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CHAPTER 1

BACKGROUND

§ 1.1 Introduction

§ 1.1.1 The Battle of Leuctra

The men of the Boeotian League arrayed themselves on the plain of Leuctra, in the summer of 371

BC, before the Lacedaemonian host. These men were led by the audacious Epaminondas, Strategos of

Thebes, whose ambition to secure the League’s future invited the enmity of Lacedaemon. An army 11,000

strong [15, Chapter 20] invaded Boeotia, marching behind the mighty Cleombrotus, king of Sparta. All

that stood in their way, were the 7,000 Boeotians.
1
[13, Chapter 9]. It was the triumph at Leuctra that

propelled Thebes into hegemony, and secured Epaminondas’ reputation as one of the most celebrated

captains in antiquity.

This paper will use a variation of the colonel Blotto game to model this con�ict, and analyze the tactics

within the game theoretical framework. It is also an attempt to model the classical theories of con�ict �rst

promulgated in the 19th century by theoreticians like Carl von Clausewitz and Antoine-Henri Jomini.

The insights from this analysis should not be interpreted as solely a matter of military history, but also a

way of understanding decision making and resource allocation common in the �eld of operations research.

Although the connection between Clausewitz and game theory had been noted by [21][14], and with

speci�c reference to Colonel Blotto Games in [9], the works have largely rely on concepts of strategic

theories without modeling this understanding into an operational mechanism. This paper is an attempt

to model a problem that could be solved using the operational concepts in Clausewitz’ work.

§ 1.2 Colonel Blotto Game

Colonel Blotto Game was �rst proposed in Borel’s paper in 1921 [2]. It is a two-player, zero-sum game

with the following setup:

• Each player has t amount of ”troops” as the budget;

• The game is divided intom areas of contests, or ”battle�elds”, to which a non-negative amount of

troops are assigned, such that t > m2
;

1
Di�erent historical sources provided con�icting numbers for the sizes of the armies. This paper uses Plutarch’s in The

Life of Peliooidas Chapter XX., which is considered to be a realistic estimation by Lazenby. The translation provided the next

page reads “two thousand men-at-arms and one thousand horse”. However, the Ancient Greek text is “ὁπλίτας µυρίους, ἱππεῖς

δὲ χιλίους”, which may suggest an error in the translation, as a µυρίους(myriad) and a χιλίους(chiliad) adds up to 11,000.

2
The Blotto game is intended to have enough combinations of troops in battle�elds to make the strategy problems interest-

ing, but a Blotto game does not especially rely on t outnumberingm by several orders of magnitude to work. The diagrams in

this paper uses a relatively small t for visual clarity, but the strategies of a Blotto game does not especially rely on t being orders

of magnitudes greater than m to work. For example, m = 3, t = 4 is a game with little depth in strategy, m = 3, t = 10

1



• Each player has t amount of troops as the budget;

• For each battle�eld, a Contest Success Function (will be abbreviated as CSF) determines the out-

come of the contest;

• The game ends after the relevant conditions are satis�ed.

Since [5] �rst formulated Borel’s model as a military strategy simulation, the game has developed many

variants. The game can di�er chie�y in three areas: the CSF, victory condition, and manner in which

the con�icts are resolved. Though the original Blotto game resolves all battle�elds simultaneously, recent

papers have developed a sequential variety, which assigns troops to the subsequent battle�eld after the

previous contest had been resolved, such as the gladiator game[7][16] This paper is draws inspiration from

the time-sensitive nature of a sequential Blotto game, but instead uses time as a discriminator to shape the

battle�elds in contest. The troop assignment and resolution are e�ectively simultaneous.

§ 1.2.1 Model

If we can imagine two Greek phalanxes facing each other, we might get something similar to Figure 1.1:

two tightly packed bodies of men that share similar qualities in most aspects, but di�er chie�y in numbers,

which is the factor modeled in Blotto games. The game can be formally de�ned as a series of battle�elds

B = {b1, ..., bm}. Each battle�eld bi contains a pair of tuples(sA, sB), where s = (µ, κ). µ represents

the amount of troops assigned to the battle�eld, and κ ∈ {−1, 1} the form of action. The signi�cance

of each components will be discussed in the next chapter.

Figure 1.1: The balance of force

Figure 1.1 represents a strategic intuition that the Boeotians are not in a position of strength: If each

row represents a Blottonian battle�eld, we can draw the conclusion that for each battle�eld, the Lacedae-

monians on average can a�ord to put down 6 troops, whereas the Boeotians can only o�er 4 troops. If

µ is the only factor in deciding the outcome of this game, then the Boeotians are at a disadvantage. The

strategy that can overcome this disadvantage to a large degree will be discussed in Chapter 3, and the

mechanisms that supports this strategy will be explained below and in Chapter 2.

§ 1.3 Resolution

Before we explain how CSF resolve the con�ict, attentions must be directed to the number of bat-

tle�elds: Unlike the classical majoritarian Blotto game [10], the players are given their victory objects

and m = 50, 547, 438 have di�erent sizes of problem space, but both have the strategic depth to be interesting. This paper

assumes t to be su�ciently large.
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exogenously as w’s, whose sum is smaller than the total number of battle�elds. Therefore there is no

need to continue the game after |C| number of battle�elds are resolved, because after so many resolutions,

it is guaranteed that one side would have achieved w wins. We will use C and D to represent the set of

battle�elds that are in the contest, and the set of those that serve only as diversion For this paper, we will

assume that |D| > |C|, because the e�ects of concentration, which will be discussed in the following

chapters, is ampli�ed as |D| increases. The resolution has two parts: �rstly, to determine |C|, and secondly,

to �nd the winner of the |C|-battle�eld contest, both will use the Tullock CSF.

The Tullock lottery function [22] is a widely studied stochastic CSF. It derives the probability of

success for Player A on the battle�eld i based on the µiA and µiB :

piA =
µiA

µiA + µiB
(1.1)

It is a general model that represents the degree of control a player has over an adversarial situation given the

player and the opponent’s investment of troop resources - the more troops by which the player outnumbers

the opponent, the more likely the what the player intends will come to pass.If the player wishes the

battle�eld to be contested, then κ = +1 should be assigned, and−1 if otherwise, The player may still

have to assign troops to the battle�elds that they do not wish to be entered into the contest because a

negative κ allows the troops to slow down the resolution priority, which will be discussed in detail in

Chapter 2. We can put all battle�elds on a timeline based on χ in descending order, where:

χi = piA ∗ κiA + piB ∗ κiB (1.2)

Battle�elds arranged in χ-descending order represents the timeline of the battle: The battle�elds with

higher χ is promoted in the order. Equation 1.2 does not necessarily represent a contest, because when

both players have the same κ signs, they are in agreement, which would put them in the �rst or the last on

the timeline. When a battle�eld has χ = −1, it will not be resolved. Therefore, pA serves double duty in

this game: to take the battle�eld and to move the resolution earlier or later in the timeline when the two

players disagree on their κ values.
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CHAPTER 2

FORMS AND OBJECTIVES

For this to be termed a Clausewitzian game, its mechanism will be explained in his theory of strategy.

It is not di�cult to understand the role of µ in a strategy, as they are present in all Blotto games. But κ is a

novel addition: The Clausewitizian conception of con�ict begins with the forms, based on their e�ects, he

divided actions into those with a positive objective and the those with the negative objective. The positive

and the negative are often associated with the attack and defence respectively. This biform framework is

distinct from a uniform, zero sum game, in which a player can only attack, and loses exactly as much as

the other side gains. Such perfect polarity is closer to �ction than to real life[3] (Book I, Sections 14-17),

whose complexities often contains mitigating factors.

De�nition 1. A positive objective is the objective of progress. A negative objective is that of deferral.

Conceptually, when a player continues to achieve positive objectives, they would eventually win. If

they continues to achieve negative objectives, against the opponent’s positively motivated actions, then

their opponent cannot win. A battle�eld does not have a contest if no player has a positive objective on it

– The player must achieve positive objectives to win the game, and a mutually defensive battle�eld does

not contribute to this overarching process, which is why they will never be in the contest.

However, it is better not to commit to an unfavorable decision, but to wait until a more opportune

moment to arise (Book I, Chapter 1, Section 13).This o�ence-defence dichotomy decouples the circum-

stances on one side from the other side when analyzing µ and χ, making the analysis re�exive. In a game

where attack is the only action, if A has a disadvantage on a battle�eld to attack B, translates to B’s advan-

tage to attack A. But Clausewitz observed that in war, the only conclusions that can be drawn safely is

that B has an advantage to be attacked by A( in this case, A is attacking, and B defending). It is a statement

solely about A’s decision, and does not translate to B should attack as before. Because attack and defence

are two di�erent games, it is harder to attack than to defend. In Book VI Chapter 1, Clausewitz remarked

that defence is inherently the stronger form, meaning on the same battle�eld, the side with the negative

objective can achieve it with less troops than the side with positive objective. As is with everything gov-

erned by inertia, it is easier to keep the status quo. When it is disadvantageous to attack or defend, one

can either adjust troop numbers or change to the other form.

The function of positive objectives is two fold: mechanically, to take the requiredw battle�elds. In

order to achieve decisive victories however, it must also prevent the opponent from doing the same. Both

[6] (Supplementary) and Clausewitz (Book IV, Chapter 9) identify the neutralization of the opponent’s

forces as the main objective in a war – one loses when one has lost the army. If both sides loses their armies,

then the situation remains indecisive. Therefore, the number of positive objectives is bounded by the

constraint. In e�ect, its number shapes the size of contest |C|.
It should be noted, therefore, that having attained the required number of battle�eld wins is not

automatically winning the game: In the beginning of the game, neither player attains the required w
battle�eld wins to win the game, this situation is an indecisive equilibrium. As we resolve more and more
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battle�elds, at some point we will have a situation where one player has collected enough battle�eld wins,

but the other has not; At this point, the equilibrium is upset, and the result decisive. If the battle�eld

resolutions continues however, we may face another kind of indecisive equilibrium in which both sides

have reached their numbers. If to win in a duel is to destroy one’s opponent, then a “win-win” scenario is

one in which both sides are destroyed.

De�nition 2 (Mutual Destruction). If both players achieved all of their respective positive objectives,

then neither can claim victory.

If the positive objective means to upset the equilibrium, then it must increase to prevent the equilib-

rium from restoring itself, which means higher cost of resources. Mutual destruction is a concern when

considering the scope of the contest |C|, because the probability of mutual destruction increases if the

scope is too large.

§ 2.0.1 Overall Chance

There are nCh ways for Player A to win h out of n battle�elds. LetN = {1, ..., n}, the set Fh be the

enumeration of all the subsets S ⊂ N such that |S| = h, which represents the battle�elds won in the

scenario. We use Sc to represent the complement of S, which is the battle�elds lost in the same scenario.

Then the probability of winning is the joint probability

∏
j∈S

pjA
∏
h∈Sc

pjB . For A to win against the belief

of B’s strategy TB ’, he must win least wA out of |C| battles. and at most |C|, the probability of winning

the game is :

PA(T A, T ′B) =
n∑

h=wA

∑
S∈Fh

∏
j∈S

pjA
∏
h∈Sc

pjB (2.1)

The calculation in Equation 2.1 is simpli�ed to a cumulative binomial probability function in a special

case when we know pA is the same value for all battle�elds[8]:

PA(T A, T ′B) =
n∑

i=wA

nCi ∗ pai ∗ (1− pa)(n−i) (2.2)

A further special sub-case of binomial probability when the the number of required successes is the same

as the number of trials, it becomes the joint probability:

PA(T A, T ′B) = pA
wA

(2.3)

We can compare PA’s from di�erent strategies to evaluate the e�ectiveness of each strategy.

§ 2.0.2 Operational Implications of the Forms

The outlook of a game would be di�erent with the same troop assignment, depending on whether

they are pursuing a negative or positive objective. The game strategy can be divided into two groups:

Contest (C), which contains battle�elds that will be resolved; Diversion (D), which includes the rest of

the battle�elds. The contest includes the battle�elds with the highestχ values until the (wA+wB− 1)th

battle�eld is reached. Because all battle�elds with the same χ occupies the same spot on the timeline, any

5



additional battle�elds that share the χ value would also be included, in which case the contest is extended.

The number of battle�elds in the contest |C| does not mean how long the actual game would last, but as a

maximum possible length it de�nes a parameter of the strategy. A strategy to win at least three battle�elds

out of �ve is necessarily di�erent from a strategy to win at least three battle�elds out of a million.

When |C| is larger than necessary, it is possible for both players to achieve their respective objectives,

in which case De�nition 2 will apply, and the winner must win more battle�elds to prevent mutual

destruction.

wA =

{
wA n ≤ wA + wB − 1

n− wB + 1 n > wA + wB − 1
(2.4)

A good strategist should avoid such expansive contests, for they make winning the game harder for

either player regardless of their strategies within these contests.

6



CHAPTER 3

GENERAL METHOD

Our goal is to upset the indecisive equilibrium in A’s favor by coming up with a better strategy. This

chapter will provide the algorithm, and discuss the game mechanisms it exploited.

§ 3.1 Algorithm

The previous chapter has illustrated the e�ect of disposition and posture of troops in a battle, which

shall be the considerations of strategy discussed in this chapter. The core idea of strategy was to cherry

pick the battle�elds in which the player outnumbers the opponent for contest. By excluding enough of

the opponent’s troops, one can upset the equilibrium.

The primary interest of this paper is to establish a framework: Because we take TB ’ to be true, we

only have to deal with pure strategy. The following functions are used to �nd the battle�elds that require

attention:

c+ = index(argmax
b∈C

χ(b)), c- = index(argmin
b∈C

χ(b)),

q+ = index(argmax
b∈C

pA(b)), q- = index(argmin
b∈C

pA(b)),

d+ = index(argmax
b∈D

χ(b)), d- = index(argmin
b∈D

χ(b))

c+, c-, d+, d- locate the battle�eld of with the greatest/leastχ values in the contest and diversion respectively.

While q+, q− locate the battle�elds with the greatest/least pA values in the contest. The algorithm change

the troop disposition through adjustments on these battle�elds, see Appendix for the an example that

shows troop disposition at each major step.
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Algorithm 1: Troop Allocation in Symmetrical Contests

Input: TB ′
Output: TA

1 Arrange TB ′ in µ-ascending order;

2 if sBx and sBy have the same µ value then
3 The one with higher κ takes precedence ;

4 end if
5 let µ̂A = tA

m
;

6 Initialize strategy TA = {(µ̂A,+1)1, ..., (µ̂A,+1)m} , and reserveR = 0;

7 Let |C| = wA + wB − 1, set κn+1
A , ..., κmA to−1;

8 Let C = {b1, ..., bn} and D = {bn+1, ..., bm};

9 while χ(bd−) = −1 do
10 Transfer all troops on that battle�eld toR;

11 end while
12 for i ∈ [|C|+ 1,m] do
13 if χi > −1 then
14 Transfer troops from siA toR, such that χi is as close to χd+ as possible without

exceeding it;

15 end if
16 end for
17 while χc− ≤ χd+ do
18 Transfer troops fromR to µc−A ;

19 end while
20 whileR > 0 do
21 if χc− ≤ χd+ then
22 Transfer troops fromR to µc−A ;

23 else
24 Transfer troops fromR to µq−A ;

25 end if
26 end while
27 return TA

This type of problem, in which we try to �nd and invest in the battle�eld that gives the player most

payo�s, may be generalized as a reinforcement learning problems, like the multi-armed bandit [20]
1
. The

agent may be trained to gravitate towards battle�elds with smallµB values, so as to increase the probability

of success. But the game B can be seen as a metagame to the game C which is the real game because it

guarantees decisive outcomes, and its outcome determines the outcome of the game B. C is not played

with the starting tA, tB orm, but with the troops of both sides that were assigned to the �rst (wA+wB−1)
battle�elds on the timeline, andC is not de�ned at the beginning of the game, but is shaped by the strategies

of the two sides. Therefore our strategy has two purposes: �rst, to con�gure the contest battle�eld, and

second, to optimize probability of success of this contest. The strategist (agent) is not solely motivated by

the improvement of probabilities of success, but is also constrained by the chronological priority. This

1
Considering that there are mC(wA+wB) combination of battle�elds, it may be a substantial number.
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algorithm, and Schwerpunkt as the concept itself, should be viewed as heuristics that would save time and

computational resources when dealing with such problems. Once C is de�ned andR is determined, the

rest of the game may be solved with machine learning as usual. The main contribution to our strategic

concept is the shaping C, rather than playing out the contest.

The purpose of the algorithm is to �nd the battle�elds in which B is weak, to create advantages in

these battle�elds, and �nally to ensure that these battle�elds are resolved. Our understanding of strength

is both quantitative and qualitative: when µiB < µj , then B is weaker in bi is than in bj . If µiB = µj , and

κi = −1, κj = 1, then then B is stronger in bi, because κi = −1 is the stronger form.

§ 3.2 The Schwerpunktprinzip

From the example in the foregoing chapter, we can see that the contest in C battle�elds, when |C| =
wA+wB−1, ensures that one side achieves all of its positive objectives, and the other side does not. This

phenomenon encompasses the notion of “decisiveness”.

De�nition 3 (Decisive Contest). A contest between two players is decisive if and only if there can only

be one winner and one loser from the contest.

Operationally, only |C| = wA + wB − 1 guarantees this outcome.

Our intuition should tell us that the probability of winning is related to how many troops are in

these battle�elds. C is identi�ed, in the Prussian tradition of strategic thinking, with the concept of

Schwerpunkt(“Center of Gravity”).

De�nition 4 (Schwerpunkt as a strategic concept). A Schwerpunkt is the source of counteracting force

that maintains the equilibrium.

The upsetting of the equilibrium of force, by the means of neutralizing the source of the opponent’s

ability to resist, will end the contest in one’s favor, thus was a decisive victory achieved. The Prussian war

philosopher wrote:

The skilful assemblage of superior forces at the decisive point—has its foundation in the right

appreciation of those points, in the judicious direction which by that means has been given

to the forces from the very �rst, and in the resolution required to sacri�ce the unimportant to

the advantage of the important — that is, to keep the forces concentrated in an overpowering

mass.(Book III, Chapter 8)

It follows, therefore, that all non-decisive battle�elds must be ruthlessly sacri�ced in order to achieve such

concentration.

In order to operationalize the Schwerpunkt concept, it is necessary to show how it �ts in game me-

chanics: The equilibrium is maintained until one side satis�es its w condition. Therefore the strategic

objective translates to the operational imperative to winw battle�elds before the opponent, speci�cally

the w battle�elds in which the opponent is least able to overcome. The weak points are those with the

least amount of troops. When the numbers are the same, the troops that are attacking weaker than those

in defence, since attack is the weaker form of the two.

We will begin with an example to illustrate the e�ect of changing each variable in the strategy.

Notations and legends were introduced for the ease of description and presentations, which are ex-

plained as follows:

9



1. On diagrams, indicates that the entire �le of the same color has the positive objective, likewise

indicates a negative objective;

2. Unless speci�ed in subscripts, the values for t andw are for both players;

3. Strategies are written in a simpli�ed notation, e.g., TA = {(5,+1), (5,−1)} is written as TA =
{+5,−5};

4. When describing the victory condition for the contest, we use wx/|C| to represent the notion “x

must winwx battle�elds out of |C| to win the game”. e.g., “A must win at least 3 out of 5 battle�elds

to win the game” is expressed as 3+/5;

Figure 3.1 Figure 3.2

Assuming B does not change, A can move the troops from one battle�eld to another to adjust the

µ values. But admittedly there is no point in such manoeuvre, because the strategy of spreading troops

evenly is the Nash equilibrium, in this unfortunate case however, PA = PB = 0.125. Any unilateral

action from A will upset this equilibrium in the opponent’s favor.This would have been a sound strategy

without the mutual destruction rule. This would normally be the end of game theory analysis, but the

comparison of Figures 3.2 with 3.4 reveals a strange picture: The players are not only at odds with each

other, but also with the mutual destruction rule. Any deviation from the optimal strategy increases the

chance of mutual destruction. On the whole, the game is not worth playing.
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Figure 3.3 Figure 3.4

The probability of mutual destruction comes from the extra battle�elds in the contest. If the game

requires each player to win at least 2 games, A is still worse o� concentrating troops than splitting them

evenly.

§ 3.3 The Oblique Order

The only conclusion we can draw from the previous example must be a refutation of the Schwerpunkt
principle. A complete concentration of all available troops on the decisive contest is impractical, because it

leaves all the other battle�elds undefended. Any moderate attempt at concentration merely takes a smaller

step in the same wrong direction: To deviate from the evenly-split strategy is to walk away from the Nash

equilibrium, hence the paradox: One can only achieve a local advantage by unilateral concentration, but

if the e�ect of the weakening in other battle�elds comes at the same time, the cost of a global disadvantage

is greater than the bene�t of concentration. Optimal mediocrity, it seems, prevails in such games.

Hitherto we have only discussed the probabilistic considerations with respect to troop division. We

know that positioning troops merely trade a probable victory in one battle�eld for a more probable disaster

in another. The temporal dimension gives the players agency to pick the battles they want to �ght through

a negotiation that creates the opportune moment for the decisive action.

Let us now consider the formation of troops, for now we speci�cally mean bodies of soldiers, rather

than the resources in the model. There are two basic formations widely used throughout history: that of

the parallel order and the oblique order[6] (Chapter 4, p.147). If we consider a battle�eld as a 2-dimensional

space, everyone in a formation parallel to the opponent’s would meet their opposite at the same time. By

comparing these distances of two sections, we can �nd out which section concludes its �ghting �rst. In

a parallel order, every �ght begins at the same time. Jomini regarded the parallel order as almost always

undesirable, and inferior to the oblique order. The latter is achieved by refusing one wing
2

and advancing

the other: The formation deployed in such a fashion resembles a diagonal line, allowing the advanced

wing to make contact before the center, and the center before the refused wing. The following diagrams

illustrates the di�erence:

2
It means this side of the formation is held back.
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Figure 3.5

The oblique order breaks up one large event into a sequence of smaller events. The advantages it

confers corresponds to the advanced and refuse wings: the advanced wing pushes its contests ahead on

the timeline, naturally suited for positive objectives. The refused wing has the same property as a negative

objective, whose aim is to delay the decision. The synergy between the oblique order and the Schwerpunkt
is unmistakable: It allows the tactician to shift a considerable mass of troops to the advanced wing, without

simultaneously su�er the penalty of weakening the rest of the formation, creating the opportune moment

for the decisive action.

In summary, the solution to the paradox contains two parts: Oblique order adds a temporal dimension

to the problem space, which can be qualitatively divided into the “before” and the “after”. This extra

degree of freedom allows concentration of troops in the “before” part of the game to improve the chance

without repercussions.

The e�ect of excising the temporal freedom is demonstrated below: Still assumingw = 1andm = 3,

the only course is to reduce the size of the contest |C| instead. We partition the game by using defense

to delay some of the battle�elds, the game is no longer a singular event that encompasses all outcomes at

once, but spreading them over a period of time. For example:

Figure 3.6 Figure 3.7: Winning a 1/1 game with pA = 0.625
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By adopting a defensive posture at b2,3, A is able to reduce the scope of the contest to only b1, in

which A enjoys a relative superiority. Since the previous probability of success was 0.08, which has turned

into 0.625, we can conclude that the strategy T A = {(+5,−1,−3} is superior to T A = {+5,+1,+3}
against what A believes to be B’s strategy T ′B = {+3,+3,+3}A does not improve the chance by clever

disposition of troops, but simply by controlling the agenda of the battle�eld resolution. It is not hard to

imagine tA being less than tB , and still managed to achieve a disproportionately high chance of success in

this way.

The probability of winning the game PA is a�ected by several factors:

• The strategy of the opponent TB ′;

– The number of troops µA, µB in each contested battle�eld;

– The number of battle�elds in contest |C|;

• The total number of battle�elds; |B|

• The number of total troops tA, tB ;

• The number of positive objectswA, wB ;

Our focus is on games that are more or less symmetrical, here we mean any game with tA ' tB, wA = wB .

Traditional de�nition of symmetry, in a majoritarian Blotto game, requires tA = tB , which [17] has

explored. But since part of our motivation is to show how the side with less troops could still create a

strategy that dominates the opponent’s, this requirement is relaxed. Generality of the observations is not

lost whenwA 6= wB , however. The di�erence in troop numbers may be great in some circumstances due

to the strategies chosen by both sides, but in all cases, tmust be su�cient to allow the player to complete

the same number of objectives as their opponent does.

§ 3.4 Contest and Diversion

The key to the success of a Schwerpunkt is to separate the troops at the resolution of the |C|-th bat-

tle�eld. In another word, we would like to show that after concentration, χc− > χd+. We restrict

this analysis to the scenarios when χx = pA − pB . Therefore, we can safely say that if the battle�eld

bx ∈ C, by ∈ D and χx > χy, then pxA > pyA. In another word, when A manages to move a battle�eld

into the contest phase despite opposition, then this A is more likely to win in this battle�eld than the ones

in the diversion.

Lemma 1. Given µiB < µjB , if µiA = µjA, then piA > pjA.

Proof. piA > pjA =
µiA

µiA+µiB
>

µjA
µjA+µjB

. Since µiA = µjA, we will use µA, then

µA
µA + µiB

>
µA

µA + µjB
= µA(µA + µjB) > µA(µA + µiB)

= µA
2 + µAµ

j
B > µa

2 + µAµ
i
B

= µAµ
j
B > µAµ

i
B

= µjB > µiB
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Lemma 1 tells us where to attack: with the same amount of investmentµA, A is more likely to succeed

in bi than in bj . This is due to the denominator in the equation. Therefore we can predict that the

magnitude of change is greater in bi , given the change in µA in both battle�elds.

If µiB < µjB and µiA = µjA = µA, then for any non-zero value r, the di�erences of add r in bi and bj

are: ∣∣∣∣ r

µA + r + µiB

∣∣∣∣ , and

∣∣∣∣ r

µA + r + µjB

∣∣∣∣
Note that operationally, r would have to be an integer rounded toward zero

3
.

Corollary 1.1. If µiB < µjB and µA is constant, then for any non-zero value r,∣∣∣∣ r

µA + r + µiB

∣∣∣∣ > ∣∣∣∣ r

µA + r + µjB

∣∣∣∣
A transfer of r troops from bj to bi is good for improving pA, if and only if∣∣∣∣ r

µA + r + µiB

∣∣∣∣ > ∣∣∣∣ −r
µA − r + µjB

∣∣∣∣
From which we take the denominator

(µA + r + µiB) < (µA − r + µjB)

(µiB + r) < (µjB − r)

let r be such value that

(µiB + r) = (µjB − r)

Since µjB > µiB , 0 < r <
µjB−µ

i
B

2
.

From Equation 1.2, we can rewrite χ as a function:

χi =

{
pA − pB = µ̂A

µ̂A+µiB
− (1− µ̂A

µ̂A+µiB
), i ∈ [1, |C|]

−pA + pB = − µ̂A
µ̂A+µiB

+ (1− µ̂A
µ̂A+µiB

) i ∈ [(|C|+ 1),m]
(3.1)

for when A uses an evenly split strategy, and the κ’s of the two sides do not match on bi. We know

that in a decisive game, pB = 1− pA, therefore

then the di�erences in χ from a transfer of r troops from bi to bj are:

χi′ =
µ̂A + r

µ̂A + r + µiB
− (1− µ̂A + r

µ̂A + r + µiB
) (3.2)

χj ′ = (1− µjB
µ̂A − r + µjB

)− µjB
µ̂A − r + µjB

(3.3)

3r < 0 represents the amount of troops transferred in the reverse direction. To round toward zero is to round up if r < 0,

and down if r > 0.
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for bi ∈ C and bj ∈ D. Because χi = piA − (1− piA), the e�ect of r additional troops is doubled from

that of pA. Let χi′ be the value after receiving r troops:

∣∣χi − χi′∣∣ = ∣∣∣∣(pA − (1− pA))− ((pA +
r

µA + r + µiB
)− (1− (pA +

r

µA + r + µiB
)))

∣∣∣∣
=

∣∣∣∣2 ∗ pA − 1− 2pA + 2 ∗ r

µA + r + µiB

∣∣∣∣
=

∣∣∣∣2 ∗ r

µA + r + µiB

∣∣∣∣
and vice versa for χj . This means that the same general pattern as shown in Lemma 1 holds true for both

probability of success p and chronological priorityχ: If holdingµA constant, the battle�elds with a higher

µB are more stable than those with lower.

Theorem 2. If µ1
B < µ2

B <, ..., < µmB , µ1
A = µ2

A =, ...,= µmA = µ̂A and µ̂B = µ̂A, then there exist a

positive value r in µd−B , such that

χd−′ ≤ χd+ < χc−′

Proof. Suppose r is at such value that

χd−′ = χd+

since µc−B < µd−B , χc− is improved to a greater extent than χd−.∣∣∣∣2 ∗ r

µA + r + µc−B

∣∣∣∣ > ∣∣∣∣2 ∗ r

µA + r + µd−B

∣∣∣∣
if χd−′ = χd+, then χc−′ > χd+.

This would shows that concentric movement can be a pro�table excise when pursued without excess.

Not only will it improve p, but also prevent bd+, or any other diversionary battle�elds from being counted

as a part the contest.

When quantitative advantages are not clear, such as in the event of facing an evenly split strategy, our

troop disposition is much simpler: assign minimal troops to each diversionary battle�elds, because the

contest is attacking into an attack with χc− = 1, a diversion is successful so long as the χd+ < 1.

§ 3.5 Troops: Transferal and Total Numbers

When the improvement in χi allows it of o�set the change in χj , A is able to control the timing.

Interestingly, this ability is more a�ected by TB than tA and tB . Suppose we have two battle�elds bi ∈ C
and bj ∈ D. In either battle�eld, µ̂A = 150, µ1

B = 100, µ2
B = 200. If we began to transfer troops µjA

to µiA, we can expect the marginal utility, i.e. the amount by which χ is changed per transferred troop, to

decrease in bi and increase in bj , until A must stop in order to avoid subverting the preferred temporal

relation χ1 > χ2
. This threshold looks like Figure 3.8:

Figure 3.8: At some point χ2
will overtake χ1

This threshold is the maximum

amount of troops A can spare from the

diversionary battle�eld without jeopar-

dizing control of the timeline - the
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maximum concentration that can be

achieved in b1. This number may be

smaller when more battle�elds are in-

volved, since χc− is the threshold. We

observe that µA can reach a strategic

critical mass, sometimes below µB , to

achieve certain leverage. Nevertheless,

the greater number, when used prop-

erly, is always an advantage. On the

other hand, when this critical mass is

not reached, A would not be able to for-

mulate any meaningful concentration-

based strategy, and is completely at the mercy of fortune. The critical mass of A is, to a large degree,

a�ected by the B’s own degree of concentration:

Figure 3.9: Depends on how B assigns troops and how many troops A has, the latter might be able to spare the

majority of defensive troops or none at all.

The �rst graph describes an awkward situation where A cannot take o� a single troop without attaining

the overall numerical superiority themselves {(+150,−150), (−150,+150)}. The impasse can be cir-

cumvented by prioritizing battle�elds that are also the opponent’s positive objects{(−150,−150), (+150,+150)}.

This consideration is not based on numerical weakness, but due to the troops of having the positive ob-

jectives, and therefore are weaker than those who have negative objectives. This situation makes the

diversionary battle�elds stronger than the contest, which means A could dominate B in the contest by

concentrating to a greater degree on the weaker battle�elds. The best strategy, noted Clausewitz: “is

always to be very strong, �rst generally then at the decisive point. ” (Book III, Chapter 11)
4
. Here, the

strength on a battle�eld should not be interpreted as troop numbers on each battle�eld, but the likelihood

of the troops succeeding their given objectives: A symmetrical game does not allow A to have pA > 0.5

4
emphasis is original.
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on every battle�eld. Therefore, the diversionary battle�elds are not meant to be that strong, just strong

enough to prevent the opponent from achieving their positive objectives in time.

If we look at the middle and the right graph, we see that A was able to spare troops whenµA = 141 and

µA = 111 respectively. If we only consider these two battle�elds, it means A is capable of wresting away

B’s control of timeline attA = 282 and tA = 222 respectively, even if B outnumbers A with tB = 300.

This advantage multiplies with number of battle�elds. If there were two of each such battle�elds, A would

be able to attain the same strategic advantage with 564 and 444 troops against B’s 600 troops, con�rming

the observation that the weaker player has relatively greater advantage when there are more battle�elds.
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CHAPTER 4

SIMULATIONS

The games below explore di�erent scenarios in order to demonstrate the concepts outlined in Chapters

2 and 3. Notations and legends were introduced for the ease of description and presentations, which are

explained as follows:

1. On diagrams, indicates that the entire �le of the same color has the positive objective, likewise

indicates a negative objective;

2. Unless speci�ed in subscripts, the values for t andw are for both players;

3. Strategies are written in a simpli�ed notation, e.g., TA = {(5,+1), (5,−1)} is written as TA =
{+5,−5};

4. When describing the victory condition for the contest, we use wx/|C| to represent the notion “x

must winwx battle�elds out of |C| to win the game”. e.g., “A must win at least 3 out of 5 battle�elds

to win the game” is expressed as 3+/5;

§ 4.1 Attack and Defence

This example demonstrates the e�ect of defence with respect to the contest:

Figure 4.1: When both sides are attacking, the game is resolved in the shortest time

The extent of delay depends on the number of troops, but the e�ect of delay is present regardless of

µ, to achieve this qualitative result with minimum investment is a pillar of this strategy.

§ 4.2 Schwerpunktabschnitt

Vego [23] de�nes the term Schwerpunktabschnitt as the lateral width of the main attack. In this game,

it means the number of battle�elds the player wishes to concentrate resources. It is e�ectively a subjective
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Figure 4.2: The delay of resolution in b3 takes it out of the contest.

estimation of |C|. It a�ects how one would allocate troops across battle�elds, which in turn, a�ects the

probability of winning the game.

Suppose we have a game B = {b1, ..., b10}. t = 70, w = 3. Assuming TB ’ is an evenly split strategy

with no negative object (TB ’ = {+7,+7,+7,+7,+7,+7,+7,+7,+7,+7}). A can choose one of the

two options:

1. TA = {+21,+21,+21,−1,−1,−1,−1,−1,−1,−1}, by which A assumes |C| = wA;

2. TA ={+13,+13,+13,+13,+13,−1,−1,−1,−1,−1}, by which A assumes |C| = (wA+wB−
1).

These two strategies are fundamentally di�erent, because they play di�erent games:

• TA1 is an “all-in” approach that takes the concept of Schwerpunkt to an extreme – a 3/3 game with

higher pA for individual battle�elds;

• TA2 plays a 3+/5 game, with relatively lower pA for individual battle�elds.

Below is a comparison between TA1 and 2, as |C| increases:

TA

PA |C|
1 2 3 4 5 6 7 8 9 10

1. 0.00 0.00 0.42 0.48 0.52 0.15 0.04 >0.01 >0.01 >0.01

2. 0.00 0.00 0.27 0.56 0.77 0.47 0.19 0.05 0.01 >0.01

w 3 3 3 3 3 4 5 6 7 8

Table 4.1

This tells us that it is preferable to focus on |C| rather than wA battle�elds. Note that practically, |C|
cannot exceed 5 without A attacking in the diversionary battle�elds, but it shows us the complete trend of

PA: In either option, the probability of success reaches its maximum when |C| = 5, because the contest

is decisive after exactly 5 resolutions. This is determined by wA and wB , irrespective of either player’s

strategy.
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Below is the analysis of the probabilities of di�erent outcomes with The two response strategies.

Figure 4.3: TA1 is optimized for 3-battle�eld contests Figure 4.4: TA2’s performance begins to overtake TA1

after 4 battle�elds

As shown in Figures 4.3 and 4.4, indecision is entirely absent at the (wA+wB − 1)-th resolution, the

equilibrium began immediately to restore itself as mutual destruction takes e�ect.

We can see how many positive objects TA has as a way of adjusting individual pA’s in C. After 5

resolutions, PA1 < PA2, which would make the second strategy dominant. But if we check at the end of

3 resolutions, the probabilities are quite di�erent:

P
(3)
1 = 0.6253 ≈ 0.24

P
(3)
2 = 0.53 ≈ 0.13

This means TA1 is better than TA2 before the second strategy can catch up. Unfortunately, with three

resolutions, the game is more likely to be in a state of indecision (draw) than A winning. It may be

considered as a temporal advantage if over-concentration of su�cient resources allows P1 > 0.5 before

the (wA+wB−1)-th resolution. But if we hold t constant, and there is no time constraints, TA2 is always

preferable to TA1, because over-concentration increases the risk by eliminating redundancy.

§ 4.3 Disposition and Probability

Having discovered the unique property of (wA + wB − 1)-battle�eld contest, our problem can be

re-phrased as “whether some battle�elds in contest should have higher pA’s than others, or they should be

as close to each other as possible”. In this test, only the contest is concerned. The contest strategies look

like this

T
|C|

1 2 3 4 5 6 7

B’ +40 +40 +40 +40 +40 +40 +40

A1 +40 +40 +40 +40 +40 +40 +40

A2 +56 +56 +56 +56 +56 -0 -0

A3 +70 +70 +70 +70 -0 -0 -0

Table 4.2
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This is a classical 4+/7 symmetrical majoritarian Blotto game, in which mirroring strategy is the

Nash equilibrium. Strategies TA2 and TA3 transform it into di�erent games: a 4+/5 game and a 4/4 game

respectively. We notice that the fail-safe redundancy decreases as the extent of over-concentration grows.

The �gure below shows the probability of winning as area under curve:

Figure 4.5: Comparison between di�erent levels of concentration

The increase in individual battle�elds does not o�set the loss in highlighted areas. The practical

implication is that there is no need to apply the Schwerpunkt principle recursively, because the price of

strategic freedom is higher than the reward of improving the odds for individual battle�elds.

§ 4.4 Symmetrical Game

Suppose the game is t = 28, w = 2,m = 7We begin by evenly distribute troops across all battle�elds.

The Schwerpunkt is identi�ed with the (wA + wB − 1) battle�elds that are the weakest.
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b 1 2 3 4 5 6 7
TB ′ −4 −4 −4 −4 +4 +4 +4
TA −4 −4 −4 −4 +4 +4 +4
C {b5, b6, b7}
D {b1, b2, b3, b4}
PA 0.5

Table 4.3: Initial evenly split strategy

Figure 4.6: Arranged from the weakest to

the strongest

From Figure 4.6, we can clearly see that A’s troops in b1,2,3,4 are not required, because B was not

attacking. These battle�elds are able to transfer their troops to b5,6,7 to increase the odds.
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b 1 2 3 4 5 6 7
TB ′ −4 −4 −4 −4 +4 +4 +4
TA −0 −0 −0 −0 +10 +9 +9
C {b5, b6, b7}
D {b1, b2, b3, b4}
PA ≈ 0.78

Table 4.4: Initial evenly split strategy

Figure 4.7: Oblique order with complete

concentration of troops

This example also exploits the qualitative weakness of positive objectives mentioned in the previous

chapter, used when no numerical advantage present itself. When comparing with the prima facie proba-

bility of 0.5 in a decisive contest, The strategy

TA = {−0,−0,−0,−0,+10,+9,+9}

raises the probability to 0.78 by concentrating on the three decisive battle�elds b5,6,7. One should not

forget that the goal is to seek out battle�elds in which one has disproportionate advantage, not to maximize

concentration for its own sake. If we continue the game from B’s perspective, it will be apparent that

the degree of concentration is no safe indicator of the e�ectiveness of strategy: Suppose B was given

TA′ = {−0,−0,−0,−0,+10,+9,+9}. B would have to acknowledge the importance of the battle�elds
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b5,6,7, but they are not decisive in B’s strategy, because contesting in strong battle�elds is ine�cient.

Instead, B should focus on the unopposed battle�elds b1,2,3:

b 1 2 3 4 5 6 7
TA′ −0 −0 −0 −0 +9 +9 +10
TB +9 +8 +8 −0 −1 −1 −1
χ 1 1 1 n/a 0.82 0.8 0.8
pB 1 1 1 0 0.09 0.1 0.1
C {b1, b2, b3}
D {b4, b5, b6, b7}
PB 1

Table 4.5: Note that b4 is abandoned by both sides

Figure 4.8: Concentration as a matter of

principle
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In this instance, B is guaranteed to win by avoiding the entirety of A’s troops in battle�elds b1,2,3.

Even though B’s troops is more spread out than A’s. A Schwerpunkt-based strategy, if not quickly realized,

leaves itself vulnerable to exploitation by another Schwerpunkt-based strategy.

One can appreciate the tremendous leverage gained from picking the right targets from a glance at

Figure 4.8: In fact, B can achieve this outcome with as few troops as 5, no more than the stones with which

David slew the legendary Goliath.

§ 4.5 The End of Myth

In the beginning, we referenced the sizes of armies of both sides, and noted the disparity. This test looks

for the connections betweenPA and tA when A is disadvantaged. In all three games, tA is gradually reduced

while tB holds still, without changing the strategy of either player. In the �rst game,wA = wB = 2, and

the starting conditions are as below:

b 1 2 3 4 5 6 7
TB −4 −4 −4 −4 +4 +4 +4
TA −0 −0 −0 −0 +10 +9 +9

Table 4.6

The second game begins with tA = tB = 280.

b 1 2 3 4 5 6 7
TB −40 −40 −40 −40 +40 +40 +40
TA −0 −0 −0 −0 +94 +93 +93

Table 4.7

The �nal game in this set is exactly the same condition as the previous one, exceptw = 3. It changes

the troop disposition to cover |C| = 5, but the principle is the same:

b 1 2 3 4 5 6 7
TB −40 −40 +40 +40 +40 +40 +40
TA −0 −0 +56 +56 +56 +56 +56

Table 4.8

The results are as following:
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Figure 4.9

Assuming the strategy does not change, the trend of winning probability PA is not a�ected by the

total number of troops: Although a large number might allow more minute adjustments as shown in

tables 4.6 and 4.7 ({10,9,9} does not become {100,90,90}, but a more evenly distributed {94,93,93}), their

improvements are marginal. When comparing the �rst two and the third game, the �rst two are 2+/3

games, the third is a 3+/5 game. If we considerPA = 0.5 as the equilibrium, A can do away with over half

of the total troops, and still remain on equal footing when A only has to win a 2+/3 game, the 3+/5 game

shown in the last panel is much less generous. When m stays the same, the increase in |C| increases B’s

concentration without B’s active adjustment in strategy.

Following up on the last game, the next is to explore the role ofm. Both players retain their respective

strategies (A still concentrate on 3 battle�elds, while B evenly split troops across allm battle�elds).

Figure 4.10
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It should be noted that TB is an evenly split strategy, which represents the worst-case scenario. Below

is a comparison with a randomly assigned strategy:

Figure 4.11: TB is random, note the scale on the y-axis is slightly higher

When B does not assign troops evenly, the diluting e�ect of µ̂B = tB
m

is compounded by
µxA

µxA+µxB
,

whereµxB < µ̂B : One can always �nd a weak spot when the opponent’s strategy is not evenly distributed,

which makes the series converge quicker on 1. In either case, the Schwerpunkt player bene�ts from greater

diversion. This phenomenon �ts the observation that an increase in the dimensions of the con�ict is

inherently bene�cial to the weaker player (whose incentive in employing novel strategies is greater than

their stronger opponent) [18].

§ 4.6 Troop Transfer

We noted that A was able to move more troops from D to C, The restriction largely came from

chronological ordering: When the improvement in χ1
allows it of o�set the change in χ2

, A is able to

control the timing. This ability is more a�ected by TB than tA and tB :

Suppose we have two battle�elds b1 ∈ C and b2 ∈ D. In either battle�eld, µ̂A = 150, µ1
B =

100, µ2
B = 200. If we began to transfer troops µ2

A to µ1
A, we can expect the marginal utility

1
1+µB

, i.e. the

amount by which χ is changed per transferred troop, to decrease in b1 and increase in b2, until A must

stop in order to avoid subverting the preferred temporal relation χ1 > χ2
.
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Figure 4.12: At some point χ2
will overtake χ1

This threshold is the maximum troops A can spare from the diversionary battle�eld without abdicating

the control of chronology. In another word, the maximum concentration that can be achieved inb1(bc− in

general). We observe that µA can achieve certain leverage, sometimes with less number than µB , although

higher total number is still advantageous. But when this critical mass is not reached, A cannot formulate

any meaningful concentration-based strategy. The critical mass of A is, to a large degree, a�ected by the

B’s own degree of concentration:

Figure 4.13: Depends on how B assigns troops and how many troops A has, the latter might be able to spare the

majority of defensive troops or none at all.

The �rst graph describes an awkward situation like the one described in table 4.3, where A cannot af-

ford take o� a single troop without being the stronger player in the �rst place ({(+150,−150), (−150,+150)}).

When µmanipulation avails nothing, one must turn attention towards κ.

Note that the results are only between two battle�elds: If we look at the middle and the right graph,

we see that A was able to spare troops when µA = 141 and µA = 111 respectively. If we only consider
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these two battle�elds, it means A is capable of wresting away B’s control of timeline at tA = 282 and

tA = 222, even if B outnumbers A by %6 and %26 respectively. This advantage multiplies with number

of battle�elds: If there were two of each such battle�elds, A would be able to attain the same strategic

advantage with 564 and 444 troops against B’s 600 troops.

To summarize the roles of the variables in the setup of the game, we can consider this thought experi-

ment: If A was o�ered a chance to add 1 to eitherwB ,m or tA before the game, tA + 1 would be a slight

bonus,m + 1 might give A a more noticeable boost if B did not concentrate, wB + 1 would give A a

signi�cant advantage.
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CHAPTER 5

CONCLUSION

This paper o�ers a framework to pair game-theoretical models with philosophy as a tool for resource

allocation analysis, just as we did with the Epaminondas’ troop deployment at the battle of Leuctra.

The Battle of Leuctra was the �rst recorded instance of a successful application of oblique order.

Diodorus recorded that Epaminondas gathered his best warriors on one wing to be used in decisive action.

The weakest of them were put on the other side, and bade them to avoid combat. (Bibliotheca Historica
XV.55,[4]). The Boeotian attack on the Lacedaemonian right wing was successful. Xenophon reported

that the the Boeotian formation was �fty ranks deep at the point, while the Lacedaemonians had twelve

(Hellenica VI.4.12[24]). not only broke the formation, but also slew Cleombrotus, who was both the

commander and the political leader of the faction. Abandoned by her allies, Lacedaemon was forced

to abdicate hegemony of Greece. The Thebans erected a monument, part of it stands on the ancient

battle�eld to this day.

Figure 5.1: Epaminondas’ oblique order at the Battle of Leuctra

There are several matters that, due to constraint of scope, were not addressed. I shall brie�y discuss

them below: First, much of the strategy relies heavily on the CSF as well as how the χ value is calculated.

Many other CSF’s exist, such as the di�erence-form CSF [12], and the weighted asymmetric lottery CSF

[19]. Since the CSF is the crux of the game rules, the algorithm to generate strategies are likely particular

to a speci�c CSF, although the principles that guided the design of algorithm likely retains generality.

Since χ is a function of the CSF, it is also a�ected by the change. Furthermore, we have taken no ac-

count of the complications that might arise from large number of troops. For example, a battle�eld

bi = ((500,+1), (500,+1)) would resolve faster than one with bj = ((5,+1), (5,−1)). Second, all

battle�elds have the same payo�s in this game. It is possible to assign battle�elds with di�erent values u
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and change the victory condition fromw to u. These additions are circumstantial, and must be tailored

to speci�c context. Third, the partial observability (“fog”, in Clausewitizian terms) of war is completely

eliminated in our analysis. Of the few works on Blotto games with incomplete information, [1] examined

Blotto game using auction CSF, and [11] used Blotto game to test bounded rational agents. An important

reason that this simple principle is not followed is because of uncertainty: Looking at Table 4.4 from the

previous chapter, if TB ′ was noisy, B would surprise A by attacking in the uncontested b1,2,3,4. A single

such surprise attack can nullify the advantage of Schwerpunkt by displacing b7 in C, reducing pA from

0.78 to 0.49. In this case, A would have the incentive to spread out troops in a more evenly fashion to

mitigate the damage of such surprise attacks, weakening the Schwerpunkt in the process.

Fourth, with respect to battle simulation, the current one-dimensional battle�eld space can only model

head-on confrontations, it cannot model more complex situations, such as the perpendicular order.

Finally, we should address the mythical fortune of the underdog: What we have shown creates a speci�c

type of favorable conditions in a friction-less and completely observable environment within a de�ned

scope. When these assumptions are challenged, the risks in such games become more opaque, and the

inherent aggression in this strategy may, in the end, contribute more to miscalculation. Understanding

how such gambits could work and the assumptions on which it relies is the �rst step to avoid reckless

ventures.
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APPENDIX

The Schwerpunkt Algorithm

Figure 5.2: Begin,w = 2
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Figure 5.3: Assign troops evenly and �nd weakness
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Figure 5.4: Taking o� troops from diversionary battle�elds to form a reserveR
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Figure 5.5: PuttingR in the contest battle�elds
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