

JIN WANG
External Heterogeneous Information Source Management Agents
(Under the direction of DON POTTER)

NED-2 is a robust, full service Intelligent Information System designed to provide

decision support for forest ecosystem management. Integrating growth and yield models

into NED is one of the important elements in developing NED. NED-2 uses external

heterogeneous information source management (EHISM) agents to permit

communication between external sources and NED-2. FVS is the first simulation model

integrated in NED-2. A meta-knowledge base is developed, so the simulation agent can

use it to set up and execute the FVS models. This thesis will briefly describe the NED-2

agent-based blackboard architecture, and discuss the design issues explaining the

integration of NED-2 and FVS.

INDEX WORDS: Intelligent information system, Blackboard architecture, Agents,

 Meta- knowledge, FVS, PROLOG

EXTERNAL HETEROGENEOUS INFORMATION SOURCE

MANAGEMENT AGENTS

By

JIN WANG

B.S., Tianjin University, P.R. China, 1983

M.S., Tianjin University, P.R. China, 1987

A Thesis Submitted to the Graduate Faculty of The University of Georgia

in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2002

© 2002

Jin Wang

All Rights Reserved

EXTERNAL HETEROGENEOUS INFORMATION SOURCE

MANAGEMENT AGENTS

By

JIN WANG

 Approved:

 Major Professor: Don Potter

 Committee: Donald Nute

 Charles Cross

Electronic Version Approved:

Gordhan L. Patel
Dean of the Graduate School
The University of Georgia
August 2002

ACKNOWLEDGMENTS

 I would like to express my sincerest gratitude to Dr. Don Potter, my major

professor, for his constant support, concern, and encouragement and invaluable advice

throughout this challenging thesis project. I wish to thank Dr. Donald Nute, my

committee member, for his constructive suggestions and help. I also wish to thank Dr.

Charles Cross, for his advice and serving on my committee.

I thank all my friends and classmates, especially Frederick W. Maier, Yunxiu Xu,

and Yali Zhao, for their help to this thesis.

I thank Dr. H. Michael Rauscher, Dr. Mark J. Twery, Scott Thomasma and Pete

Knopp, members of the Forest Service, for their help and kindness. I thank the USDA

Forest Service for supporting me.

I thank my parents, my husband Ruihua Liu, and my daughter Xin Xin, for their

continuous support and encouragement.

This research was supported by funds provided by the U. S. Department of

Agriculture, Forest Service, Northeastern Research Station.

iv

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENTS.. iv

CHAPTER

 1 INTRODUCTION... 1

 1.1 NED Project .. 1

 1.2 NED-2 Agent-based Blackboard Architecture.. 3

 1.3 External Heterogeneous Information Source Management Agents 4

2 INTEGRATING EXTERNAL HETEROGENEOUS INFORMATION

SOURCES... 7

 2.1 Intelligent Information System.. 7

 2.2 Several Integrating Approaches .. 9

3 THE NED-2 EHISM AGENT... 14

 3.1 An Overview for the NED-2 EHISM Agent... 15

 3.2 Meta-knowledge Base ... 17

 3.3 The Advantage of the NED-2 EHISM Agents.. 18

4 THE NED-2 SIMULATION AGENT AND FVS .. 20

 4.1 Background on FVS.. 20

 4.2 FVS, Simulation Agent and NED-2.. 21

 4.3 Implementation Details ... 23

v

 4.4 The Process for Simulating A User’s Plan in NED-2 36

5 SUMMARY AND CONCLUSIONS.. 38

REFERENCES.. 40

CHAPTER 1

INTRODUCTION

This thesis discusses the design issues of external heterogeneous information

source management (EHISM) agents in the NED-2 project, and describes the

implementation of the forest vegetation simulation agent.

1.1 NED Project

NED is a robust, full service Intelligent Information System for the sustainable

management of forest lands. It is designed to help owners and forest managers plan and

achieve wildlife, ecology, water, landscape, and timber production goals (Nute et al.

1999).

NED is an acronym for “Northeast Decision Model”. The NED project began in

1987 among researchers within the Northeastern Forest Experiment Station (Twery et al.

2000). One of the objectives the researchers put forward was to develop a computer

system that would integrate all the previously independently produced growth and yield

models developed by scientists within that station. A primary objective of NED was to

develop a single, easy-to-use system to provide summary information and expert

prescriptions for any forest type in the northeastern United States (Twery et al. 2000).

Now its original applicable scope has expanded. NED-1, the first version of NED, has

1

functionalities of data acquisition, goal selection, and goal satisfaction analysis (Nute et

al. 1999). NED-2, the current version under development, will simulate user’s treatment

plans by using growth and yield models. The results of the simulation and goal

satisfaction analysis are displayed with several visualization tools, such as on-screen

displays, hypertext reports, and geographical information systems. Based on a review of

these analyses, the user can make a final decision upon the management plan (Nute et al

2002).

Integrating growth and yield models into NED is one of the important elements in

developing the NED project. In order to achieve a desired goal, a user may construct

several plans and compare the results of each plan. The growth and yield models are very

useful tools for plan simulation. They give a projection of conditions into the future under

alternative management options.

Some existing simulation models, such as SILVAH and the many variants of

FVS, have been or will be integrated into NED. FVS (Teck et al. 1996) is a Forest

Vegetation Simulator that projects the growth of forest stands under a variety of

conditions. SILVAH (Marquis et al. 1992), for SILViculture of Allegheny Hardwoods

prescription system, helps forest managers make treatment decisions. Usually, these

models were developed independently, which often causes the problem of heterogeneity.

They have been developed using different languages, they run on different hardware

systems, they have different input and output formats, and different control code must be

invoked for each. They are typically monolithic, stand-alone legacy systems. It is very

demanding to deal with heterogeneous components and integrate them into NED.

2

1.2 NED-2 Agent-based Blackboard Architecture

 For many years, the blackboard architecture (Craig 1995, Newell) has been

successfully used in different application areas. This approach includes a group of

experts, each of them having knowledge in a specific field. They are asked to solve a

complex problem that cannot be done alone by any of them. The experts cooperate with

each other through a blackboard. When an expert is solving a part of a whole problem

and writing the result or a request on the blackboard, no other experts are allowed to

write there at the same time.

 NED-2 is a blackboard system with semi-autonomous intelligent agents. Its

blackboard integrates a Microsoft Access database and a set of Prolog clauses. Inventory

data and other information are stored in the database. NED-2 includes a user interface,

databases, simulators, knowledge bases, hypertext documents, geographical information

systems and visualization tools. Simulators and other external modules are integrated into

NED-2 via their intelligent agents (Figure 1) (Nute et al. 2002).

In NED-2, each agent makes a contribution to the problem-solving process.

Agents communicate with each other through the NED blackboard. Tasks that need to be

done are posted on the blackboard. Agents also post most of the intermediate results of

their activities on the blackboard. Agents watch the blackboard continually. The

information on the blackboard will prompt an agent to do some work. If an agent

performs some task listed on the blackboard, it will erase that task from the task list. An

agent may place a report that the task has been performed on the blackboard after

completing the task. If an agent begins a task, then discovers that something needs to be

3

done before the task can be carried out but that is beyond its capability, it can put the new

task on the blackboard and wait until another agent performs it before completing its

original task.

 Blackboard

Clauses

 Prolog

Database

NED-2
 GIS

 Simulations

 Temporary Data Files

 Meta-knowledge Bases

Knowledge Models Inference Engines

 Agents

Visualizations

 Figure 1: The NED-2 architecture

1.3 External Heterogeneous Information Source Management Agents

 NED-2 uses external heterogeneous information source management (EHISM)

agents to integrate various resources. In order to add new functionalities to the NED

system, NED-2 needs to integrate additional growth and yield models or other

autonomous, heterogeneous information sources. Since each source is designed to

perform a particular task in a specialized environment, we must deal with these

4

heterogeneous environments. First, the data format of the information source may need to

be translated in order to communicate with the other sources. Second, the information

source that is developed in a different programming environment should be invoked by

appropriate control codes. We might also need to consider how to perform transparent

processing so that the users can just focus on their tasks without having to consider where

the results will be gotten.

 In NED-2, the earlier framework of integrating external sources was based on a

wrapper approach (Wang et al. 2002). Each heterogeneous information source was

integrated via a customized wrapper. The wrapper provides a communicating layer

between the NED system and the external heterogeneous model. The main disadvantage

of the wrapper approach is that we must develop a specific wrapper for each source even

though some sources need similar execution procedures. That is inconvenient for

developing and maintaining software.

 The NED EHISM agents approach overcomes this shortcoming. An EHISM agent

is a multi-source controller. Each EHISM agent has a meta-knowledge base. By

consulting the meta-knowledge base, the EHISM agent knows when and how to access

related sources. Thus, integration of an additional information source becomes easier and

faster. One of the EHISM agents in NED-2 has been developed. It is called the simulation

agent and it intelligently integrates various forest simulators. The first simulator

integrated into NED-2 is FVS. It is what this thesis will focus on.

The background of this thesis has already been provided. Next, the design issues

of NED-2 EHISM agents will be discussed, and the implementation of the forest

simulation agent will be described in detail. The second chapter will briefly describe the

5

theory of Intelligent Information Systems (IIS), and give a description of several existing

IIS architectures. The third chapter will discuss the design issues of NED-2 EHISM

agents, including the behaviors of the EHISM agents and the content of a meta-

knowledge base. The fourth chapter will describe how the simulation agent for the FVS

simulator is implemented in detail. The last chapter will give conclusions and discuss

future direction the NED project might take.

6

CHAPTER 2

INTEGRATING EXTERNAL HETEROGENEOUS INFORMATION SOURCES

 This chapter will provide an overview of Intelligent Information Systems theory

and a brief description of its several architectures.

2.1 Intelligent Information System

 We are witnessing a rapid increase of information sources. They could (1) be

multimedia (video, sound, images, and text), (2) be stored in diverse formats (structured

formats, like databases; non-structured formats, like flat files; or semi- structured formats,

like HTML files), (3) have different data meanings across sources (e.g., grade point

average might be based on a 4.0 system in one database and a 10.0 system in another), (4)

differ in temporal and spatial dimension, and/or (5) be application programs. A large

number of diverse information sources bring us great power. However, people have to

deal with an important issue, that is, how to efficiently make desired information sources

available in a unified information system since each information component is usually

autonomous. There are several kinds of autonomy ([Ozsu 99]).

• Design autonomy. An information source is independent from others in its design,

which means it has an independent data model both in semantic and syntactic

aspects, and in its design change, which could happen at any time.

7

• Communication autonomy. An information source can communicate with an

other information system independently. It can be added to or removed from the

system at any time.

• Execution autonomy. An information source works independently to execute and

schedule all incoming requests.

An Intelligent Information System (IIS) is an integrated information system that

provides uniform access to multiple autonomous information sources.

One of the main tasks of an Intelligent Information System is to resolve any

heterogeneity between the sources. There are several facets to the heterogeneity of

information in systems (Bird 1993): syntactic, control, and semantic. Syntactic

heterogeneity exists if knowledge and data are represented using different knowledge

representation formats and data definition formats. Control heterogeneity comes from the

many reasoning mechanisms for intelligent systems including induction, deduction,

analogy, case-based reasoning, etc. Semantic heterogeneity denotes the variety of the

meaning and interpretation of knowledge and data.

 Transparency is considered as the ideal goal of integration. A perfectly intelligent

information system would let users communicate with only one central, locally running,

and homogeneous information system so that the users can just focus on their tasks

without having to consider where the results will be gotten and which query process will

be involved, such as a data retrieval, an inference, a computational method, a problem

solving module, or a combination of these.

An IIS is viewed as “composed of a unified knowledge base, database, and model

base” (Potter et al 2000). The knowledge base contains domain knowledge and meta-

8

knowledge. It describes the existing sources’ functionality, their relationships, and the

details for access. The model base includes various models; decision models support

effective decision-making for user queries, simulation models project the future to help

users evaluate alternative decisions, and visualization models create visual displays for

different scenarios. The use of artificial intelligence techniques, such as agents,

knowledge representation, planning, and reasoning, enables the information system to

perform information support tasks intelligently.

2.2 Several Integrating Approaches

There are many existing approaches that provide intelligent integration of

information, such as a federated database approach (Heimbigner and McLeod 1985;

Sheth and Larson 1990), a hierarchical mediator approach (Wiederhold 1992; Roth and

Scharz 1997), and an ontology-based semantic approach, (Levy et al. 1996; Cheung et al.

1996). In this section, each of these systems will be discussed briefly.

2.2.1 Federated Database Approach

 In a federated database system, resources are created, administered, and enhanced

independently. The system provides unified access to other information sources. Each

individual database has a global abstraction while keeping autonomy of each component.

There are two types of federated database systems: tightly coupled and loosely coupled.

In the tightly coupled federated database, the integration of different sources is done in

advance, and the user can only query or update the databases in a predefined way. In the

9

loosely coupled federated database, the integration is more dynamic, and end-users can

interact with the individual component databases and create their own federated schema.

The shortcomings of the federated database approach are that they are not very

active or scalable, and they focus on only structured information sources like databases.

2.2.2 Hierarchical Mediator Approach

 Similar to the federated database approach, the hierarchical mediator approach is

a structural approach. A hierarchical mediator system involves decomposing query

creators (called mediators) and information providers (called wrappers). It has better

semantic-level services and interoperability.

 The mediator plays a major role in translating and decoding user global queries

into multiple local queries that can be supported by the individual information resources.

Intelligent as it is, it knows how the query is best covered by the candidate data sources.

In general, the mediator decomposes complex queries to an appropriate level, executes

the sub-queries on its data sources, collects the results and returns them back to the

higher-level mediator. The mediator can use other mediators and/or wrappers as data

sources.

 The wrappers manage the external heterogeneous sources, which are wrapped to

provide an appropriate interface that affords transparency in communication, data

representation, and system environment. The function of a wrapper is to accept the

caller’s queries and data, convert them into the target-source format, and then pass them

on to the target-source for execution. After execution, the results are captured by the

wrapper that will transfer them into the format of the caller.

10

Some "classic projects" with a hierarchical mediator architecture are Garlic (Haas

et al. 1997), TSIMMIS (Papakonstatniou et al. 1996), HERMES (Adali and Emery,

1995), and COIN (Bressan et al. 1998). Garlic is capable of integrating different data

sources. TSIMMIS focuses on the integration of semi-structured and unstructured data

sources. HERMES emphasizes integrating knowledge bases and reasoning systems.

COIN is mainly used in querying distributed information sources.

The disadvantage of the hierarchical mediator approach is that each system can

only respond to limited user queries since its mediator-wrapper structure is fixed. If new

information sources need to be integrated into the system, the corresponding wrappers

(and mediators) must be created, and all the related higher-level mediators must be

modified too.

 2.2.3 Ontology-based Semantic Approach

Unlike the hierarchical mediator approach, the ontology-based semantic approach

separates the source descriptions from the source schema. An ontology-based semantic

system is a knowledge representation and reasoning system. It uses a common data model

to describe the information sources, like their contents, constraints, and capabilities.

There are several different architectures, such as the description logic-based architecture,

and ontology agent-based architecture.

In a description logic-based system, the contents and properties of information

sources are represented based on description logic and rules using a powerful description

language. The descriptions and relations of information sources are stored in a knowledge

base. The integration is performed by the query planner. When processing a user query,

11

the planner uses the knowledge base to find sources relevant to the query, reformulates

the query, executes the sub-queries, and re-assembles the results. Some "classic projects"

with a description logic-based architecture are the Information Manifold (Levy et al.

1996), and SIMS (Arens et al. 1996). Information Manifold focuses on integrating web-

based data sources. SIMS can integrate databases and application programs.

Some integration systems use an ontology agent-based architecture. InfoSleuth

(Bayardo et al. 1997), for example, uses multiple ontologies to represent data in the same

information source. Some ontologies describe the knowledge about the relationships of

the data stored by resources. Some ontologies describe agents’ knowledge and their

relationships. The multiple ontologies provide agents with capturing and reasoning about

information content, identifying the relevance of an information source, and specifying

the agent infrastructure. The broker agent accepts the user query, interacts with the task

execution agent, who will decompose queries, route queries to the appropriate resource

agent, and reconstructs the results. The broker agent stores and receives information from

all agents and returns the final result to the user. InfoSleuth focuses on integrating

information available both in corporate networks and in external networks.

Another typical ontology-based system is OBSERVER (Mena and Illarramendi,

2001). In OBSERVER, the contents of each data source are described by one or more

ontologies expressed in a system based on description logics. The system uses

ontological inferences to determine relevant sources and translates description logic

expressions to the local query languages of the relevant data sources. The goal of

OBSERVER is to support integration of various local and remote information sources.

12

The ontology-based semantic approach provides a very good way for semantic

integration while maintaining the autonomy of an individual information source. Because

of the independence between the system framework and the component schema and the

explicit description of their relationships, the system can evolve easily.

13

CHAPTER 3

THE NED-2 EHISM AGENT

 As mentioned, the earlier framework of integrating external sources into NED

was based on a wrapper layer that provides communication between the NED system and

the external heterogeneous model. Like the wrapper in a hierarchical mediator approach,

each wrapper in the NED-2 system was designed for a specific model. The wrapper

cannot be shared by different sources.

The new NED version adopts the EHISM agent as the intelligent integrating

manager. As a multi-source controller, an EHISM agent relates a single information

source or a set of sources that have similar functionalities and invoking procedure. Each

EHISM agent has a meta-knowledge base. Meta-knowledge is knowledge about

knowledge. An EHISM agent will consult the meta-knowledge base to know when and

how to use a knowledge source or a knowledge tool. Thus, all procedural knowledge for

calling external sources is written into the EHISM agent and specific knowledge related

to the individual source is stored in the declarative meta-knowledge base.

In NED-2, Prolog, a high-level logic programming language, provides the

primary implementation platform for agents, knowledge bases, and inference engines.

The user interface is implemented in Microsoft Visual C++. The databases are

implemented in Microsoft Access. To perform its tasks, an agent may need to retrieve

and update the core data on the blackboard. The Prodata LPA Prolog interface is used to

14

implement the database access. The Prodata interface provides a tight coupling between

LPA Prolog for Windows and all Database Management Systems (DBMSs) that support

a sufficient level of Open Database Connectivity (ODBC) compliance to be used with

Microsoft ODBC 2. Prodata allows database tables to be accessed from Prolog as though

they existed within Prolog’s environment as unit ground clauses (facts). All routine

database functions such as creating tables, updating/retrieving records, and/or whatever

may be achieved via normal Structured Query Language (SQL) commands. In NED-2,

instead of using Prodata directly, another method is implemented to access databases also

(Maier 2002). It uses various PROLOG predicates that are built on top of the normal

Prodata routines to allow easier communication with databases. The test results show that

it is much more efficient than Prodata. Currently, the EHISM agent uses Prodata to

access the databases. When an EHISM agent needs to get something from the blackboard

or put something onto the blackboard, it calls a particular predicate designed to retrieve

or update information. If information is already present as facts on the blackboard, it is

easily accessed or changed. However, if information is stored in the core database, a

Prodata SQL query will be constructed to select, update, add, or delete the data values in

the database.

3.1 An Overview for the NED-2 EHISM Agent

 The main functionalities of an EHISM agent are deciding which source will be

called, translating data between the NED format and the format of the external source,

15

and invoking the external sources. Figure 2 shows an abstract view of the NED-2 EHISM

agents and their environment.

 For an EHISM agent, the following steps describe the process of invoking an

external source.

 meta- meta- meta-
 knowledge knowledge knowledge
 base A base B base N

Source
 M

 NED
EHISM
Agent N

Source
 2

Source
 1

Source
 3

 NED
EHISM
Agent B

 NED
EHISM
Agent A

 Blackboard

 Figure 2: The NED-2 EHISM agents and their environment.

Step 1: Lets user pick an external source or recommends to the user which source

is appropriate if the agent manages a set of external sources.

Step 2: Checks whether or not all the conditions that are needed for the external

source to function are satisfied.

16

Step 3: Gets input data from the blackboard, then converts them into the format of

the external source.

Step 4: Calls the external source.

Step 5: Transforms the output of the external source into the NED format, and

then puts them back on the blackboard.

 Since each source is designed to perform a particular task, different sources

require different formats for input files and generate output files in different formats.

They also require different control codes. Information about these requirements is

provided by a meta-knowledge base.

3.2 Meta-knowledge Base

The meta-knowledge base of the EHISM agent stores the declarative knowledge

for each external source. It includes answers to the following questions.

• What kind of environment the source is suitable for?

For example, the simulator FVS northeast variant will give a very good

simulation result for simulating a forest in the northeastern U.S., but it is not

suitable for a forest in Georgia.

• What conditions must be satisfied for the model to function?

For example, besides the tree level data, the FVS simulator needs data at

the stand level, especially the value of stand site species, stand site index, and

stand year of origin.

• What commands or control codes are needed to control execution of a simulation?

17

The source may be called through its interface, by a command, or by a set

of commands.

• What kinds of input and output formats does the external source use, and what is

the relationship between the formats used by the external sources and the native

NED data format?

The data file of the external source or caller could be a flat file, a database,

or an HTML file. For NED-2, the core database on the blackboard will provide

the data for external sources. The input and output formats of the FVS simulator

are flat files. The meta-knowledge will provide the relationship between the NED

and the external source data formats.

• What functions can be used to translate between the NED and the external source

data formats?

For example, the format of the FVS tree record input file is

tree_records_ format ((fvs,_),columns,[
 (cluster,[increment(1),pad(front,4,'0')]),
 (tree_id,[increment(1),pad(front,3,'0')]),
 (stems_per,[places(0),pad(front,6,' ')]),
 (tree_alive,[translate([(0,8),(1,1)])]),
 (species,[species_code(ned2,alpha),pad(back,3,' ')]),
 (dbh,[places(1),pad(front,4,' ')])
]).

So, a set of functions, such as the tool for increasing the value of a

variable (increment /1), the function for attaching leading or trailing place-holder

symbols to a variable (pad /3), the function for translating trees’ species codes

(species_code /2), will be provided by the meta-knowledge base.

18

3.3 The Advantage of the NED-2 EHISM Agents

 The integration architecture of the NED-2 EHISM agents is similar to the

ontology-based semantic approach that separates the source description from the source

schema. The NED-2 EHISM agent stores the source description in its meta-knowledge

base. The most important advantage of the EHISM agent is that it makes the integration

of external heterogeneous sources easier, faster, and more flexible. In the earlier version

of NED, a mediator-wrapper architecture is adopted to integrate external source. We

need to build a wrapper for each source. The wrapper cannot be shared by different

sources even though several sources have similar invoking processes and data

requirements. With the EHISM agent architecture, when a new similar source needs to be

integrated into the NED-2 system, we just focus on adding specific knowledge that

relates the new source into the meta-knowledge base. This method allows the NED

software to have a succinct program structure. Also, it will be more convenient for the

evolution and manipulation of the NED software.

19

CHAPTER 4

THE NED-2 SIMULATION AGENT AND FVS

The simulation agent is one of the EHISM agents in NED-2. It is designed to

manage a set of growth and yield models. FVS is the first simulation model integrated in

NED-2.

4.1 Background on FVS

 FVS is a family of forest growth simulation models. FVS uses common forest

inventory data and a simulation model to project the growth of forest stands under a

variety of conditions. It started in the 1970s and is used in the U.S. forest management

field. There are now more than 20 variants in FVS. Variants of FVS provide growth and

yield models for specific geographic regions of the United States. FVS is written in the

FORTRAN language and runs on PC and UNIX workstations (Teck et al 1996).

 FVS requires two types of input files to run: a tree record file (*.fvs), which is an

inventory of the stand the user wants to model, and a keyword file (*.key), which

provides FVS with commands that control the simulation. The most important FVS

output file for NED is the tree list output file (*.trl), which contains simulation results in

tree level detail.

20

There are two ways to run FVS. One is to run FVS under its native DOS

environment. Users need to create the two input files by themselves first. The other way

is by using SUPPOSE, a graphical user interface for FVS, to create the key file, and then

run FVS. SUPPOSE needs three input files: tree record file (*.fvs), suppose stand list file

(*.slf), and suppose locations file (*.loc). Unlike NED-1 which uses SUPPOSE to run

FVS, in NED-2, we completely by-pass the SUPPOSE interface. The simulation agent

will create FVS input files and run FVS. The data that are included in the input files will

be retrieved from the NED-2 database and treatment plan that are on the blackboard.

4.2 FVS, Simulation Agent and NED-2

The first two FVS variants integrated with NED-2 are the Northeast variant (NE)

and Southern variant (SN). The simulation agent is responsible for managing these

models.

To simulate growth and yield of forest stands, FVS needs stand inventory

information and user management plans. The inventory data are stored in the core

database that is on the blackboard. The NED user develops management plans by using a

drag-and-drop planning screen. Treatments are selected and dropped onto individual

stands. Management plans are stored in the core database. A set of default treatment

parameters and user specified treatment parameters are stored in the treatment parameter

database that is on the blackboard also. The simulation agent will retrieve the information

it requires from the core database and treatment parameter database, create the FVS

keyword input file and FVS tree record input file, run FVS, and then convert the FVS tree

21

list output file into the NED-2 format and insert the results back into the NED-2 database.

Figure 3 shows NED/FVS integration.

 Treatment
 parameters

Management
 plans

 Blackboard

A

simulati

and the

control c

 Simulation Agent

 T
 Tree record file

 Keywords file

 FVS Simulato

 Figure 3: NED/FVS inte

 meta-knowledge base related with FVS w

on agent with the knowledge needed to translate

 FVS format. This meta-knowledge base also

odes the FVS simulator understands.

22
 Meta-
knowledge
 Base
ree list file

r

gration

as developed. It provides the

 data between the NED-2 format

tells the simulation agent what

4.3 Implementation Details

4.3.1 The Simulation Agent

 The simulation agent plays two roles: baseline generation and plan simulation.

Figure 4 shows the procedure for the baseline generation. Figure 5 shows the procedure

for the plan simulation.

 No
 Put the information
 Yes on the blackboard

For all stands:
 Call Calculation Module
 -- Calculate Core Database

For all stands:
 Call simulator input module
 Call simulator
 Call simulator output module

For all stands:
 Call Calculation Module
 -- Create pseudo-plot

Check if all the conditions for
generating baseline year are
satisfied

Let User Pick up a Simulator

 Figure 4: The procedure for baseline generation

23

 No
 Put the information
 Yes on the blackboard

Check if all the conditions for
plan simulation are satisfied

For all plans:
 For all stands:
 Call simulator input module
 Call simulator
 Call simulator output module

Get simulation plan(s) from the blackboard

 Fig

NED-2 needs t

must start in the same

different years, and the

year. To create data f

simulate data for those

When the user selects

simulation agent will p

For all plans:
 For all stands:
 Call Calculation Module
 -- Calculate Core Database
ure 5: The procedure for plan simulation

o create baseline data for all stands because all treatment plans

year for every stand. Users may take inventory for each stand in

 last inventory information for every stand may not be in the same

or the same common baseline year for all stands, NED-2 will

 stands where the baseline inventory information is not available.

 a baseline year and asks NED-2 to generate the baseline, the

rocess the simulation. It will get the baseline year value from the

24

blackboard, pop-up a window to let the user pick a simulator, and determine all the

conditions that must be satisfied for the simulator to function. For example, the baseline

year must be selected, and there should be at least one stand in the core database. Also,

FVS needs stand information such as stand year of origin, site index species, and site

index. If a condition is not satisfied, the simulation agent will post a request on the

blackboard. Once all conditions are satisfied, it will check every stand in the specific

management unit under consideration. If the last inventory year for a stand is the baseline

year, the simulation agent does not need to take any action. However, if the inventory

year is different from the baseline year, it will run a simulator to grow the stand from the

data for the last inventory up to the baseline year.

To simulate a user’s plan, the simulation agent will first retrieve the user's

treatment plan from the blackboard, and then run a simulator. A treatment plan includes

which stands will be simulated, how long the simulation will run, how to implement any

treatments, and when to treat the stand. Currently, several kinds of treatment, such as

light thinning, medium thinning, and clear cut can be simulated by the FVS simulator.

Also, before running FVS for simulating a treatment plan, the agent needs to check

whether or not a plan is selected, and whether or not the baseline is created.

The simulation agent includes three main modules: the NED-2 calculation

module, the simulator input module, and the simulator output module.

The function of the NED-2 calculation module is to run a dynamic linked library

called NEDcalc.dll. In NED-2, trees are identified by the stand, cluster, and plot that they

belong to. According to the tree’s diameter at breast height (DBH), tree data are stored in

the overstory observation table and understory observation table of the core database. But

25

in FVS, trees are identified by the stand and plot. To facilitate the retrieval from the

NED-2 database, the simulation agent runs the NED calculation module before calling

the simulator input module. The NED-2 calculation module then runs several routines

that will create a “pseudo_stand” combining all trees in a cluster into one “pseudo_plot”.

After running the simulator output module, the simulation agent calls the NED-2

calculation module again. This time the NEDcalc.dll shuffles the simulation results into

the overstory observation table and understory observation table, and then computes the

other tree data at both the tree level and stand level.

The simulator input module sets up the simulator input files. For simulator FVS,

the module takes the stand data, plot data, and tree data from the blackboard and creates a

keyword file and a set of FVS tree record files. The simulation meta-knowledge base tells

the simulator input module what format these files have and how to create them.

The simulator output module takes the simulation results as input and inserts

appropriate data back to the blackboard. For simulator FVS, the module selects each line

in the tree list file. It checks if the data record for this tree is duplicated. If it is, the record

is ignored and processing continues with the next tree record. If it is not, the module uses

the simulation meta-knowledge base to convert the record to the NED-2 database format

and puts it into a new “snapshot” in the NED-2 database. A snapshot in the NED-2

database is a set of records representing simulated data for a single stand in a given year

for a selected treatment plan.

To integrate a new simulator, we only need to tell the agent for what situation this

simulator is suitable, how the corresponding input module and output module work, and

26

how to call the simulator. All of this knowledge is stored in the simulation meta-

knowledge file.

4.3.2 The Simulation Meta-knowledge Base

 Currently, the simulation meta-knowledge base includes the meta-knowledge for

the variants SN and NE of FVS.

4.3.2.1 Creating A Tree Record Input File

 Each stand has its own tree record file. Each tree has a record in the tree record

file. Each record contains cluster identification (column 1 - 4), tree identification (column

5 - 7), tree stems per acre (column 8 - 13), tree history code (column 14), tree species

code (column 15 - 17), and tree DBH (column 18 - 21). Each record has a fixed width.

Here is a tree record file.

0001001 10.1SM 2.1

0001002 10.1AB 2.2

0001003 10.1SM 7.3

0001004 10.1SM 2.8

0001005 10.1AB 2.1

0001006 10.1AB 3.1

0001007 10.1SM 7.0

0001008 10.1SM 5.7

0001009 10.1SM 8.3

0001010 10.1OH 5.4

0001011 10.1AB 2.6

0001012 10.1AB 2.6

0001013 10.1SM 7.2

0001014 10.1SM 3.3

0001015 10.1SM 8.9

0001016 10.1SM 7.8

0001017 10.1SM 3.6

27

The meta-knowledge tells the simulation agent to get inventory data from the

overstory observation table and understory observation table in the core database. The

format of each tree record is:

tree_records_ format ((fvs,_),columns,[
 (cluster,[increment(1),pad(front,4,'0')]),
 (tree_id,[increment(1),pad(front,3,'0')]),
 (stems_per,[places(0),pad(front,6,' ')]),
 (tree_alive,[translate([(0,8),(1,1)])]),
 (species,[species_code(ned2,alpha),pad(back,3,' ')]),
 (dbh,[places(1),pad(front,4,' ')])
]).

Here, the cluster identification number and tree identification number are

increased by 1. The tree species code is converted from NED-2 code to corresponding

alpha code. The function pad/3 and the function places/1 are used to get correct data

width and decimal place.

4.3.2.2 Creating A Keyword Input File

The keyword file tells FVS what to do with the data. It consists of a series of FVS

keywords, some of which have parameters and some of which do not. Here is a keyword

file for stand growth.

!!Suppose

!!Top

Comment

Starting year for simulation is 1999

Ending year for simulation is 2002

Min and Max inventory years are 1999 1999

Common cycle length is 3

End

!!End

!!Stand

StdIdent

001 Stand 001 at Bent Creek

!!SK

28

Screen

InvYear 1999

ModType 1

StdInfo M231Aa 84 80 20 1810

Design -1.0 1.0 0.1 5

SiteCode SM 60

!!End

!!TK

TimeInt 3

NumCycle 1

!!End

!!C

!!SW

!!P

!!K

NoTriple

!!End

!!C

!!SW

!!P

!! max

!!K

TreeList 0 3. 1 1 0 0 0

!!End

!!TR

Open 2

0000105.fvs

TreeData 2 1

Close 2

!!End

SPLabel

 All, &

 !StandsInNoDefinedGroup

Process

!!EndStand

STOP

!!G

!!S

!!Subset

!!G

!!End

The format of the keyword file for baseline generation is:

key_file_format((fvs,Variant),baseline,Scenario,Snapshot,Stand,
Ending_year,Starting_year,Cycle_len,Time_int,[

 '!!Suppose',nl,

29

 '!!Top',nl,
 'Comment',nl,
 'Starting year for simulation is ',Starting_year,nl,
 'Ending year for simulation is ',Ending_year,nl,
 'Min and Max inventory years are ',Starting_year,' ',Starting_year,nl,
 'Common cycle length is ',[Cycle_len,[pad(front,10,' ')]],nl,
 'End',nl,
 '!!End',nl,
 '!!Stand',nl,
 'StdIdent',nl,
 [Stand,[increment(1),pad(front,3,'0')]],

' Stand ',[Stand,[increment(1),pad(front,3,'0')]],
' at ',MU_Name,nl,

 '!!SK',nl,
 'Screen',nl,
 'InvYear ',Starting_year,nl,
 'ModType 1',nl,
 'StdInfo ',[LocationCode,[pad(front,10,' ')]],

[Habitat,[pad(front,10,' ')]],
[YearsSinceOriginal,[pad(front,10,' ')]],
[Aspect,[pad(front,10,' ')]],
[Slope,[pad(front,10,' ')]],
[Elevation,[pad(front,10,' ')]],nl,

 'Design ',[Baf,[pad(front,10,' ')]],
[Size,[pad(front,10,' ')]],
[BreakPointDBH,[pad(front,10,' ')]],
[TotalCluster,[pad(front,10,' ')]],nl,

 'SiteCode ',[Spp_ned1,[pad(front,10,' ')]],[Index,[pad(front,10,' ')]],nl,
 '!!End',nl,
 '!!TK',nl,
 'TimeInt ',[Time_int,[pad(front,10,' ')]],nl,
 'NumCycle ',Cycles,nl,
 '!!End',nl,
 '!!C',nl,
 '!!SW',nl,
 '!!P',nl,
 '!!K',nl,
 'NoTriple',nl,
 '!!End',nl,
 '!!C',nl,
 '!!SW',nl,
 '!!P',nl,
 '!! max',nl,
 '!!K',nl,
 'TreeList 0 3. 1 1 0 0 0',nl,

30

 '!!End',nl,
 '!!TR',nl,
 'Open 2',nl,
 [Stand,[increment(1),pad(front,5,'0')]],

[TotalCluster,[pad(front,2,'0')]],'.fvs',nl,
 'TreeData 2 1',nl,
 'Close 2',nl,
 '!!End',nl,
 'SPLabel',nl,
 ' All, &',nl,
 ' !StandsInNoDefinedGroup',nl,
 'Process',nl,
 '!!EndStand',nl,
 '',nl,
 'STOP',nl,
 '!!G',nl,
 '!!S',nl,
 '!!Subset',nl,
 '!!G',nl,
 '!!End',nl]).

Here, the keyword StdInfo has six parameters, including stand location code,

stand habitat type code, stand age, stand aspect, stand slope, and stand elevation. The

keyword Design has four parameters, including a basal area factor, inverse of the small-

tree fixed area plot, breakpoint DBH between large-tree and small-tree sample design,

and number of plots in the stand. The width of each parameter is 10.

If the keyword file is used for plan simulation, except all the keywords for

baseline generation, the corresponding treatment keyword(s), such as THINBBA, will be

added in the keyword file. Here is an example of format information for an FVS

keyword.

[treatments(Scenario,
Stand,
[[keyword,[pad(back,10,' ')]],
[treatment_year,[pad(front,10,' ')]],

 [residual_ba,[pad(front,10,' ')]],
 [efficiency,[pad(front,10,' ')]],

31

 [min_dbh,[pad(front,10,' ')]],
[max_dbh,[pad(front,10,' ')]],

 [min_ht,[pad(front,10,' ')]],
 [max_ht,[pad(front,10,' ')]]])].

Here, the keyword has seven parameters, including treatment year that treatment

is scheduled, residual basal area, treatment efficiency, smallest DBH to be considered for

removal, largest DBH to be considered for removal, shortest tree to be considered for

removal, tallest tree to be considered for removal. The width of keyword and its

parameters is 10.

A user must provide the treatment keyword parameters required by the preferred

simulator for all treatments that would be included in the treatment plans. All the

treatment keywords and their parameters are stored in the treatment parameter database,

which is on the blackboard (Figure 6). If a user’s treatment plan is “for stand 10, do light

thinning in 2010 and clear cut in 2015”, the meta-knowledge will tell the simulation

agent to go to the treatment parameter database to get all the information relating “light

thinning and clear cut”, and then convert them to the format of the treatment keyword:

THINBBA 2010 120 1.0 1 7 0 999

THINDBH 2015 1.0 999.0 1.0 ALL 0 0

4.3.2.3 Converting A Tree List Output File

NED needs to get tree DBH, tree stems per acre, and tree species code from the

results of a simulation. For simulator FVS, this information is in the FVS output tree list

file.

The FVS tree list file includes a header and a set of tree records for each

simulation cycle (Figure 7). In the meta-knowledge base, the tree record is described as:

32

 Figure 6: The treatment parameter database

trl_file_format(normalTree,Plot,Obs,TreeId,Spp_ned2,Dbh,Tree_alive1,Tpa):-
 fread(n,3,0,PlotNumOld),
 fread(a,3,0,TreeNum),
 fread(a,6,0,_),
 fread(a,2,0,Spp_ned1),
 fread(a,9,0,_),
 fread(n,4,0,PlotNum),
 fread(a,3,0,_),
 fread(s,6,0,Tpa_s),
 fread(a,11,0,_),
 fread(s,4,0,Dbh_s),
 fread(s,0,-1,_),
 name(Tpa_s,Tpa_l),
 removeall(32,Tpa_l,Tpa_list),
 name(Tpa,Tpa_list),
 name(Dbh_s,Dbh_l),
 removeall(32,Dbh_l,Dbh_list),
 name(Dbh,Dbh_list),
 Plot is PlotNum - 1,

33

 number_atom(Obs1,TreeNum),
 Obs is Obs1 - 1,
 number_atom(PlotNum,PlotNuma),
 number_atom(Obs1,Obs3),
 cat([PlotNuma, ':',Obs3],TreeId,_),
 (
 Tpa == ' 0',
 Tree_alive = '0'
 ;
 Tpa \== ' 0',
 Tree_alive = '-1'
),
 number_atom(Tree_alive1,Tree_alive),
 vari(Variant),
 ned_alpha_species_code(Variant,Spp_ned2, Spp_ned1).

This clause shows that in tree list file, column 3-5 is the plot number, column 6-8

is the tree number, column 14-15 is species code, column 49-53 is tree DBH, and column

32-38 is tree stems per acre. For each tree, the simulation agent will use this information

to convert the simulation results to a record in the NED-2 database, and then insert it

back to the database.

 Figure 7: A tree list file

34

4.3.2.4 Calling A Simulator

 PROLOG provides a predicate to call an executable file:

 exec(Program, Command, Code).

 To run the FVS simulator, a batch file for calling this simulator is invoked. Meta-

knowledge will tell the simulation agent how to control the batch files.

A set of batch files is built to satisfy a user’s different requests. For example, if a

user wants to run the FVS southern variant simulator and get the copies of all FVS files,

including tree record input files, keyword input files, and tree list output files, the

corresponding batch file is

rem stdFVS run on DOS.
copy data.key %1
echo data.key > data.rsp
echo data.tre >> data.rsp
echo data.out >> data.rsp
echo temp.trl >> data.rsp
echo data.sum >> data.rsp
echo data.chp >> data.rsp
SN1.exe < data.rsp
del data.rsp
copy temp.trl %2

So, the meta-knowledge base will give the format for calling this batch file as:

run_command_format(sn,fvs,Stand,Command,copy_fvs_files):-
number_atom(Stand,Standa),
cat(['fvs_sn_copy.bat stand',Standa,'.key stand',Standa,'.trl'],

Command,_).

If a user just wants to run the FVS southern variant and does not need the input

and output files, the batch file will be

rem stdFVS run on DOS.
echo data.key > data.rsp

35

echo data.tre >> data.rsp
echo data.out >> data.rsp
echo temp.trl >> data.rsp
echo data.sum >> data.rsp
echo data.chp >> data.rsp
SN1.exe < data.rsp
del data.rsp
del *.fvs

Then, the meta-knowledge base will give the format for calling this batch file as:

run_command_format(sn,fvs,Stand,Command,no_copy_fvs_files):-
number_atom(Stand,Standa),
cat(['fvs_sn.bat'],Command,_).

4.4 The Process for Simulating A User’s Plan in NED-2

 As mentioned, to simulate a management plan, a user needs to generate the

baseline year first. Then he will create the plan by using a plan generation screen (Figure

8). Once the plan is saved in the core database, the user can invoke FVS to simulate it.

The user can review the results in another screen (Figure 9).

 Figure 8: A graphic interface for the plan generation

36

 Figure 9: The simulation result

37

CHAPTER 5

SUMMARY AND CONCLUSIONS

 NED-2 is a robust, full-featured Intelligent Information System designed to

provide decision support for forest ecosystem management. NED-2 uses a blackboard

architecture with semi-autonomous intelligent agents to make decisions and respond to

user queries. NED-2 uses external heterogeneous information source management agents

to integrate various resources. An EHISM agent is a multi-source manager. Each EHISM

agent has a meta-knowledge base that stores the declarative knowledge about when and

how to access related information sources. The blackboard architecture with EHISM

agents makes integration of external information sources easier, faster, and more

powerful. Since the declarative knowledge and procedures are separated, the NED system

can evolve easily.

The first simulation model, FVS, has been integrated into NED-2. The structure

of the meta-knowledge will be extended to make the simulation agent more intelligent.

Other simulation models, such as SILVAH, will be integrated into NED-2. Currently, by

consulting the meta-knowledge base, the simulation agent can only simulate user

management plans that involve one treatment keyword. That is not enough. Multiple

treatment keywords can appear in the keyword file for FVS, telling the simulator how to

simulate more complex treatments. NED-2 will be able to respond to high level queries,

like “Show me how Stand 10 will look in 25 years if I remove all hardwoods under six

38

inches in diameter today.” The simulation agent will reformat the original user query and

run an appropriate growth and yield model according to the meta-knowledge base. It will

also need to place appropriate requests on the blackboard so a visualization agent can

then display the results of the simulation. This allows seamless data base, knowledge

base, and model base interaction that is transparent to the user. The point is to increase

the intelligence of the software to reduce the complexity that the user must deal with

directly.

39

REFERENCES

Adali, S., & Emery, R. (1995). A uniform framework for integrating knowledge in

heterogeneous knowledge systems. Proc. of 11th International Conference on

Data Engineering (pp.513-520).

Arens, Y., Knoblock, C.A., & Shen, W.M. (1996). Query reformulation for dynamic

information integration, Journal of Intelligent Information Systems, Special

Issue on Intelligent Information Integration, 6(2/3), 99-130.

Bayardo, R., Bohrer, W., Brice, Cichocki, R., Fowler, A., G., Helal, A., Kashyap, V.,

Ksiezyk, T., Martin, G., Nodine, M., Rashid, M., Rusinkiewicz, M., Shea, R.,

Unnikrishnan, C., Unruh, A., & Woelk, D. (1997). InfoSleuth:Semantic

integration of information in open and dynamic environments. Proceedings

of the ACM SIGMOD International Conference on Management of Data (pp.

195-206).

Bird, S. D. (1993). Toward a taxonomy of multi-agent systems. International Journal

 of Man-Machine Studies, vol. 39, 689-704.

40

Bressan, S., & Goh, C. (1998). Answering queries in context. Proceeding of the

International Conference on Flexible Query Answering Systems, FQAS’98, (68-

98). Roskilde, Denmark.

Bayardo, R., Bohrer, W., Brice, R., Cichocki, A., Fowler, J., Helal, A., Kashyap,

V., Ksiezyk, T., Martin, G., Nodine, M., Rashid, M., Rusinkiewicz, M.,

Shea, R., Unnikrishnan, C., Unruh, A., & Woelk, D. (1997). InfoSleuth:

Agent-based semantic integration of information in open and dynamic

environments. Proceeding of the ACM SIGMOD International Conference

on Management of Data (pp.195-206).

Cheung, W., & Cheng, H. (1996). The model-assisted global query system for multiple

databases in distributed enterprises. ACM Transactions on Information systems,

14(4): 421-470.

Craig, I. D. (1995). Blackboard Systems. Ablex Publishing Corp., Norwood, NJ.

Hass, L. M., Kossman, D., Wimmers, E. L. & Yang, J. (1997). Optimizing queries

across diverse data sources. 23rd Conference on Very Large Databases

Systems (pp. 276-285). Athens, Greece.

Heimbbigner, D., & McLeod, D. (1985). A federated architecture for information

management. ACM Transactions on Office Information Systems, 3(3): 253-278.

41

Levy, A., Rajaraman, A., & Ordille, J. (1996). Querying heterogeneous information

sources using source descriptions. Proceedings of the 22nd VLDB Conference

(pp.251-262). Bombay, India.

Maier, F. W. (2002). Notes on a Blackboard: Recent work on NED-2. M. S. thesis,

 University of Georgia.

Marquis, D. A., & Ernst, R. L. (1992). User’s guide to SILVAH: Stand analysis,

prescription, and management simulator program for hardwood stands of the

 Alleghenies. Gen. Tech. Rep. NE-162. Radnor, PA: U.S. Department of

Agriculture, Forest Service, Northeastern Forest Experiment Station.

Mena, E., & Illarramendi, I. (2001). Ontology-based query processing for global

information systems. Kluwer Academic Publishers, ISBN 0-7923-7375-8

Nute, D., Kim, G., Potter, W. D., Twery, M. J., Rauscher, H. M., Thomasma, Bennett,

S., D., & Kollasch, P. (1999). A multi-criteria decision support system for

forest management. Environmental Decision Support Systems and Artificial

Intelligence, AAAI-99, Technical Report WS-99-07 (pp. 68-73). AAAI Press,

Menlo Park, California.

42

Nute, D., Potter, W.D., Maier, F., Wang, J., Twery, M., Rauscher, H.M., Knopp, P.,

Thomasma, S., Dass, M., & Uchiyama, H. (2002). Intelligent model management

in a forest ecosystem management decision support system. iEMSs 2002.

Lugano, Switzerland. (to appear)

Ozsu, M. T., & Valduriez, P. (1999). Principles of distributed database systems

(2nd ed.). Prentice Hall.

Papakonstatniou, Y., Garcia-Molina, H., & Ullman, J. (1996). MedMaker: A mediation

system based on declarative specifications. IEEE 12th Int. Conference on Data

Engineering (pp. 132-141). New Orleans.

Potter, W. D., Deng, X., Somasekar, S., Liu, S., Rauscher, H. M., & Thomasma, S.

(2000). Forest ecosystem management via the NED Intelligent Information

System. Proceedings of the 13th Int. Conference on Industrial & Engineering

Applications of Artificial Intelligence and Expert Systems, IEA/AIE'2000

(pp. 629-638). New Orleans.

Roth, M. T., & Schwarz, P. (1997). Don't scrap it, wrap it! A wrapper architecture for

legacy sources, Proceeding of the 23th VLDB Conference (pp. 266-275).

Athens, Greece.

43

44

Sheth, A., & Larson, J. (1990). Federated database systems for managing distributed,

heterogeneous and autonomous database. ACM Computing Surveys, 22(3),

183-236.

Teck, R., Moer, M., & Eav, B. (1997). The forest vegetation simulator: a decision-

support tool for integrating resources science. Retrieved on May 20, 2002

from website: http://www.fs.fed.us/ftproot/pub/fmsc/fvsdesc.htm

Teck, R., Moeur, M., & Eav, B. (1996). Forecasting ecosystems with the forest

vegetation simulator. Journal of Forestry, 94(12), 7-10.

Twery, Mark J., Rauscher, H. M., Bennett, D. J., Thomasma, S., Stout, S., Palmer, J.,

Hoffman, R., DeCalesta, D., Gustafson, E., Cleveland, H., Grove, J. M., Nute,

D., Kim, G., & Kollasch, R. P. (2000). NED-1: Integrated analysis for forest

stewardship decisions. Computers and Electronics in Agriculture, 27, 167-193.

Wang, J., Potter, W.D., Nute, D., Maier, F., Rauscher, H.M., Twery, M. J., Thomasma,

S., & Knopp, P. (2002). An Intelligent Information System for forest

management: NED/FVS integration, Proceeding of the 2nd FVS Conference.

Fort Collins. (to appear)

Wiederhold, G. (1996). Foreword: Intelligent integration of information. Intl. Journal

of Intelligent Information Systems, 6(2/3), 93-97

http://www.fs.fed.us/ftproot/pub/fmsc/fvsdesc.htm

	JIN WANG
	thesis_final_body.pdf
	NED-2 is a blackboard system with semi-autonomous intelligent agents. Its blackboard integrates a Microsoft Access database and a set of Prolog clauses. Inventory data and other information are stored in the database. NED-2 includes a user interface, dat
	
	THINBBA 2010 120 1.0 1 7 0 999

