Key <list>
+HndlList <list>
+Hndl <integer>
-HndlNew <integer>

Comments: This sets a radiobutton to its default value, and asserts a hndl paramdef/4
predicate for this window.

62

param set sbmcontrol/4

param set sbmcontrol(Handle,Key,ParamName,ValueRange)

+Handle <integer>
+Key <list>
+ParamName <atom>

+ValueRange <atom>

Comments: This sets a scrollbar to its default value, and asserts a hndl paramdef/4
predicate for this window.

param shadecode changed/1

param shadecode changed(Handle)

+Handle <integer>

Comments: This changes the selection of the combobox to the value displayed in
the richtext control window controlling the Shade Code.

param species changed/1

param species changed(Handle)

+Handle <integer>

Comments: This changes the selection of the combobox to the value displayed in
the richtext control window controlling the Species.

param species combo/1

param species combo(Handle)

+Handle <integer>

Comments: This changes the value of the richtext control window to the Alpha
Code associated with the selected item in the combobox controlling the Species.

63

A.3 trtimport wnd.dut

fill from list/1

fill from list(Window)

+Window <window handle>

Comments: This fills the From File listbox with all treatments for the selected
simulator defined in the loaded *.tkb file.

fill import list/1

fill import list(Window) +Window <window handle>

Comments: This fills the To Import listbox with all treatments for a selected sim-
ulator chosen for import.

hndl import/4

hndl import(Windows,Message,Data,Return)

+Window <window handle>
+Message <atom>

+Data <atom>, <integer> or <conjunction>
?Return <variable> or <atom>

Comments: This provides the processing of window messages for the Import dialog,
specified by the given Window handle, Message name and Data item. In certain
cases, it attempts to unify Result with an atom that is used to indicate completion
of a dialog.

if exist imp/2

if exist imp(Simulator,TreatmentId)

+Simulator <atom>

+TreatmentId <atom>

Comments: This predicate fails when no treatments for the selected Simulator
exist.

64

import/0

import

Comments: This creates the Import dialog.

import browse/0

import browse

Comments: This lets the user browse for a *.tkb file to import.

import copy treatment/0

import copy treatment

Comments: This copies all selected treatments in the From File listbox to the To
Import listbox.

import cpy all treatments/1

import cpy all treatments(Count)

+Count <integer>

Comments: This copies all treatments displayed in the From File listbox to the To
Import listbox.

import data/0

import data

Comments: This copies all chosen treatments to the Available Treatments listbox
in the Create/Edit Treatment Sets dialog. A treatment/6 predicate is asserted for
each treatment.

import del all treatment/1

import del all treatment(Count)

+Count <integer>

65

Comments: This deletes all treatments from the To Import listbox.

import del treatment/0

import del treatment

Comments: This deletes all selected treatments from the To Import listbox.

import init/0

import init

Comments: This initializes all variables necessary to handle the Import dialog.

import restore data/0

import restore data

Comments: This retracts all temporary created treatment/6 predicates and loads
the old treatment/6 predicates previously developed in the Create/Edit Treatment
Sets dialog.

import start/0

import start

Comments: This initiates the creation of the Import dialog.

A.4 trt sel.dcm

associate file/1

associate file(Name)

+Name <atom>

Comments: This associates the *.tkb file with the management unit database by
inserting the path of the *.tkb file in the mu treatment knowledge base column of
the [MU header] table. Initiates the population of the [Treatments] table.

66

dcm/1

dcm(treatments select)

Comments: This initiates the NED-2 treatment set selection agent.

hndl trtsetsel/4

hndl trtsetsel(Windows,Message,Data,Return)

+Window <window handle>
+Message <atom>

+Data <atom>, <integer> or <conjunction>
?Return <variable> or <atom>

Comments: This provides the processing of window messages for the Treatment
Set Selection dialog, specified by the given Window handle, Message name and
Data item. In certain cases, it attempts to unify Result with an atom that is used
to indicate completion of a dialog.

populate treatments/1

populate treatments(Counter)

+Counter <integer>

Comments: This adds a record for every user defined treatment to the [Treatments]
table of the management unit database.

trtsel init/0

trtsel init

Comments: This initializes all variables necessary to handle the Treatment Set
Selection dialog.

trtset sel/0

trtset sel

Comments: This creates the Treatment Set Selection dialog.

67

A.5 simulator.dcm

copy data/6

copy data([TreatmentId,TreatmentYear],Scenario,Stand,
PreSnapshot,Snapshot,StartPos)

+[TreatmentId,TreatmentYear] <[atom,integer]>
+Scenario <integer>
+Stand <integer>
+PreSnapshot <integer>
+Snapshot <integer>
+StartPos <integer>

Comments: This copies the tree data from a previous snapshot instead of simulating
it through FVS.

dcm/1

dcm(Agent)

+Agent <atom>

Comments: This initiates the NED-2 simulation agent.

forested stand/2

forested stand(Scenario,Stand)

+Scenario <integer>
+Stand <integer>

Comments: This checks if a Stand in Scenario is forested.

fvs add/0

fvs add

Comments: This adds the selected plans with the selected stands to the Selected
listbox of the Plan Selection dialog.

68

fvs bulletproofDlg/0

fvs bulletproofDlg

Comments: This creates the Bulletproof dialog.

fvs cleanup/0

fvs cleanup

Comments: This deletes all FVS files after the data are copied to the management
unit database.

fvs closeNEDcalc/1

fvs closeNEDcalc(Handle)

+Handle <integer>

Comments: This closes NEDcalc.dll.

fvs command/4

fvs command(Mode,Variant,Stand,Command)

+Mode <atom>

+Variant <atom>

+Stand <integer>
-Command <string>

Comments: This formulates the command line to run FVS depending on the
Variant and the Mode

fvs createPseudoPlots/5

fvs createPseudoPlots(Stand,Count,Ratio,Snapshot,NextSnapshot)

+Stand <integer>
+Count <integer>
+Ratio <float>

69

+Snapshot <integer>
-NextSnapshot <integer>

Comments: This runs NEDcalc.dll for all stands.

fvs delete/2

fvs delete(Window,IdxList)

+Window <window handle>
+IdxList <list>

Comments: This deletes all selected plans from the Selected listbox in the Plan
Selection dialog.

fvs deselect/2

fvs deselect(Window,IdxList)

+Window <window handle>
+IdxList <list>

Comments: This deselects all stands in the Available listbox in the Plan Selection
dialog.

fvs errorListDlg/1

fvs errorListDlg(ErrorList)

-ErrorList <list>

Comments: This creates the Failed Trees Warning dialog.

70

fvs estimateTime/2

fvs estimateTime(ScenarioList,(Hour,Min,Sec))

+ScenarioList <list>
-(Hour,Min,Sec) <(integer,integer,integer)>

Comments: This estimates the time the simulation will take.

fvs fillScenarios/2

fvs fillScenarios(Window,ScenarioList)

+Window <window handle>
+ScenarioList <list>

Comments: This fills all scenarios in the listbox of the specified Window in the
Plan Selection dialog.

fvs fillStands/2

fvs fillStands(Window,StandList)

+Window <window handle>
+StandList <list>

Comments: This fills all stands in the listbox of the specified Window in the Plan
Selection dialog.

fvs fillStands2/1

fvs fillStands2(StandList)

+StandList <list>

Comments: This fills all stands in the Selected listbox of the Plan Selection dialog.

71

fvs fillTrees/1

fvs fillTrees(ScenarioList)

+ScenarioList <list>

Comments: This fills the listbox in the Failed Trees dialog with the trees that have
been failed to add to either the [Overstory obs] or the [Understory obs] table.

fvs generateBaseline/8

fvs generateBaseline(BaselineYear,StandList,NumberOfStands,Count,
NumberOfStandsToBeSimulated,Snaphot,StartPos,LastSnapshot)

+BaselineYear <integer>
+StandList <list>
+NumberOfStands <integer>
+Count <integer>
+NumberOfStandsToBeSimulated <integer>
+Snapshot <integer>
+StartPos <integer>
-LastSnsphot <integer>

Comments: This generates the baseline for every stand in the management unit.
If a stand is not forested or if a stand does not have any treatments, the stand is
skipped.

fvs getBaselineYear/1

fvs getBaselineYear(BaselineYear)

-BaselineYear <integer>

Comments: This returns the baseline year stored in the [Senarios] table.

fvs getGModel/4

fvs getGModel(Scenario,Stand,Model,Variant)

+Scenario <integer>
+Stand <integer>

72

-Model <atom>

-Variant <atom>

Comments: This returns the simulation model defined for Stand and Scenario.

fvs getProgressRatios/6

fvs getProgressRatios(TrtYear,EndYear,NumStands,StartPosX,
StandRatio,DataRatio)

+TrtYear <integer>
+EndYear <integer>
+NumStands <integer>
+StartPos <integer>
-StandRatio <integer>
-DataRatio <integer>

Comments: This returns the ratios for the progress bars.

fvs getStandList/2

fvs getStandList(Scenarios,StandList)

+Scenarios <list>
-StandList <list>

Comments: This returns a list with all scenario-stands which have not been simu-
lated.

fvs getTreatments/4

fvs getTreatments(Scenario,Stand,BasisYear,Treatments)

+Scenario <integer>
+Stand <integer>
+BasisYear <integer>
-Treatments <list>

Comments: This returns a list of all treatments scheduled for Scenario and Stand.

73

fvs hasTreatments/4

fvs hasTreatments(Scenario,Stand,StartYear,EndYear)

+Scenario <integer>
+Stand <integer>
?StartYear <integer>
?EndYear <integer>

Comments: This checks if treatments are defined for Scenario and Stand.

fvs hasTrees/1

fvs hasTrees(Snapshot)

+Snapshot <integer>

Comments: This checks if there are any trees stored in the tables [Overstory obs]
or [Understory obs] for a Snapshot .

fvs init/0

fvs init

Comments: This initialize the simulation process.

fvs insertScenarios/0

fvs insertScenarios

Comments: This asserts a list of all scenarios with the selected stands in the Plan
Selection dialog.

fvs insertStands/2

fvs insertStands(Window,Stands)

+Window <window handle>
+Stands <list>

74

Comments: This adds all Stands to Window.

fvs largestNum/2

fvs largestNum(List,Largest)

+List <list>
+Largest <integer>

Comments: This find the largest number in List.

fvs loadKBs/0

fvs loadKBs

Comments: This loads all necessary *.kb files.

fvs openNEDcalc/1

fvs openNEDcalc(Handle)

-Handle <integer>

Comments: This initiates NEDcalc.dll and returns the Handle for this DLL.

fvs paint/1

fvs paint(Window)

+Window <window handle>

Comments: This repaints the graphics Window whenever necessary.

fvs planSimDlg/2

fvs planSimDlg(Plans,Txt)

+Scenarios <list>
+Text <string>

75

Comments: This creates the Plan Simulation dialog.

fvs rectangle/3

fvs rectangle(Window,Brush,Width)

+Window <window handle>
+Brush <atom>

+Width <integer>

Comments: This draws the progress bar.

fvs run/2

fvs run(Variant,Stand)

+Variant <atom>

+Stand <integer>

Comments: This executes FVS.

fvs runNEDcalc/3

fvs runNEDcalc(Snapshot,LastSnapshot,Scenarios)

+Snapshot <integer>
+LastSnapshot <integer>
+Scenarios <list>

Comments: This runs NEDcalc.dll for all snapshots.

fvs selectScenariosDlg/1

fvs selectScenariosDlg(StandList)

+StandList <list>

Comments: This creates the Plan Selection dialog.

76

fvs setSnapshots/4

fvs setSnapshots(Scenarios,Year,Stand,Snapshot)

+Scenarios <integer>
+Year <integer>
+Stand <integer>
+Snapshto <integer>

Comments: This sets the snapshots in the [Senarios designs] table for a Stand and
Snapshot.

fvs simulate/2

fvs simulate(SimType,LScenario)

+SimType <atom>

+LScenario <list>

Comments: This prepares for the simulation process.

fvs simulatePlans/5

fvs simulatePlans(LScenario,Year,LStand,CurSnapshot,LastSnapshot)

+LScenario <list>
+Year <integer>
+LStand <list>
+CurSnapshot <integer>
-LastSnapshot <integer>

Comments: This simulates the selected plans. If a stand is not forested or does not
have any treatments, this stand is skipped.

77

fvs simulatingDlg/2

fvs simulatingDlg(Scenario,TotPlans)

+Scenario <integer>
+TotPlans <list>

Comments: This creates the Simulating dialog.

hndl failedtrees/4

hndl failedtrees(Window,Message,Data,Result)

+Window <window handle>
+Message <atom>

+Data <integer> or <conjunction>
?Result <atom>

Comments: This provides the processing of window messages for the Failed Trees
dialog, specified by the given Window handle, Message name and Data item. In
certain cases, it attempts to unify Result with an atom that is used to indicate
completion of a dialog.

hndl plansim/4

hndl plansim(Window,Message,Data,Result)

+Window <window handle>
+Message <atom>

+Data <integer> or <conjunction>
?Result <atom>

Comments: This provides the processing of window messages for the Plan Simula-
tion dialog, specified by the given Window handle, Message name and Data item.
In certain cases, it attempts to unify Result with an atom that is used to indicate
completion of a dialog.

78

hndl scenariosel/4

hndl scenariosel(Window,Message,Data,Result)

+Window <window handle>
+Message <atom>

+Data <integer> or <conjunction>
?Result <atom>

Comments: This provides the processing of window messages for the Plan Selection
dialog, specified by the given Window handle, Message name and Data item. In
certain cases, it attempts to unify Result with an atom that is used to indicate
completion of a dialog.

hndl simulating/4

hndl simulating(Window,Message,Data,Result)

+Window <window handle>
+Message <atom>

+Data <integer> or <conjunction>
?Result <atom>

Comments: This provides the processing of window messages for the Simulating
dialog, specified by the given Window handle, Message name and Data item. In
certain cases, it attempts to unify Result with an atom that is used to indicate
completion of a dialog.

A.6 fvs bulletproof.dut

fvs bulletproof/2

fvs bulletproof(Scenario,Request)

+Scenario <integer>
-Request <atom>

Comments: Before the simulation can run, it has to be ensured that all data nec-
essary for FVS are available. Also it has to be checked if the management unit plans
are out of sync with the treatment sets. This initiates the checkup.

79

fvsbp getGModel/3

fvsbp getGModel(Scenario,Stand,Model)

+Scenario <integer>
+Stand <atom>

-Model <atom>

Comments: This returns the growth Model defined for the Stand in the Scenario.

fvsbp getMissingData/3

fvsbp getMissingData(Scenario,StandList,MissingData)

+Scenario <integer>
+StandList <list>
-MissingData <list>

Comments: This returns a list of all data missing. This predicate first checks if the
year of origin, the site index, the site species, and the growth model are defined for
each Stand in the Scenario. If treatments are applied in any year of the Scenario, the
predicate further checks if a treatment simulation model and a treatment knowledge
base are defined. It also checks if the treatment knowledge base exists in the specified
location and if all treatments applied in the Scenario are defined in the treatment
knowledge base.

fvsbp getMissingGrowthModels/3

fvsbp getMissingGrowthModels(Scenario,StandList,MissingList)

+Scenario <integer>
+StandList <list>
-MissingList <list>

Comments: This returns a list of all stands in Scenario that do not have a growth
model defined.

80

fvsbp getMissingSiSSpp/3

fvsbp getMissingSiSSpp(Scenario,StandList,MissingList)

+Scenario <integer>
+StandList <list>
-MissingList <list>

Comments: This returns a list of all stands that do not have a site index or a site
species defined.

fvsbp getMissingTrtModels/3

fvsbp getMissingTrtModels(Scenario,StandList,MissingList)

+Scenario <integer>
+StandList <list>
-MissingList <list>

Comments: This returns a list of all stands that do not have a treatment simulation
model defined.

fvsbp getMissingTrts/4

fvsbp getMissingTrts(Scenario,TrtIdList,TrtKB,MissingList)

+Scenario <integer>
+TrtIdList <list>
+TrtKB <atom>

-MissingList <list>

Comments: This returns a list of all treatments displayed in the [Scenario designs]
table that are not defined in the treatment knowledge base.

fvsbp getMissingYearOfOrigin/3

fvsbp getMissingYearOfOrigin(Scenario,StandList,MissingList)

+Scenario <integer>
+StandList <list>
-MissingList <list>

Comments: This returns a list of all stands that do not have a year of origin defined.

81

fvsbp getNonTrt/2

fvsbp getNonTrt(Simulator,NoTrtList)

+Simulator <integer>
-NoTrtList <list>

Comments: This returns a list of all the events displayed in the [Scenario designs]
table that are not treatments.

fvsbp getTModel/3

fvsbp getTModel(Scenario,Stand,Model)

+Scenario <integer>
+Stand <atom>

-Model <atom>

Comments: This returns the treatment simulation Model defined for the Stand in
the Scenario.

fvsbp getTrtId/3

fvsbp getTrtId(Scenario,StandList,TrtIdList)

+Scenario <integer>
+StandList <list>
-TrtIdList <list>

Comments: This returns a list of treatments displayed in the [Scenario designs]
table.

fvsbp getTrtKB/1

fvsbp getTrtKB(TrtKB)

-TrtKBList <list>

Comments: This returns the treatment knowledge base defined in the [MU header]
table.

82

fvsbp hasBaseline/1

fvsbp hasBaseline(StandList)

+StandList <list>

Comments: This predicate checks if the baseline is generated for all stands. It fails,
if the baseline does not exist.

fvsbp hasPlan/0

fvsbp hasPlan

Comments: This predicate checks if any plans exist. It fails, if there are no plans
developed.

fvsbp hasStands/1

fvsbp hasStands(StandList)

+StandList <list>

Comments: This predicate checks if there exist any stands in the management unit.
It fails, if there are no stands in the management unit.

fvsbp hasTreatments/1

fvsbp hasTreatments(StandList)

+StandList <list>

Comments: This predicate checks if the stands in the list have any treatments. It
fails, if no treatments are defined in the [Scenario designs] table for any stand.

fvsbp lbText/3

fvsbp lbText(List,TmpString,LbTxt)

+List <list>
+TmpString <string>
-LbTxt <string>

Comments: This returns the text in the format required for the listbox.

83

fvsbp padding/3

fvsbp padding(OrigString,PadNum,NewString)

+OrigString <string>
+PadNum <integer>
-NewString <string>

Comments: This fills the text with blanks so that a full line in the listbox is
occupied.

fvsbp remDoubles/2

fvsbp remDoubles(OrigList,NewList)

+OrigList <list>
-NewList <list>

Comments: This ensures that each treatment occurs only ones in the MissingTreat-
mentList.

fvsbp writeData/3

fvsbp writeData(MissingDataList,TmpString,MissingDataString)

+MissingDataList <list>
+TmpString <string>
-MissingDataString <string>

Comments: This writes the information of the missing data to the error report.

fvsbp writeErrorReport/3

fvsbp writeErrorReport(Scenario,MissingData,File)

+Scenario <integer>
+MissingData <list>
-File <atom>

Comments: This writes the error report to an HTML File.

84

fvsbp writeHead/1

fvsbp writeHead(Head)

-head <string>

Comments: This writes the header of the error report.

fvsbp writeHeaderPage/1

fvsbp writeHeaderPage(Scenario,File)

+Scenario <integer>
-File <atom>

Comments: This writes the index File of the error report for plan simulation.

fvsbp writeTitle/2

fvsbp writeTitle(Scenario,Title)

+Scenario <integer>
-Title <string>

Comments: This writes the Title of the error report.

A.7 mdb2fvs.dut

construct subatom aux/3

construct subatom aux(Value,FormatList,Formatted)

+Value <integer>
+FormatList <list>
-Formatted <string>

Comments: This constructs the proper formatting for the variables inserted into
the files.

85

make atom/2

make atom(Item,Atom)

+Item <integer>, <string> or <atom>

-Atom <atom>

Comments: This converts an Item of any type into an Atom.

mdb2fvs/6

mdb2fvs(Variant,Stand,StartYear,EndYear,PreSnapshot,Treatments)

+Variant <atom>

+Stand <integer>
+StandYear <integer>
+EndYear <integer>
+PreSnapshot <integer>
+Treatment <list>

Comments: This initiates the generation of the input files for FVS (*.key, *.fvs).

mdb2fvs checkNull/2

mdb2fvs checkNull(Orig,New)

+Orig <atom>

-New <atom>

Comments: This checks if the column in a table of the management unit is empty
($null$).

mdb2fvs createFvsFileName/3

mdb2fvs createFvsFileName(Stand,Cluster,FileName)

+Stand <integer>
+Cluster <integer>
+FileName <atom>

Comments: This generates the FileName for the *.fvs file according to Stand and
Cluster.

86

mdb2fvs fvsFileFormat/4

mdb2fvs fvsFileFormat(Variant,Snapshot,ClusterList,FvsFileTxt)

+Variant <atom>

+Snapshot <integer>
+ClusterList <list>
+FVSFileTxt <string>

Comments: This creates the content of the *.fvs file according to its format defini-
tion.

mdb2fvs getBafSize/6

mdb2fvs getBafSize(Variant,OverType,OverBaf,OverSize,Baf,PlotSize)

+Variant <atom>

+OverType <integer>
+OverBaf <integer>
+OverSize <integer>
-Baf <integer>
-Size <integer>

Comments: This returns the values for Baf and PlotSize.

mdb2fvs getCycles/2

mdb2fvs getCycles(Treatments,Cycles)

+Treatments <atlistom>

-Cycles <list>

Comments: This returns the number of Cycles according to the elements in Treat-
ments.

87

mdb2fvs getHabitat/3

mdb2fvs getHabitat(Stand,Variant,Habitat)

+Stand <integer>
+Variant <atom>

-Habitat <atom>

Comments: This returns the value for Habitat.

mdb2fvs keyFileFormat/8

mdb2fvs keyFileFormat((fvs,Variant),Snapshot,Stand,StartYear,EndYear,
Treatments,NCluster,KeyFileTxt)

+Variant <atom>

+Snapshot <integer>
+Stand <integer>
+StartYear <integer>
+EndYear <integer>
+Treatments <list>
+NCluster <integer>
-KeyFileTxt <string>

Comments: This initiates the generation of the *.key file according to its format
definition.

mdb2fvs writeKeyFile A/19

mdb2fvs writeKeyFile A(StartYear,EndYear,ComCycleLen,Stand,MuName,
LocCode,Habitat,YearsSinceOrig,Aspect,Slope,Elevation,Baf,Size,
BreakPointDBH,AlphaCode,Index,NCluster,NumCycle,HeadTxt)

+StartYear <integer>
+EndYear <integer>
+ComCycleLen <integer>
+Stand <integer>
+MuName <atom>

+LocCode <integer>
+Habitat <atom>

+YearsSinceOrig <integer>

88

+Aspect <integer>
+Slope <integer>
+Elevation <integer>
+Baf <integer>
+Size <integer>
+BreakPointDBH <integer>
+AlphaCode <atom>

+Index <integer>
+NCluster <integer>
+NumCycle <integer>
-HeadTxt <string>

Comments: This creates the content of the header of the *.key file.

mdb2fvs writeKeyFile B/1

mdb2fvs writeKeyFile B(TimeIntTxt)

-TimeIntTxt <string>

Comments: This creates the content of the time interval keyword of the *.key file.

mdb2fvs writeKeyFile C/3

mdb2fvs writeKeyFile C(Treatments,Variant,TrtTxt)

+Treatments <list>
+Variant <atom>

-TrtText <string>

Comments: This writes the keywords for the Treatments in the *.key file.

mdb2fvs writeKeyFile D/3

mdb2fvs writeKeyFile D(Stand,NCluster,BodyTxt)

+Stand <integer>
+NCluster <integer>
-BodyTxt <string>

Comments: This creates the content of the body of the *.key file.

89

mdb2fvs writeRecord/6

mdb2fvs writeRecord(Table,Variant,Snapshot,Cluster,ObsList,Txt)

+Table <list>
+Variant <atom>

+Snapshot <integer>
+Cluster <list>
+ObsList <atom>

-Txt <integer>

Comments: This creates the tree data records of the *.fvs file.

pad/5

pad(End,Atom,Padding,Length, -NewAtom)

+End <atom>

+Atom <atom>

+Padding <atom>

+Length <integer>
-NewAtom <atom>

Comments: This adds the proper padding for the formatting.

A.8 fvs2mdb.dut

fvs2mdb/14

fvs2mdb(Scenario,Variant,Stand,StartYear,EndYear,PreSnapshot,Snapshot,
StandRatio,DataStartPosX,StartPosX,DataRatio,NextSnapshot,
NextDataStartPosX,NextStartPosX)

+Scenario <integer>
+Variant <atom>

+Stand <integer>
+StartYear <integer>
+EndYear <integer>
+PreSnapshot <integer>
+Snapshot <integer>
+StandRatio <float>

90

+DataStartPosX <integer>
+StartPosX <integer>
+DataRatio <float>
-NextSnapshot <integer>
-NextDataStartPosX <integer>
-NextStartPosX <integer>

Comments: This initiates the conversion of the FVS output to the database format.

fvs2mdb addRecord/3

fvs2mdb addRecord(TableName,PreSnapshot,Snapshot)

+TableName <atom>

+PreSnapshot <integer>
+Snapshot <integer>

Comments: This adds a record to one of the following tables: [Stand snapshots treatment],
[Stand snapshots volumes], [Stand snapshots measures], [Stand snapshots nontimber],
[Plot clusters], [Overstrory plots], [Understory plots], [Ground plots], [Transects].

fvs2mdb copyRecords/4

fvs2mdb copyRecords(TableName,ListType,PreSnapshot,Snapshot)

+TableName <atom>

+ListType <atom>

+PreSnapshot <integer>
+Snapshot <integer>

Comments: This copies a record to one of the following tables: [Ground obs],
[Transet obs], [Understory obs].

fvs2mdb date/1

fvs2mdb date(Date)

-Date <string>

Comments: This returns a string of the form: ‘Month Day, Year Hour:Minute:Second’.

91

fvs2mdb equal/2

fvs2mdb equal(FloatNumA,FloatNumB)

+FloatNumA <float>
+FloatNumB <float>

Comments: This checks if two floating numbers are equal within 0.000001 accuracy.

fvs2mdb modifyTables/12

fvs2mdb modifyTables(ListType,Scenario,Variant,Stand,PreSnapshot,
Snapshot,TrtYear,StandRatio,StartPosX,DataRatio,Count,NCount

+ListType <atom>

+Scenario <integer>
+Variant <atom>

+Stand <integer>
+PreSnapshot <integer>
+Snapshot <integer>
+TrtYear <integer>
+StandRatio <float>
+StartPosX <integer>
+DataRatio <float>
+Count <integer>
-NCount <integer>

Comments: This initiates the update of the [Scenario designs] table, adding
records to the tables [Stand snapshots treatment], [Stand snapshots volumes],
[Stand snapshots measures], [Stand snapshots nontimber], [Plot clusters], [Over-
strory plots], [Understory plots], [Ground plots], [Transects]; and coping records to
the tables [Ground obs], [Transet obs], [Understory obs].

fvs2mdb readData/9

fvs2mdb readData(DataList,Variant,Cluster,Obs,TreeId,Spp,Dbh,TreeAlive,
Tpa)

+DataList <list>
+Variant <atom>

-Cluster <integer>

92

-Obs <integer>
-TreeId <integer>
-Spp <atom>

-Dbh <integer>
-TreeAlive <integer>
-Tpa <float>

Comments: This extracts the relevant data from a record in the *.trl file.

fvs2mdb readFile/17

fvs2mdb readFile(Scenario,Variant,Stand,TrtYear,EndYear,OldPreSnapshot,
OldSnapshot,TreeList+ListType,PreSnapshot,Snapshot,StandRatio,
StartPosX,DataRatio,Count,NextSnapshot,NextStartPosX

+Scenario <integer>
+Variant <atom>

+Stand <integer>
+TrtYear <integer>
+EndYear <integer>
+OldPreSnapshot <integer>
+OldSnapshot <integer>
+TreeList <list>
+ListType <atom>

+PreSnapshot <integer>
+Snapshot <integer>
+StandRatio <float>
+StartPosX <integer>
+DataRatio <float>
+Count <integer>
-NextSnapshot <integer>
-NextStartPosX <integer>

Comments: This reads a line from the *.trl file.

fvs2mdb updateGraphix/5

fvs2mdb updateGraphix(StandRatio,DataRatio,StartPosX,Count,NextCount)

+StandRatio <float>
+DataRatio <float>

93

+StartPosX <integer>
+Count <integer>
-NextCount <integer>

Comments: This updates the progress bars.

fvs2mdb writeData/12

fvs2mdb writeData(ListType,PreSnapshot,Snapshot,Cluster,Obs,TreeId,
Spp,Dbh,TreeAlive,Tpa,TmpTreeList,TreeList)

+ListType <atom>

+PreSnapshot <integer>
+Snapshot <integer>
+Cluster <integer>
+Obs <integer>
+TreeId <atom>

+Spp <integer>
+Dbh <integer>
+TreeAlive <integer>
+Tpa <integer>
+TmpTreeList <list>
-TreeList <list>

Comments: This writes the tree data to the [Overstory obs] and [Understory obs]
tables.

update scenario designs/6

update scenario designs(Scenario,Stand, Snapshot,PreSnapshot,
TreatmentYear,ListId)

+Scenario <integer>
+Stand <integer>
+Snapshot <integer>
+PreSnapshot <integer>
+TreatmentYear <integer>
+ListId <atom>

Comments: This updates the [Scenario designs] table by inserting the Snapshot
number to the appropriate record.

Bibliography

[1] Boucugnani, D.A.; Nute, D., and Loftis, D.L. (2003) REGEN agent for Excel: a

modular and generalized forest regeneration agent. In Proceedings: Decision Sup-

port for Multiple Purpose Forestry, April 23-25, 2003, Vienna, Austria, Interna-

tional Union of Forestry Research Organizations.

[2] Dixon, G.E. (2002) Essential FVS: A User’s Guide to the Forest Vegetation

Simulator. U.S. Department of Agriculture, Forest Service, Fort Collins, CO.

[3] Dyck, M.G. (2002) Keyword Reference Guide for the Forest Vegetation Simulator.

U.S. Department of Agriculture, Forest Service, Fort Collins, CO.

[4] Loftis, D. L. (1990) Regenration of southern hardwoods: some ecological concepts.

In: Proceedings of the National Silvicultureal Workshop, July 10-13, 1989, Peters-

burg, AL. Washington, D.C.: U. S. Department of Agriculture, Forest Service, pp.

139-143.

[5] Maier, M. (2002) Notes on a Blackboard: Recent work on NED2. Master Thesis.

[6] Marquis, D.A. and Ernst, R.L. (1992) User’s guide to SILVAH: stand anal-

ysis, prescription, and management simulator program for hardwood stands of

the Alleghenies. Gen. Tech. Rep. NE-162. U.S. Department of Agriculture, Forest

Service, Northeastern Forest Experiment Station, Radnor, PA. 124 p.

[7] Nute, D.; Kim, G.; Potter, W.D.; Twery, M.J.; Rauscher, H.M.; Thomasma,

S.; Bennett, D.J.; and Kollasch, P. (1999) A Multi-criteria Decision Support

94

95

System for Forest Management. Environmental Decision Support Systems and

Artificial Intelligence. AAAI-99, Technical Report WS-99-07 (pp. 68-73). AAAI

Press, Menlo Park, California.

[8] Nute, D.; Potter, W.D.; Maier, F.; Wang, J.; Twery, M.; Rauscher, H.M.; Knopp,

P.; Thomasma, S.; Dass, M.; and Uchiyama, H.(2002) Intelligent model manage-

ment in a forest ecosystem management decision support system. In A. E. Rizzoli

and A. J. Jakeman (eds.), Integrated Assessment and Decision Support: Proceed-

ings of the First Biennial Meeting on the International Environment Modeling

and Software Society, Vol. 3: 396-401, International Environmental Modeling and

Software Society, Lugano, Switzerland, 2002.

[9] Nute, D.; Potter, W.D.; Maier, F.; Wang, J.; Twery, M.; Rauscher, H.M.; Knopp,

P.D.; Thomasma, S.A.; Dass, M.; Uchiyama, H. and Glende, A. (2003) An Agent

Architecture for an Integrated Forest Ecosystem Management Decision Support

System. In Proceedings: Decision Support for Multiple Purpose Forestry, April

23-25, 2003, Vienna, Austria, International Union of Forestry Research Organiza-

tions, CD-Rom Proceedings, p. 1-12.

[10] Nute, D.; Potter, W.D.; Cheng, Z.; Dass, M.; Glende, A.; Maier, F.; Routh, C.;

Uchiyama, H.; Wang, J.; Witzig, S.; Twery, M.; Knopp, P.D.; Thomasma, S.A.;

and Rauscher, H.M. (2004) Adding New Agents and Models to the NED-2 Forest

Management System. submitted to COMPAG-2004.

[11] Teck, R.M. (1990) NE-TWIGS 3.0: An individual-tree growth and yield projec-

tion system for the northeastern United States. The Compiler. 8(1):25-27.

[12] Twery, M.J.; Rauscher, H.M.; Bennett, D.J.; Thomasma, S.; Stout, S.; Palmer,

J.; Hoffmann, R.; DeCalesta, D.; Gustafson, E.; Cleveland, H.; Grove, J.M.; Nute,

96

D.; Kim, G.; and Kollasch, R.P. (2000) NED-1: Integrated Analysis for Forest

Stewardship Decisions. Computers and Electronics in Acriculture, 27, 167-193.

[13] Twery, M.J.; Rauscher, H.M.; Knopp, P.D.; Thomasma, S.A.; Nute, D.; Potter,

W.D.; Maier, F.; Wang, J.; Dass, M.; Uchiyama, H.; and Glende, A. (2003)

NED-2: An Integrated Forest Ecosystem Management Decision Support System. In

Proceedings: Decision Support for Multiple Purpose Forestry, April 23-25, 2003,

Vienna, Austria, International Union of Forestry Research Organizations, CD-

Rom Proceedings, p. 1-17.

[14] Wang J. (2002) External Heterogeneous Information Source Management

Agents. Master Thesis.

