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ABSTRACT 

The AGDISP aerial spray simulation model is used to predict the deposition of 
spray material released from an aircraft.  Determining the optimal input values to 
AGDISP in order to produce a desired spray material deposition is extremely difficult. 
SAGA, an intelligent optimization method based on the simple genetic algorithm, was 
developed to solve this problem.  Our project is the subsequent work of SAGA.  We 
apply several nature inspired heuristics, mainly based on genetic algorithms, to this 
problem.  The first method still uses the genetic algorithm, but changes genetic algorithm 
type, selection method, crossover and mutation operators.  The second method applies a 
neural network to improve the initial population, crossover and mutation.  The third 
method uses GADO, a general-purpose approach to solving the parametric design 
problem.  The fourth method uses simulated annealing.  Finally, we compare their 
performance in the aerial spray deposition problem. 
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CHAPTER 1 

INTRODUCTION 

 

Aerial spray and pest control has always been an important application in forest 

management.  Computer simulation programs are frequently used to facilitate the 

spraying practice.  The AGDISP (Agricultural Dispersal) aerial spray simulation model is 

one of the main models developed for this purpose by USDA Forest Service (Bilanin et 

al., 1989; Teske et al., 1998).  It predicts the spray deposition, and the prediction is based 

on a well-defined set of input parameters as well as constant data.  It is a difficult 

problem to identify ideal spray parameters to achieve a desired deposition, because there 

are dozens of spray parameters in spray practice and each of them has many possible 

values.  The total combination of possible spray parameters generates a huge search space.  

In order to avoid a combinational explosion in the parameter space, heuristic search 

techniques must be used to get a near-optimum solution. 

SAGA (Spray Advisor using Genetic Algorithm) was developed, in cooperation 

with experts from the USDA Forest Service, to optimize the aerial spray deposition 

(Potter et al., 2000).  The results were evaluated by the forest experts and regarded as 

excellent predictions.  Further study is necessary, since aerial spray and pest control is 

such an important real-world application.  Our project is the subsequent work of SAGA.  

Encouraged by the success of SAGA, we explore the potential of genetic algorithms in 

this problem.  In addition, we apply several other nature inspired intelligent optimization 
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methods and compare their performance.  In order to make our programs more useful in 

the aerial spray practice, we seek improvements in two ways: one is to improve the 

SAGA results, and the other is to shorten the computation time required to achieve useful 

results.  This thesis reports the attempts and achievements we have made so far in our 

aerial spray research. 

The rest of the thesis is organized as follows.  Chapter 2 presents the background 

knowledge of the AGDISP model, genetic algorithms, and SAGA.  Chapter 3 describes 

various versions of programs developed in our project, namely SAGA2, SAGA2NN, 

SAGADO and SASA.  Chapter 4 compares their results.  Chapter 5 concludes with a 

summary of this project, and gives some future expectations. 
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CHAPTER 2 

BACKGROUND 

 

2.1 THE AGDISP MODEL 

Aerial spray simulation models simulate the behavior of spray material released 

from the aircraft, and predict the spray deposition and drift.  AGDISP is such a model 

(Bilanin et al., 1989; Teske et al., 1998).  It uses a mathematical model to dynamically 

simulate the complicated processes such as drift, evaporation, deposition, and dispersion.  

It tracks the droplets when they leave the aircraft, and estimates the events encountered 

by them as they make their way through the aircraft wake and descend onto the spray 

block.  It analyzes the movement of the spray material above the forest canopy, the 

movement among the trees, and the amount of material that actually reaches the ground.  

It makes predictions by calculating the mean position of the deposited material and the 

position variance about the mean as a result of turbulent fluctuations.  The input 

parameters AGDISP needs include: the altitude and speed of the aircraft when the spray 

material is released, the type of the aircraft (whether it is an airplane or a helicopter), the 

type of boom and nozzle system used to discharge the spray material, the swath width of 

each pass of the aircraft, the type and density of the forest, wind speed and direction, 

relative humidity, and spray material characteristics.   

In our current study, we focus on eleven specific parameters and make the others 

constant.  These eleven variables are: aircraft ID number, block width, boom height, 
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boom length, relative humidity, number of nozzles, nonvolatile fraction, swath width, 

temperature, volume median diameter input and wind speed (the details are in Table 1).  

In practical spray applications, some of them can be fixed based on requirements.   

Table 1. Spray Parameters and Their Range 

Spray Parameters Lower Upper 
Aircraft ID 1 124 
Block Width (m) 50.0 1000.0 
Boom Height (m) 8.0 15.0 
Boom Length 0.3 1.0 
Humidity (%) 15.0 100.0 
Nozzles 1 60 
Nonvolatile Fraction 0.001 1 
Swath Width 0.3 3.0 
Temperature (C) 1.0 30.0 
VMD Input (µm) 100.0 400.0 
Wind Speed (m/s) 0.23 4.47 

 

AGDISP returns three spray output values: VMD (the deposition composed of 

Volume Median Diameter), drift fraction, and COV (the Coefficient of Variance).  VMD 

is a measure of spray material droplet size.  In order to achieve a preferable deposition, 

variance between the output VMD and the desired VMD should be small.  Drift fraction 

identifies the amount of spray material deposited outside the spray block.  Small drift 

fraction is better, because that means more spray material will stay within the spray block.  

COV gives an indication of the uniformity of the deposited spray material.  It is 

calculated by standard deviation of the deposition divided by average deposition.  Small 

COV is better, since that means deviation fraction will be little.    

AGDISP obtains the output values from the input parameters, but it doesn’t know 

how to optimize the input parameters to get better output values.  Our project, as well as 

the original SAGA, does this job. 
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2.2 GENETIC ALGORITHMS 

Genetic algorithms are a class of heuristic search techniques, which are inspired 

by Darwin’s theory of natural selection and based on the principle of survival of the 

fittest (Holland, 1975).  There are two hypotheses to explain how genetic algorithms 

generate good solutions.  One is the building-block hypothesis (Goldberg, 1989), which 

stresses recombining and propagating features from parents to produce offspring.  The 

other is the convergence-controlled variation hypothesis (Eshelman, 1997), which 

stresses random sampling from a distribution that is a function of the current population 

distribution. 

Genetic algorithms have the ability to reach a global near optimum in a complex 

search space.  They combine elements of random search and local search, and make a 

good balance between exploring the search space and exploiting the best solution.  A 

typical genetic algorithm has five basic components (Michalewicz, 1996):  

1. A representation of solutions to the problem 

2. A way to create an initial population 

3. A fitness function to evaluate the solutions 

4. A selection mechanism to pick parents for reproduction, and crossover and 

mutation operators to alter the genetic composition of offspring 

5. Values for the parameters of genetic algorithms 

Genetic algorithms work with a population of individuals.  Each individual 

represents a possible solution to the given problem.  Before a run, a suitable coding 

scheme of the individuals must be devised.  In general, there are four kinds of encoding 

methods: binary encoding, real-number encoding, integer or literal permutation encoding, 
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and general data structure encoding (Gen, 2000).  After a representation of solutions is 

decided, an initial population is created randomly or by problem-specific techniques.  

Then the fitness function is used to calculate the fitness (fitness is a measure of how good 

a solution to the problem) of individuals in the population.  Individuals with higher 

fitness will receive larger probability of selection.  In engineering optimization problems, 

most of the time is spent on fitness evaluation.  Then a selection mechanism picks pairs 

of individuals to mate stochastically according to their fitness. Common types of 

selection include roulette wheel selection, tournament selection, and ranking selection 

(Gen, 2000).  After selection, a crossover operator is applied to two parents with a 

probability, which exchanges characteristics of parents and passes them to offspring. 

Some well-used crossover operators are arithmetical crossover, blend crossover, and 

direction-based crossover (Gen, 2000).  After crossover, a mutation operator produces 

spontaneous random changes in offspring with a probability.  Some well-used mutation 

operators are nonuniform mutation, directional mutation, and Gaussian mutation (Gen, 

2000).  Thus, a new population is formed, and the fitness of offspring will be calculated.  

The above process is repeated until the stop criterion is met, such as the population is 

converged or the maximum number of fitness evaluations is reached.  The parameters of 

genetic algorithms, such as population size, crossover rate, and mutation rate, have a 

great influence over their performance.  The optimum values of these parameters vary 

with the particular problem, and can only be obtained by trial and error.   

Because of their simplicity, ease of operation, and parallel and global perspective, 

genetic algorithms have been applied successfully in a wide variety of problem domains, 
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such as global optimizations, constrained optimizations, combinatorial optimizations, and 

multi-objective optimizations. 

 

2.3 SAGA 

SAGA was developed to heuristically search for a near-optimal set of input 

parameters needed to achieve a certain aerial spray deposition (Potter et al., 2000).  

SAGA sends a set of spray parameters to the AGDISP simulation model.  AGDISP 

calculates and sends back the spray results for each parameter set.  Based on the fitness 

function values mapped from the spray results, the genetic algorithm attempts to evolve 

an improved set of parameters.  The SGA (Simple Genetic Algorithm) is used for the 

optimization process (Goldberg, 1989).  An individual corresponds to a set of AGDISP 

parameters.  An elitist method, which preserves the best individuals for the next 

generation, and fitness scaling, which maps raw objective function values to positive real 

values, are used in addition to roulette wheel selection as the selection mechanism.   

The goal is to minimize the drift fraction, minimize the COV, and minimize the 

difference between the output VMD and the desired VMD.  That is, get the exact amount 

of spray material evenly distributed over the spray block with the least loss due to 

evaporation and attrition.  This is a multi-objective optimization problem since there are 

three output values to optimize.  A weighted-sum approach is applied, which assigns 

weights to each objective function and combines them into a single-objective function 

(Zadeh, 1963).  The fitness function suggested by the USDA Forest Service experts is 

shown below.  (VMDCenter is the desired VMD value specified by the user, usually an 

entomologist, before the run.) 
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Fitness = 100× [50× (1.0–DriftFraction)+25× (1-COV)+25×VMDTerm], where  

VMDTerm = 1.0–abs(1.0–VMD/VMDCenter). 

As can be seen, this is a typical parametric design problem, in which the genetic 

algorithm evolves the spray parameters in a continuous domain, and the simulation 

engine evaluates the solution.  The simulation engine takes 2-5 seconds (on a Pentium III 

600 MHZ PC) to evaluate the input parameters for an individual, so the total number of 

simulations cannot be too high in order to get a solution in a reasonable time (normally 

SAGA allows 5000 simulations). 
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CHAPER 3 

DEVELOPMENT OF SAGA2, SAGA2NN, SAGADO, AND SASA 

 

3.1 SAGA2 

In the aerial spray deposition problem, the search space is huge and the simulation 

time is limited, so SAGA has difficulty converging to a global optimum.  We develop 

SAGA2 (Spray Advisor using Genetic Algorithm version 2) from SAGA, and hope to get 

a better solution.   

 

3.1.1 Basic idea 

SAGA uses a generational genetic algorithm, replacing an entire set of parents by 

offspring (Grefenstette, 1986).  The convergence speed of this scheme is rather slow.  

Actually, after 5000 simulations (100 individuals × 50 generations) as specified by the 

program, the population has typically not converged.  SAGA2 uses a steady-state genetic 

algorithm, replacing only the n worst parents by offspring (Davis, 1991).  We expect it to 

speed up the convergence process and reach a better result.   

The original selection method was roulette wheel selection, which determines 

selection probability for each individual proportional to the fitness value (Holland, 1975).  

In SAGA2, we replace roulette wheel selection with tournament selection, which 

randomly chooses a set of individuals and picks out the best for reproduction (Goldberg 

et al., 1989).  According to Goldberg and Deb, tournament selection is robust and less 

prone to premature convergence (Goldberg et al. 1991).  Besides roulette wheel selection, 
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the selection mechanism of SAGA includes an elitist method and fitness scaling.  SAGA2 

does not need them, because they are implicitly implemented in the steady-state genetic 

algorithm plus tournament selection. 

Instead of using a single type of crossover and mutation operator, in SAGA2 we 

combine several kinds of crossover and mutation operators and apply them with different 

probabilities.  The three kinds of crossover operators are blend crossover (with the 

probability of 60%), direction-based crossover (with the probability of 30%), and 

uniform crossover (with the probability of 10%).  Blend crossover creates offspring 

randomly within a hyper-rectangular space defined by the parent points (Eshelman et al., 

1993).  Direction-based crossover generates offspring x from parents x1 and x2 according 

to the rule: x = r(x2-x1)+x2, where r is a random number between 0 and 1, and the fitness 

of x2 is not worse than x1 (Michalewicz et al., 1994). Uniform crossover creates offspring 

by randomly taking a component from one of the parents to form the corresponding 

component of the offspring (Syswerda, 1989).  The three kinds of mutation operators are 

shrinking window mutation (with the probability of 50%), nonuniform mutation (with the 

probability of 40%), and greedy mutation (with the probability of 10%).  Shrinking 

window mutation creates offspring by randomly perturbing the components of the 

offspring and the perturbation window shrinks with time (Rasheed, 1998).  Nonuniform 

mutation creates offspring by replacing the components of the offspring with a random 

value within a range and the range decreases with time (Michalewicz, 1996).  Greedy 

mutation behaves similarly to nonuniform mutation and the difference is its range does 

not decrease with time (Rasheed, 1998).  By improving the crossover and mutation 

methods, our goal is to increase the search capability of the genetic algorithm. 
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3.1.2 Implementation 

We use a data structure, which contains eleven real-number members, to represent 

an individual.  Each member of the data structure corresponds to an input parameter of 

the AGDISP simulation model.  The initial population is created by generating a random 

number for every member in the individuals within the range of the corresponding input 

parameter.  Crossover and mutation may produce infeasible or illegal individuals, which 

will be converted by the repair technique.  For example, if the member corresponding to 

Aircraft ID in an individual exceeds its upper bound 124 after blend crossover, the repair 

technique automatically decreases it to 124, and if it exceeds its lower bound 1, the repair 

technique automatically increases it to 1.  We use an array to store the previously 

evaluated individuals and their fitness, whose size is ten times the population size.  

Before a new individual is evaluated, the array is searched.  If an identical individual is 

found, the fitness of the new individual is set to that of the identical one, otherwise the 

new individual is evaluated and adds to the array or replaces the oldest one if the array is 

full.  When the genetic algorithm approaches convergence, individuals in the population 

become homogeneous.  It will be more and more likely to obtain the fitness directly from 

the array instead of calling the expensive simulation engine. 

The main interface of SAGA2 is shown in Figure 1.  The user can specify the 

value of VMDCenter (desired VMD) based on the application purpose.  The default value 

is 100.  The user can press the button “Preset Parameters” to preset certain spray 

parameters by selecting the ones to preset and fill in appropriate values.  The rest of the 

parameters are left open to evolution by the genetic algorithm.  The interface to preset 

spray parameters is shown in Figure 2.  Depending on his knowledge of the genetic 
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algorithm, the user can press the button “Customized Parameters“ to modify a set of 

genetic algorithm parameters.  For example, the user can control selection pressure by 

modifying tournament size.  The default value is 2.  Large tournament size increases the 

selection pressure, since poor individuals are less likely to win a tournament, and vice-

versa.  The user can control the percentage of the population to be replaced by the 

offspring by modifying the replacement rate.  The default value is 20%.  The interface to 

customize SAGA2 parameters is shown in Figure 3. 

 

 
 

Figure 1. The Main Interface of SAGA2 
 

 12



 
 

Figure 2. The Interface to Preset Spray Parameters 
 

 
 

Figure 3. The Interface to Customize SAGA2 Parameters 

 

3.2 SAGA2NN 

The optimization program runs every time before the spray application to 

determine the input parameters for the desired output.  Time left for optimization is often 

limited, in which case it is more important to get a solution in a shorter time than to get a 

better solution.  We develop SAGA2NN (Spray Advisor using Genetic Algorithm version 
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2 with Neural Network) from SAGA2 by applying neural networks, and hope to shorten 

the time required to get a useful solution. 

 

3.2.1 Neural networks 

 A neural network is a computational structure inspired by the biological nervous 

system (Rumelhart et al., 1986).  It is composed of a number of nodes that are analogous 

to neurons, and connected by links that are analogous to synapses.  Each link has a 

weight associated with it.  It uses examples of a target function to find the coefficients 

that make a certain mapping function approximate the target function as closely as 

possible.  The coefficients are stored in the weights.  The weights are automatically 

adjusted to reduce the error between the target output and the actual output by training 

the network according to a specified learning rule.   

The most popular training rule is backpropagation.  A backpropagation network is 

a fully connected, layered, feedforward neural network.  The network consists of three 

layers: the input, hidden and output layers.  The nodes in the input layer represent the 

independent variables in the data set, the nodes in the output layer represent the 

dependent variables, and the nodes in the hidden layer provide the internal representation 

of the relationships (often nonlinear) between the input and output nodes.  The number of 

hidden nodes determines the generalization ability of the network.   

The specific backpropagation algorithm adopted in SAGA2NN is 

backpropagation with momentum (Gallant, 1993).  In the forward pass, each node in the 

hidden and output layers calculates the weighted sum of its inputs, and takes a sigmoid 

function of that sum which squashes it to fit within limits.  The sigmoid function is the 
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logistic function: g(u) = 1/(1+1/eu).  In the backward pass, each node in the output and 

hidden layers propagates the amount of its error back through its links to the nodes in the 

previous layer.  For each training example, there is thus a forward pass through the 

network to determine the network’s actual output, followed by a backward pass to 

determine, based on the difference between the actual output and the target output, how 

the weights should be changed.  The weights are changed after every example, and the 

method used to calculate the weight changes is gradient descent, which changes the 

weights in the direction where the error surface goes down most steeply.  The amount of 

change for weight w is determined by the learning law: ct = µct-1-(1-µ)εdt, where ct is the 

current weight change, ct-1 is the previous weight change, dt is the current derivative of 

the error with respect to w, µ is the learning rate, and ε is the momentum.  Learning rate 

is a proportionality, which determines the size of the weight change.  A small learning 

rate will lead to slower learning, but a large one may exaggerate the influence of local 

minima, leading to greater oscillations in network output.  Momentum is the fraction of 

the previous weight change, which allows the algorithm to skip over local minima by 

adjusting weights in a manner that reflects past direction movement in the weight space.  

Training continues until either the errors for the network stabilize or a predetermined 

number of epochs (an epoch is an iteration in which every example in the training set has 

been trained) is reached. 

With the advantage of adaptive learning, self-organization, and fault tolerance, 

neural networks are applied successfully in the fields of engineering and business, 

especially in such categories as classification, forecasting and modeling. 
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3.2.2 Basic idea 

SAGA2 uses random numbers to produce the initial population, so the average 

fitness of the initial population is not high and the individuals are rather diverse.  

SAGA2NN generates the initial population from a large pool of individuals.  For example, 

if the population size is 100, then the genetic algorithm randomly produces 2000 

individuals in the process of generating the initial population.  It uses a neural network to 

approximate the fitness values, and selects 100 individuals with the highest fitness as its 

initial population.  Then it uses the AGDISP simulation engine to get the accurate fitness 

values of these 100 individuals.  Comparing to the time cost of the 100 simulations, the 

time to compute 2000 individuals using a neural network is negligible, but the average 

fitness of the initial population will be much higher than that randomly produced.  

SAGA2NN also applies this method in the process of crossover and mutation.  For each 

crossover and mutation, it actually does twenty crossover and mutation operations, uses 

the neural network to approximate the results’ fitness, and selects the one with the highest 

fitness as the candidate.  The informed operators idea comes from Rasheed et al. (2000).  

By improving the initial population, crossover, and mutation, we hope the genetic 

algorithm will require fewer simulations to converge and converge to a better solution. 

 

3.2.3 Implementation 

We use the AGDISP simulation engine to run 26000 simulations to collect the 

data.  The independent variables are the eleven input parameters (randomly generated, 

different in each simulation), and the dependent variables are the three outputs.  It took 

nearly 24 hours to collect these data (on a Pentium III 600 MHZ PC).  These data is used 
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to train the neural network.  The cost is worthwhile since data collecting and neural 

network training is done once for all and the genetic algorithm will run thousands of 

times for different spray parameter settings in the future. 

We develop a program to train the neural network.  The network has eleven input 

nodes and three output nodes.  The number of hidden nodes has a great influence on the 

performance of the neural network, so it will be obtained by experiments.  There is a bias 

node (its value is 1) in the hidden and output layers, which serves a similar purpose as the 

intercept in regression models.  In weight initialization, the weights associated with links 

connecting the input and hidden layers are set to small random numbers, half of the 

weights associated with links connecting the hidden and output layers are set to 1 and the 

other half are set to –1.  Before training, the input variables are scaled to a range between 

0 and 1, and the output variables are scaled to a range that is within the relatively linear 

portion of the sigmoid function (between 0.1 and 0.9). 

The main interface of our training program is shown in Figure 4.  The neural 

network tries to minimize the MSE (median squared error) of the three output values.  

We divide the data into training, testing, and production sets.  20000 data sets are used as 

the training and testing set (saved in file NNData.txt), and 6000 data sets as the 

production set (saved in file NNProduction.txt).  The neural network is trained on the 

training set.  After each epoch, it measures the error on the testing set, and stops training 

if the error increases.  Its performance is measured by the error on the production set.  We 

use 75% of the data in file NNData.txt as the training set, 0.1 as the learning rate, and 0.8 

as the momentum.  It can be seen that 50 hidden nodes will produce the best result (the 

details are in Table 2).  
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Table 2. Influence of hidden nodes on neural network 
 

Hidden Nodes 20 30 40 50 60 
MSE of Drift Fraction 0.000840 0.001077 0.000843 0.000768 0.001071 
MSE of COV 0.015327 0.015289 0.015317 0.013275 0.016260 
MSE of VMD 465.59 462.39 448.93 438.88 458.27 
Learning Epochs 2524 711 1002 3471 352 

 

The weights of the neural network are saved in file Weight.txt, which will be read 

by SAGA2NN.  Without using the expensive simulation engine, SAGA2NN relies on the 

weights to map the values of drift fraction, COV and VMD from a set of spray 

parameters.  Experiments show that the error of the fitness calculated by the neural 

network from the actual fitness got by AGDISP is within 5%.  Originally, the range of 

fitness values in the initial population was from 1000 to 8500.  After applying the neural 

network to select individuals with high fitness from a large pool, the range of fitness 

values in the initial population is greatly increased (from 8000 to 9300).   

 

Figure 4. The Main Interface of ANN 
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3.3 SAGADO 

GADO (Genetic Algorithm for Design Optimization) is a general-purpose 

approach based on genetic algorithms to solving the parametric design problem (Rasheed, 

1998, Rasheed et al., 1999).  It has been applied to domains such as supersonic transport 

aircraft design and supersonic cruise missile inlet design with considerable efficiency and 

reliability.  We develop SAGADO (Spray Advisor using Genetic Algorithm for Design 

Optimization) by using GADO in the optimization process, and test its performance in 

the aerial spray deposition management domain. 

 

3.3.1 GADO 

In GADO, each individual in the population represents a parametric description of 

an artifact.  Since evaluating an individual is normally time-consuming for the 

engineering optimization problem, the screening module, which uses a simple K-nearest 

neighbor approach, decides whether a point is likely to correspond to a good design by 

extrapolating from points evaluated earlier in the search, and rejects those points unlikely 

to be good without using the expensive simulator.  An adaptive penalty method is used 

for handling constraints.  The penalty coefficient increases when too little attention is 

given to feasibility, and decreases when too much attention is given to feasibility. GADO 

uses a steady-state genetic algorithm. One offspring is produced from two parents 

selected from the population via some selection scheme, and replaces an existing 

individual in the population via some replacement strategy.  The selection scheme is 

ranking selection, which sorts the population from best to worst and assigns the selection 

probability of each individual not according to its raw fitness but according to its ranking.  
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The replacement strategy is a crowding technique, which takes into consideration both 

the fitness and the proximity of the points in the population.  Several crossover and 

mutation operators are used, in which the most important one is guided crossover.  The 

idea of guided crossover is to form different search directions by joining pairs of 

previously evaluated points, rank these directions, and take a small step in the best 

direction.  It endows the genetic algorithm with gradient-like capabilities without actually 

computing any gradients.  The genetic algorithm stops when the maximum number of 

evaluations is reached.  In case of premature convergence, the diversity maintenance 

module will rebuild the population to restore diversity. 

 

3.3.2 Implementation 

GADO will automatically handle individual representation, initial population, 

selection, crossover and mutation.  In order to run the optimization, we only need to 

provide it with: 

1. The set of spray parameters needed to evolve, including their number, their data 

type, and their range.   

2. The fitness function.  GADO does a minimization, so the fitness provided to it 

is the opposite of the original fitness. 

We connect GADO with the user interface, and add some routines to update the 

evolution process and save the result.  The main interface of SAGADO, the interface to 

preset spray parameters are similar to those of SAGA2.  The interface to customize 

SAGADO parameters is shown in Figure 5.  The meanings of these parameters are 

described in Rasheed (1998). 
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Figure 5. The Interface to Customize SAGADO Parameters 

 

3.4 SASA 

The above methods are all based on genetic algorithms.  Simulated annealing is 

also a widely used global stochastic optimization technique, which is inspired by physical 

annealing of solids (Kirkpatrick et al., 1983).  Its advantage lies in its ability to avoid 

being stuck in local optima by occasionally allowing a move to an inferior solution.  We 

develop SASA (Spray Advisor using Simulated Annealing) by using simulated annealing 

in the optimization process, and compare its performance with that of genetic algorithms. 

 

3.4.1 Simulated Annealing  

 Simulated Annealing models the process of crystal (a crystal represents the global 

minimum energy state for the system) formation as a heated solid cools.  If the system is 

cooled rapidly, it will fall into an amorphous state, a local minimum with higher energy 

than the crystal state.  Therefore, temperature should be carefully reduced, maintaining 

thermal equilibrium, so that particles of the solid eventually arrange themselves into the 
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ground state at very low temperatures.  The thermal equilibrium process could be 

simulated for a fixed temperature by Monte Carlo methods to generate sequences of 

energy states (Metropolis, 1953).   

The basic algorithm of simulated annealing can be described as follows:   

1. Set the initial temperature.   

2. Generate the initial state, which represents a possible solution to the problem. 

3. Select a random move in the neighborhood of the state, accept the move if it 

leads to a solution with lower energy than the current solution, otherwise accept it with 

probability e-δ/T, where δ is the change of energy and T is the current temperature.  Iterate 

this process for a number of times. 

4. Decrease the temperature gradually, and repeat step 3.  The cooling schedule 

adopted in SASA is geometric cooling (Aarts, 1989).  The temperature is updated using 

the formula: Ti+1 = αTi (α∈  (0, 1)), where α denotes the cooling factor. 

5. Repeat step 4 until the stop criterion, for example, when the temperature is low 

enough, is met. 

When the temperature is high, even states much worse than the current state are 

likely to be accepted.  As the temperature decreases, poor states become less likely to be 

accepted.  Over time, the state will move increasingly toward better solutions, but retain 

the ability to escape from local optima by accepting inferior solutions with a probability.   

 

3.4.3 Implementation 

We use a data structure, which contains eleven real-number members, to represent 

a state.  Each member of the data structure corresponds to an input parameter of the 
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AGDISP simulation model.  The initial state is created by generating a random number 

for every member in the state within the range of the corresponding input parameter.  A 

random move in the neighborhood is generated by perturbing every member in the state 

with a probability.  The perturbation range allowed is the range of the corresponding 

spray parameter initially, and decreases with time.  The state is evaluated by the AGDISP 

simulation model.  The energy of a state is the opposite of its fitness. 

The main interface of SASA is shown in Figure 6.  The user can modify simulated 

annealing parameters. The initial temperature is high so that most moves will be accepted 

at the start.  The default value is 1000.  The iterations at each temperature should be large 

enough to make the system reach equilibrium at the current temperature.  The default 

value is 50.  The cooling factor determines how fast the temperature decreases.  The 

default value is 0.92. The interface to preset spray parameters is similar to that of SAGA2. 

 

Figure 6. The Main Interface of SASA 
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CHAPTER 4  

RESULTS AND DISCUSSION 

 
In order to test the performance of these methods, we run them on three practical 

spray parameter specifications provided by Forest Service managers (the details are in 

Table 3).  The simulation numbers are all set to 5000.  Crossover rate is 1, mutation rate 

is 0.1 and decreases with time, and population size is 100, which are the same for SAGA, 

SAGA2, and SAGA2NN.  The other parameters of SAGA2 and SAGA2NN are in Figure 

3.  The parameters of SAGADO are in Figure 5.  The parameters of SASA are in Figure 6.  

VMDCenter is 100. 

Table 3. Detail of Spray Parameter Settings 

Parameter Settings Variables Constraint 

Parameter Setting I None 

Parameter Setting II Aircraft ID = 6, Swath Width = 1.2, 
VMD = 100, Block Width = 400 

Parameter Setting III Aircraft ID = 106, Swath Width = 2.25 

 

Due to the stochastic nature of the heuristic algorithm, different runs can have 

different results.  Therefore each method ran five times with different random seeds.  The 

five random seeds are 1702803237, 1517566982, 1368775034, 1918061247, and 

1648047133.  The results are in Table 4, Table 5 and Table 6.  The value in the cell is the 

maximum fitness of each run (the corresponding maximum fitness for SASA is the 

opposite of its minimum energy).   The “mean value” row is the average value of the five 

maximum fitness values, which indicates the performance of each system.  The “worst 
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value” is the minimum value of the five maximum fitness values, which indicates the 

worst-case performance of each system.  

Table 4. Results of Spray Parameter Setting I 

Random Seed SAGA SAGA2 SAGA2NN SAGADO SASA 
Random Seed 1 9926.20 9966.31 9927.87 9973.24 9693.17 
Random Seed 2 9943.15 9967.71 9963.99 9951.65 9263.01 
Random Seed 3 9951.56 9971.04 9969.70 9975.32 9785.40 
Random Seed 4 9926.03 9963.79 9938.80 9973.34 9602.15 
Random Seed 5 9925.44 9952.54 9970.73 9982.42 9721.73 
Mean Value 9934.48 9964.28 9954.22 9971.20 9613.09 
Worst Value 9925.44 9952.54 9927.87 9951.65 9263.01 

 

Table 5. Results of Spray Parameter Setting II 
 

Random Seed SAGA SAGA2 SAGA2NN SAGADO SASA 
Random Seed 1 9633.54 9655.79 9656.42 9656.15 9561.04 
Random Seed 2 9619.27 9650.91 9658.32 9649.60 9427.91 
Random Seed 3 9633.41 9650.61 9632.53 9651.33 9386.88 
Random Seed 4 9612.26 9655.79 9655.79 9658.13 9412.83 
Random Seed 5 9631.96 9632.07 9651.44 9654.29 9545.72 
Mean Value 9626.09 9649.03 9650.90 9653.90 9466.88 
Worst Value 9612.26 9632.07 9632.53 9649.60 9386.88 

 

Table 6. Results of Spray Parameter Setting III 
 

Random Seed SAGA SAGA2 SAGA2NN SAGADO SASA 
Random Seed 1 9469.19 9582.10 9583.19 9598.99 9367.72 
Random Seed 2 9462.65 9588.06 9553.53 9608.46 9192.00 
Random Seed 3 9468.48 9599.51 9575.86 9589.43 9342.84 
Random Seed 4 9489.46 9585.76 9699.12 9574.29 9235.15 
Random Seed 5 9427.02 9589.19 9622.69 9601.99 9344.23 
Mean Value 9463.36 9588.93 9606.88 9594.63 9296.39 
Worst Value 9427.02 9582.10 9553.53 9589.43 9192.00 

 

From the tables, we can see that the maximum fitness values SAGA2, SAGA2NN 

(except for Random Seed 3 in Parameter Setting II) and SAGADO achieved are better 

than SAGA in every parameter setting using any random seed.  In Parameter Setting I 
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and II, the performance of SAGADO is the best.  In Parameter Setting III, the 

performance of SAGA2NN is the best.  The worst-case performance is also important, 

because the optimization may only have time to run just once before the spray practice.  

In Parameter Setting I, the worst-case performance of SAGA2 is the best.  In Parameter 

Setting II and III, the worst-case performance of SAGADO is the best.  Of these methods, 

SAGADO seems to be the most reliable.  SAGA, SAGA2, SAGA2NN and SAGADO all 

greatly outperform SASA.   

It may be difficult to see how much better a method is from the fitness value.  The 

advantage of a method will be obvious from the three output values.  For example, Table 

7 shows the output values of these methods for the Parameter Setting I with Random 

Seed 1.  Although the fitness value of SAGA2 or SAGADO is not much higher than that 

of SAGA, drift fraction and COV of either method are greatly improved.  For SAGA2, 

drift fraction is reduced by 59%, and COV is reduced by 46%; For SAGADO, the drift 

fraction is reduced by 81%, and the COV is reduced by 54%. 

Table 7. Output values of Parameter Setting I with Random Seed 1 

Output Values SAGA SAGA2 SAGA2NN SAGADO SASA 
Fitness 9926.20 9966.31 9927.87 9973.24 9693.17 
Drift Fraction 0.002672 0.001096 0.003268 0.000505 0.018312 
COV 0.021023 0.011282 0.022096 0.009694 0.065420 
VMD 100.31526 100.00046 99.97806 99.99997 97.93129 

 

In order to see the evolution process, we recorded the maximum fitness every one 

hundred simulations.  The evolving graphs for these three spray parameter settings are 

shown in Figure 7, Figure 8 and Figure 9 (the x-coordinate is the simulation number 

divided by 100, and the y-coordinate is the average value of the maximum fitness in 

various runs).  From the graphs, we can see that SAGA2NN obtains much better 
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maximum fitness value in the first few hundred simulations, however, its lead is offset 

later.  We think the reason is that the advantage of the neural network is counteracted by 

premature convergence of the genetic algorithm.  In these five methods, the performance 

of SAGA2, SAGA2NN and SAGADO is equally good.  They are a little better than 

SAGA in Parameter Setting I and II, and much better than SAGA in Parameter Setting III.  

The performance of SASA is the worst in all cases.   

8800

9000

9200

9400

9600

9800

10000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

saga

saga2

saga2nn

sagado

sasa

 

Fig. 7 Evolution Process of Parameter Setting I 
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Fig. 8 Evolution Process of Parameter Setting II 
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Fig. 9 Evolution Process of Parameter Setting III 
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

 

We apply several nature inspired intelligent optimization methods to the aerial 

spray deposition management problem, develop various versions of programs (SAGA2, 

SAGA2NN, SAGADO, and SASA) to optimize the spray parameters, and compare their 

performance with that of the original method SAGA.  SAGA2 and SAGADO outperform 

SAGA in all experiments.  This shows that careful choice of the genetic algorithm type, 

the selection mechanism, and the crossover and mutation operators can boost the genetic 

algorithm performance.  In real aerial spray applications, the stop criterion for the genetic 

algorithm is when the population converges.  SAGA2NN converges very fast, so it can 

get a useful result by far fewer simulations.  In aerial spray practice, if time is abundant, 

we recommend using SAGADO to do the optimization, because it seems to be the most 

reliable of these methods; if time is limited, we recommend using SAGA2NN to do the 

optimization, because it will shorten the time required to get a useful result.  SASA 

performs much poorer than the methods based on genetic algorithms.  It shows that 

genetic algorithms perform better than simulated annealing in an extremely complicated 

domain such as aerial spray deposition management. 

The USDA Forest Service is working on improving the AGDISP simulation 

model.  In the future, we will use the new model as the simulation engine.  In addition, 

we are studying the applicability and efficiency of the other heuristic search techniques 

such as tabu search in this problem. 
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