
Determining Syntactic Complexity Using Very Shallow Parsing

by

Matthew J. Voss

(Under the direction of Dr. Michael A. Covington)

Abstract

This thesis describes a rule-based computer program, the Shallow Syntactic Complexity

Analyzer (ShaC), for determining the syntactic complexity of English-language text. Syn-

tactic complexity is determined by comparing strings of text to templates. The templates

were constructed following the modified D-Level scale (Covington et al., 2004), which ranks

syntactic complexity based on the age at which young children first acquire various syntactic

structures. The later a structure is acquired, the higher ranking it gets. ShaC is unique in that

it attempts to give a good estimate of syntactic complexity without doing a deep syntactic

analysis. Such a detailed analysis would be time consuming; ShaC uses heuristics and gen-

eralizations to greatly simplify the task at hand. The result is a quick and efficient method

for estimating syntactic complexity. ShaC score correlates highly with D-Level. Sentences

with a verb taking a finite complement, verbs taking an -ing complement, verbs taking a

non-finite complement, and comparatives drive the correlation.

Index words: Syntax, Syntactic Complexity, Sentence Complexity, Corpus
Linguistics, Shallow Parsing, D-Level, Language acquisition, Language
development

Determining Syntactic Complexity Using Very Shallow Parsing

by

Matthew J. Voss

B.A., The University of Georgia, 2005

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2005

c© 2005

Matthew J. Voss

All Rights Reserved

Determining Syntactic Complexity Using Very Shallow Parsing

by

Matthew J. Voss

Approved:

Major Professor: Dr. Michael A. Covington

Committee: Dr. Paula Schwanenflugel

Dr. Zachary Estes

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

August 2005

Dedication

This thesis is dedicated to my parents, and to all those who helped make it possible.

iv

Acknowledgements

While writing this thesis, I was supported by a research contract with GlaxoSmithKline

Research and Development Ltd., Michael A. Covington, principal invesigator.

I would like to thank Cati Brown and Congzhou He for helping with questions about

hand ranking texts, Joe McFall and Eric Morris for helping to hand rank texts, Dr. Paula

Schwanenflugel for reading a preliminary draft and saving the day at the last minute, Dr.

Zachary Estes for critical statistics help, Salena Sampson for help, support, and valuable

insights throughout, Dr. Donald Nute for getting me interested in Artificial Intelligence and

supporting me throughout, and Dr. Michael Covington for support, time, caring, advice, and

so much over the years.

v

Table of Contents

Page

Acknowledgements . v

List of Tables . viii

List of Figures . ix

Chapter

1 Introduction . 1

1.1 Overview . 1

1.2 Sentence Complexity versus Syntactic Complexity 1

1.3 Why is Syntactic Complexity Worth Measuring? 2

1.4 How Do You Measure Syntactic Complexity? 3

1.5 What Is D-Level? . 4

1.6 Why D-Level? . 4

2 Program . 6

2.1 A Parsing Approach to Complexity Analysis 6

2.2 Other Computational Approaches to Syntactic Analysis . 6

2.3 Shallow Parsing for Complexity Analysis 7

2.4 Why Shallow and not Deep Parsing? 8

2.5 A Note on Sentences . 9

2.6 Modifying the D-Level Scale 10

2.7 Program Overview . 12

2.8 Program Components . 12

vi

vii

2.9 Useful Heuristics . 15

2.10 Templates . 21

2.11 Output . 22

3 Experiment . 24

3.1 Introduction . 24

3.2 Methods . 25

3.3 Model 1 . 27

3.4 Model 2 . 30

3.5 Model 3 . 33

3.6 General Discussion . 37

4 Conclusions . 39

4.1 Evaluation of Performance 39

4.2 Improvements to ShaC . 40

4.3 Applications . 41

4.4 Future Directions . 42

Bibliography . 43

Appendix

A The Revised D-Level Scale . 47

B Verbs Taking a Non-Finite Complement 51

C Overview of Hand-Ranked Texts . 53

D Program . 56

List of Tables

2.1 Prepositional Phrase Rules . 16

3.1 Model 1: Templates Correlating Significantly with D-Level 27

3.2 Model 1: Parameters of the Model . 28

3.3 Model 2: Templates Correlating Significantly with D-Level 31

3.4 Model 2: Parameters of the Model . 32

3.5 Model 3: Templates Correlating Significantly with D-Level 34

3.6 Model 3: Model . 35

3.7 Test Summary . 37

viii

List of Figures

3.1 Correlation of Model 1 with D-Level (model sentences) 29

3.2 Correlation of Model 1 with D-Level (test sentences) 30

3.3 Correlation of Model 2 with D-Level (model sentences) 33

3.4 Correlation of Model 2 with D-Level (test sentences) 34

3.5 Correlation of Model 3 with D-Level (model sentences) 36

3.6 Correlation of Model 3 with D-Level (test sentences) 37

ix

Chapter 1

Introduction

1.1 Overview

Sentence complexity has been used frequently as an indicator of language development and

degradation. To date most complexity analysis has been done by hand. This thesis presents

a rule-based computer program with heuristics, a Shallow Syntactic Complexity Analyzer

(ShaC), for analyzing syntactic complexity of a text. The ShaC score is shown to correlate

with D-Level scale (Rosenberg and Abbeduto, 1987; Cheung and Kemper, 1992; Covington

et al., 2004). Experimental results show sentences with a verb taking a finite complement,

verbs taking an -ing complement, verbs taking an infinitive complement, and comparatives

are the most reliable indicators of complexity.

1.2 Sentence Complexity versus Syntactic Complexity

Because it will play an important role later, I make a distinction between sentence complexity

and syntactic complexity. Sentence complexity is a measure applied only to complete sen-

tences. Syntactic complexity on the other hand can be applied to sentences or larger chunks

of text. It ignores sentence boundaries, and instead finds indicators of complexity wherever

they occur in the text.

ShaC looks at syntactic complexity, not sentence complexity. This is somewhat uncon-

ventional but is motivated by the observation that sentence boundaries are often unclear or

subjective. Biber et al. (2000) point out that different types of text use punctuation differ-

ently. Transcription uses specialized punctuation, and individual transcribers use different

1

2

punctuation. In older texts the author may have conjoined more sentences with semi-colons

than is habitual today. If what defines a sentence boundary varies across texts then it is

difficult to do any analysis that parses (or requires) sentences for analysis.

1.3 Why is Syntactic Complexity Worth Measuring?

Syntactic complexity metrics find many uses in disciplines across the cognitive sciences: to

measure readability, to assess cognitive impairment in schizophrenia (Thomas et al., 1996b)

and Alzheimer’s disease (Snowdon et al., 1996), and to track language development in young

children (Rosenberg and Abbeduto, 1987; Cheung and Kemper, 1992; Covington et al., 2004;

Lee, 1974).

Findings indicate that various measures of syntactic complexity are highly correlated

with working memory as assessed through tests of forward and backward digit span (Barch

and Berenbaum, 1994; Cheung and Kemper, 1992). Most notably, in a review of complexity

metrics Cheung and Kemper (1992) have shown correlations between age, working memory,

and syntactic complexity, suggesting that as one grows older, both working memory and

syntactic complexity decrease. Thus syntactic complexity might suffice as an indirect method

of detecting working memory problems. There is however a large body of evidence suggesting

that working memory is for syntactic processing is largely separate from that for other

processes (Thomas et al., 1996b).

ShaC, and the push towards quick efficient syntactic analysis of text, is motivated by some

findings regarding the use of complexity metrics in predicting mental illness. For example,

simple syntax early in life may be a strong indicator of the potential to develop Alzheimer’s

disease later in life (Snowdon et al., 1996; Kemper et al., 2001). Similar findings by King

et al. (1990) and Morice and Ingram (1983) show a trend in schizophrenia of degrading

syntactic complexity unseen in normal individuals. They suggest that like in Alzheimer’s

disease, delayed acquisition or reduced syntactic complexity early on may be important

indicators for children at risk for schizophrenia. These findings, supported by a large body of

3

other work on syntax and schizophrenia (Thomas et al., 1996b; Barch and Berenbaum, 1997;

Morice, 1985) indicate that by analyzing the syntax of transcripts of speech one can glean

an extraordinary amount of information about a speaker. It is thus imperative to determine

what techniques are best for analyzing syntactic complexity and to develop quick methods

of doing the assessment. A proper automated tool would save researchers extraordinary

amounts of time and money. This thesis is a step in that direction.

1.4 How Do You Measure Syntactic Complexity?

Different metrics are sensitive to different aspects of complexity, from parts of speech (Scar-

borough, 1990) to clausal embedding (Frazier, 1985; Yngve, 1960). One must choose the

right metric for their purposes.

Our purpose here is to do analysis as a means of assessing cognitive impairment. Many

different metrics have been used for this purpose including the following: Yngve Depth and

Maximal Yngve Depth (Yngve, 1960), which measure the depth of left branching, generally

from the subject, in sentences; Brief Syntactic Analysis (Thomas et al., 1996a), which makes

multiple passes over a sentence to count sentence length, pausing, mean length of utterance,

mean clauses per utterance, and mean maximum depth of embedding; Mean Clauses per

Utterance (MCU) (Kemper et al., 1989), which simply counts the number of clauses in each

utterance; and Frazier Count, another measure of clausal embedding1 (Frazier, 1985). One

way to detect the relevant features is to do a full parse of each sentence then extract the

relevant complexity indicators from the parsed text.

This approach has some disadvantages. One problem is that rival linguistic theories will

provide different analyses of given sentences. Another is that humans make mistakes. In

parsing large amounts of text only a trained linguist will provide the accuracy required.

Such a linguist may not always be available, and even linguists make mistakes.

1See Cheung and Kemper (1992) for a good review of these and other metrics.

4

The D-Level scale provides an alternative to these analyses which avoids some of their

pitfalls but introduces some of its own.

1.5 What Is D-Level?

The D-Level scale is a scale for measuring sentence complexity, developed by Rosenberg and

Abbeduto (1987) and revised by Cheung and Kemper (1992) and Covington et al. (2004).

The scale is based on the age at which children acquire certain syntactic structures in their

speech. The later children acquire a certain structure, the higher it appears in the scale. The

revised scale is shown in Appendix A.

1.6 Why D-Level?

Cheung and Kemper (1992) suggest that the D-Level scale is, like most other methods,

difficult to use when rating sentences. A rater must look over each sentence very carefully for

each structure specified by the scale. D-Level is, however, attractive because it has a proven

track record looking at mental impairment. It came about as a reflection of a child’s linguistic

development but has since been used to detect early symptoms of Alzheimer’s disease, as well

as to detect general syntactic simplification in older adults (Snowdon et al., 1996; Kemper

et al., 2001). As Covington et al. (2004) point out, the importance of this result should not

be underestimated, and a review of the metrics used is very much in order. Furthermore,

in a test of a variety of complexity metrics, Cheung and Kemper (1992) found D-Level to

be one of the most reliable metrics tested. They suggest its strength lies in its ability to

distinguish between types of clausal embedding, giving the analyzer a more fine-grained look

at the syntactic makeup of a text or transcript.

Another strength of the D-Level scale reveals itself upon analyzing a few sentences.

Contrary to Cheung and Kemper’s (1992) suggestion, one does not need to go over the

sentence carefully in every case. Some of the structures the D-Level scale identifies seem to

“pop out” of the text. They follow a pattern. We can simply look for these patterns to detect

5

D-Level. In looking for these patterns one can either look for words or phrases as keys to the

level of the sentence. This idea is one that lends itself to a computational implementation,

as shown in the next chapter.

Chapter 2

Program

A computer implementation of a complexity scale presents several advantages. Firstly, it will

be fast. Second, it will be reliable; it will always give the same analysis to the same sentence.

A human rater is prone to error. Third, a computer will not be biased to expect that one

text will be simpler than another. The program is intended to be used to distinguish healthy

from mentally ill subjects. Knowledge that a transcript is from one or the other may bias

ratings. The following motivates and explicates ShaC.

2.1 A Parsing Approach to Complexity Analysis

Before presenting ShaC, some alternatives are considered. In the last chapter, parsing each

sentence and doing the analysis from parsed text was presented as a viable option. However,

a computer implementation of this approach has several problems. The foremost problem is

that parsing is a difficult and unsolved problem. Even highly accurate parsers make mistakes.

This means for quite a bit extra work, the system is still prone to error.

Another problem is that parsing is time consuming and computationally expensive. Then

even once the parser generates a tree, D-Level analyses don’t need the complete tree. They

look only for specific things in each sentence. Ideally, only the necessary structures would be

parsed.

2.2 Other Computational Approaches to Syntactic Analysis

There have been a few larger scale attempts to use computers to extract sentence and

syntactic complexity information from texts. While the specific features of language measured

6

7

by these programs are different than ShaC, some of the techniques they use are similar to

ones used by ShaC. The following provides a review of these programs.

Channell (2003) presents a computer implementation of Developmental sentence scoring

(DSS) (Lee, 1974), called Computerized Profiling (CP). DSS is used to evaluate a child’s use

of standard English. It focuses on grammatical complexity rather than syntactic complexity.

DSS tallies occurrences of words in 8 grammatical categories, and assigns points based on the

complexity of the category. It awards an additional point for sentences that are syntactically

and semantically adult-like. Adult-like sentences consist of those that are complete, with at

least a subject and verb. CP and some related programs, for example CLAN (MacWhitney,

2002), do morphological analysis and part-of-speech tagging to determine the grammatical

categories of all the words in a text. CP uses a multi-stage process that combines the efforts

of several different programs, and requires that input files be transcribed and formatted

in a particular way. It skips sentences that contain unidentifiable words and requires that

a human analyzer follow up the computer analysis to correct errors and catch things the

program missed. The intent of the program is simply to reduce the amount of work that

needs to be done by hand. CP and DSS recognize that a good indication of the complexity

of a speech sample can be determined by looking simply for words of particular grammatical

categories, which are relatively easy to detect. ShaC follows a similar assumption.

2.3 Shallow Parsing for Complexity Analysis

The relevant structures of the D-Level scale can be detected by looking for key phrases and

words with chunk parsing and shallow parsing. Chunk parsing (Abney, 1991) was originally

introduced as a parsing method that corresponded more closely with how humans parse

text. “Chunks” correspond roughly to prosodic units, or pauses, in speech. These units

correspond roughly to noun phrases, verb phrases, adjective phrases, and so on. Shallow

parsing is detection of indicators of phrase structure without necessarily constructing that

full structure. Words often are such indicators.

8

Parsing in this manner means that there is no overall sentence structure, just phrases.

Furthermore, rules for each phrase type are non-recursive. Simple phrases are all the parser

looks for.

2.4 Why Shallow and not Deep Parsing?

As noted above, the D-Level scale considers a wide variety of syntactic structures impor-

tant to the analysis of complexity. Many of the structures that the D-Level scale detects

are patterns that are identifiable by looking only at a small portion of the sentence. Since

the majority of structures it looks for can be detected without doing a full parse, it is

more efficient to do a shallow parse and get an approximation of the complexity of a text.

Those structures that need a deep parse to be detected are fairly rare. Many of the sen-

tence types analyzable with D-Level are not commonly heard in everyday speech. Rosenberg

and Abbeduto (1987) estimated only thirty percent of all the sentences they analyzed were

“complex” sentences (i.e., higher than level 0 on the scale).

This thesis outlines a program, ShaC, that will give a good approximation of the general

linguistic performance of a speaker. ShaC is intended to analyze bodies of text and paint a

general picture of the syntactic complexity of the text. This means that it will not detect

everything the D-Level scale detects. The purpose of ShaC is to automate some syntactic

analysis that can be done quickly with few resources: to glean as much syntactic information

as possible without parsing. It is motivated by the intuition that while human language

has a high potential for variation, speakers tend to use the same words, phrases, and syn-

tactic structures repeatedly. From this assumption, I hypothesize that one can approximate

the analysis done with D-Level scale by looking for patterns of words and phrases in text

transcripts. The question addressed by ShaC will be how much syntactic complexity can

be estimated by a shallow look at the text. D-Level is chosen as a model on which to base

this program because one can analyze many of the structures D-Level does in a simple and

efficient manner. ShaC is not intended to be a stand-alone tool for analysis of speech, but

9

meant to give a look at some of those features that comprise the D-Level scale. It does this

by adopting some simple heuristics which take the form of templates indicating strings of

word categories that are indicators of complexity.

2.5 A Note on Sentences

If ShaC is to disregard sentence boundaries, as discussed in Section 1.2 notions such as “rela-

tive clause in object position” and “relative clause in subject position”, which are important

when looking at clausal embedding for example, become difficult or meaningless to determine.

The following utterance illustrates the problem:

I don’t know the boy that you saw. The boy that I know has red hair.(2.1)

It is a plausible utterance. Here the period easily distinguishes the two sentences. The first

has a relative clause in object position and is ranked a level 3 sentence while the second

has a relative clause in subject position and is ranked a level 6 sentence. One might have

transcribed it differently:

I don’t know the boy that you saw; the boy that I know has red hair.(2.2)

We might then count semi-colons and periods as indicators of sentence breaks, but this limits

the applicability of ShaC. In some transcription punctuation is used to indicate pauses,

breaks, and other utterances. Since we want to establish a broad framework on which one

might build, we ignore sentence boundaries.

The following illustrates another problem with sentence boundaries:

But I have a terrible secret: I only managed to push the right buttons by accident.(2.3)

This is one sentence, two clauses conjoined by a colon. It easily could have been two separate

sentences.

A common division used to solve this problem is the T-unit (Hunt, 1965), defined as

the “shortest grammatically allowable sentences into which writing can be segmented or

10

minimally terminable unit.” Essentially a T-unit is a clause and all of its subordinating

clauses. To detect a clause and its subordinating clauses, one must parse the whole sentence.

As the approach proposed here eschews parsing, T-units are not a useful way to segment a

text.

2.6 Modifying the D-Level Scale

The full D-Level scale as outlined in Appendix A cannot be easily detected by template

matching. A primary issue (discussed in Section 2.5) is how to determine sentence boundaries.

If the task at hand is to look for syntactic complexity, not sentence complexity, the D-Level

scale needs to be changed in several respects.

Level zero sentences are assumed basic. As will be seen later, points are assigned based

on level. These would receive zero points and thus not affect the syntactic complexity score

in any way. Furthermore if sentence boundaries are ignored then it becomes difficult to

distinguish simple sentences from simple phrases. Since level 0 structures, indicating simple

sentences, are ignored, the sentence the cat ate the mouse that the farmer trapped is ranked

level 3 because it only includes a level 3 structure, a relative clause in object position.

Level two sentences include all conjunctions. People tend to use conjunctions to conjoin

various phrases as well as at sentence boundaries as a way of guiding the listener. Since ShaC

ignores sentence boundaries, this distinction between conjunctions used between phrases and

those used at the beginning of sentences is lost, and so level 2 sentences are not included in

the list of templates used by ShaC.

Level three includes the following: relative clause modifying the object of the main verb

(The cat ate the mouse that the farmer trapped), nominalization in object position (I appre-

ciate his changing the lightbulb), and finite clause as the object of the main verb (He said I

am not good enough). Unfortunately levels 3 and 6 are not easily distinguishable by template

matching. Level 6 sentences include: relative clause modifying the subject of the main verb

(The man that the boy saw was wearing a black coat), embedded clause serving as the subject

11

of the main verb (That he came to the party surprised me), and nominalization serving as

the subject of the main verb (His crying is getting annoying). Using shallow parsing and no

sentential boundaries, the distinction between object and subject positions cannot easily be

determined. Take the following sentences:

I know what the girl likes. The boy that she saw said she liked diamonds.(2.4)

The girl likes the boy that she saw.(2.5)

In the first the boy that she saw marks a relative clause in subject position and so would

be ranked a level 6 structure. In the second the boy that she saw marks a relative clause in

object position and so would be ranked a level 3 structure. The limitations of the current

approach become apparent. Since the same pattern in one situation is ranked a level 6 and

in another is ranked a level 3, and since with shallow parsing there is not a good way to

distinguish the two, we must make a sacrifice. Thus all level 6 sentences are ranked as level

3 sentences, since these are easy to detect using the following template:

noun,verb,noun,complementizer

In looking at several sample texts I found no examples of level 6 sentences. This suggests they

are rare enough to be excluded without losing too much of the effectiveness of the analysis.

It should be remembered that even level 6 sentences are getting some ranking: ShaC notes

there is some complexity indicator at these points, but does not rate it as complex as the

original D-Level scale.

Level 4 includes non-finite complements with their own understood (or explicit) subjects.

In particular sentences like I consider John a friend are hard to include in a template.

Templates for sentences such as these were originally included in the analysis but have been

removed because ShaC misanalyzed them in most cases. This should not present a problem,

however, since constructions of that type are rare especially in spoken English.

Level 7 reflected combining two or more of levels 1 through 6 in a single sentence. Since

the analysis is of syntactic complexity, level 7 is no longer needed. Of note, level 7 is in

12

large part the reason for adopting the syntactic analysis approach. As Cheung and Kemper

(1992) point out, the D-Level scale, amongst other metrics, is sensitive to sentence length.

The longer a sentence, the more complex it is. Since English speakers tend to join sentences

with ‘and’, most sentences on a strict D-Level analysis will be ranked level 7. For this reason

coordinating conjunctions are not considered as complexity indicators.

2.7 Program Overview

ShaC is a rule-based pattern matcher. Given a template, it will find all strings in a text

that match the template. It is supplied with templates corresponding to structures in the

D-Level scale. The D-Level scale has several different sentence types that it ranks at each

level. At level 3 for example, there are 9 different sentence types it is looking for. There is

one template for each of these sentence types. Each template specifies the nodes in a Finite

State Automaton. A series of rules specifies the conditions under which ShaC should move

from one node to the next.

The choice to do a rule-based system is motivated by the idea that people use English

in regular ways; strange or deviant speech and writing is rare. Rules will do well in picking

out some regularities, and general trends in language.

ShaC is unique in that it uses a minimal amount of information to do its analysis. It does

not rely on punctuation, it does not do part of speech tagging, and it does not do a deep

syntactic analysis. The only parsing it does is of some chunks. It was designed to handle

large amounts of data in a short amount of time, to be simple and robust.

2.8 Program Components

ShaC was written in Prolog for a number of reasons. First, ShaC is rule-based. Prolog is an

ideal language for dealing with such systems. Secondly, there are a wide variety of natural

language processing tools freely available for Prolog, providing the infrastructure to construct

the system without having to custom build tools.

13

That being said, the tools that were used were not specifically designed for the present

task and needed heavy modification. The following presents the tools used and addresses the

modifications necessary to use them.

2.8.1 WordNet

WordNet (University, 2005) is a massive lexical database with a Prolog interface. It provides

the lexicon and relevant part of speech information for each word to ShaC. This is perhaps

a seemingly odd choice. There are plenty of decent part-of-speech taggers that would give

part-of-speech information. The problem is that most of the tags they give are not useful

for the present task. As will be shown later, the tags needed will have information reflecting

part of speech as well as morphological and semantic properties of words. WordNet provides

a relatively unadorned lexicon that can be manipulated to glean the relevant information.

The database has a few major drawbacks to overcome. First, there are too many entries.

People tend to stick to common uses of common words especially in natural speech. Witzig

(2003) provides a suite of tools for manipulating the WordNet database, including one that

will extract a subset of WordNet based on word frequency. Each entry in the WordNet

database, each sense of each word, includes information about its frequency of occurrence

in a corpus. This tool will extract the x most frequent entries. Using this tool the database

was reduced to approximately 30,000 entries.1

1Reducing the size of the lexicon and removing duplicate entries compacts the lexicon consider-
ably; however, the approach taken to reduce the lexicon is in some sense not selective. In the present
case, the lexicon was simply reduced to a lexicon of 30,000 words. This was done without paying
much attention to the sample from which the frequency statistics were collected. If the corpus that
was analyzed to get these statistics is comprised of texts from specific registers, then the reduced
lexicon will reflect that bias.

A glance through the lexicon shows that in some sense it may be biased. Included in the 30,000
most common words in the corpus analyzed are entries for ‘no’ and ‘no.’ WordNet gives the same
definitions for both of these indicating that the period in the second indicates a notational variant.
Furthermore the example sentence for the most common sense is his no was loud and clear. Other
examples might be The answer is no. In both of these cases the use of ‘no’ presumably refers to
what someone said. The lexical entries do not reflect this fact. I suggest in each of the above ‘no’
was used in its adverbial sense and then referred to in conversation. WordNet attempts to get all
the appropriate senses of all the words in its database. As can be seen here, the entries in WordNet

14

Second, the entries are not stored in the most useful form. ShaC interfaces with other

tools that use word/2 clauses to represent the lexicon, for example:

word(n,bacon).

The entries in the WordNet database are stored as s/6 clauses where the part of speech is

represented as the fourth argument and the lexical entry is represented as the third argument,

for example:

s(_,_,bacon,n,_,_).

For each s/6 clause a corresponding word/2 clause was created to speed lexical retrieval.

Furthermore, each word was reduced to one entry in the working lexicon. All alternative

senses were removed. Only one entry for each word was needed.

Entries in WordNet can have multiple words, atoms connected by the ‘ ’,and capital

letters. For use with ShaC, these atoms are converted to lists of atoms in lower case. So the

following:

s(100048485,1,’French_leave’,n,1,0).

becomes

word(n,[french,leave]).

2.8.2 The Closed-Class Lexicon

WordNet contains none of the closed-class words. A closed-class lexicon in Prolog (De Juan,

2004) was used to supplement the WordNet lexicon. Again the lexicon needed to be altered.

Entries in the closed-class lexicon were as follows:

are not perfect, and are open to debate. Even with a reduced lexicon, one encounters errors such
as these.

15

ccl(’as long as’, conjunction, [subordinating]).

ccl(of, preposition, []).

Each predicate gives the lexical entry, its category, and any subcategory. As with the s/6

entries in WordNet, multiple word entries were represented as single atoms. To facilitate

interaction with ShaC these were converted as follows:

ccl([as, long, as], conjunction, [subordinating]).

ccl([of], preposition, []).

2.8.3 ProNTo Morph

ProNTo Morph (Schlachter, 2003) is a morphological analysis tool for Prolog. I used this

program essentially as is, adding exceptional morphological analyses where needed.

2.8.4 A Simple Chunk Parser

SCP (Brooks, 2003) is a simple chunk parser that follows Abney’s (1991) algorithm. I used

the algorithm essentially as is; however, modified the output to include a list of the words

just parsed. I only parsed prepositional phrases.

2.8.5 ET: The Efficient Tokenizer

I used ET (Covington, 2003) to give a list of all of the words in a text file. ET strips out all

punctuation and numbers. A hypothesis to be tested is that a reasonable approximation of

the D-Level scale can be achieved without looking at all at punctuation.

2.9 Useful Heuristics

People use language in regular ways. One can approximate D-Level by noting these regular-

ities and looking for them in text transcripts. The following sections provide an overview of

the major heuristics used to detect features of the D-Level sentence types.

16

PP → P (P) DP

DP → (Det) (Det) (Adj) (Adj) NP (s)
DP → Pron (Adj) (Adj) NP

Table 2.1: Prepositional Phrase Rules

2.9.1 Adjectives and Adverbs

The D-Level scale does not take adjectives or adverbs into account. This means essentially

that they are “filler.” Furthermore, adjectival and adverbial phrases for the most part consist

entirely of adjectives and adverbs respectively. Instead of parsing adjectival and adverbial

phrases, any adjectives and adverbs can be skipped assuming that the next word is likely

one of the type ShaC is looking for.

2.9.2 Prepositional Phrases

Like adjectives and adverbs, prepositional phrases are largely used as “filler,” providing extra

information that does not change the syntactic complexity of a sentence according to the D-

Level scale. This means that, with a few exceptions, prepositional phrases can be parsed and

skipped. Prepositional phrases are kept simple in the spirit of shallow parsing. The rewrite

rule for prepositional phrases is shown in Table 2.1.2

The rules for prepositional phrases exclude some common types of prepositional phrases.

For example:

We went to the store by taking the train.(2.6)

2Note the use of DPs in these rules, and also that nothing rides on the adoption or abandon-
ment of the DP-hypothesis (Abney, 1987). Adopting this convention is merely for convenience and
does not affect the performance of ShaC. The above rules follow a simple grammar laid out by
Abney (1991).

17

Phrases like by taking are excluded because they typically signify the presence of an adjunct

of the main verb.

2.9.3 Non-finite Complements

Only certain verbs take non-finite complements. Levels 1, 4, and 5 of the D-Level scale look

for non-finite complements. One option is to look for patterns of words following any verb.

A template for level 1 might be:

verb, ving

where ving is a verb with an -ing ending. However this template will produce false positives.

For example it would accept the following:

The boy fell trying to ride his bike.(2.7)

The key is that only certain verbs take a non-finite complement. Looking only for those verbs

greatly increases the accuracy of ShaC. Appendix B includes a list of all the verbs used that

take a non-finite complement. This is by no means a complete list; however, it does seem to

cover the words encountered in sample texts.

2.9.4 Noun Phrases and Verb Phrases

The determiner phrases of Table 2.1 provide a good definition of the noun phrase as a

chunk. Such phrases include determiners, nouns, modifiers, and perhaps the possessive clitic.

Adjectives, as noted above, are skipped. The only other elements that might be in a noun

phrase are determiners, nouns, and the possessive clitic. Any of these elements that ShaC

encounters it can skip.

This saves a lot of work. Take for example a case where the template specifies a plural

noun. One might parse the full noun phrase, then traverse the tree to the noun and check to

see if the noun is plural. If it is not, a lot of time was spent parsing, only to fail.

18

Instead, if a noun is the target and the input string shows something that is a “child of”

a noun phrase, then ShaC can advance to the next word, so long as the next word is also

part of a noun phrase or another nonessential element. Suppose we are looking for a plural

noun in the following:

The very big, bushy cats jumped.(2.8)

‘The’ is a determiner. The word ‘very’ is an adverb and ‘big’, and ‘bushy’ both adjectives,

so they are passed over. The next word is ‘cats’. ShaC checks that it is plural, and succeeds.

No parsing was done. In fact, ShaC saves a lot of work by not parsing.

There is one large disadvantage to this approach, which is tied to the choice to regard

punctuation as unreliable. One of the example sentences for a verb with a non-finite com-

plement with its own understood subject is:

I consider John a friend.(2.9)

A potential template for this type of sentence is:

vnfc, n, n

However, this template will produce numerous false positives, especially where the two noun

phrases would be in different sentences , such as:

John hated the boy. He...(2.10)

This sentence is read into ShaC as a list of lowercase Prolog atoms:

[john,hated,the,boy,he]

This sentence matches the proposed template. Parsing complete noun phrases would allow

a correct analysis. On the other hand, this type of sentence seems to be fairly rare in both

text and speech. Of a large sample of sentences analyzed by ShaC, none actually fit this

template. It was better to leave the template out.

19

The case is less complicated for verb phrases. Verb phrases typically consist of auxiliary

verbs, main verbs, and modifiers. Adverbs are skipped. Verbs are similar. If we are looking

for a verb, and see an auxiliary verb followed by an adverb, another auxiliary, or another

verb, then the current verb is skipped.

2.9.5 Nominalizations

A good number of common nominalized verbs can be detected by looking at the ending of

a given word. If the ending is either -ing or -ion and the stem is a verb, then the word is a

nominalization. There are of course many exceptions to this rule: betrayal, refusal, denial, for

example, all end in -al, and a rule could be created to detect nominalizations of this type.

Other suffixes indicating nominalization include -ment, -ity, -ness (Biber et al., 2000).

More exceptions are words such as notion and action that are not nominalizations. These

represent the limits of the proposed approach. But again these are exceptions to the rule.

As such, even if ShaC counts them, they make up a small portion of nominalizations, which

make up a small portion of words used in everyday texts. They should not affect ShaC’s

output considerably.

2.9.6 Detection of Adjuncts

A limitation of the current approach is that adjuncts are often difficult to distinguish from

complements. Whether a given phrase is an adjunct or a complement is often largely a

function of the verb. For example in

The boy gave the ball to the girl(2.11)

to the girl is a complement of the verb. In

The boy kicked the ball to the girl.(2.12)

20

to the girl is an adjunct. There are however a few indicators of an adjunct that we can use

to increase the reliability of the analysis. ShaC looks for prepositions followed by -ing forms

of verbs, for example.

Level five looks for nominalizations in adjunct not complement position. This particular

structure can be found by looking for prepositions followed by nominalized verbs. This and

other templates used are discussed later.

2.9.7 Verbs in plain, -s, -ed, and -ing form

For certain templates it is useful to make a distinction between verbs with different mor-

phology. Three categories are useful. The first category is verbs in plain form. These match

WordNet entries and so can be looked up directly with a word/2 clause.

The second type of verb is any in in plain, -s, or -ed form. We find these by doing a

morphological analysis. ProNTo morph (Schlachter, 2003) returns three relevant tags. For

verbs in -s and -ed form it returns ‘-s’ and ‘-ed’ tags. For verbs in third person singular form,

which may be irregular, it returns ‘-sg3’. Similarly for -ing verbs, ProNTo morph returns an

‘-ing’ ending. This makes categorization straight forward.

2.9.8 that

The closed-class lexicon was meant to be nearly complete. As such, that is a subordinating

conjunction. Without taking verb argument structure into account, it is often difficult to

determine whether that is functioning as a subordinating clause, and thus should be ranked

as level 5, or if it is introducing a finite or non-finite clause as the object of the main verb.

That is determining if a sentence is a level 3 sentence or if it is a level 5 is difficult. Take the

following sentences for example:

John knew that Mary was angry.(2.13)

John prayed that Mary was alright.(2.14)

21

In Example 2.13, that Mary was angry is the complement of know. In Example 2.14, that

Mary was alright is arguably an independent sentence and that connects it to John prayed.

Since this is the case, that is not considered a subordinating conjunction for D-Level analysis.

2.10 Templates

This section discusses the foundation of the approach to D-Level analysis taken here. Tem-

plates specify a sequence of elements to look for in a string of text. Only major elements

are represented in templates. These include nouns, verbs, complementizers, subordinating

conjunctions, and, in general, the heads of phrases. Appendix A summarizes the templates

for each level in the right-hand column. There are templates for seventeen of the sentence

types ranked by the D-Level scale. Also included in Appendix A is a table indicating what

each of the symbols that make up each template mean. The hypothesis is that analysis based

on these templates will give a reasonable estimation of the D-Level complexity of a text.

Reading the templates should be straight forward. ShaC accepts words from the input

until it finds one matching the first symbol in the template. It then proceeds to look for the

next symbol in the template, skipping those words it can, as discussed above. If ShaC finds

a word that does not match the current symbol in the template, the remainder of the input

stream is returned and the program fails. If ShaC reaches the end of the template, has found

a string that matches the template, then it returns this string of words. An example will

make this clearer.

Suppose the following is the input sentence:

The boy who likes to play slept all day.(2.15)

The task at hand is to compare each of our templates to this sentence. A level 1 template is:

vpsed, to, vpl

ShaC skips the and boy because they are not verbs in plain -s or -ed form. like is a verb

of this type. There are no verbs of this type following it, so ShaC accepts a verb. The next

22

word in the input, to, matches the next template, also to. ShaC accepts to. The next word

in the input play matches the template vpl, and so ShaC accepts play. This completes the

template. ShaC returns a level 1 ranking.

Another template, at level 3, is:

n, comp, vpsed

First ShaC is looking for a noun. The program skips the because it is a determiner and the

next word is a noun. Boy is a noun. No other nouns follow. ShaC accepts boy. The next word

in the input is who. Who is a comp. ShaC accepts who. The next word is likes. Likes is a

vpsed verb so ShaC accepts it and succeed in matching the template.

2.11 Output

ShaC takes a text as input. For each template, it counts each string in the input that matches

the template. This total number of strings matching a template is weighted by D-Level. The

number of strings matching a level 3 template for example is multiplied by 3. All the weighted

string counts are summed and the total is divided by the number of words in a text. The

result is a complexity score for the text.

For example, in Example 2.15 ShaC found a level 1 construction, likes to play, and a level

3 construction boy who likes. There are nine total words in the text so a complexity score is

computed as follows:

(1 + 3)

9
= 0.44

The total complexity score for the text is 0.44. The formula more generally is:

(L1C1 + L2C2 + L3C3 + . . . + LkCk)

Wt

(2.16)

where Lk is the level of the template, Ck is the count of a template, and Wt is the number

of words in the text. Note that this ranking method is one suggested way of getting ShaC

23

scores. Tests in the following chapter will use a different method to compare D-Level to ShaC

score.

Chapter 3

Experiment

3.1 Introduction

This chapter presents an experiment intended to validate the approach to analyzing D-Level

outlined above. The main hypothesis to be tested is that one can approximate a D-Level

analysis by using shallow parsing, no part of speech tagging, impoverished lexical knowledge,

without statistical analysis, and using a rule-based system.

The cards are stacked strongly against this hypothesis. Section 2.9 above outlined many

useful heuristics. Even a cursory glance at these heuristics brings to mind dozens of excep-

tions. Furthermore only twelve of the sentence types covered by the D-Level scale are ranked.

There are no doubt many other sentence types that the D-Level scale can rank which are

not represented by the example sentences.

Some evidence supports the idea that language follows particular trends. Rosenberg and

Abbeduto (1987) point out in their original paper that the D-Level scale is not meant to

correlate with frequency of use. Those structures higher in the scale are not necessarily used

more frequently. The use of a structure probably correlates to its utility in expressing certain

ideas. The authors found that only 30% of the sentences they analyzed were “complex”,

ranked higher than level 0.

The example of nominalization gives some indication of how much ShaC’s performance

will be affected by cutting corners. In a sample of 6.2 million words from the Longman-Lund

Corpus covering texts from academic writing, fiction and speech, 2.5% of the words were

nominalizations (Biber et al., 2000). By far the majority of those, 118,800 in 2.5 million

24

25

words, were from academic writing. From speech samples there were 5650 nominalizations

in 500,000 words. They are not used often. Detecting any at all is an accomplishment.

3.2 Methods

850 sentences from 45 texts including newspapers, magazines, fiction, academic texts, and

blogs were hand ranked according to the D-Level scale in Covington et al. (2004) and ana-

lyzed by ShaC. The computer analysis treated sentences as individual texts to be analyzed

and required that a human analyzer decide where to make sentential boundaries. For all

texts periods were used as markers of sentential boundaries. Three raters1 contributed to

ranking all of the texts. An overview of the scores from ranking the texts by hand is given

in Appendix C.

D-Level is a single number score 0 through 7 for each sentence. ShaC does not pay

attention to sentential boundaries, produces a score for each text, and identifies individual

indicators of complexity. The measure of interest is whether D-Level correlates in any way

with the individual structures that the program finds. This correlation is useful over and

above the correlation between D-Level and the single digit score the program gives because

by looking at the individual complexity indicators, one can answer more questions about

what it is in texts that D-Level is picking out and how well ShaC finds those same things.

Again, one might look at the correlation between D-Level and ShaC score, but this relation

only tells that D-Level scores can be mapped onto ShaC scores, not what is driving that

relationship.

The correlation between D-Level and ShaC’s output was determined as follows. ShaC

looked at individual sentences in each text. The program counted the number of structures

in each sentence corresponding to each of the templates in Appendix A along with sentence

length. For each text, an average count for each template was determined. These averages

comprise 45 data lines used to create and test a model. Correlations between D-Level and the

1Thanks to Eric Morris and Joe McFall for their help in ranking texts

26

seventeen template counts for each text from a portion of the data were assessed. A multiple

linear regression was performed to find an equation that fit the data with D-Level as the

solution to a multi-variate equation and significant templates as values in the equation. To

illustrate, take the following example equation wherein d is D-Level:

d = xt1 + yt2 + zt3(3.1)

If d is the average D-Level of a text and t1, t2 and t3 are average template scores, then the

job of the analysis is to find x, y, and z such that for any D-Level and any template scores,

the resulting equation will hold to some small margin of error. The task was to determine

the coefficients that produced an equation that best fit template values to D-Level.

Three different models were created using the data. In each case the data was divided

in a different way to control for any homogeneity in the data sets. Originally the texts were

ordered by register. The hypothesis is that different registers contain sentences of different

types. Intuitively newspaper articles and fiction will use more verbs taking a finite comple-

ment, for example newspapers often quote directly what people have said:

“We have to take this ruling and try to figure out what it means to (the)(3.2)

program,” said Robert Miller, a state health department spokesman.

In this case said is counted as a verb taking a finite complement. Academic texts will contain

considerably less of this sort of sentence. Thus the presence of this type of verb will not be

a good indicator of complexity in those types of texts. It is to control for this effect that the

different experiments were conducted.

The remaining portion of the data was then analyzed using these same significant factors,

with the intent of answering two questions: which templates correlate significantly with D-

Level and how well do they correlate? The hypothesis is that only certain templates will

indicate D-Level, that in normal speech, we use certain of the structures D-Level looks for

more frequently than others. Those we use most frequently will be a good estimate of the

27

Template p < r

-ing Complements 0.0478 0.3642
Finite Complements 0.0216 0.41793

Table 3.1: Model 1: Templates Correlating Significantly with D-Level

overall D-Level of a text. Thus not only can we estimate D-Level using general templates,

just a few of theses will be enough to give a good estimate.

3.3 Model 1

The data used in this experiment were collected in two groups. Fifteen of the data points

came from a wide variety of sources including children’s fiction, blogs, fiction, newspapers,

and academic texts. Thirty of the data points came from three registers: newspapers, adult

fiction, and academic texts. The data was divided along these lines for purposes of making a

model and testing it. The advantage to dividing the data this way is there is a smaller chance

that the two groups are homogenous, thus if the testing of the model produces a significant

effect, we can be more certain of the generalizability of the result.

3.3.1 Correlations

To create the model, correlations between all the templates and D-Level were computed.

Of all the templates, two correlated significantly with D-Level: -ing complements such as

the word being in the phrase try being, and verbs taking a finite complement, such as the

verb said. Table 3.1 shows the p-values and r-values for each of the templates correlated

significantly with D-Level.

28

Model p < 0.0400 F = 3.63(2, 27) R = 0.212132
Contributing Templates

Template p < Estimate Error
-ing Complement 0.2671 10.14985272 8.95752349
Finite Complement 0.1105 2.01346874 1.22003734
Intercept 0.0001 3.54656394 0.27207505

Table 3.2: Model 1: Parameters of the Model

3.3.2 Model

The templates mentioned above were used as factors in a multiple regression analysis using

D-Level as a solution to an equation and the template values as possible values. Table 3.2

shows the p-value for the model in general as well as the p-values used in the model and the

estimate of the coefficient for each template variable. Equation 3.3 shows the equation found

to fit the data.

ShaC = 10.14985272x + 2.01346874y + 3.54656394(3.3)

The model found fit the data well overall accounting for 21.2% of the variance in D-Level

scores. Neither template alone contributed significantly to the result. In Figure 3.1 the linear

relationship between DLevel and ShaC score is apparent.

3.3.3 Test

Equation 3.3 was tested on 15 new data items. The values for -ing complement and finite

complement were plugged into an equation which used the estimates in Table 3.2 as coef-

ficients and a correlation between the resulting value and D-Level was computed. If the fit

were good, a high correlation would be expected. The correlation was significant, but barely

so. The result is summarized in the first row of Table 3.7, along with the results from the

29

Figure 3.1: Correlation of Model 1 with D-Level (model sentences)

tests to come. The general linear relationship between D-Level and ShaC score is apparent

in Figure 3.2.

3.3.4 Discussion

With a larger dataset one might be more confident of the result. However, the result does

show promise. If it is a good result, the low p value might be attributed to the ordering of

the data: the input to the model and to the test set were qualitatively different enough that

the model was not a good fit for the test set. If this is the case then reordering the data

and running the test again should yield a different result. It should be noted however that a

significant result with the current ordering gives promise that the result is generalizable. As

discussed above, the two data sets were not collected at the same time and contained some

texts from different registers.

30

Figure 3.2: Correlation of Model 1 with D-Level (test sentences)

3.4 Model 2

This model divides the 45 data points into two roughly equal groups: a set to make the

model (n = 22), comprised of the even numbered data points of the 45, and a set to test

it (n = 23), comprised of the odd numbered data points. The intent was to mix the data

together and produce a model and test set that were more homogenous. The expected result

was a stronger model.

3.4.1 Correlations

To create a model correlations between all the templates and D-Level in the model set (n =

22) of data were computed. Of all the templates three correlated significantly with D-Level:

verbs taking an infinitive complement (try to go), verbs taking a finite complement, and

comparatives (than). In addition relative clauses like the boy that the girl liked produced an

almost significant correlation, but were not included in the model. Table 3.3 shows the tem-

31

Template p < r

Infinitive Complement 0.0099 0.53756
Finite Complement 0.0121 0.52487
Comparatives 0.0138 0.51674
Relative Clauses 0.0510 0.42112

Table 3.3: Model 2: Templates Correlating Significantly with D-Level

plates which correlated significantly with D-Level along with their p-values and correlation

coefficients.

3.4.2 Model

The variables presented in Table 3.3 were used as values in a multivariate equation. A

multiple regression analysis was performed using these variables with D-Level as discussed

in Section 3.2. Table 3.4 shows the p-value for the entire model. In addition, it shows the

estimate of the coefficient for each template as well as its p-value. Equation 3.4 shows the

equation found to fit the data.

ShaC = 4.611915015x + 1.80906668y + 4.844536568z + 2.725939942(3.4)

The resulting model fit the data well, accounting for 46.0% of the variation in D-Level

scores. Only infinitive complements contributed significantly to the fit of the model. The

goodness of fit of the model and the tight linear relationship between D-Level and ShaC

score can be seen in Figure 3.3.

3.4.3 Test

The estimates for the coefficients of an equation described in Table 3.4 were used to create

a new equation. Twenty-three new data points were used to solve this equation. The cor-

relations between the solutions found and D-Level were computed. As expected of a good

32

Model p < 0.0099 F = 5.11(3, 18) R = 0.459956
Contributing Templates

Template p < Estimate Error
Infinitive Complement 0.01233 4.611915015 2.85273333
Finite Complement 0.1371 1.80906668 1.16261598
Comparatives 0.2353 4.844536568 3.94537399
Intercept < 0.0001 2.725939942 0.49210236

Table 3.4: Model 2: Parameters of the Model

model, a high positive correlation was found. The result is summarized in the second row of

Table 3.7, along with the other tests.

3.4.4 Discussion

The significance of the test shows a few things. First, as expected, when the data is mixed

to be more homogenous, a better model can be created. This better model may also be

attributed to the smaller model set and larger test set. It is difficult to determine which of

these reasons explains the better result from the present experiment. More testing will shed

more light.

Second, the variables that correlated with D-Level were different with the exception of

verbs taking a finite complement. The other two were new. The difference is due probably

to concentration of templates in each grouping. In Model 1 there were most likely more -ing

complements, while there were more infinitive complements and comparatives in the second

grouping. This presents an argument for increasing the size of the dataset considerably, and

collecting data from more diverse sources. That the variables that correlated with D-Level

were different also suggests that it will be difficult to determine exactly which templates drive

the ranking of sentences. The hope was to find a small set of templates that definitively drove

D-Level rankings. The preceding two experiments suggest a few candidates and point towards

33

Figure 3.3: Correlation of Model 2 with D-Level (model sentences)

a general trend. We might look at verbs taking infinitive complements, -ing complements,

and finite complements to get a very rough estimate of D-Level. The result implies that a

portion of the “complexity” that D-Level keys in on is related directly to the acquisition

of certain words and the ability to use them. It is possible that when infants acquire these

structures they simply know how to use certain words but do not understand a general

pattern, or that the words are the gateway to syntax.

3.5 Model 3

The results of the preceding model were due either to more homogenous data or to the fact

that the model set was smaller and the test set larger. To determine the extent to which

each of these is the case, the data was divided in yet a different way. Thirty-one data points

from all the even numbered data as well as the first nine odd numbered data points in the

45 items comprised the model set. Fourteen data points from the odd numbered items were

used as a test set.

34

Figure 3.4: Correlation of Model 2 with D-Level (test sentences)

Template p < r

Infinitive Complement 0.0124 0.44381
Finite Complement 0.0007 0.57582
Comparatives 0.0106 0.45239

Table 3.5: Model 3: Templates Correlating Significantly with D-Level

3.5.1 Correlations

To create a model of the data, correlations between the templates and D-Level in the 31 data

points in the first group were computed. Of all the templates, three correlated significantly

with D-Level: verbs taking infinitive complements, verbs taking finite complements, and

comparatives. Table 3.5 shows the templates that correlated significantly with D-Level along

p-values and correlation coefficients.

35

Model p < 0.0011 F = 7.16(3, 27) R = 0.443169
Contributing Templates

Template p < Estimate Error
Infinitive Complement 0.2297 2.410039860 1.96101044
Finite Complement 0.0226 2.332029186 0.96402496
Comparatives 0.0815 5.249023585 2.90016873
Intercept < 0.0001 2.918194863 0.36987544

Table 3.6: Model 3: Model

3.5.2 Model

The above variables were used as solutions to a multivariate equation. A multiple regression

analysis was performed using these variables with D-Level to find coefficients to this equation.

Table 3.6 shows the p-value found for the entire model. In addition it shows each template

included in the model along with an estimate as to its coefficient and a p-value reflecting

the strength of that template in the model. Equation 3.5 shows the equation found to fit the

data.

ShaC = 2.410039860x + 2.332029186y + 5.249023585z + 2.918194863(3.5)

The resulting model fit the data well, accounting for 44.3% of the variance. In this

case verbs taking a finite complement contributed significantly to the model. Neither of the

other variables did. The intercept contributed significantly. Figure 3.5 shows a strong linear

relationship between the variables.

3.5.3 Test

The estimates above for the coefficients of an equation that fit the data were put into an

actual equation. Values from a new dataset (n = 14) were used to solve the equation. The

correlation between these solutions and D-Level was computed. The result is shown in Table

36

Figure 3.5: Correlation of Model 3 with D-Level (model sentences)

3.7. The strong positive correlation shows a good fit of the model to D-Level. Figure 3.6

shows a visualization of this trend.

3.5.4 Discussion

This model did not fit the test data as well as the previous model fit its test data. This

suggests again that the data in the model and test sets was not homogenous. We do see an

improvement in this model over the first model suggesting it is more homogenous. But again

that the test portion produced a less significant result than in Model 2 suggests perhaps that

the size of the test set needs to be increased to increase the significance of the result.

Of note is the fact that this model found the same templates to correlate significantly with

D-Level as did Model 2. This suggests that at least in this dataset there are a few templates

that do provide a good indication and that the speculations on picking out certain highly

frequently used words as indicators of complexity may be a good shortcut to estimating

D-Level.

37

Figure 3.6: Correlation of Model 3 with D-Level (test sentences)

Model n p < r

1 15 0.0450 0.52402
2 23 0.0069 0.54734
3 14 0.0381 0.55814

Table 3.7: Test Summary

3.6 General Discussion

The preceding three experiments confirm that the output of ShaC presented here does corre-

late significantly with D-Level, and that the correlation holds regardless of the way the data

is organized. Three different ways of organizing the data produced significant results. Table

3.7 shows that of the three models, model 2 was best. This may be due to two factors. The

data itself may have been more homogenous, since both datasets were mixed, and the larger

38

test set may have provided a more reliable indication of the performance of the model. In

either case, further testing on a larger dataset is in order.

ShaC is a good approximation of D-Level in spite of the fact that it makes errors. ShaC

will still over generate, find strings that in some way match a template but are not an indi-

cator of D-Level as one would rank by hand. Furthermore, there are instances of indicators

of complexity that ShaC will not recognize. It does not analyze D-Level perfectly. However,

those things that it misses may be included in sentences that are ranked level 7 by the D-

Level scale. Thus, if it picks out two of five things contributing to a level 7 ranking, it has

found enough to correlate with D-Level, since two or more indicators in the same sentence

are always ranked as level 7 according to D-Level. Future improvements will only serve to

strengthen its already solid approximation.

The three experiments centered on just a few templates that correlated most highly

with D-Level. These were: -ing complements, infinitive complements, finite complements,

comparatives, and some relative clauses. Only finite complements contributed to all three

models, however infinitive complements and comparatives played a role in models 2 and 3.

This suggests a benefit to testing on a larger dataset to determine exactly which templates

contribute most to D-Level across a wide variety of registers. The problem is that different

indicators of complexity are used in different registers, as noted above. Depending on the cir-

cumstances under which one is speaking, they will produce different indicators of complexity.

This means that only with a large enough dataset to cover most of the different scenarios

under which one might speak will a sense of which templates drive D-Level emerge. This

knowledge would say something more about the way that English is used every day than

anything about D-Level.2

2It should be clear that there is nothing inherent to D-Level that says it is an ideal indicator of
complexity for any specific purpose. The fact that it works or might work to distinguish groups of
speakers just means that it picks up on the right patterns in human speech. Thus the question of
which templates contribute most to D-Level is of a passing interest until a larger scale analysis can
be done.

Chapter 4

Conclusions

I have just scratched the surface of an implementation of the D-Level scale. There are

numerous avenues that might be explored to improve upon ShaC as it stands. The following

is an outline of future work.

4.1 Evaluation of Performance

In order to get a good sense of where improvements can be made, a realistic look at the

performance of ShaC as it stands is in order. Three models showed the output of ShaC to

correlate fairly well with the performance of the D-Level scale. This was in spite of looking at

just a fraction of the sentence types covered by the D-Level. The sample in the experiment

was small, and the results are probably not representative of ShaC’s performance on larger

data sets. In ShaC’s favor, the texts analyzed came from sources which one might expect

would have very high complexity, newspapers and academic texts, for example, and ShaC

was still able to produce results that correlated well with D-Level. This is an indication that

the templates that ShaC uses cover a sufficient amount of the D-Level scale to be able to

rank most utterances with accuracy. While it will not give a full D-Level analysis it will do

a good preliminary job, saving time on doing hand rankings. It will prove useful especially

in conjunction with other methods of determining sentence complexity.

39

40

4.2 Improvements to ShaC

The lexicon is the core of a good D-Level analyzer. A major stumbling block for the present

approach is lack of knowledge about verbs. If the lexicon was enriched to include verb argu-

ment structure, for example, the tendency for ShaC to find false positives would be reduced.

There does not seem to be a good way to do this with the current lexicon. There is however

promising research incorporating verb argument structures into parsers using a more robust

tool set (Shi and Mihalcea, 2005). The approach would apply here as well.

Part of speech tagging may prove useful. As it stands, ShaC will make errors in gleaning

what little part-of-speech information it does use from the words surrounding a target word.

While part of speech taggers give tags that are not entirely useful, simply knowing whether

something is some kind of noun or verb would be extremely useful. From this information,

all of the same specialized categories of words used in the templates could be derived. Incor-

porating a part of speech tagger would mean some part of ShaC’s job would have to be done

in something other than Prolog. Having to use two systems instead of one may be seen as a

disadvantage.

Part of speech tagging still does not broaden ShaC’s coverage. Many of the D-Levels are

left unranked. There may be ways to bridge this gap. Level 3 includes relative clauses mod-

ifying the object of the main verb. The template for these sentences is n,comp,vpsed.

That something is in object position can be verified by broadening the template to

vpsed,n,comp,vpsed. Level 6 includes relative clauses modifying the subject of the main

verb. There is no template for these, but the level 3 template will work: n,comp,vpsed.

This template generates all those structures that D-Level classifies as level 3 and all those

that D-Level classifies as level 6. An estimate of the number of strings in a text matching a

level 6 template can be computed as the difference between the number of strings matching

the template vpsed,n,comp,vpsed and those matching the template n,comp,vpsed. There

were no examples of a sentence with a relative clause modifying the subject in the data sets

tested. This modification would then only improve ShaC’s performance slightly.

41

4.3 Applications

This work was motivated by the potential for syntactic analysis to shed light on the nature of

speech in the mentally ill. In particular syntactic complexity might be an indicator of working

memory span. It is this idea of using syntactic complexity as a key to other information about

a speaker that drives this project. The big open question is not whether ShaC mimics D-Level

– it does to some extent – The question is whether ShaC will be useful in helping determine

the syntactic characteristics of the speech of the mentally ill. It does not particularly matter if

ShaC does or does not mimic D-Level so long as it picks up on useful trends in speech. As such,

an open research question is can ShaC differentiate between normal and mentally ill speakers

of English? If ShaC can distinguish these groups then it is picking up on something useful. If it

cannot, and if the analysis of D-Level scale by Cheung and Kemper (1992) is correct, then we

might deduce that the key to the D-Level analysis is really in the way it distinguishes between

level 3 sentences and level 6 sentences. This distinction would amount to the difference

between left and right branching sentences, and could be measured using other metrics. The

result would invalidate the current approach, but would be very significant. It would imply

that in reality working memory is the driving force behind some types of mental illness and

any complexity metric that looks exclusively at those structures that tax working memory

will be useful in making this distinction. Note however that if the data set summarized in

Appendix B is any indication, level 6 sentences are rare even in written texts.

If it cannot, can it at least help to differentiate? Cheung and Kemper (1992) suggest

D-Level in conjunction with Mean Clauses per Utterance (MCU) provides a good map of

a speaker’s syntactic complexity. MCU indicates depth of clausal embedding while D-Level

indicates type of clausal embedding. Indeed the templates specify the exact form embedding

takes. They suggest MCU is fairly easy to estimate. Simply count the number of subordi-

nating conjunctions. It would be worth while to look at the interactions between MCU and

D-Level in normal and mentally ill subjects.

42

Idea density (Kintsch and Keenan, 1973) is a measure of the number of propositions in

a unit of text. The D-Level scale is in some sense the inverse of idea density.1 Those things

which D-Level rates, idea density ignores and vice versa. Cheung and Kemper (1992) suggest

that a competent conversationalist will use simple syntax and presumably low idea density

in order to be understood. Less competent speakers use more complicated syntax, but have

lower idea density. This relationship has yet to be explored in the mentally ill.

4.4 Future Directions

Possibilities abound for future uses of ShaC. My hope is those outlined above and others will

be explored. The need for good syntactic analysis tools is apparent. Only by being able to

process large amounts of text data quickly and accurately will we be able to do larger scale

experiments in schizophrenia and aphasia. And it is only with large data sets that we can get

a good idea of the nature of the language of these subjects. As computers become faster and

programs more sophisticated, we position ourselves to revolutionize psycholinguistic research

along these lines. This thesis is a small step in that direction.

1I thank Dr. Michael Covington for solidifying this observation

Bibliography

Abney, S. (1987). The English Noun Phrase in its Sentential Aspect. PhD thesis, MIT.

Abney, S. (1991). Parsing by chunks. In Principle-based Parsing. Kluwer Academic Pub-

lishers.

Barch, D. and Berenbaum, H. (1994). The relationship between information processing and

language production. Journal of Abnormal Psychology, 103:241–250.

Barch, D. and Berenbaum, H. (1997). Language generation in schizophrenia and mania: The

relationships among verbosity, syntactic complexity, and pausing. Journal of Psycholin-

guistic Research, 26(4):408–412.

Biber, D., Conrad, S., and Reppen, R. (2000). Corpus Linguistics: Investigating Language

Structure and Use. Cambridge University Press.

Brooks, P. (2003). SCP: A Simple Chunk Parser. University of Georgia.

http://www.ai.uga.edu/mc/pronto.

Channell, R. W. (2003). Automated developmental sentence scoring using computerized

profiling software. American Journal of Speech-Language Pathology, 12:369–375.

Cheung, H. and Kemper, S. (1992). Competing complexity metrics and adults’ production

of complex sentences. Applied Psycholinguistics, 13:53–76.

Covington, M. (2003). ET: The Efficient Tokenizer. University of Georgia.

http://www.ai.uga.edu/mc/pronto.

43

44

Covington, M., He, C., Brown, C., Naci, L., and Brown, J. (2004). How complex is that

sentence? A proposed revision of the Rosenberg and Abbeduto D-Level scale. manuscript.

De Juan, D. (2004). CCL: A closed-class lexicon for the ProNTo toolkit. Obtained through

personal correspondence.

Frazier, L. (1985). Syntactic complexity. In Dowty, D., Karttunen, L., and Zwicky, A., editors,

Natural Language Parsing: Psychological, Computational, and Theoretical Perspectives,

pages 129–189. Cambridge University Press, Cambridge.

Hunt, K. (1965). Grammatical structures written at three grade level. Number 3 in NTCE

Research Report. National Council of Teachers of English, Champaign, Il.

Kemper, S., Greiner, L., Marquis, J., Prenovost, K., and Mitzner, T. (2001). Language decline

across the life span: findings from the nun study. Psychology and Aging, 16(2):227–239.

Kemper, S., Kynette, D., Rash, S., Sprott, R., and O’Brien, K. (1989). Life-span changes to

adults’ language: Effects of memory and genre. Applied Psycholinguistics, 10:49–66.

King, K., Fraser, W., Thomas, P., and Kendell, R. (1990). Re-examination of the language

of psychotic subjects. British Journal of Psychiatry, 149:211–215.

Kintsch, W. and Keenan, J. (1973). Reading rate and retention as a function of the number

of propositions in the base structure of sentences. Cognitive Psychology, 5:257–274.

Lee, L. (1974). Developmental sentence analysis: A grammatical assessment procedure for

speech and language clinicians. Northwestern University Press.

MacWhitney, B. (2002). CLAN Manual. Carnegie Mellon University.

http://childes.psy.cmu.edu/pdf/clan.pdf.

Morice, R. (1985). Comprehension and production of complex syntax in schizophrenia.

Cortex, 24(4):567–580.

45

Morice, R. and Ingram, J. (1983). Language, complexity, and age of onset of schizophrenia.

Psychiatry Research, 9:233–242.

Rosenberg, S. and Abbeduto, L. (1987). Indicators of linguistic competence in the peer group

conversational behavior of mildly retarded adults. Applied Psycholinguistics, 8:19–32.

Scarborough, H. (1990). Index of productive syntax. Applied Psycholinguistics, 11:1–22.

Schlachter, J. (2003). ProNTo Morph: Morphological Analysis Tool. University of Georgia.

http://www.ai.uga.edu/mc/pronto.

Shi, L. and Mihalcea, R. (2005). Putting the pieces together: Combining FrameNet, VerbNet,

and WordNet for robust semantic parsing. In Proceedings of the Sixth International Con-

ference on Intelligent Text Processing and Computational Linguistics, Mexico.

Snowdon, D., Kemper, S., Mortimer, J., Greiner, L., Wekstein, D., and Markesbery, W.

(1996). Linguistic ability in early life and cognitive function and Alzheimer’s disease

in late life: findings from the nun study. Journal of the American Medical Association,

275(7):528–532.

Thomas, P., Kearney, G., Napier, E., Ellis, E., Leudar, I., and Johnson, N. (1996a). The

reliability and characteristics of the brief syntactic analysis. British Journal of Psychiatry,

168:334–337.

Thomas, P., Leudar, I., Napier, E., Kearney, G., Ellis, E., Ring, N., and Tantam, D. (1996b).

Syntactic complexity and negative symptoms in first onset schizophrenia. Cognitive Neu-

ropsychiatry, 1(3):191–200.

University, P. (2005). WordNet 2.1. http://wordnet.princeton.edu/.

Witzig, S. (2003). Accessing WordNet from Prolog. University of Georgia.

http://www.ai.uga.edu/mc/pronto.

46

Yngve, V. (1960). A model and a hypothesis for language structure. Proceedings of the

American Philosophical Society, 104:444–466.

Appendix A

The Revised D-Level Scale

For each level, the template used to detect that level is indicated at far right.

Level Description Example Template

Level 0 Simple sentences including questions The dog barked.

Did the dog bark?

Where are you going?

Sentences with auxiliaries and semi-

auxiliaries

This may have solved it.

He is going to take the bus.

Simple eliptical (incomplete sentences) The dog over there.

He did.

Level 1 Infinitive or -ing complement with

same subject as main clause

Try to bush her hair. vpsed,to,vpl

Try brushing her hair. vnfc,ving

I felt like turning it.

Level 2 Conjoined noun phrases in subject

position

John and Mary left early.

Sentences joined with a coordinating

conjunction

I brought candy and Peter cleaned up.

47

48

Conjoined verbal, adjectival or adver-

bial constructions

He sang and jumped on the way home.

Level 3 Relative (or appositional) clause mod-

ifying object of main verb

The man scolded the boy who stole the

bicycle.

n,comp,vpsed

vpsed,n,comp

I like the girl who the boy likes. n,comp,n,vpsed

Nominalization in object position Why can’t you understand his rejec-

tion of the offer?

pnd,nom

Finite clause as object of main verb John knew that Mary was angry. vnfc,comp,n,v

Remember where it is. vpsed,comp,n,v

compv

Subject extraposition It was surprising for John to have left

Mary.

it,bev,ving,comp2

it,bev,adj,comp2

it,bev,vpsed,comp2

Raising John seems to Mary to be happy.

Level 4 -ing form in complement (object) posi-

tion

He loves visiting his grandfather.

Non-finite compement with its own

understood subject

I expect him to go. vnfc,n,to,vpl

I want it done today. vnfc,nacc,vpl

I consider John a friend.

I want These animals out of my house.

49

Comparative with object of compar-

ison

John is older than Mary. than

John is as old as Mary. as,adj,as

Level 5 Sentences joined by a subordinating

conjunction

They will play today if it does not rain. subconj

Non-finite clauses in adjunct (not com-

plement) positions

Cookie Monster touches Grover after

jumping over the fence.

ping,ving

Having tried both, I prefer the second

one.

Level 6 Relative (or appositional) clause mod-

ifying subject of main verb

The man who cleans the rooms left

early today.

Embedded clause serving as subject of

main verb

For John to have left Mary was sur-

prising.

Nominalization serving as subject of

main verb

John’s refusal of the drink angered

Mary.

Level 7 More than one kind of embedding in a

single sentence

John decided to leave Mary when he

heard that she was seeing Mark.

The following are template symbols and their meanings for use with the above.

50

Symbol Meaning

vpsed verb with a plain, -s, or -ed ending
vpl verb in plain form
vnfc verb that takes a non-finite complement
ving verb with an -ing ending
vppl past participle of a verb
v verb of any kind
bev be verb
conjs any conjunction
nom nominalization
n noun of any kind
pnd pronoun that acts like a determiner
comp complementizer
adj adjective
ping pronoun that can take an -ing
subconj subordinating conjunction
compv verb taking a finite complement

Appendix B

Verbs Taking a Non-Finite Complement

The following is a list of verbs that may take a non-finite complement.

word(vnfc,want).

word(vnfc,desire).

word(vnfc,believe).

word(vnfc,consider).

word(vnfc,insist).

word(vnfc,imagine).

word(vnfc,envisage).

word(vnfc,like).

word(vnfc,hate).

word(vnfc,love).

word(vnfc,dislike).

word(vnfc,have).

word(vnfc,order).

word(vnfc,demand).

word(vnfc,hear).

word(vnfc,see).

word(vnfc,feel).

word(vnfc,stop).

word(vnfc,promise).

word(vnfc,wish).

word(vnfc,keep).

word(vnfc,favor).

word(vnfc,fancy).

word(vnfc,admit).

word(vnfc,concede).

word(vnfc,prefer).

word(vnfc,adore).

word(vnfc,proclaim).

word(vnfc,report).

word(vnfc,observe).

word(vnfc,think).

word(vnfc,suppose).

51

52

word(vnfc,let).

word(vnfc,help).

word(vnfc,make).

word(vnfc,catch).

word(vnfc,mind).

word(vnfc,remember).

word(vnfc,recollect).

word(vnfc,stand).

word(vnfc,tollerate).

word(vnfc,resent).

word(vnfc,notice).

word(vnfc,get).

word(vnfc,keep).

word(vnfc,watch).

Appendix C

Overview of Hand-Ranked Texts

The table below summarizes the distribution of sentences of each D-Level in the analyzed

texts. Total average score reflects the average score of all sentences across all texts. Average

score for each text reflects the average sentence complexity solely for that text.

Level

Text 0 1 2 3 4 5 6 7 Av. Score Total Sentences

newyork 9 0 0 3 1 3 0 17 4.45 33

harpers2 17 3 1 3 3 6 3 4 2.55 40

ctz 0 0 0 3 2 1 0 5 5.18 11

harpers1 7 1 1 3 2 2 0 12 4.07 28

csm 6 0 0 3 3 3 0 6 3.71 21

pan 12 1 0 0 0 1 1 7 2.77 22

gray 14 0 0 3 1 2 2 6 2.75 28

cristo 9 1 0 4 0 2 2 8 3.50 26

meta2 16 5 0 5 0 3 0 13 3.00 42

christie 17 3 0 2 0 0 1 1 0.92 24

bronte 4 0 0 3 0 1 1 16 5.28 25

sawyer 5 1 0 2 0 2 0 7 3.88 17

lesmis 4 1 0 3 0 3 1 8 4.35 20

cp 5 0 0 1 0 0 0 9 4.40 15

meta 6 3 0 1 0 0 0 4 2.43 14

dlevel1 3 0 0 1 0 0 0 4 3.88 8

53

54

dlevel2 1 0 0 3 0 1 0 4 4.67 9

dlevel3 0 0 0 1 0 2 0 3 5.67 6

dlevel4 3 0 0 2 0 0 2 1 3.13 8

dlevel5 2 0 0 3 0 0 0 5 4.40 10

dlevel6 1 1 0 0 0 0 1 2 4.20 5

dlevel7 2 1 0 0 0 1 1 4 4.44 9

dlevel8 2 0 0 2 0 0 0 4 4.25 8

dlevel9 5 0 0 1 0 0 1 0 1.29 7

dlevel10 0 0 0 0 0 1 0 2 6.33 3

nd 2 0 0 1 0 0 0 13 5.88 16

reuters 4 0 1 1 0 2 0 9 4.59 17

sfc 2 0 1 1 1 1 0 21 5.96 27

voa 4 0 1 6 0 3 0 4 3.50 18

abcnews 2 0 0 3 0 0 0 4 4.11 9

addison 5 0 0 2 0 2 0 6 3.87 15

dlevelex 7 3 0 6 7 3 3 1 2.97 30

ajc 0 0 0 3 0 0 0 7 5.80 10

alger2 10 2 0 5 2 3 0 8 3.20 30

charniak 2 0 0 2 0 4 1 7 5.06 16

dahl 14 0 0 2 0 2 0 6 2.42 24

kids 2 0 0 4 1 4 0 3 4.07 14

nytimes 0 1 0 1 0 2 0 7 5.73 11

schizdoc 5 2 0 3 1 3 0 7 3.76 21

dana 8 0 0 0 1 2 0 1 1.75 12

electricity 17 0 0 0 0 11 1 1 2.27 30

cnn 3 1 0 3 0 1 0 12 4.95 20

dearabby 8 0 4 1 3 0 0 9 3.44 25

55

kid3yr 27 2 0 0 0 0 0 0 0.07 29

rtest 14 0 3 4 0 4 1 11 3.27 37

Totals 286 32 12 100 28 81 22 289 3.56 850

Appendix D

Program

:- multifile word/2.

:- ensure_loaded(’scp2.pl’).

:- ensure_loaded(’pronto_morph_engine.pl’).

:- ensure_loaded(’cclalt.pl’).

:- ensure_loaded(’lexicon2.gmr’).

:- ensure_loaded(’rules.gmr’).

:- ensure_loaded(’et.pl’).

%%

%

% Predicates that call the FSA

%%%

% rank a single sentence from all appropriate templates

rank_a_sentence(String,Templates) :-

get_patterns(Templates,Patterns),

get_children,

rank_lists(Patterns,[String]).

rank_sentence_file(File,Templates,OutFile) :-

tell(OutFile),

rank_sentences(File,Templates),

told.

% rank all the sentences in a set of

% files and output the results to a file.

rank_sentences_files(TempFile,Templates,OutFile) :-

ensure_loaded(TempFile),

get_patterns(Templates,Patterns),

get_children,

tell(OutFile),

rank_sentences_files_aux(Patterns,1),

told.

rank_sentences_files_aux(Patterns,Num) :-

file_loc(Num,FileName),

open(FileName,read,Stream),

get_lists(Stream,Lists),

close(Stream),

write(’file: ’),write(FileName),nl,

rank_lists(Patterns,Lists),

Num2 is Num+1,

rank_sentences_files_aux(Patterns,Num2).

rank_sentences_files_aux(_,_).

% rank each line of a single file separately.

56

57

% returns all of the rankings it found at each level

rank_sentences(FileName,Templates) :-

get_patterns(Templates,Patterns),

get_children,

open(FileName,read,Stream),

get_lists(Stream,Lists),

close(Stream),

rank_lists(Patterns,Lists).

get_lists(Stream,[]) :-

peek_code(Stream,X),

X == -1.

get_lists(Stream,[Words|Lists]) :-

tokenize_line(Stream,Line),

tokens_words(Line,Words),

get_lists(Stream,Lists).

rank_lists(_,[]) :- nl,nl,nl,nl,nl.

% Input is a list of Patterns and a List of items to be ranked.

% Ouput is a printed list of the ranks of the items

rank_lists(Patterns,[H|Tail]) :-

write(’sentence: ’),write(H),nl,

rank_text_aux_alt(Patterns,H,0,TotalScore,ScoreList),

write(’line total score: ’),write(TotalScore),nl,

print_scores(ScoreList),

rank_lists(Patterns,Tail).

print_scores([]).

print_scores([(Level,Score)|Tail]) :-

write(’score level: ’),write(Level),write(’ score: ’),write(Score),nl,

print_scores(Tail).

rank_files_to_sas(TempFile,TemplateFile,OutFile) :-

get_patterns(TemplateFile,Patterns),

ensure_loaded(TempFile),

tell(OutFile),

rank_files_to_sas_aux(1,Patterns).

told.

rank_files_to_sas_aux(Num,Patterns) :-

file_loc(Num,1,FileName),

write(FileName),nl,

rank_text_sas(FileName,Patterns,0,_),

Num2 is Num + 1,

rank_files_to_sas_aux(Num2,Patterns).

rank_files_to_sas_aux(Num,Patterns) :-

file_loc(Num,0,_),

Num2 is Num + 1,

rank_files_to_sas_aux(Num2,Patterns).

rank_files_to_sas_aux(Num,Patterns) :-

Num < 50,

Num2 is Num + 1,

rank_files_to_sas_aux(Num2,Patterns).

rank_files_to_sas_aux(_,_).

rank_files_to_file(TempFile,TemplateFile,OutFile) :-

tell(OutFile),

get_patterns(TemplateFile,Patterns),

ensure_loaded(TempFile),

rank_files_to_file_aux(1,Patterns),

told.

58

rank_files_to_file_aux(Num,Patterns) :-

file_loc(Num,1,FileName),

write(’file: ’),write(FileName),nl,

rank_text_alt(FileName,Patterns,0,Score),

write(’total score: ’),write(Score),nl,

Num2 is Num + 1,

rank_files_to_file_aux(Num2,Patterns).

rank_files_to_file_aux(Num,Patterns) :-

file_loc(Num,0,_),

Num2 is Num + 1,

rank_files_to_file_aux(Num2,Patterns).

rank_files_to_file_aux(Num,Patterns) :-

Num < 50,

Num2 is Num + 1,

rank_files_to_file_aux(Num2,Patterns).

rank_files_to_file_aux(_,_).

rank_from_templates_score_list(FileNum,TempFile,TemplateFile,Score) :-

get_patterns(TemplateFile,Patterns),

get_file_location(FileNum,TempFile,FileName),

rank_text_alt(FileName,Patterns,0,Score).

% like rank_from_templates but accesses the files in a different way.

% uses a file template.

rank_from_templates(FileNum,TempFile,TemplateFile,Score) :-

get_patterns(TemplateFile,Patterns),

get_file_location(FileNum,TempFile,FileName),

rank_text(FileName,Patterns,0,Score).

% consult a template file for the patterns used to rank the text

rank_from_templates(FileName,TemplateFile,Score) :-

get_patterns(TemplateFile,Patterns),

rank_text(FileName,Patterns,0,Score).

% checks to see if a list of atoms matches the given template.

rank_atoms(List,Template,Score) :-

get_children,

run_fsa(Template,List,0,Score).

% get_patterns from a file of template/2 clauses

get_patterns(FileName,PatternList) :-

ensure_loaded(FileName),

findall((X,Y),template(X,Y),PatternList).

get_file_location(Num,FileName,FileLocation) :-

ensure_loaded(FileName),

file_loc(Num,1,FileLocation).

rank_single_level(FileNum,FilesFile,Template,Score) :-

get_file_location(FileNum,FilesFile,FileName),

rank_text(FileName,[(1,Template)],0,Score).

% finds all occurrences of a given template in the given file

rank_single_level(FileName,Template,Score) :-

tokenize_file(FileName,TokenList),

tokens_words(TokenList,WordList),

get_children,

run_fsa(Template,WordList,0,Score).

59

% determines syntactic comlexity of a text by running through a

% file and finding all occurrences of all the provided templates and

% returns a score

rank_text(FileName,[(Level,TemplateHead)|Tail],Score,TotalScore) :-

tokenize_file(FileName,TokenList),

tokens_words(TokenList,WordList),

get_children,

rank_text_aux([(Level,TemplateHead)|Tail],WordList,Score,TScore),

length(WordList,Length),

TotalScore is TScore/Length.

% score is the raw score over the number of words in the text.

rank_text_aux([],_,Score,Score) :- !.

rank_text_aux([(Level,TemplateHead)|Tail],WordList,Score,TotalScore) :-

write(’level: ’),write(Level),nl,write(’template: ’),write(TemplateHead),nl,

run_fsa(TemplateHead,WordList,0,S),

NewScore is Score+(S*Level),

rank_text_aux(Tail,WordList,NewScore,TotalScore).

% ranks a text and outputs results in SAS readable format

rank_text_sas(FileName,[(Level,TemplateHead)|Tail],Score,TotalScore) :-

tokenize_file(FileName,TokenList),

tokens_words(TokenList,WordList),

get_children,

rank_text_sas_aux_alt([(Level,TemplateHead)|Tail],WordList,Score,TScore,ScoreList),

length(WordList,Length),

TotalScore is TScore/Length,

print_score_list_sas(Length,ScoreList),

write(TotalScore),nl.

% score is the raw score over the number of words in the text.

rank_text_sas_aux_alt([],_,Score,Score,[]) :- !.

rank_text_sas_aux_alt([(Level,TemplateHead)|Tail],WordList,Score,TScore,[(L2,S)|Rest]) :-

run_fsa_alt(TemplateHead,WordList,0,S),

NewScore is Score + (S*Level),

L2= Level,

rank_text_sas_aux_alt(Tail,WordList,NewScore,TScore,Rest).

print_score_list_sas(_,[]).

print_score_list_sas(Length,[(Level,Score)|Tail]) :-

S is (Level*Score)/Length,

write(S),write(’ ’),

print_score_list_sas(Length,Tail).

% gets a list of the scores of each level and prints it out.

% scores for each level are calculated the same as scores for the whole text.

rank_text_alt(FileName,[(Level,TemplateHead)|Tail],Score,TotalScore) :-

tokenize_file(FileName,TokenList),

tokens_words(TokenList,WordList),

get_children,

rank_text_aux([(Level,TemplateHead)|Tail],WordList,Score,TScore,ScoreList),

length(WordList,Length),

TotalScore is TScore/Length,

print_score_list(Length,ScoreList).

print_score_list(_,[]).

print_score_list(Length,[(Level,Score)|Tail]) :-

S is (Level*Score)/Length,

write(’score level ’),write(Level),write(’: ’),write(S),nl,

60

print_score_list(Length,Tail).

rank_text_aux_alt([],_,Score,Score,[]) :- !.

rank_text_aux_alt([(Level,TemplateHead)|Tail],WordList,Score,TotalScore,[(Level,S)|Rest]) :-

run_fsa(TemplateHead,WordList,0,S),

% write(’run fsa score: ’),write(S),nl,

S \== 0,!,

write(’level: ’),write(Level),nl,write(’template: ’),write(TemplateHead),nl,

NewScore is Score+(S*Level),

rank_text_aux_alt(Tail,WordList,NewScore,TotalScore,Rest).

rank_text_aux_alt([_|Tail],WordList,Score,TotalScore,Rest) :-

!,

rank_text_aux_alt(Tail,WordList,Score,TotalScore,Rest).

% an alternate version of rank text aux that returns a list of scores at each level

rank_text_aux([],_,Score,Score,[]) :- !.

rank_text_aux([(Level,TemplateHead)|Tail],WordList,Score,TotalScore,[(Level,S)|Rest]) :-

write(’level: ’),write(Level),nl,write(’template: ’),write(TemplateHead),nl,

run_fsa(TemplateHead,WordList,0,S),

NewScore is Score+(S*Level),

rank_text_aux(Tail,WordList,NewScore,TotalScore,Rest).

%%

% rank all the sentences from a series of files and print the results in a sas-ready format

%%%

rank_sentences_sas(FileName,Templates,OutFile) :-

get_patterns(Templates,Patterns),

get_children,

ensure_loaded(FileName),

tell(OutFile),

rank_sentences_sas_aux(1,Patterns),

told.

/*

rssa(Num,FileName,Templates) :-

get_patterns(Templates,Patterns),

get_children,

ensure_loaded(FileName),

file_loc(Num,File),

open(File,read,Stream),

get_lists(Stream,Lists),

close(Stream),!,

write(’* ’),write(FileName),nl,

rank_lists_sas(Patterns,Lists).

*/

rank_sentences_sas_aux(Count,Patterns) :-

file_loc(Count,1,FileName),

open(FileName,read,Stream),

get_lists(Stream,Lists),

close(Stream),

write(’* ’),write(FileName),nl,

rank_lists_sas(Patterns,Lists),!,

C2 is Count + 1,

rank_sentences_sas_aux(C2,Patterns).

rank_sentences_sas_aux(Count,Patterns) :-

file_loc(Count,0,_),

61

C2 is Count + 1,

rank_sentences_sas_aux(C2,Patterns).

rank_sentences_sas_aux(Count,Patterns) :-

Count < 30,

C2 is Count + 1,

write(’not to be ranked’),nl,

rank_sentences_sas_aux(C2,Patterns).

rank_sentences_sas_aux(_,_) :- !.

rank_lists_sas(_,[]) :- !.

% Input is a list of Patterns and a List of items to be ranked.

% Ouput is a printed list of the ranks of the items

rank_lists_sas(Patterns,[H|Tail]) :-

length(H,Len),

Len > 0,

% write(H),nl,

write(Len),write(’ ’),!,

rank_text_sas_aux(Patterns,H,ScoreList),

print_scores_sas(ScoreList,Len),nl,

rank_lists_sas(Patterns,Tail).

rank_lists_sas(Patterns,[H|Tail]) :-

H == 0,!,

rank_lists_sas(Patterns,Tail).

rank_lists_sas(_,_) :-

nl,write(’failed to rank text or print scores’),nl.

% print the scores of each structure found in a sentence

print_scores_sas([],_) :- !.

print_scores_sas([(_,Count)|T],Len) :-

Score is Count,

write(Score),write(’ ’),

print_scores_sas(T,Len).

/*

print_scores_sas([(_,Count)|T]) :-

Count == 0,

write(0),write(’ ’),

print_scores_sas(T).

*/

pss_alt(_,0).

pss_alt(Level,Count) :-

write(Level),write(’ ’),

C2 is Count - 1,

pss_alt(Level,C2).

% collect a list of levels and how many of each there are

rank_text_sas_aux([],_,[]) :- !.

rank_text_sas_aux([(Level,TemplateHead)|Tail],WordList,[(Level,S)|Rest]) :-

run_fsa_alt(TemplateHead,WordList,0,S),

rank_text_sas_aux(Tail,WordList,Rest).

run_fsa_alt(_,[],Score,Score) :- !.

% runs through the FSA. returns score for one level

62

run_fsa_alt(Pattern,String,Score,TotalScore) :-

fsa(Pattern,String,Rest,S,_),!,

NewScore is Score + S,

run_fsa_alt(Pattern,Rest,NewScore,TotalScore).

% resets and runs the fsa every time a part of

% the string matching the given pattern is found.

run_fsa(_,[],Score,Score) :- !.

run_fsa(Pattern,String,Score,TotalScore) :-

fsa(Pattern,String,Rest,S,Phrase),!,

NewScore is Score + S,

((S == 1,

write(’phrase: ’),write(Phrase),write(’ ’),

write(’count: ’),write(NewScore),nl)

;

true),

run_fsa(Pattern,Rest,NewScore,TotalScore).

% run_fsa(_,_,Score,Score).

%%%

%

% the fsa

%%%

% this is a redo of the FSA portion of my thesis.

% It makes several improvements:

% - it only chunk parses prepositional, adverbial, and adjectival phrases

% - it skips over those phrases

% - it checks for patterns of words instead of phrases

% - some words must immediately be followed by others.

% some words can have phrases between them.

:- dynamic child_of/2.

% fsa(+Points,+Pattern,+String,-Rest,+Phrase,-CompletePhrase)

% accepts a pattern and a string of text. Succeeds if the

% Pattern is found in the String. Returns the

% Rest of the String. Returns a 1

% to indicate a successful find or a 0 to

% indicate an unsuccessful find.

% fsa returns the string it found upon

% completing an analysis (CompletePhrase)

% no more Pattern. Return what’s left of the String.

fsa([],String,String,1,[]) :- !.

%%

% beginning of the string rules

%%%

/*

% the current word in the input stream is an adjective.

% Parse a chunk and move past it.

fsa([-|T],[Adj|Tail],Rest,Score,[[Adj2]|Phrase]) :-

(word(adj,Adj)

;

63

(word(Cat,Adj),

child_of(Cat,adjp))),!,

Adj2= Adj,

fsa(T,Tail,Rest,Score,Phrase).

% the current word in the input stream is an adverb.

% Parse a chunk and move past it.

fsa([-|T],[Adv|Tail],Rest,Score,[[Adv2]|Phrase]) :-

(word(adv,Adv)

;

(word(Cat,Adv),

child_of(Cat,advp))),!,

Adv2= Adv,

fsa(T,Tail,Rest,Score,Phrase).

*/

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% find particular word

%%%%%%%%%%%%%%%%%%%%%%%%%%%

fsa([Word|T],[Word|Tail],Rest,Score,[W|Phrase]) :-

W= Word,!,

fsa(T,Tail,Rest,Score,Phrase).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% beginning of phrase special cases

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fsa([-,Word|T],[Word|Tail],Rest,Score,[W|Phrase]) :-

W= Word,!,

fsa(T,Tail,Rest,Score,Phrase).

/*

fsa([-,Word|_],[W|Tail],Tail,0,[]) :-

word(_,Word),

Word \== W.

*/

% beginning of phrase skip a prepositional phrase.

% Since its at the beginning don’t add it in.

fsa([-|T],[pp(_)|Tail],Rest,Score,Phrase) :-

!,

fsa([-|T],Tail,Rest,Score,Phrase).

fsa([-,subconj|_],[for,a,while|Tail],Tail,0,[]).

fsa([-,subconj|_],[for,example|Tail],Tail,0,[]).

fsa([-,subconj|_],[for,sure|Tail],Tail,0,[]).

fsa([-,subconj|_],[for,certain|Tail],Tail,0,[]).

fsa([-,subconj|_],[for,the,time,being|Tail],Tail,0,[]).

fsa([-,subconj|_],[as,normal|Tail],Tail,0,[]).

fsa([-,subconj|_],[as,usual|Tail],Tail,0,[]).

fsa([-,subconj|_],[as,per,usual|Tail],Tail,0,[]).

% there are execptions to this

fsa([-,subconj_],[and,so,on|Tail],Tail,0,[]).

% there are many exceptions to this pattern

64

fsa([-,subconj|_],[like,that|Tail],Tail,0,[]).

fsa([-,subconj|_],[Adj1,Adj2|Tail],Tail,0,[]) :-

word(adj,[Adj1,Adj2]).

fsa([-,subconj|_],[Word,that|Tail],Tail,0,[]) :-

member(Word,[such,like]).

fsa([-,subjconj|_],[that,is|Tail],Tail,0,[]).

fsa([-,subconj|_],[as,Adj,as|Tail],Tail,0,[]) :-

word(adj,Adj).

% tries to handle ’in case of outbreaks’ and similar sentences

% misses ’in case of all

fsa([-,subconj|_],[W1,W2,P|Tail],Tail,0,[]) :-

word(subconj,[W1,W2]),

word(p,P).

/*

% quick and dirty fix mostly for the verb ’have’

fsa([-,vnfc|_],[V1,V2|Tail],Tail,0,[]) :-

word(vnfc,V1),

word(adj,V2),

word(vppl,V2).

*/

% quick and dirty fix mostly for the verb ’have’

fsa([-,vnfc|_],[V1,V2|Tail],Tail,0,[]) :-

word(vnfc,V1),

word(adj,V2),

word(vpsed,V2).

% fsa wants vpsed. the current word

% is a noun. the next word is a candidate,

% but has a noun form. assume the second word is a noun.

fsa([-,vnfc|_],[N1,N2|Tail],Tail,0,[]) :-

word(n,N1),

\+ word(npl,N1),

word(vnfc,N2),

word(n,N2).

% fsa wants a vpsed. the current word is a

% candidate. the next word is

% an auxiliary verb. assume the current

% word isn’t a verb.

fsa([-,vnfc|_],[V1,V2|T],[V2|T],0,[]) :-

word(vnfc,V1),

word(vaux,V2),

word(X,V1),

child_of(X,dp).

% beginning of phrase

% fsa wants a vpsed. the word before a candidate verb is a determiner.

% assume candidate is not a verb. quit.

% trouble sentence: "this used to be..." "that seems to be..." "

fsa([-,vnfc|_],[V0,V1|T],T,0,[]) :-

word(d,V0),

\+ word(pronoun,V0),

word(vnfc,V1),

\+ word(adj,V1),!.

65

% fsa wants a vpsed. the word before a candidate verb is a determiner.

% assume candidate is not a verb. quit.

fsa([-,vnfc|_],[V0,V1|T],T,0,[]) :-

word(adj,V0),

\+ word(adv,V0),

word(vnfc,V1),

\+ word(adj,V1),!.

% if you have a preposition followed by a verb in -ing form,

% don’t parse the preposition, instead accept the verb

fsa([-,vnfc|T],[P,V|Tail],Rest,Score,[V2|Phrase]) :-

word(p,P),

word(vnfc,V),

word(ving,V),!,

V2= V,

fsa(T,Tail,Rest,Score,Phrase).

% if you are looking for a verb and see an "s" with

% two nouns around it it’s not a verb, its a possessive

% skip onto the next parts

fsa([-,vpsed|T],[W1,s,W2|Tail],Rest,Score,Phrase) :-

word(n,W1),

word(n,W2),

fsa([-,vpsed|T],Tail,Rest,Score,Phrase).

% fsa wants vpsed. the current word is a noun.

% the next word is a candidate, but has a noun form.

% assume the second word is a noun.

fsa([-,vpsed|_],[N1,N2,N3|Tail],Tail,0,[]) :-

word(n,N1),

word(vpsed,N2),

word(n,N2),

N3 \== to.

% fsa wants a vpsed. the current word is a candidate.

% the next word is an auxiliary verb.

% assume the current word isn’t a verb.

fsa([-,vpsed|_],[V1,V2|T],[V2|T],0,[]) :-

word(vpsed,V1),

word(vaux,V2),

word(X,V1),

child_of(X,dp).

% beginning of phrase

% fsa wants a vpsed. the word befor a candidate verb is a determiner.

% assume candidate is not a verb. quit.

% trouble sentence: "this used to be..." "that seems to be..." "

fsa([-,vpsed|_],[V0,V1|T],T,0,[]) :-

word(d,V0),

\+ word(pronoun,V0),

word(vpsed,V1),

\+ word(adj,V1),!.

% fsa wants a vpsed. the word before a candidate verb is a determiner.

% assume candidate is not a verb. quit.

fsa([-,vpsed|_],[V0,V1|T],T,0,[]) :-

word(adj,V0),

word(vpsed,V1),

\+ word(adj,V1),!.

% you are at the beginning of the stream.

% fsa wants a vpsed. accept if the next word is not an auxillary

% verb and the previous word isn’t a determiner

fsa([-,vpsed|T],[V0,V1,V2|Tail],Rest,Score,[V3|T1]) :-

\+ word(d,V0),

66

\+ word(pronoun,V0),

\+ word(p,V0),

word(vpsed,V1),

\+ word(vaux,V2),

\+ word(vpsed,V2),

!,

V3= V1,

fsa(T,[V2|Tail],Rest,Score,T1).

% fsa looking for a noun. if the current word is a noun but not

% a pronoun, and the next word is also part of a noun phase, skip it.

fsa([-,n|T],[N1,N2|Tail],Rest,Score,[[N3]|Phrase]) :-

N1 \== that,

N2 \== that,

word(C1,N1),

C1 \== pronoun,

child_of(C1,dp),

word(C2,N2),

C2 \== d,

\+ word(p,N2),

child_of(C2,dp),

!,

N3= N1,

fsa([-,n|T],[N2|Tail],Rest,Score,Phrase).

% beginning of pattern

% skip determiners

fsa([-,n|T],[D|Tail],Rest,Score,[[D1]|Phrase]) :-

word(d,D),

\+ word(n,D),

D1= D,

!,

fsa([-,n|T],Tail,Rest,Score,Phrase).

% at beginning of pattern

% accept a pronoun as a noun if the next word is not part of a noun phrase.

fsa([-,n|T],[Pr|Tail],Rest,Score,[Pr2|Phrase]) :-

word(pronoun,Pr),

Pr2= Pr,

fsa(T,Tail,Rest,Score,Phrase).

fsa([-,X|T],[W1,W2,W3|Tail],Rest,Score,[W4,W5,W6|Phrase]) :-

find_element(X,[W1,W2,W3]),!,

W4= W1,

W5= W2,

W6= W3,

fsa(T,Tail,Rest,Score,Phrase).

fsa([-,X|T],[W1,W2|Tail],Rest,Score,[W3,W4|Phrase]) :-

find_element(X,[W1,W2]),!,

W3= W1,

W4= W2,

fsa(T,Tail,Rest,Score,Phrase).

% the fsa is at the beginning at the current element

% in the stream doesn’t match what the fsa is looking for

fsa([-,E|T],[H|Tail],Rest,Score,[H2|Phrase]) :-

find_element(E,H),

H2= H,!,

fsa(T,Tail,Rest,Score,Phrase).

% The current word is a pp. it is followed

% by a determiner or a plural noun. skip the pp.

fsa([-|T],[PP,D|Tail],Rest,Score,Phrase) :-

word(p,PP),

(word(d,D)

;

67

(PP \== to,

word(n,D))

;

(PP == to,

\+ word(v,D))

;

word(npl,D)

),

parse(pp,[PP,D|Tail],Remain,Words,_),

fsa([-|T],[pp(Words)|Remain],Rest,Score,Phrase).

% didn’t find the initial element

fsa([-,E|T],[_|Tail],Rest,Score,Phrase) :-

!,

fsa([-,E|T],Tail,Rest,Score,Phrase).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% comp rules

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fsa([comp|_],[Comp,s|Tail],Tail,0,[]) :-

word(comp,Comp).

% if you see a comp followed by

% a singular noun assume the comp is a determiner and quit

% this makes errors: ie ’i think that fish is a tasty food’

% MontyTagger also makes this mistake

fsa([comp|_],[Comp,N|Tail],Tail,0,[]) :-

word(comp,Comp),

word(d,Comp),

word(nsg,N),

\+ word(pronoun,N).

%%%%%%%%%%%%%%%%%%%%%%%

% rules for skipping pps

%%%%%%%%%%%%%%%%%%%%%%%

% don’t allow pp before a comp

fsa([comp|_],[pp([P|_]),W2|Tail],Tail,0,[pp,W3]) :-

P \== of,

word(comp,W2),!,

W3= W2.

% skip pps otherwise

fsa(Pattern,[pp(W)|Tail],Rest,Score,[Words|T]) :-

!,

Words= W,

fsa(Pattern,Tail,Rest,Score,T).

% special case for ’so that’. real clumsy but i want it fixed now.

fsa([comp|_],[so,that|Tail],Tail,0,[]).

fsa([comp|T],[W1,W2|Tail],Rest,Score,[W3,W4|Phrase]) :-

word(comp,[W1,W2]),

W3= W1,

W4= W2,

!,

fsa(T,Tail,Rest,Score,Phrase).

% looking for a comp. see an adjective before a comp. quit.

fsa([comp|_],[W1,W2|Tail],Tail,0,[]) :-

word(adj,W1),

68

word(comp,W2).

/*

fsa([comp|T],[W1,W2|Tail],Rest,Score,[W3|T1]) :-

word(C1,W1),

C1 \== adj,

word(comp,W2),!,

W3= W2,

fsa(T,Tail,Rest,Score,T1).

*/

%%

% rules for skipping adjps

%%

/*

% fail if you get an adjective that’s not an ing verb after a be verb

fsa(_,[W1,W2|T],T,0,[W3]) :-

W1 \== be,

word(bev,W1),

word(adj,W2),

\+ word(ving,W2),

!,

W3= W1.

*/

%%%%%%%%%%%%%%%%%%%%%%

% verb special cases

%%%%%%%%%%%%%%%%%%%%%%

fsa([to,vpl],[Adj,to,V1|T],T,0,[]) :-

word(adj,Adj),

word(vpl,V1).

% don’t accept an adjective before an ing verb

fsa([ving|T],[Adj,V|T],T,0,[]) :-

word(adj,Adj),

word(ving,V).

% some adjective s are also determiners. don’t skip these.

% if it is not an adjective, quit

fsa([vpsed|_],[Adj,Word|Tail],Tail,0,[]) :-

word(adj,Adj),

word(d,Adj),

word(vpsed,Word),

word(n,Word).

% some adjective s are also determiners. don’t skip these.

% if it is not an adjective, quit

fsa([ving|_],[Adj,Word|Tail],Tail,0,[]) :-

word(adj,Adj),

word(d,Adj),

word(ving,Word),

word(n,Word).

% if you are looking for a verb and see an "s"

% with two nouns around it it’s not a verb, its a possessive

fsa([vnfc|_],[W1,s,W2|T],T,0,[]) :-

word(n,W1),

word(n,W2).

fsa([vpsed|_],[W1,s,W2|T],T,0,[]) :-

word(n,W1),

word(n,W2).

fsa([ving|_],[W1,s,W2|T],T,0,[]) :-

69

word(n,W1),

word(n,W2).

% fsa wants a vpsed. the current word is a candidate.

% the next word is an auxiliary verb. assume the current word isn’t a verb.

fsa([vpsed|_],[V1,V2|T],T,0,[]) :-

word(vpsed,V1),

word(vaux,V2),

word(X,V1),

child_of(X,dp).

% fsa wants a vpsed. the word before a candidate

% verb is a determiner. assume candidate is not a verb. quit.

fsa([vpsed|_],[V0,V1|T],T,0,[]) :-

word(d,V0),

word(vpsed,V1),!.

% fsa wants a vpsed. the word before a candidate

% verb is a determiner. assume candidate is not a verb. quit.

fsa([vpsed|_],[V0,V1|T],T,0,[]) :-

word(adj,V0),

word(vpsed,V1),!.

% if you have a preposition followed by a verb in -ing

% form, don’t parse the preposition, instead accept the verb

fsa([vnfc|T],[P,V|Tail],Rest,Score,[V2|Phrase]) :-

word(p,P),

word(vnfc,V),

word(ving,V),!,

V2= V,

fsa(T,Tail,Rest,Score,Phrase).

% fsa is looking for a verb of a certain kind. if the next word is

% a verb, skip the current word if it is an auxiliary or a child of a auxp

fsa([H|T],[V1,V2|Tail],Rest,Score,[[V3]|Phrase]) :-

member(H,[vpsed,ving]),

word(vaux,V1),

(word(v,V2)

;

word(vpsed,V2)

;

word(vaux,V2)

;

(word(X,V2),

child_of(X,advp))),!,

V3= V1,

fsa([H|T],[V2|Tail],Rest,Score,Phrase).

% verb, followed by adverb then accept the verb.

fsa([vpsed|T],[V1,Adv|Tail],Rest,Score,[V2|Phrase]) :-

word(vpsed,V1),

word(adv,Adv),!,

V2= V1,

fsa(T,[Adv|Tail],Rest,Score,Phrase).

fsa([vpsed|T],[C|Tail],Rest,Score,[C2|Phrase]) :-

find_element(vpsed,C),

!,

C2= C,

fsa(T,Tail,Rest,Score,Phrase).

70

% fsa is looking for a verb in plain, -s, or -ed form,

% but the current word is not it. The current word is a part

% of a verb phrase so move past it.

fsa([vpsed|T],[V|Tail],Rest,Score,[[V2]|Tl]) :-

word(Cat,V),

(child_of(Cat,vp)

;

child_of(Cat,auxp)),!,

V2= V,

fsa([vpsed|T],Tail,Rest,Score,Tl).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% noun special cases

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

/*

% temporary rule. take out if it doesn’t work right

% stop if you have a pronoun followed by a verb

fsa([n|_],[Pr,Vb|Tail],Tail,0,[]) :-

word(pronoun,Pr),

word(v,Vb).

*/

fsa([n|_],[N1,N2|Tail],Tail,0,[]) :-

N1 == that

;

N2 == that.

% might add some rules here that

% look at the different types of words that follow nouns.

% if you have a word you think is a noun, if the

% next word is a verb and the noun is also a verb or aux verb then

% you are done parsing nouns

fsa([n|T],[n(N),V|Tail],Rest,Score,Phrase) :-

(word(vpsed,N)

;

word(vaux,N)),

(word(vpsed,V)

;

word(vaux,N)),!,

fsa(T,[N,V|Tail],Rest,Score,Phrase).

% if you have a word you know is a noun followed

% by another that looks like it, label the possible as a noun

fsa([n|T],[n(N),N2|Tail],Rest,Score,[N1|Phrase]) :-

word(n,N2),!,

N1= N,

fsa([n|T],[n(N2)|Tail],Rest,Score,Phrase).

% if you have a word you labeled as a noun,

% and you’re looking for a noun, then accept the labeled one

fsa([n|T],[n(N)|Tail],Rest,Score,[N1|Phrase]) :-

71

N1= N,!,

fsa(T,Tail,Rest,Score,Phrase).

% if you have a candidate noun followed by a

% complementizer followed by a noun phrase, your first noun probably isn’t one

fsa([n|_],[N,Comp,Det|T],T,0,[]) :-

word(n,N),

word(ving,N),

word(comp,Comp),

word(d,Det).

% if you havea pronoun followed by a

% verb, but are looking for two nouns, then quit.

fsa([n,n|_],[Pr,Vb|Tail],Tail,0,[]) :-

word(pronoun,Pr),

word(v,Vb).

% accept a pronoun as a noun if the next word is not part of a noun phrase.

fsa([n|T],[Pr,Vb|Tail],Rest,Score,[Pr2|Phrase]) :-

word(pronoun,Pr),

word(v,Vb),

\+ word(n,Vb),!,

Pr2= Pr,

fsa(T,[Vb|Tail],Rest,Score,Phrase).

% if you see a plural noun followed by a

% singualar noun, then accept the plural and move to detect the next element

fsa([n|T],[N1,N2|Tail],Rest,Score,[N3|Phrase]) :-

word(npl,N1),

word(nsg,N2),!,

N3= N1,

fsa(T,[N2|Tail],Rest,Score,Phrase).

/*C1 \== pronoun,

child_of(C1,dp),*/

/*C2 \== d,

C2 \== pronoun,

\+ word(p,N2),

child_of(C2,dp),*/

% fsa looking for a noun. if the current word is a

% noun but not a pronoun, and

% the next word is also part of a noun phase, skip it.

% temp fix: we s

fsa([n|T],[N1,N2|Tail],Rest,Score,[[N3]|Phrase]) :-

(word(n,N1)

;

word(conj,N1)),

(word(n,N2)

;

word(conj,N2)),

!,

N3= N1,

fsa([n|T],[N2|Tail],Rest,Score,Phrase).

% skip determiner and adjective if the adjective can also be a preposition

fsa([n|T],[D,A|Tail],Rest,Score,[[D1],[A1]|Phrase]) :-

word(d,D),

\+ word(n,D),

word(p,A),

word(adj,A),!,

D1= D,

A1= A,

72

fsa(T,Tail,Rest,Score,Phrase).

% skip determiners and mark following nouns.

% this is necessary because some nouns are also verbs.

fsa([n|T],[D,N|Tail],Rest,Score,[[D1]|Phrase]) :-

word(d,D),

\+ word(n,D),

word(n,N),

D1= D,

!,

fsa([n|T],[n(N)|Tail],Rest,Score,Phrase).

% skip determiners

fsa([n|T],[D|Tail],Rest,Score,[[D1]|Phrase]) :-

word(d,D),

\+ word(n,D),

D1= D,

!,

fsa([n|T],Tail,Rest,Score,Phrase).

%%

% any category

%%

fsa([X|T],[C|Tail],Rest,Score,[C2|Phrase]) :-

find_element(X,C),

!,

C2= C,

fsa(T,Tail,Rest,Score,Phrase).

% fsa is looking for a verb in -ing form, but the

% current word is not it. The current word is a

% part of a verb phrase so move past it.

fsa([ving|T],[V|Tail],Rest,Score,[[V2]|Tl]) :-

word(Cat,V),

(child_of(Cat,vp)

;

child_of(Cat,auxp)),!,

V2= V,

fsa([ving|T],Tail,Rest,Score,Tl).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% skip adjps

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% check two words out

fsa(Pattern,[Adj1,Adj2|Tail],Rest,Score,[[Adj3,Adj4]|Phrase]) :-

word(adj,[Adj1,Adj2]),

Adj3= Adj1,

Adj4= Adj2,

fsa(Pattern,Tail,Rest,Score,Phrase).

% the current word in the input stream is an adjective.

% Parse a chunk and move past it.

fsa(Pattern,[Adj|Tail],Rest,Score,[[Adj2]|Phrase]) :-

(word(adj,Adj)

;

(word(Cat,Adj),

child_of(Cat,adjp))),!,

Adj2= Adj,

fsa(Pattern,Tail,Rest,Score,Phrase).

%%%

73

% process pps

%%%

% The current word is a pp. it is followed by a

% determiner or a plural noun. skip the pp.

fsa(Pattern,[PP,D|Tail],Rest,Score,T) :-

word(p,PP),

(word(d,D)

;

(PP \== to,

word(n,D))

;

(PP == to,

\+ word(v,D))

;

word(npl,D)

),

parse(pp,[PP,D|Tail],Remain,Words,_),

fsa(Pattern,[pp(Words)|Remain],Rest,Score,T).

%%

% rules for skipping advps

%%

/*

% the current word in the input stream is an adverb.

% Parse a chunk and move past it.

% special case for verbs

fsa([vpsed|T],[V,Adv|Tail],Rest,Score,[V2,[Adv2]|Phrase]) :-

word(v,V),

(word(adv,Adv)

;

(word(Cat,Adv),

child_of(Cat,advp))),!,

V2= V,

Adv2= Adv,

fsa(T,Tail,Rest,Score,Phrase).

*/

% ’but’ is normally considered an adverb. I can’t tell

% whether it is or not. I have eliminated it from the lexicon.

% the current word in the input stream is an adverb.

% Parse a chunk and move past it.

% don’t skip adverbs that are also subordinating conjunctions.

fsa(Pattern,[Adv|Tail],Rest,Score,[[Adv2]|Phrase]) :-

\+ word(subconj,Adv),

(word(adv,Adv)

;

(word(Cat,Adv),

child_of(Cat,advp))),!,

Adv2= Adv,

fsa(Pattern,Tail,Rest,Score,Phrase).

%%

% unknown words

%%%

% for now the fsa skips over unknown words.

% later we can make it more intelligent

74

fsa(Pattern,[UW|Tail],Rest,Score,[[UW2]|Phrase]) :-

word(X,UW),

X == unknown_word,

UW2= UW,

fsa(Pattern,Tail,Rest,Score,Phrase).

% the current word doesn’t match the pattern

fsa(_,Rest,Rest,0,[]).

/*

find_element(vpl,Verb) :-

word(vpl,Verb).

% find_element(+Element,+Target)

% succeeds if Element matches Target

find_element(vpsed,V) :-

word(vpsed,V).

% find a verb in -ing form

find_element(ving,V) :-

word(ving,V).

*/

% find a verb in any form

find_element(vpsed,V) :-

word(v,V).

find_element(subconj,[W1,W2,W3]) :-

ccl([W1,W2,W3],conjunction,List),

member(subordinating,List).

find_element(subconj,[W1,W2]) :-

ccl([W1,W2],conjunction,List),

member(subordinating,List).

% find a subordinating conjunction

find_element(subconj,SC) :-

ccl([SC],conjunction,List),

member(subordinating,List).

find_element(n,Word) :-

word(pronoun,Word).

% find a word of a particular category

find_element(Cat,Word) :-

%Cat \== vpsed,

word(Cat,Word).

child_of(a,b).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% miscelaneous predicates

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

75

% simply traverses all the rules in the

%grammar and asserts the children of particular heads

get_children :-

rule(X,List),

get_children_aux(X,List),

fail,!.

get_children.

get_children_aux(_,[]) :- !.

% optional element

get_children_aux(X,[[H]|T]) :-

\+ child_of(H,X),

rule(H,List),!,

assert(child_of(H,X)),

get_children_aux(X,List),

get_children_aux(X,T).

get_children_aux(X,[[H]|T]) :-

\+ child_of(H,X),

word(H,_),!,

assert(child_of(H,X)),

get_children_aux(X,T).

% next element is a manditory element

get_children_aux(X,[H|T]) :-

\+ child_of(H,X),

rule(H,List),

assert(child_of(H,X)),

get_children_aux(X,List),

get_children_aux(X,T).

get_children_aux(X,[H|T]) :-

\+ child_of(H,X),

word(H,_),!,

assert(child_of(H,X)),

get_children_aux(X,T).

get_children_aux(X,[_|T]) :-

get_children_aux(X,T).

convert_ccl_to_list :-

ensure_loaded(’ccl.pl’),

tell(’cclalt.pl’),

forall(ccl(X,Y,Z),

(tokenize(X,Result),

write(ccl(Result,Y,Z)),

write(’.’),nl)),

told.

% takes in an atom that may have spaces

% sin it and returns a list of the atoms in it

tokenize(Atom,Result) :-

atom_chars(Atom,Chars),

tokenize_aux(Chars,[],Result).

tokenize_aux([],List,End) :-

atom_chars(Atom,List),

End= [Atom].

76

tokenize_aux([’ ’|T],List,[Atom|Result]) :-

!,

atom_chars(Atom,List),

tokenize_aux(T,[],Result).

tokenize_aux([H|T],Chars,Result) :-

append(Chars,[H],CList),

tokenize_aux(T,CList,Result).

% get subset of WordNet

get_wn_subset(OutFile,Number) :-

ensure_loaded(’c:\\active projects\\thesis\\prolog\\wn_s.pl’),

findall((Num,Syn,Word,Cat,X),s(Num,Syn,Word,Cat,X,10),List),

msort(List,ListS),

reverse(ListS,ListR),

tell(OutFile),

print_list(ListR,Number),

told.

print_list(_,0).

print_list([H|T],Num) :-

write(s),write(H),write(’.’),nl,

Num2 is Num-1,

print_list(T,Num2).

