
FINE-TUNING VS CONTEXT-INJECTION:

USING GPT FOR AMBIGUOUS QUESTION-ANSWERING ON PROPRIETARY DATA

by

REX VANHORN

(Under the Direction of Frederick Maier)

ABSTRACT

Current large language models (LLMs) have demonstrated abilities that, just a few short

years ago, would have seemed impossible e.g., question answering. While LLMs like OpenAI’s

GPT can do impressive unanticipated things, to maximize their value, the models need to be trained

on or have access to additional, often proprietary, data. I compare two popular methods,

fine-tuning and context-injection (a specific application of RAG), for integrating additional data

into the LLMs for use in the task of question answering. A suite of semantic measurements is

evaluated for use in comparing the answers generated by the methods. I use the best performing

measurement, Ada 002 with Cosine Similarity, to show that context-injection, using vector

embeddings and semantic search, generates answers that are semantically closer to the desired

answers, while lacking hallucinations or confabulations. We also provide qualitative and stylistic

observations from the experiments further segmenting the two methods.

INDEX WORDS: GPT, Artificial Intelligence, OpenAI, Large Language Models, Oral Data,

Data Pipeline, Fine-Tuning, Context- Injection, Prompt-Engineering, STS

FINE-TUNING VS CONTEXT-INJECTION:

USING GPT FOR AMBIGUOUS QUESTION-ANSWERING ON PROPRIETARY DATA

by

REX VANHORN

B.A. Spanish, The Ohio State University, 2002

M.B.A. Finance, The Ohio State University, 2005

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF ARTIFICIAL INTELLIGENCE

ATHENS, GEORGIA

2023

© 2023

Rex VanHorn

All Rights Reserved

FINE-TUNING VS CONTEXT-INJECTION:

USING GPT FOR AMBIGUOUS QUESTION-ANSWERING ON PROPRIETARY DATA

by

REX VANHORN

Major Professor: Frederick Maier
Committee: Jason Anastasopoulos

Khaled Rasheed

Yuri Balashov

Electronic Version Approved:

Ron Walcott

Vice Provost for Graduate Education and Dean of the Graduate School
The University of Georgia

December 2023

iv

DEDICATION

This work is dedicated to my patient wife Jackie, who endured too many overly

enthusiastic discussions about GPT and the coming artificial intelligence revolution, which in

different times would have automatically qualified her for sainthood. The following research was

only possible as a direct result of her unwavering support, steadfast encouragement, and

gracious, though feigned, interest in the subject.

This work is dedicated, too, to my biggest fan, my mother, who lost her battle with cancer

as I was approaching the finish line. It is only through her decades of support and sacrifice that

the opportunity to do this work is possible. I hope you can read this from across the river, Mom.

My kids probably supported me, too.

v

ACKNOWLEDGEMENTS

Special thanks go to my thesis committee: Dr. Fred Maier, Dr. Jason Anastasopoulos, Dr.

Yuri Balashov, and Dr. Khaled Rasheed, who accepted and supported the opportunity to

investigate new tools, new methods, and new models, and pushed this research to be the best it

could be, never accepting anything less.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

CHAPTER

1 Introduction ..1

1.1 Use-case and Dataset ...2

1.2 Research Questions ..3

1.3 Contributions..5

2 Literature Review ..8

2.1 Fine-tuning as a Source of Influence ...9

2.2 Context-injection..12

3 Exploratory Experiments and Proof of Concept ..17

3.1 SQuAD Question-Answering ..17

3.2 Textbook Question-Answering ..18

3.3 Conclusions ..20

4 Methodological Design of the Experiment...22

4.1 Question Set ...22

4.2 Training Corpus ...23

4.3 Fine-tuning ...27

4.4 Context-Injection ...31

vii

5 Quantitative Automated Measurements ..32

5.1 Overview of Similarity Measurements ..32

5.2 Experimental Paradigm for Similarity ...34

5.3 Similarity Results ...35

6 Experimental Results: Fine-tuning vs Context-Injection41

6.1 Fine-tuning Results ..41

6.2 Context-injection Results ...44

6.3 Computation Cost Comparison ..50

7 Results, Summary and Conclusion ...53

7.1 Further Research and Discussion ...54

7.2 Conclusion ...56

APPENDICES

A Stylometric assessments of generated outputs ...62

B Graphs of the measurements from the Signature Stylometric System68

C Individual fine-tuning graphs for Question 3 through Question 20.............................75

REFERENCES ..58

1

CHAPTER 1

INTRODUCTION AND MOTIVATION

Language models such as OpenAI’s GPT-3 (Brown et al., 2020) have exploded in

popularity and ability over the past few years, to the point that many anticipate that systems

based upon them will have a profound impact on life and industry. (Rodriguez, 2023) These

models do not explicitly perform information retrieval but rather use statistical relationships to

produce the most-probable subsequent words and phrases to a provided query or prompt.

Language models have nonetheless shown themselves to be surprisingly good at tasks such as

question answering, or at least providing novel responses within the logical context of the

submitted text.

GPT-3 and other similar language models are available pre-trained (out-of-the-box) but the

model’s internal weights can be fine-tuned by providing additional corpora or other information

to the pre-trained model. Until recently, fine-tuning was the only option for influencing an

LLM’s output. It is still a popular option for question answering (QA), though it may not be the

optimal one given its inclination towards “hallucinations” and “catastrophic forgetting”

(Kirkpatrick et al., 2017).

Alternatives have been subsequently developed to mitigate the limitations of fine-tuning,

including a state-of-the-art technique called ‘context-injection’ herein. Context-injection is a

specific of application of Retrieval-Augmented Generation (RAG)1, which introduces

semantically-similar information into the prompt of an LLM to improve its output. As

fine-tuning and context-injection are two popular methods for eliciting answers from LLMs, both

1 See Chapter 2 for more information on RAG.

2

could be applied in a given application, though it is likely that one will perform better and be

more appropriate in that application than the other. This research seeks to compare the two

methods in the task of answering open-ended, ambiguous questions. Ambiguous questions are

interpretive or multi-perspectival questions which have multiple, subjectively-correct answers,

depending on a given perspective. Doctrinal (e.g., Was Jesus God or just a teacher?) or political

questions (e.g., What is the purpose of taxation?) are examples of ambiguous questions.

1.1 Use-case and Dataset

In the case of direct, objectively-answerable questions, standard question sets, such as the

SQuAD2, are available, and their evaluation metric fairly clear; e.g., Exact-Match and F1 for

SQuAD. However, this research focuses on the task of open-ended, ambiguously-answerable

QA, for which we have not found a standard dataset with matching corpus, and methods of

evaluation thereof are more difficult. Therefore, using the pipeline described in this work, we

created a dataset with the help of a local pastor, who offered a sufficiently-large oral corpus

(available as audio recordings) detailing his church’s doctrinal beliefs. The corpus was

transcribed, and the pastor provided a set of doctrinal questions and standard answers based on

the corpus.3

For the research, answers were generated with GPT-3, ChatGPT and GPT-4 using both

fine-tuning and context-injection (as well as combinations of the two). These answers are then

compared to the standard answers to determine which method delivers responses most

semantically similar to the original author’s.

2 See Chapter 3 for more information on the SQuAD
3 See Chapter 4 for more information on the dataset.

3

1.2 Research Questions

This thesis focuses on addressing the following questions.

To what extent does fine-tuning influence GPT-3’s responses towards the desired output?

GPT-3 contains 175 billion parameters and was originally trained using 45 terabytes of text-

based data (Brown et al., 2020, Mahowald et al., 2023). Several studies have shown that, while

GPT offers impressive abilities out-of-the-box, performance on some tasks can be improved by

fine-tuning on specific data. One goal of this research is to determine to what extent we can

effectively train GPT, and by extension other sufficiently-large LLMs, to offer desired responses

to open-ended questions using proprietary, abstract, oral data from one information domain.

Chapter 6 outlines how fine-tuning directs GPT’s output towards a desired response, and the

data’s impact on that process.

To what extent does the amount of data used in fine-tuning impact performance?

GPT-3 was trained on 45 TB of text, (Mahowald et al., 2020) which roughly equates to

45,000,000,000,000 characters. By comparison, Shakespeare’s complete works consist of

approximately 3,500,000 characters (Brainly, n.d.). Recent research has demonstrated that it is

possible to influence GPT-3’s responses by fine tuning using a significantly smaller dataset. A

second goal of this research is to determine if the amount of information, in terms of fine-tuning

input text, positively correlates to the semantic similarity of GPT’s output to a desired response.

Chapter 5 describes the process for measuring semantic similarity. Chapter 6 outlines how data

volume is related to the semantic similarity of the generated responses to the desired responses.

4

Does one method consistently generate answers semantically closer to a ground truth? Are

the responses grounded in the training corpus, or do they exhibit hallucination?

Responses generated through fine tuning undergo a fundamentally different generation process

than those generated via context-injection. This research measures the semantic similarity of

answers generated through each method against the standard answers; generated answers that are

more semantically similar to the standard answers are ‘better’ than answers with lower semantic

similarity. While factual correctness is an important aspect of performance, we do not seek to

gauge the truthfulness of the responses, except to the extent that the model/method manifests

model hallucination (Raunak et al., 2021, and Ji et al., 2023) which is described in Chapter 2.

Chapter 5 details the two approaches we used to evaluate our method for measuring semantic

similarity. We tested 9 state-of-the-art approaches to NLP on the task of comparing similar and

dissimilar texts to assess their ability to correlate similar texts. We then applied the best-

performing approaches to the MTEB standard test/dataset for semantic textual similarity (STS)

and show that our findings match those of the STS community.

Do one method’s generated answers more closely resemble the style of the training corpus?

Recent research has demonstrated that fine-tuning can also influence the style of GPT’s

responses. We seek to measure and assess the issue of authorship of a given text through the

text’s lexical characteristics and other stylistic attributes using three methods: Covington’s

(2009) Computerized Propositional Idea Density Rater (version 5.1), Signature Stylometric

System, and direct comparison.

5

1.3 Contributions

We created the dataset by programming a Python-based pipeline that automatically accesses the

oral data, transcribes it, preprocesses it, and generates the necessary outputs for fine-tuning and

context-injection. We designed the pipeline such that it could automatically add new documents

to both the fine-tuning and context-injection corpora as they become available. Chapter 4 goes

into detail about the design and operation of the pipeline.

The following experiments were performed in support of this research:

1) GPT-3 was subjected to a subset of the SQuAD 2.0 assessment to gauge its performance

in machine reading comprehension (MRC). GPT-3 correctly answered all questions

correctly on the subset of data, outperforming both the systems and humans tested in the

original SQuAD paper. Chapter 3 details the SQuAD dataset and how it was used.

2) GPT-3 was fine-tuned on the first chapter of a collegiate textbook and prompted with the

homework questions from that chapter, using fine-tuning and context-injection. The

textbook’s author then graded the questions as though they were provided by a student of

the master-level class. GPT-3 generated C-quality answers to actual homework questions

with fine-tuning, and A-quality answers with context-injection. Chapter 3 documents this

experiment.

3) To evaluate the optimal model for assessing semantic similarity, two experiments were

conducted:

a. Nine methods for calculating semantic similarity were evaluated using

comparisons of various similar and dissimilar large texts (> 512 tokens). In those

tests deep learning models (e.g., BERT) offered the best overall performance.

6

b. Four popular deep learning models were evaluated using the SemEval 2016

(English-only) and 2017 (cross-language) datasets on the task of STS, which

showed that OpenAI’s Ada 002 embedding model offers the best performance on

calculating semantic similarity for our research case. Chapter 5 describes the

complete process and datasets used in these evaluations.

4) We evaluated the stylistic properties of the outputs generated through fine-tuning and

context-injection and found that fine-tuning resulted in text that was significantly similar

in style to the fine-tuning corpus, while context-injection had no appreciable impact on

the style of the generated text. See the Appendix for the evaluation and analysis.

5) To evaluate fine-tuning and context-injection as methods of integrating proprietary

knowledge into LLMs, which is currently only possible with GPT-3, we considered four

cases:

• GPT base, pre-trained with no fine-tuning and no contextual prompt.

• GPT fine-tuned on provided sermon data.

• GPT pre-trained and with context-injection (i.e., providing related context).

• GPT fine-tuned and with context-injection.

Based on these experiments, we conclude that:

• Fine-tuning generates answers that are roughly equivalent to the base GPT’s

answers, though take the style of the fine-tuning corpus and often exhibit

“hallucination” and “catastrophic forgetting.”

• There appears to be no correlation between the amount of data and the quality of

answers generated; GPT only needs the right information to successfully answer a

question.

• Context-injection generates answers that are significantly semantically closer to

the ideal answer than both fine-tuning and base GPT offer, without hallucination.

7

GPT-3 with context-injection outperform the fine-tuned models’ best answers by

4.1% and all answers on average by 21.5%. On average over all questions, the

answers generated by GPT-3 with context-injection were 21.1% semantically

closer than those of base GPT-3 when using Ada 002 to judge semantic similarity.

• When approaches are analyzed in terms of performance and computational/cost,

context-injection scales more cost- and computationally efficiently. This is

discussed in Chapter 6.

6) We evaluated ChatGPT (3.5 Turbo) and GPT-4 with context-injection against their

associated base model. In both cases, context-injection produced answers that were

semantically closer to the ideal answer. ChatGPT with context-injection on average

generated answers 2.2% semantically closer to the standard answer than base ChatGPT,

with its greatest margin (Question 5) being 12.1%. GPT-4 with context-injection

generated answers on average 5.6% closer than base GPT-4, with its greatest margin

being Question 9, at 29.3%. GPT-4 with context-injection also performed best overall,

with an average semantic similarity of .75201 and generating the best answer to 12 of the

20 questions over all methods tested. See Chapter 6 for more information.

These experiments and their results are summarized in Chapter 7, along with a discussion of the

use cases for which each method is better suited.

8

CHAPTER 2

LITERATURE REVIEW

This research focuses on the abilities and limitations of fine-tuning compared to context-injection

with a corpus of transcribed oral data. The research is conducted using OpenAI’s GPT because

of its documented task performance abilities in QA, machine reading comprehension (MCR) and

in-context learning (ICL). Additionally, this research applies the current SOTA research in

semantic search and similarity, demonstrating that the chosen measurement for calculating them

is reliable and supported by the community.

Much attention on the GPT language model has been focused on ChatGPT, in our opinion

because using ChatGPT is easy and free, as of the time of this writing. As a result, the two are

often erroneously conflated, despite the important differences between the two; GPT is a true

LLM whereas ChatGPT is a smaller model that was developed through RLHF specifically for

conversation. Bubeck et al. (2023) offer a detailed comparison of ChatGPT and GPT-4, which is

generalizable to GPT-3.

A research experiment similar to the one proposed herein was conducted by Mosbach et al.

(2023) They compared basic fine-tuning and ‘vanilla’ In-context Learning (ICL) on pattern-

matching classification tasks, and find that performance improves for both methods as the model

size increases, though fine-tuning outperforms ICL, and more so when trained on additional data.

The researchers highlight that the relative performances are highly variant, indicating that their

findings are not necessarily generalizable across all tasks. My research supports this finding by

9

exception in that my research shows ICL, through context-injection, outperforms fine-tuning on

open QA, and it also mirrors their high-level comparisons of the two methods.

2.1 Fine-tuning as a source of influence

Fine-tuning is the process of iteratively changing a model’s internal weights in pursuit of

increased performance on a specific task, or to add information to the underlying training

corpora of the model. Fine-tuning has been used to perform a specific task, e.g., classification, or

influence a model’s response using new information. Dunn et al. (2022) fine-tuned GTP-3 using

a small dataset of 500 pairs of prompts and completions, and through the fine-tuned model, they

were able to extract useful information in the domain of material chemistry. Fine-tuning,

however, does not always lead to improved results. Bommarito et al. (2022) attempted to fine-

tune GPT-3 to take the Bar Exam, and while they found that GPT-3 passed two sections, their

fine-tuning attempts resulted in worse performance than the performance of the base GPT-3

Davinci model4. While there is only one method for fine-tuning GPT-3, using OpenAI’s

fine-tuning API, there are various approaches to fine-tuning, and various hyperparameters that

can be modified. In the case of both Bommarito et al. and Dunn et al., they trained their models

using training pairs of prompt and completions. Dunn linked English paragraphs containing the

relevant information in written form as the prompt, to the desired extracted information, e.g.,

formula, structure, or application, as the completion. Bommarito et al fine-tunned GPT-3 on

various permutations of legal questions (prompt) and explanations (completion) and elicited

GPT’s response on multiple choice questions, which is substantially different than the

fine-tuning concept used in this research. In this research, we fine-tune GPT by submitting only

4 Bommarito el al. noted that a scarcity of high-quality data may have contributed to the poor results .

10

the desired training corpus as a completion, leaving the prompt blank. In this manner, the

underlying corpus is ‘learned’ and can be used for text.

David Rozado (2023a) found that ChatGPT has a very left-leaning bias. To counteract that bias,

Rozado created a “RightWingGPT” (Rozado, 2023b) through fine-tuning. Rosado reported that

he was successful in eliciting the desired, ‘right-leaning’ output through fine-tuning, though the

model is not available to the public. Similarly, Lee and Hsiang (2022) fine-tuned GPT-2 using

data from patent claims. They found that they were able to generate ‘coherent’ claims

automatically, though no specific evaluation metrics were applied.

Oniani et al. fine-tuned GPT-2 on a scientific dataset of curated COVID-related information.

(Oniani et al., 2020), and were able to generate reliable answers to questions about COVID. The

researchers used semantic similarity measurements (embeddings generated via: TF-IDF, BERT,

BioBERT and USE) to cull each of the model’s answers to the top 5 most-similar sentences.

These answers were then evaluated by human Medical experts, and found to be factually-correct

answers to the questions. The researchers found, too, that the deep learning embedding model

outperformed the others. In contrast to Oniani et al., the generated answers in this research are

not modified in any way, and the generated answers are evaluated through automated semantic

similarity measurements. We considered manual evaluation by human experts for this research

however due to privacy concerns, and to eliminate human-induced subjectivity in the evaluation

process (also a factor in Oniani et al.’s research), automated quantitative evaluative measures are

used instead, as described in Chapter 5.

11

Oniani et al.’s research was based on GPT-2, while this research is based on GPT-3. Though

GPT-2 employs a smaller model, 1.5 billion parameters, and smaller pre-training corpus, 40 GB,

it uses the same pre-training and fine-tuning processes as GPT-3. (Radford et al., 2019).

Therefore, Oniani et al.’s results are reasoned to be generalizable to this research on GPT-3, just

as this research shall be generalizable to similar and future LLMs.

In another study, Sawicki et al. (2022) showed that GPT-2 developed the ability to write poems

in the style of 19th century poets through fine-tuning. They fine-tuned a base GPT-2 model on a

collection of poems from Byron and Shelley, and used a BERT classifier to distinguish between

the generated text and author’s original text. In a follow-up study by Sawicki et al., (2023) the

researchers were unable to duplicate their findings on GPT-3 and GPT-4 using prompt

engineering alone, concluding that the fine-tuning process is the source of the generated text’s

adopted style. Our research duplicates their findings; that text generated from a fine-tuned model

adopts the style of the original training data. We determine this through stylometric analysis with

Signature software, propositional idea density, and grammatical analysis.

Several studies have demonstrated the propensity for LLMs to generate nonsensical,

confabulated, or other information that is not entailed by the training source. (Ji et al., 2023) This

phenomenon is referred to as hallucination, and poses an obvious risk whenever the generated

text is expected to be reliable. Ji et al. (2023) explore hallucination in generative

question-answering (GQA), noting that almost all work in this regard requires human evaluation

of correctness, though semantic overlap can be assessed through semantic similarity. This

12

research assesses hallucination indirectly using similarity metrics, as described in Chapter 5, and

directly through human evaluation, as described in Appendix A.

2.2 Context-injection

In contrast to fine-tuning, context-injection, a phrase coined in this research to describe the

specific retrieval-augmented generation (RAG) process, which uses a pre-trained LLM to answer

questions using semantically-related, additional information supplied from the ‘training corpus.’

RAG has three main components: retrieval source, retrieval metric and integration method. (Li et

al. 2020) The retrieval source in our research is the transcribed podcasts. The retrieval metric is

cosine similarity calculated using the Ada 002 embedding model, thereby putting

context-injection into the Dense Vector retrieval paradigm. The integration method is simple

data augmentation, whereby the external data is submitted as part of the prompt. More complex

implementations might use Skeleton Extractions, which serves to extract entity or other ground-

truth information before further processing submits the information to the LLM. (Cai et al. 2019)

We define the process of context-injection in Chapter 4 and discuss potential extensions of the

RAG paradigm in Chapter 7.

Context-injection evolved from ICL and relies on MRC. These abilities were lacking in GPT-1

and GPT-2, and only revealed themselves in GPT-3. (Brown et al. 2020, Zhao et al., 2023)

Context-injection is new and therefore sparsely studied in scholarly research (though slightly

more prominent in industry publications). It may be employed in different ways, depending on

applicable semantic evaluation measurements and retrieval constraints.

13

In-context Learning (ICL) is a few-shot learning technique consisting of the submission of

examples of the to-be learned task to the LLM, along with a query, whereby the LLM uses the

examples to predict some outcome based on the query. Brown et al. (2020) first described ICL

through GPT-3’s few-shot learning ability by demonstrating its ability to perform complex tasks

for which it was not directly trained. Liu et al. (2021) improve on GPT-3’s ICL abilities in their

research by improving the in-context examples that are submitted in the prompt. Specifically,

they generate embeddings for each instance of the ‘training’ contextual data, which in the case of

QA, is a set of questions and answers. When a test question is presented, a vector embedding is

generated for the question, and k-NN search is conducted to find the semantically-closest

question/answer pair. k question/answer examples are submitted to the LLM along with the test

question, in the format of the question/answer pair, leaving the answer blank. This process

substantially improves the LLM’s few-shot performance across various benchmarks. KATE, the

ICL process proposed by Lui et al. is very similar to the process of context-injection proposed in

this research. In both cases, semantically similar ‘examples’ (referred to this research as

‘context’) are submitted in the prompt along with the test query. The dataset examples/contexts

from which the answer is drawn is vectorized and indexed, the k closest neighboring

examples/contexts are retrieved and submitted to the LLM for processing. Lui et al. use cosine

similarity and Euclidean distance as the similarity measurements, and BERT for the embedding

models. In this research cosine similarity and Euclidean distance, along with newer, BERT-like

embedding models are considered for the mechanism underpinning the semantic

search/similarity, though cosine similarity was chosen as the similarity measurement and Ada

002 as the embedding model, the details of which are given in Chapter 5.

14

A major difference between Lui et al.’s implementation of ICL and context-injection is that ICL

relies on the LLMs pattern matching abilities to derive the correct answer. For example, ICL

might submit various states and their capitals in expectation of the LLM returning the capital of a

different state. In this research, however, we do not submit question and answers, or other QA

examples to the LLM, but rather long-text-based, semantically-related information is submitted

to the LLM in the prompt, along with a natural language command asking the LLM to consider

the information in its answer. As such, this process deviates from ICL and towards machine

reading comprehension (MCR), whereby the answer to the query is (presumably) submitted in

the prompt, and the LLM is asked to parse the contextual information and return the answer.

Baradaran et al. (2020) offers a comprehensive history of MRC, its popular datasets and

evaluation metrics. SQuAD (Rajpurkar et al. 2016) continues to be one of the most-popular

datasets for evaluating MRC systems. In 2018, NL Net matched human-level performance in

MRC tasks on the SQuAD. The same year BERT surpassed it and the following year XL Net

improved on BERT’s results. (Baradaran et al., 2020) In the context of this research, GPT-3 was

tested on a subset on the SQuAD dataset, and determined to have 100% accuracy in MRC. See

Chapter 3 for more information.

The most important distinction for this research, though, is that the above-mentioned studies

focus on answering discrete, objective questions – i.e., questions with one, universally-accepted

truthful answer – in an open domain. This research, however, explores LLMs’ ability to answer

open-ended, ambiguous questions – i.e., multi-perspectival questions, with many correct

answers, depending on the perspective – in a closed domain. For that reason, the datasets and

evaluation metrics used by those research teams are inappropriate for this study.

15

2.2.1 Context-injection example:

Hypothetically, if an encyclopedia company wanted to employ LLMs to answer queries only

using the information from their encyclopedia, they may consider using context-injection like so:

The company generates an embedding vector for each article in their encyclopedia, and those

vectors are stored in a database. When a user asks a question, the application generates a vector

embedding of the question. The question vector is compared to all the encyclopedia article

vectors (this is semantic search). The results of the semantic search – the articles most related to

the question – are submitted to the LLM along with the question. The LLM is prompted to

answer the question, basing its response on the articles, and the answer returned to the user.

2.2.2 Hallucination

Martino et al. (2023) performed a very similar research experiment, comparing fine-tuning to

knowledge-injection, and evaluating each method’s impact on hallucination. Their process for

fine-tuning matched that of this research, and their application of knowledge-injection was

analogous to this application of context-injection, with the only major difference being

knowledge-injection relies on a knowledge graph for injecting ground truth into the prompt,

whereas context-injection directly injects semantically-similar text. Martino et al.’s results

mirrored those of this research: the injection of ground truth increased the truthfulness of the

generated responses and reduced the instances of hallucination.

Consistent with Hämäläinen et al. (2023), the generated answers in this research will be

compared with the standard answers using vector embeddings with cosine similarity. In their

16

research, they explored GPT’s ability to generate synthetic data. They prompted GPT with open-

ended questions, and compared GPT’s generated answers to answers provided by human

subjects, using OpenAI’s Curie model’s embeddings. They used the resulting high cosine

similarity values to determine that GPT is capable of generating synthetic data, substantially

similar to the answers produced by humans. We apply the same paradigm in this research, except

we use OpenAI’s Ada 002 embedding model to generate the vector embeddings and calculate

semantic similarity, as Ada 002 has since shown to outperform Curie.5

5 “The new model, text-embedding-ada-002, replaces five separate models for text search, text similarity, and code search, and outperforms our

previous most capable model, Davinci …” Specifically, Ada 002 outperforms all prior OpenAI models in measuring semantic similarity.

https://openai.com/blog/new-and-improved-embedding-model

https://openai.com/blog/new-and-improved-embedding-model

17

CHAPTER 3

EXPLORATORY EXPERIMENTS AND PROOF OF CONCENT

To demonstrate that the influencing GPT’s output to correctly answer questions is possible, two

proof-of-concept experiments were performed, the first using the Stanford Question Answering

Dataset (SQuAD), and the second using the first chapter of the textbook, The Neuroscience of

Creativity (Abraham, 2018). By employing the SQuAD and a simplified version of

context-injection, whereby supporting information for answering a question was not sought, but

rather provided, we demonstrate that GPT can correctly answer closed-domain, direct questions

(where only one correct answer exists), when provided with the necessary information. By

applying fine-tuning and context-injection with the textbook, we demonstrate that GPT can also

correctly answer open-ended, ambiguous questions, which have a range of acceptable answers.

GPT-3 and the Stanford Question and Answers Dataset

In 2016, Rajpukar et al. compared human and machine performance on reading comprehension,

and the humans significantly outperformed the machines. (Rajpurkar et al., 2016) We applied

GPT-3 to a subset of the SQuAD test, and GPT-3 outperformed the humans and the models

tested by Rajpurkar et al. (2016), earning a 100% score on the subset of questions as judged by a

human evaluator, using the official answers from the SQuAD.

3.1 SQuAD Question-Answering

GPT-3 was tested with the first 100 questions from the SQuAD 2.0 using three methods:

1) The question with no additional prompt or information, and a response limit of 250 tokens.

18

2) The question with no additional prompt or information, though limiting the response to the

number of tokens in the SQuAD dataset.

3) The question, including the Wikipedia article which contained the answer to the question

(context-injection). The associated article is included in the SQuAD.

Using method (1), GPT correctly answered 61% of the questions in the dataset. When GPT’s

response was limited to the number of tokens in the SQuAD answer (2), GPT only answered

39% of the questions correctly. Using context-injection GPT was able to answer 100% of the

questions correctly. This result surpasses those of all the systems and methods tested by

Rajpurkar et al. (2016), including human subjects, demonstrating GPT’s ability to correctly

answer closed-domain, direct questions.

3.1.1 Computational Costs

OpenAI does not publish its computational resource information, so we use the financial cost in

this research as a proxy for the computational cost of various prompting methods. Because

OpenAI charges on a per token basis and context-injection increases the size of the prompt

(269.19 tokens per question/answer pair vs 51.87 tokens for methods 1 and 2), it is unsurprising

that context-injection is more expensive, costing $0.538 vs $0.104 for methods 1 and 2 over the

100 questions in the experiment.

3.2 Textbook Question-Answering

A similar test was conducted, though this time using a textbook and its review questions. The

text of The Neuroscience of Creativity textbook was extracted into a text file. For the purposes of

this experiment, the citation text, descriptive text, and references were included in this extraction.

The text was then used to fine-tune a base, Davinci model.

19

We submitted the five ‘Further Reading’ questions at the end of Chapter 1 to GPT, and its

generated answers were submitted for grading. We used base GPT-3, GPT-3 with fine-tuning

and GPT-3 with context-injection in the following manner:

1. The questions were submitted to OpenAI’s Curie model with low temperature and the

default limit on the completion (response) of 256 tokens.

2. The questions were submitted to OpenAI’s Davinci model, which is the most powerful

model, with a low temperature and the default limit on the completion response of 256

tokens.

3. The Davinci model was fine-tuned on the text in the first chapter. The questions were

submitted to this fine-tuned model exactly as they were asked in the book, with no

context or special formatting or prompt engineering. The default token limit of 256

tokens was used to cap the response.

4. The same experiment in (3) was performed, except that the token limit for the response

completion was set to the number of tokens returned by the base (not fine-tuned) Davinci

model. This allowed for a direct comparison of the responses in experiments (2) and (3).

5. The questions were submitted to the base Davinci model along with the semantically-

related sections of the textbook. Davinci has a token limit of 4096 tokens per prompt and

response. As a result, only the top three overlapping sections were submitted as context to

GPT in this experiment to avoid exceeding the technical limits.

In this experiment, the prompt was engineered in this format:

"""

Considering the information in the CONTEXT, answer the following question.

CONTEXT:

<The sections from the textbook with the highest overlapping semantic similarity were

directly copied here.>

"""

If there is not sufficient information in CONTEXT to answer the question, say so.

QUESTION:

<The question to be answered is entered here.>

20

3.2.1 Textbook Results

GPT-3 Curie’s responses to the five questions (1) were manually compared to GPT-3 Davinci’s

responses to the same five questions under the same circumstances (2). We found that the

answers provided by GPT-3 Davinci were more logical, more complete, and generally directly

answered the questions, whereas GPT-3 Curie’s responses tended to ramble and did not directly

answer the question.

GPT-3 Davinci’s answers to the five questions as described above for test (3) and (4) were

submitted to the textbook author for review. The author evaluated the answers as though they

were submitted by students in the associated course, and concluded that the length-limited

responses were generally superior to the longer responses, noting that the unlimited responses

had a noticeable tendency to ramble, which invariably resulted in an answer that deviated from

the question.

Finally, the length-limited responses which were generated with the fine-tuned model and

through context-injection, were submitted to the author for manual grading. The fine-tuned

responses received grades ranging from F to C, with an average grade of D, while the responses

generated using context-injection received grades ranging from F to A-, earning an average grade

of B.

3.3 Conclusions

The datasets for these two experiments are small, but still support for the following conclusions:

1) GPT (Davinci) can provide logical, coherent answers to open-ended, ambiguous

questions using both fine-tuning and context-injection. In this experiment, we generated

21

C-quality answers to actual homework questions with fine-tuning, and A-quality

answers with context-injection.

2) The lengths of the responses that were generated using context-injection are much more

varied, ranging from one sentence to a few, but were much more focused answers. The

fine-tuned model, in contrast, tended to fill up the response token requirement, no

matter how circuitous the word path or tenuous the connection to the question.

Further testing to tease out the differences between context-injected and fine-tuned

model responses revealed a pronounced degradation in the model’s ability to follow

directions, which is referred to in the literature as “catastrophic forgetting.”

3) The responses offered by the fine-tuned model tracked very closely to the material in

the book. The responses were not ‘plagiarized’, but the wording and phrases closely

matched the style and word patterns of the text.

4) The fine-tuned model was prone to “hallucination” as it provided reference citations

that did not exist. The answers created with context-injection did not hallucinate.

These experiments demonstrate that GPT-3 is capable of generating answers to open-ended,

closed-domain, ambiguous questions with fine-tuning and context-injection.

22

CHAPTER 4

METHODOLOGICAL DESIGN OF THE EXPERIMENT

The research project compares answers generated by GPT alone, and by GPT with fine-tuning

and context-injection. Further, we fine-tuned GPT-3 over 8 successive rounds with 10

documents per round to evaluate the impact of iterative fine-tuning. We presented the author of

the training corpus with a list of questions, and received their ideal answers, which are known

herein as the ‘standard answers.’ In the case of fine-tuning, we prompted GPT-3 with the same

set of questions after each round of fine-tuning. With context-injection, we prompted GPT once

to receive one set of generated answers. The responses from GPT were automatically evaluated

against the standard answers for semantic similarity using Ada 002 and cosine similarity.

Generated answers with higher cosine similarity were deemed better than those with lower

cosine similarity.

4.1 Question Set

The two types of questions that are used to assess the performance of model are general doctrinal

questions and specific source questions. The general doctrinal question set will consist of a list

of 12 open-ended doctrinal questions that are commonly asked about the Christian faith, but that

are not specifically addressed in the training corpus. These questions are used to determine the

language model’s ability to extrapolate ‘knowledge’ from the original training set when the

answers to the questions are not directly present in the source material.

23

The specific source question set consists of 8 open-ended, doctrinally-based questions that are

specifically answerable based on the content in the fine-tuning dataset. The specific-source

questions directly correspond to one sermon from the ten sermons presented in the respective

fine-tuning phase. The purpose of these questions is to gauge the language model’s performance

answering the questions before the model is fine-tuned on the sermons that address the question,

as well as after. These specific source questions will be asked and assessed in each of the 8

fine-tuning rounds, but only one specific source question will be directly addressed by a sermon

in the fine-tuning data in each iteration.

4.2 Training Corpus

The senior pastor at a local church, “the author,” has provided 80, publicly-available sermons as

audio files, and answered the 20 questions described above. These answers are the “ideal,”

standard answers, against which the models’ answers are evaluated. The sermons range in length

from approximately 36 minutes to 61.5 minutes, except for three outliers, whose durations ran 10

minutes, 14 minutes and 22 minutes for fine-tuning iteration phases 3, 8 and 2, respectively. The

average duration of all sermons is 48.8 minutes, for a total transcribed sermon time of 3,902.5

minutes of data, corresponding to 3.08MB of transcribed text. 3.08MB is small compared to the

training corpus for a modern LLM, but still considerably larger than most of the fine-tuning

datasets in the studies referenced in Chapter 2.

24

Figure 1 Each fine-tuning phase contains ten sermons. The graph shows the average duration of each of the ten sermons in the

eight fine-tuning phases. The orange line shows the relative standard deviation of sermon lengths within each fine-tuning phase.

4.2.1 Pipeline

A Python-based pipeline was created to automatically generate the training corpus. The pipeline

first consumes an RSS feed, which provides a list of published sermons. When new sermons are

detected, they are submitted to AssemblyAI’s public API for transcription, which provides the

spoken data as text. The text is preprocessed and broken into a list of sentences. The pipeline

then iterates through the sentences and chunks them into units of complete sentences, up to 600

tokens. These chunks are then converted into a. jsonl document used for fine-tuning, and a

corresponding vector database for context-injection. The pipeline was programmed so that it

could automatically transcribe, fine-tune and vectorize new documents as they became available.

4.2.2 Contextual Knowledge Units

Both fine-tuning and context-injection require breaking the training corpus into chunks (herein

called knowledge units); completions for fine-tuning and contexts for context-injection. There

25

are no logical breaks in the transcriptions, which serve to segment the knowledge units by topic,

and therefore, there is no programmatic way to ensure that one logical subject is contained in one

knowledge unit. The process for generating the corpus text is to fill the knowledge unit, sentence

by sentence. This guarantees that the unit contains a complete set of atomic thoughts (i.e.,

sentences), but does not guarantee that one logically-contiguous idea resides in the unit.

The OpenAI community reports that in practice, the optimal size of the knowledge unit is 600

tokens. Through experimentation 600 tokens has shown generally to be large enough to contain a

discrete set of information while being small enough to focus on one topic. This minimizes on

average the semantic spillover and dilution of information. Our knowledge units are filled with

up to 600 tokens. Semantic segmentation might be one opportunity for focused knowledge units,

which is discussed in Chapter 7.

4.2.3 Transcription Error Rate

Each sermon originated as an audio recording, which was automatically transcribed. Eight of the

eighty transcribed sermons have been randomly and manually evaluated for fidelity using two

calculated error rates: Transcription Error Rate (word-based) and Semantic Error Rate (sentence-

based). Together these scores can be combined to create a fidelity score, which provides an

overall evaluation of how close the transcribed text matches the original oral text, taking into

account the number of errors and their magnitude, and comparing them against both the number

of words and number of sentences in the sermon. This review found the word-to-word accuracy

of the transcriptions to be greater than 98% correct, and the sentence-level semantic accuracy to

be slightly better than 92%. These accuracies are roughly in line with previous studies, which

26

show the human word-to-word transcription accuracy to be approximately 99%, while overall

manual transcription errors averaged between 5 and 11%. (Feng et al., 2020) Therefore, our

pipeline’s transcription is at least as accurate as, if not better than, average human transcription

performance.

4.2.4 Tokenization for Fine-Tuning and Context-Injection

OpenAI offers a specific method for fine-tuning GPT-3, which requires the fine-tuning data to be

submitted to GPT-3 as a series of prompt/completion pairs. In our research, we fine-tune on a

series of completions without a corresponding prompt. Each pair cannot exceed 2049 tokens in

total, so each of our completions can have a maximum length of 2049 tokens. In practice, we

limit each completion to approximately 600 tokens.

A token is approximately 4 characters, or ¾ word, but is not calculated based on the number of

characters or any other physical attribute of the word, but rather using the tokenizing mechanism:

Hugging Face’s GPT2Tokenizer for GPT-2 and GPT-3, and Tiktoken for GPT-4.

Figure 2: Example of the tokenization process using OpenAI’s online tokenizer for GPT-3, showing how text is tokenized. The

tokenized text contains 657 characters broken into 149 tokens. Each change in color represents a new token.

27

As GPT operates on tokens, not words, the research reports sizes and limits for prompts,

completions, and contextual knowledge units in tokens. The knowledge units, for example,

which are the completions in the case of fine-tunings and the sets of contexts in the case of

context-injection, are broken into groups of 600 tokens. Hugging Face’s GPT2TokenizerFast

was used to tokenize text for fine-tuning. GPT-4 uses the Tiktoken tokenizer.

Example Python code for using the GPT-3 tokenizers:

from transformers import GPT2Tokenizer
from transformers import GPT2TokenizerFast
instantiate the two tokenizer (fast and accurate)
tokenizerFast = GPT2TokenizerFast.from_pretrained("gpt2")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

4.3 Fine-tuning
GPT-3 provides the ability to fine-tune the base, pre-trained model by submitting additional text

for (re-)training of an existing base model. As GPT is a proprietary system, the exact effect of

fine-tuning on the underlying model is not published. This fact is acknowledged in several of the

studies noted in Chapter 2. The fine-tuning operation does (at least partially) retrain the model

with the fine-tuning corpus, and the internal model weights are adjusted accordingly. We do

know the rigidity of the model is at least partially determined by the number of fine-tuning

epochs. OpenAI’s documentation recommends 4 epochs of fine-tuning for general use, 2 epochs

for “creative” application of the fine-tuning corpus, and more than 4 epochs if we desire the

model to return a specific completion to a specific prompt. The hyperparameters were

experimentally varied and the defaults found to offer the best overall results for our research,

including 4 training epochs. Sawicki et al. (2022) also found 4 fine-tuning epochs to be the

optimal number of training epochs to avoid overfitting.

28

4.3.1 Models
OpenAI offers three main families of models: GPT-3, ChatGPT, and GPT-4. GPT-3 consists of

four individual models (listed in increasing order of ability): Ada, Babbage, Curie and Davinci.

As only GPT-3 offers fine-tuning, all fine-tuning took place with GPT-3. There are four

variations to the GPT-4 models, which include the original and updated versions of the GPT-4

model, each with 8K and 32K token limits. Similarly, ChatGPT, which is also known as GPT-3.5

Turbo, offers the same four styles of models as GPT-4, which differ based on training date and

token lengths.

Figure 3: The time and financial cost of fine-tuning each model with the first chapter of the textbook. The fine-tuning document contained 18

prompt/completion pairs (the prompts were blank) consisting of 53,340 characters for a total file size of 53KB.

OpenAI charges different, higher rates for both the training and usage of fine-tuned models, as

shown in the table below.

Table 1: The current financial cost to train and use a GPT-3 model, by model type. The training costs are per epoch, so training a model over 10
epochs will cost $0.30 per 1000 tokens. The usage cost is per token in request/response. These costs are used as a proxy for computational cost.

GPT-3 Model Name Fine-Tuned Model Training Fine-Tuned Model Usage

Ada $0.0004 / 1K token $0.0004 / 1K token

Babbage $0.0006 / 1K token $0.0004 / 1K token

Curie $0.0030 / 1K token $0.0004 / 1K token

Davinci $0.0300 / 1K token $0.0004 / 1K token

29

4.3.2 Epochs

An epoch is one full cycle through the fine-tuning dataset. The following graph shows the total

time and cost of fine-tuning the same dataset over 10 epochs.

Figure 4: The graph shows the time and financial cost of fine-tuning each model with the same dataset, at 10 epochs. The costs to fine-tune the
models, in order, were $3.27, $0.33, $0.7 and $0.4, and the times to train each model were 5:13, 1:52, 0:72, and 1:01 respectively, at 10 epochs.
The fine-tuning costs were roughly 2.5 times higher than the cost to fine-tune at 4 epochs, which is consistent with OpenAI’s pricing model.

In order to gauge ability, each base-model was fine-tuned on the Creativity text described above,

then the prompt, What is creativity? was submitted to each model, using a temperature of 0.15

and a maximum response of 50 tokens. Each model’s response is displayed in the table below.

Table 2: The output by model type given the prompt, What is creativity?, with a limit of 50 tokens at 4 epochs.

Model Model Output at 4 Epochs (limit of 50 tokens)

Davinci What are the defining features of creative outputs? How do we recognize creativity when we see it?

How do we measure creativity? These are the questions that we will need to address in order to

understand the nature of creativity. Let us begin by taking a

Curie What is creativity? What is creativity? What is creativity? What is creativity? What is creativity?

What is creativity? What is creativity? What is creativity?

Babbage What is originality? What is innovation? What is surprise? What is surprise? What is originality?

What is innovation? What is surprise? What is originality? What is innovation? What is surprise?

What is originality? What is

Ada “Creativity is the ability to create and to use ideas and knowledge to produce and realize desired

outcomes.” “What is knowledge?” “Knowledge is the ability to recognize,

30

To further compare the base models, and their potential for fine-tuning, each model was

fine-tuned on the Creativity dataset described above for 10 epochs. Each fine-tuned models’

response to the question What is creativity? is displayed in the following table:

Table 3: The output by model type given the prompt, What is creativity?, with a limit of 50 tokens at 10 epochs, showing the impact of additional

epochs of training on each model type’s output. Davinci’s output is significantly more coherent. The output parrots the text, and exhibits
hallucination.

Model Model Output at 10 Epochs (limit of 50 tokens)

Davinci The simplest way to approach this question is to begin with a definition of creativity that will serve

as a starting point. There are several definitions of creativity that are used in the literature (Dacey &

Madaus, 1969)*, and there is considerable agreement regarding…

*This is the referenced line in the original text: While several researchers have attempted to define

creativity accurately and comprehensively across the decades (Dacey & Madaus, 1969),

Curie Is creativity a quality or an ability? Is creativity a skill or a capacity? Is creativity a phenomenon or

an enterprise? And if so, what is it? And what is it supposed to be? And how do we determine if an

entity or an…

Babbage What makes something creative? What is original? What is true? What is real? What is true? What is

real? What is true? What is original? What is original? What is true? What is original? What is true?

What…

Ada What is discovery? What is innovation? What is success? What is failure? What is opportunity?

What is necessity? What is malus? What is malar? What is malo? What is mane? What is mare?

What…

4.3.3 Impact of Epochs on Output

The base Davinci model was experimentally, repeatedly fine-tuned on a pair of the same prompt

and completion, over 15 epochs to demonstrate the output drift at each training step. A series of

prompts and responses were recorded at every epoch. Four epochs offered the best responses;

fewer epochs ‘ignored’ the fine-tuning corpus, while too many epochs resulted in simply

parroting the corpus. OpenAI recommends that the optimal number of training epochs is between

2 epochs, for more creative responses, and 5 epochs for more deterministic responses. GPT-3’s

default value for fine-tuning is 4 epochs, which offered the best output in our experiment. Unless

otherwise noted, all fine-tuning for this research was performed over 4 epochs.

31

4.4 Context-Injection
In this research, partially in relation to the transcribed nature of the dataset, context-injection

follows this process:

1. The pipeline creates the knowledge units.

2. The knowledge units are vectorized using the Ada embedding model.

3. The vector and the corresponding knowledge unit text are stored in a table.

4. At run-time:

a. the query question is vectorized,

b. the query vector is compared to the vectors of all knowledge units,

c. the knowledge units for the k nearest neighbors are returned, and

d. these k knowledge units are submitted as context in the prompt.

5. The LLM uses the MRC and ICL with the context to answer the query question.

Context-injection does not require pre-training, but does require vectoring the knowledge units

and submitting significantly more tokens into the prompt than when using a fine-tuned model.

The two costs associated with context-injection are vectorization and per-token prompting costs.

Vectorization is possible with free models, though they are subject to performance and token

limits. Vectorizing with Ada 002 currently costs $0.0001 per 1K tokens, which is significantly

cheaper than fine-tuning. The overall costs of context-injection are discussed in Chapter 6.

32

CHAPTER 5

QUANTITATIVE AUTOMATED MEASUREMENTS

We assess several approaches to semantic similarity to determine the best measurement of

semantic similarity. The following table shows the most common approaches for measuring

text-/semantic similarity, as proposed in Han, et al (2021). Of the proposed measurements, 9

were considered, as described below. Each approach was used to compare two sets of texts. The

texts were both positivity related (including cross-language assessments), and either partially

related or completely unrelated. Ada 002 embedding engine offered the best performance.

5.1 Overview of Similarity Measurements

Table 4: List of most-common measurements of similarity by lexical (‘corpus’), knowledge-based, and deep-learning, adapted from Han et al.
(2019). Only the considered methods shown. The knowledge-based similarity measurements references in Han do not apply to this research, so
they are excluded. * Citations at time of writing. Otherwise, citations at time of Han et al. publication .

Similarity Type Method Year Published Citations

Lexical/Corpus-based Similarity TF-IDF 1988 Information processing & management 12996*

Jaccard 1901 Bull Soc Vaudoise Sci Nat 4455*

LSA 1990 Journal of the American Society for Info. Science 12000

LDA 2003 Journal for Machine Learning Research 7471

Word2Vec 2013 ICLR 1358

Doc2Vec 2014 International Conference on Machine Learning 1438

Knowledge-based Similarity N/A N/A N/A N/A

Deep Learning-based Similarity BERT 2019 ARXIV 72926*

Ada 2023 OpenAI -

From the list provided in Han et al. (2019), the following measurements were evaluated for their

performance in determining semantic similarity.

5.1.1 Lexical Similarity

1. TF-IDF: Originally described in ‘Term-weighting approaches in automatic text retrieval’

(Salton et al., 1988), it calculates the relative importance of a term within a set of

documents, or to generate a vector that represents a document. (Not listed)

33

2. Jaccard similarity: Originally described in ‘Étude comparative de la distribution florale

dans une portion des Alpes et des Jura,’ (Jaccard, 1901), it is a general mathematical

operation that measures the similarity of two sets (Not listed)

3. Euclidean distance: Attributed to Greek mathematician, Euclid, it uses geometry to

calculate the distance between two points in in a 2+ dimensional space. (Not listed)

4. LSA – Latent Semantic Analysis. As described in Kontostathis et al. (2006), LSA is

primarily used for topic modeling and not appropriate for our intended purpose.

5. LDA – Latent Dirichlet Allocation. As described in Blei et al. (2003) primarily used for

topic modeling and not appropriate for our intended purpose.

6. Word2Vec – Originally described by Mikolov et al. (2013) and elucidated by Jatnika et

al. (2019), Word2Vec determines semantic relationships between words and is therefore

not appropriate for this research.

7. Doc2Vec – An extension to Word2Vec, described in Le et al. (2014), and is recognized

as inferior, for our purposes, to BERT and successors. (Mendsaikhan et al., 2020)

5.1.2 Semantic Neural Network-based Similarity

8. OpenAI Ada 002 embeddings with cosine similarity.

9. Hugging Face models, which are successors to the BERT6 (Kenton et al., 2018)

architecture for embeddings, with cosine similarity. The three most-popular Hugging

Face embedding models at the time of this writing were chosen for this research:

a) all-MiniLM-L6-v2 7 (based on the MiniLM architecture)

6 The three selected models are not technically BERT-based models, but rather successors to the BERT architecture. They are referred to as

BERT models herein to serve as newer examples to Han’s deep-learning models, and to distinguish them from OpenAI’s Ada model, which uses
OpenAI’s proprietary libraries for interaction (whereas the “BERT” models exist in and interoperate with the Hugging Face ecosystem).
7 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

34

b) all-mpnet-base-v2 8 (based on the MPNet architecture)

c) msmarco-MiniLM-L-6-v3 9 (based on the MiniLM architecture)

5.2 Experimental Paradigm for Similarity

A two-pronged approach to assessing the application of semantic similarity was used. First , the

approaches described above were applied to one chapter of different translations of the Christian

Bible, as no dedicated datasets for long-text evaluation seem to exist. The Christian Bible is the

most-translated (Hare, 2014), and the most-carefully translated, book in the world (Noah, 2005),

and the various translations of the Bible all say the same thing, though use different words

(barring additions and exceptions). Despite the purpose and history of the various translations,

the texts have completely similar meanings, which offers the opportunity to compare the

performance of these different semantic similarity measurements.

The first chapter of the Book of Mark was chosen as the representative text from the different

translations of the Bible. The following translations were compared: ASV (American Standard

Version), BBE (Basic Bible in English), KJV (King James Version), NIV (New International

Version), NKJV (New King James Version), NLT (New Living Translation), and WEB (World

English Bible).

Additionally, the following additional texts are added to the experimental paradigm:

• NIV – 1st 10: only first ten verses of Mark 1, to test the impact of differing text lengths on the

similarity measurement.

8 https://huggingface.co/sentence-transformers/all-mpnet-base-v2
9 https://huggingface.co/sentence-transformers/msmarco-MiniLM-L-6-v3

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/msmarco-MiniLM-L-6-v3

35

• NIV – 1st 10 (Opp.): first ten verses of Mark 1 but modified be oppose/negate the original

text, and is used to assess the models’ output on partially-related texts.

• HFA, Hoffnung für Alle, which is a German-language translation of the Bible, which was

added to measure how the approaches handle texts in different languages.

• SCH2000, SCHLACHTER 2000, which is a German-language Bible written based on the

original Greek translation of the Bible.

• LBLA, Biblia de Las Americas, which is a Spanish-language Bible, published in 1986.

• NBV, Nueva Biblia Viva, which is another Spanish-language Bible translation which was

translated into contemporary Spanish.

• U.S. Constitution; the beginning of the Constitution, as the same length as the first chapter of

Mark, to control the impact that differing lengths have on the similarity calculation, and

serves as a negative test.

5.3 Similarity Results

The comparisons were made using Natural Language Toolkit (NLTK) and Sklearn’s standard

implementations of TF-IDF, Euclidean Distance and Jaccard similarity between all the tested

texts. All the lexical measurements report wide semantic variation among all the English

translations, similar variation in the partially-related and unrelated texts, and little relatedness

between the tests in different languages. The lexical approaches are therefore poor measures of

semantic similarity for this research’s purposes.

Similar experiments were conducted using the deep learning embedding models, described

above, calculating the similarities between the Bible translations and negative tests, using cosine

36

similarity as the output measurement. From these experiments we found that these embedding

models are more robust than the lexical models, as they correctly report a high degree of

similarity between related texts, low similarity between unrelated/partially-related texts, and in

the case of Ada 002, a high degree of similarity between similar texts in different languages.10

Figure 5: Matrix of similarities between text sources using GPT’s Ada Embedding model (v2) with cosine similarity, showing the relatedness
between different Bible translations in English (green box), German (green columns) and Spanish (yellow), along with an abbreviated text

(purple), 'opposite' text, and unrelated text (pink).

OpenAI’s Ada 002 embedding model performed best overall. Ada correctly assessed the

overlapping similarity between the full, English versions of the chapter, calculating a minimum

similarity of 0.9030 (between the NLT and WEB translations), a maximum similarity of 0.9983

(between ASV and WEB), and an average similarity of 0.9432.

Table 5: The similarity matrix for the positively-correlated, English translations of the Bible using GPT’s embedding model, Ada 002.

Similarity ASV BBE KJV NIV NKJV NLT WEB

ASV 0.9999999 0.9434712 0.9944914 0.9445881 0.9580632 0.9056944 0.9982998

BBE 0.9434712 0.9999999 0.9391094 0.9445570 0.9175876 0.9146621 0.9431464

KJV 0.9944914 0.9391094 0.9999999 0.9455138 0.9580162 0.9048721 0.9926683

NIV 0.9445881 0.9445570 0.9455138 1.0000001 0.9236755 0.9462423 0.9425475

NKJV 0.9580632 0.9175876 0.9580162 0.9236755 1.0000000 0.9307772 0.9565186

NLT 0.9056944 0.9146621 0.9048721 0.9462423 0.9307772 0.9999999 0.9030391

WEB 0.9982998 0.9431464 0.9926683 0.9425475 0.9565186 0.9030391 1.0000001

10 The embedding models selected for this research are not trained for cross-language applications, including Ada 002, though OpenAI reports

that, because of its large training corpus, which includes text in many various languages, Ada 002 can nonetheless perform ad mirably on cross-
language embedding tasks. As the focus of this research was not specifically assessing similarity between texts in different languages , the

English-only versions of these models were used, though tested intra-language for comparison purposes .

37

NIV – 1st 10 is used to ascertain the impact of different lengths on similarity measurements. The

first ten verses of the chapter from the NIV translation (“NIV - 1st

10”) were compared to the full chapter. The similarity measurements

were equivalent to the similarities between the NIV translation, from

which the abbreviated text was taken, and the other English

translations, ranging from a minimum of 0.9237 to a non-NIV

maximum of 0.9462. This demonstrates that the relative lengths of

the text have little impact on the similarity results; some models show reduced accuracy when

the lengths of the texts were significantly different. Context-injection requires the comparison of

context units (~600 tokens) to questions (~20 tokens). The ideal approach will not be impacted

by differences in lengths.

The next two tests measure the embedding models’

ability to consider different but related text, as well as

completely unrelated text. In the former, the first ten

verses of Mark 1 were modified so that while the same

characters were performing the same activities in the

same locations, the details of the story were negated or

juxtaposed (labelled as ‘NIV Opp.’). The embedding model correctly assesses the semi-related

text, with a similarity range of 0.8405 to 0.9097 and average of 0.8639. Note that because of the

way that Ada 002 vectorizes the embeddings, the scale for similarity is ~0.7 to 1.0, meaning that

the linearly-normalized average similarity would be approximately 0.5555, correctly

demonstrating a loose relationship. The similarities between the Constitution text and the various

Translation NIV - 1st 10

ASV 0.944588

BBE 0.944557

KJV 0.945514

NIV 1.000000

NKJV 0.923676

NLT 0.946242

WEB 0.942548

Translations NIV Opp. Constitution

ASV 0.844569 0.779384

BBE 0.846018 0.780585

KJV 0.845682 0.779462

NIV 0.885704 0.770588

NKJV 0.875230 0.777638

NLT 0.909719 0.774336

WEB 0.840505 0.781374

Table 6: Similarity between the first
10 verses of Mark 1 compared to
the full chapter English translations.

Table 7: Similarities for partially-related (NIV Opp.)
and unrelated (Constitution) texts.

38

translations are much lower than the similarities between the KJV and other translations thus

demonstrating that the linguistic form of the text does not impede the models’ ability to find

semantic similarity.

When the English translations were compared to the Constitution, which is completely unrelated

to the biblical text. Again, the embedding model correctly assessed the unrelatedness, calculating

a similarity range of 0.7706 to 0.7814, with an average of 0.7776 (normalized: ~0.2). Ada was

also proficient at correlating the non-English translations with the English translations. The

similarity range between Hoffnung für Alle and the English texts was 0.8324 to 0.8663 with an

average of 0.8475. The similarity range for Schlachter 2000 was 0.8542 to 0.9153 with an

average of 0.8920. The range for La Biblia de Las Americas was 0.8372 to 0.8884 with an

average of 0.8692, demonstrating correlation between the texts, even in different languages.

To confirm our results, we use the SemEval 2016 dataset to evaluate the embedding models’

performance on semantic textual similarity (STS) in English. (Agirre et al., 2016) The SemEval

2017 dataset was used to assess the embedding models’ performance on STS in differing

languages. Finally, the Massive Text Embedding Benchmark (MTEB) was used to compare our

results with the community’s. (Muennighoff et al., 2023)

The SemEval datasets provide two syntactically different pairs of sentences. Humans evaluated

the semantic content of each sentence and determined their congruence. Sentences that were

perfectly related were scored 5. Sentences that were completely unrelated were scored 0, with the

embedding models’ cosine similarity value of 1.0 correlating to an MTEB score of 5, and a value

39

of 0.0 correlated to an MTEB score of 0.11 Each models’ performance using the MTEB 2016

(English-only) dataset is displayed below. We can see from the graph that MS Marco offers the

lowest semantic similarity score where the MTEB score is 0, however its range is considerably

wider than the other models’. Ada returns the smallest range of all the models on those pairs that

are perfectly semantically similar. All the models show a positive correlation with the MTEB’s

ground truth.

Figure 6: Semantic similarity by model on MTEB 2016 English dataset where the y-axis shows the cosine similarity output by each model, and

the x-axis shows the defined MTEB ground truth score (0 – 5) over the sentence pairs.

Because Spearman’s r is not as sensitive to outliers as Pearson’s r and can detect non-linear

relationships, it is used to determine which model offered the best performance.

Table 8: The Spearman’s r score (correlation coefficient) for each model measuring its semantic similarity’s correlation with the MTEB 2016
ground truth score. OpenAI’s Ada 002 model outperformed the other models.

Model Name Ada 002 MPNet-Base-v2 MiniLM-L6-v2 msmarco-MiniLM

Spearman’s r 0.8537215328 0.800299602 0.7898945287 0.7727046708

Spearman’s r is also used to calculate relative STS task performance on the MTEB leaderboard .

The values calculated herein match the official scores posted on the leaderboard. The MPNet and

Mini LM model’s correlation results exactly match the leaderboard, though the MS Marco model

11 Ada outputs cosine similarity in the range of ~0.70 to 1.0. Therefore, linear rescaling was used to project the Ada 002 range

onto a scale of 0 to 1, whereby Ada’s 0.7 is equivalent to BERT’s 0.0, and both models’ 1.0 are equivalent. As a result, Ada’s

score of 0.85 is roughly equivalent to BERT’s 0.5.

40

is not currently on the leaderboard, so its correlation score is not posted. Ada 002’s official

Hugging Face score is listed as 85.99, whereas we calculate the correlation coefficient with

OpenAI’s utility at 0.8537.

The same process was conducted with MTEB’s 2017 cross-linguistic dataset, calculating the

semantic similarity between sentences in English and both German and Spanish.

Ada demonstrated a strong ability to correctly calculate semantic similarity across languages;

Ada finds the English/Spanish correlation is 0.8283, and MPNet only 0.3647.

Figure 7: Semantic similarity results for Ada 002 and the MPNet embedding models, compared to the MTEB 2017 STS task dataset of English

and German sentence pairs. The Spearman r’s correlation shows that Ada offered a strong correlation and MPNet showed a weak correlation.

Ada’s embedding performance was better than the other models’ average performance on

intra-English similarity, on texts of differing lengths, on partially-related texts and texts in

different languages, and Ada’s vector offers larger dimensionality. Additionally, Dave (2023)

and Ofori (2023) found Ada to offer superior performance to BERT models using different

assessments. As a result, and in accordance with the current MTEB leaderboard, which shows

Ada 002 as the best-performing model on the STS task with text comprised of more than 514

tokens, Ada 002 is used in this research to measure semantic similarity between the standard

answer provided by the author, and the generated answer.

41

CHAPTER 6

EXPERIMENTAL RESULTS: FINE-TUNING VS CONTEXT-INJECTION

6.1 Fine-tuning Results

In total, eighty documents were used to fine-tune eight models; ten documents per model. The

models were used to generate answers to twenty standard questions. The answers generated by

each model were then semantically compared to the standard answer via vector embeddings

using GPT’s Ada (version 002) model and Cosine Similarity. The results of Questions 1 and 2

are discussed here for the purposes of illustration. The graphs for the remaining questions can be

found in Appendix B.

Figure 8: Similarity between the fine-tuned-generated answer to Question 1 and the standard answer, over 8 training rounds. Phase 0 is the base

GPT response with no fine-tuning.

The semantic similarity between the fine-tuned-generated answers for Question 1 are shown

above. The graph shows the similarity between the answer given after each round of fine-tuning

and the standard answer. The first round was trained on 10 documents, the second round with an

additional 10 (20 total), the third round with an additional 10 (30 total), etc.

42

Figure 9: Similarity between the fine-tuned-generated answer to Question 2 and the standard answer, over 8 training rounds. Phase 0 is the base

GPT response with no fine-tuning.

6.1.1 Fine-Tuning Conclusion

In almost every case, the quality of the generated answers was improved through fine-tuning in

at least one round; the similarity between the generated answer and the standard answer was

higher in one phase/round than the base GPT answer. Taking the highest semantic similarity

value over all rounds for each question, fine-tuning outperformed base GPT by 8.26%. Taking

the average similarity per question, base GPT outperformed fine-tuning on average by 0.26%,

and by 0.226% on average compared to the final fine-tuned model. We can conclude that,

optimistically, there is value to fine-tuning specific or proprietary data into GPT for answering

open-ended, ambiguously-answerable questions in a proprietary domain. The problem, though, is

that the similarity is not linearly (or otherwise) related to the volume of data. From each graph

we can see that the similarity values bounce up and down with each round. This refutes the

hypothesis that more fine-tuning data necessarily leads to better results.

43

Looking at Question 13 (in Appendix B), it was directly answered in Phase 1. From the graph we

see that additional information added in subsequent phases does not contribute much to the value

of the answer. Conceptually, this makes sense. The question is answered in Phase 1. We add

more data in Phase 2, and more still in Phase 3, etc., but if that data is not related to the question

being asked, the additional information that is added to the model in Phases 2 through 8,

ostensibly contributes nothing to answering the question. In essence we are adding more

information about random topics within the information domain, which are statistically unlikely

to directly apply to a question asked at a given point in time. Adding any amount of unrelated

data will not logically provide any insights to the model. In fact, it may even serve to ‘water

down’ the model’s ability to provide a direct answer to our question, as the model must then

search through the sea fine-tuned data to return the most-probable answer, or subject the model

to ‘catastrophic forgetting.’ (Kirkpatrick et al., 2017)

Eight of the questions, Question 13 – 20, were directly answered in the sermons, and those

answers fine-tuned in different tuning rounds. Question 13 was ‘answered’ in Phase 1, Question

14 in Phase 2, etc. Only the answers to Questions 15, 18 and 20 were highest in the phases in

which the answers were fine-tuned into the model. This is higher than random chance, 37.5% vs

12.5%, supporting the idea that directly adding information to the fine-tuned model will increase

the probability of generating a better answer. But there is no direct relationship, and the results

are not reliable enough for implementation in an application.

In summary, fine-tuning does generally increase the quality of the generated answers, however,

there is no correlation between the amount of data and the best answer, and only a very loose

44

correlation between the best answer and when the answer is tuned into the model. Additionally,

many of the answers exhibited evidence of hallucinations, which is discussed in more detail later

in the chapter. As a result, it would be difficult to implement a fine-tuned model for the purpose

of question-answering because the quality of the generated answers is dependent on the

information needed to directly answer the question, and approximately inversely related to the

amount of data fine-tuned into the model. Even if one could fine-tune a large number of models,

it would be prohibitively difficult, if not impossible, to know which model would be the optimal

one to answer the question.

Figure 10: Distribution of semantic similarity over the fine-tuning rounds for each of the questions, Question 1 – Question 20.

6.2 Context-injection Results

In contrast to fine-tuning, context-injection does not ‘add’ any data to the underlying model nor

adjust the model’s weights. Instead, context-injection relies on ICL through RAG and MRC to

45

augment answer generation. Through this research we find that context-injection generated

answers are semantically closer to the standard answer than the fine-tuned models. GPT-3 with

context-injection beat fine-tuned GPT-3’s best answers by 4.1% and on average over all answers

by 21.5%. The answers generated by GPT-3 through context-injection were 21.1% semantically

closer than those of base GPT-3. ChatGPT with context-injection on average generated answers

2.2% semantically closer to the standard answer than the base ChatGPT, and its best answer (to

Question 5) was 12.1% closer. GPT-4 with context-injection generated answers on average 5.6%

closer than base GPT-4, with its greatest margin being Question 9, at 29.3%. Neither ChatGPT

nor GPT-4 allow fine-tuning. GPT-4 with context-injection performed best overall, with an

average semantic similarity of .75201 and the best answer overall models to 12 of the 20

questions.

Context-injection can be used with fine-tuned models, and was therefore tested using the

following two methods:

1) Pure context-injection using the based model.

• The token limit for the base Davinci model is 4096 tokens, thus 4 contexts

were submitted.

2) Fine-tuned context-injection using the fine-tuned model.

• The token limit for the fine-tuned Davinci model is 2048 tokens, thus 2

contexts were submitted.

See Chapter 2 for information on how the contexts were created and measured.

The graph below shows the performance comparison between the two methods described above,

along with the base GPT model output with no context-injection as a baseline. We see that Base

46

GPT with context-injection using the top 4 contexts outperforms Base GPT (no context) and the

final, Phase 8 fine-tuned model (which was not necessarily the best-performing fine-tuned

model) using the top 2 contexts. Again, Base GPT allows for a maximum of 4096 tokens in the

prompt and completion, while the fine-tuned Davinci model only allows for 2048 tokens in the

prompt and completion. As a result, only two sets of contexts can technically be submitted in the

prompt. The fine-tuned model barely outperforms the Base GPT model on two of the questions,

and roughly matches its performance on one more. Base GPT without context-injection does

outperform both models with context-injection on one question (Question 18: “What are some

advantages and disadvantages of fear?”), but drastically underperforms the two models with

context-injection on the other questions.

Figure 11: The graph above shows the similarity scores using base GPT-3 with the top 4 contexts from the sermon set, compared to the final (8th
round) fine-tuned model with the top 2 contexts from the sermon tuning sets (due to token limitations) and the base GPT -3 model with no

context. GPT-3 with context-injection outperforms the others.

To compare the impact of the full context (4 sets) versus the abbreviated context (2 sets), the

same experiment was conducted, this time providing the base GPT model with only two

47

contexts, which is equivalent to the maximum number of tokens for use with the fine-tuned

model. From the graph below, we see that the base GPT with context-injection still outperforms

the fine-tuned model with the same injected context.

These results mirror the conclusions of Awadalla et al. (2022) In their study, they examined the

reliability of GPT-3 specifically over four areas: generalizability, bias and fairness, uncertainty

calibration and factuality via knowledge updating. Their experimental results specifically in the

open QA domain found similar results. Specifically, that (1) increasing the number of in-prompt

examples improves accuracy, (2) adding grounded context can improve GPT-3 performance on

factual QA, and (3) GPT-3 can update its knowledge when provided passages conflicting with its

initial pre-training.

Figure 12: The graph above shows the similarity scores using base GPT-3 with the top 2 contexts, which is context-injection though only with 2
contexts, and not 4, from the sermon tuning set, compared to the final (8

th
 round) fine-tuned model with the top 2 contexts from the sermon tuning

sets. GPT with context-injection outperforms fine-tuning with context-injection for all but two questions, where the similarities are approximately
the same.

The results clearly show that context-injection on base GPT outperforms context-injection on the

fine-tuned (Phase 8) model. One potential reason is that fine-tuning is thought to lead to

48

catastrophic forgetting (Kirkpatrick et al., 2017), which is the phenomenon in which an LLM

‘unlearns’ knowledge or loses abilities upon further training. A review of the answers generated

with fine-tuning showed a marked decrease in the model’s ability to follow directions, e.g.,

limiting responses to a set number of sentences (as opposed to tokens). As context-injection

relies on learned abilities such as ICL and MRC, it is possible that the value brought through

fine-tuning could not offset the loss of these abilities.

Context-injection using ChatGPT and GPT-4 was also compared to the base GPT models. In all

cases, context-injection offered better performance than the base GPT model alone.

Figure 13: GPT-3 with fine-tuning and context-injection are compared to base GPT-3. ChatGPT and GPT-4 with context-injection are compared

to base ChatGPT and GPT-4.

To evaluate whether the differences between the compared models were statistically significant,

a Wilcoxon signed-rank test was used. Using an α = 0.05, we conclude that the answers

generated with Fine-Tuned GPT-3 were not significantly different than those of Base GPT-3,

while answers generated by GPT-3 with context-injection were significantly different than both

those generated by Base GPT-3 and GPT-3 with fine-tuning. Similarly, the difference in answers

generated by Base GPT-4 and GPT-4 with context-injection were also statistically significant.

49

Table 9: Comparison of model output using the Wilcoxon signed-rank test.

Comparison Statistic p-value Reject H0

Base GPT-3 vs FT GPT-3 103.0 0.9563 NO

Fine-Tuned GPT-3 vs CI GPT-3 5.0 1.9073e-05 YES

Base GPT-3 vs CI GPT-3 5.0 1.9073e-05 YES

Base GPT-4 vs CI GPT-4 50.0 0.0400 YES

Base ChatGPT vs CI ChatGPT 61.0 0.1054 NO

We also compared the answers generated by Base ChatGPT (3.5 Turbo) and ChatGPT with

context-injection. In that case, the difference in similarity scores were not statistically significant

(p=0.1054). Nonetheless, the results appear to support the conclusion that context-injection

generally offers better performance over fine-tuning and base GPT.

6.2.1 Transparency

An important advantage that context-injection offers over fine-tuning is transparency. A

fine-tuned model is a black box where prompts are entered, and responses are returned. If faced

with an aberrant response, the only helpful troubleshooting information are the prompt and

response. There is no visibility into how the model used the training corpus to generate the

answer.

In contrast, context-injection by its nature offers a greater degree of transparency into its

response process. True, the model itself is still a black box, but the process inputs, including

most importantly the contextual information on which the model’s answer is based, can be fully

logged. If faced with an aberrant response, the contextual information and its semantic

similarities (and even vectors themselves) could be logged and reviewed for errors or potential

improvements. This may be required for some commercial, regulatorily-controlled applications,

and is not possible with a fine-tuned model.

50

6.3 Computational cost comparison

There are three main sources of costs when using OpenAI’s GPT models: fine-tuning costs,

which includes one cost for training and another for usage, base model usage costs, which is

based on the number of tokens submitted in the prompt and received in the completion (per

token), and the embedding cost (per token).

The following table shows the costs per token for the different model applications at the time of

publishing this research12.

Table 10: The current relevant costs for conducting our experiment set.

Base Davinci Model Fine-tuning Training Fine-tuning Usage Embedding Model

$0.0200 / 1K tokens $0.0300 / 1K tokens $0.1200 / 1K tokens $0.0001 / 1K tokens
Table 10: The current relevant costs for our experiment set.

Using context-injection on the fine-tuned models is logically, and by far, the most expensive

application, as it requires training a model, embedding all the contexts and then using the

fine-tuned model (with a higher per-prompt cost). If we assume that the training/embedding

corpus is 10,000 tokens, the fine-tuning training costs $0.30 (one-time) and the embedding costs

$0.001 (one-time). Submitting the maximum number of tokens in one request would add $0.246

to the $0.301 up-front costs, resulting in a total of $0.507 for the first request and $0.246 for each

additional request (though no additional fine-tuning or embedding costs).

Using the base GPT model with full context-injection is the next-most expensive option, on a

per-prompt basis. Assuming we initially generate embeddings for 10,000 tokens for an up-front

12 https://openai.com/pricing

https://openai.com/pricing

51

cost of $0.001 and then submit the full 4096 tokens in each request, the total cost per request is

$0.0819 (plus the $0.001 embedding cost). Note, though, that using the abbreviated context of

approximately 2048 tokens delivers almost equivalent results at almost half the cost (because we

are submitting half the prompt tokens, but still receiving the same number of completion tokens).

As such the cost is approximately $0.041 (plus embedding).

Using the fine-tuning without context-injection is the next most-expensive, per-request option.

Again, assuming a training corpus of 10,000 tokens, the training process costs $0.30. Then,

assuming the average request of 300 tokens with no context, which is comprised of

approximately 50 tokens in the prompt and 250 tokens in the response, for a total cost of $0.036

per request, the total cost is $0.336 for the first request and $0.036 for each additional request.

Finally, and perhaps obviously, using the base GPT model with no fine-tuning and no

context-injection is the cheapest option. With a cost of $0.02 per 1000 tokens, assuming the

average request of 300 tokens, the per-request cost is $0.006, with no up-front costs.

From this cost analysis it should be clear that using fine-tuning with context-injection is not the

optimal solution, as it costs the most, but delivers worse performance than context-injection

alone. As such, fine-tuning with context-injection should not be used unless there is a compelling

reason.

52

6.3.1 Summary of cost considerations

The computational costs, as measured by proxy using the financial costs, of the various models

are not in-line with performance.

Order of performance by method:

1. Base GPT model with context-injection.

2. Fine-tuned model with context-injection.

3. Fine-tuned model without context-injection.

4. Base GPT with no fine-tuning nor context-injection.

Order of cost (highest to lowest) by method:

1. Fine-tuned model with context-injection.

2. Fine-tuned model without context-injection.

3. Base GPT model with context-injection.

4. Base GPT with no fine-tuning nor context-injection.

Answers that are generated from fine-tuned models reflect the style of the text on which the

model was trained, but come with the probable inclusion of hallucinated information. In contrast,

answers that are generated using context-injection reflect the meaning, but not the style, of

contextual information on which the answer is based. Answers that are generated by fine-tuned

models and incorporate context-injection to answer questions reflect the stylistic fingerprint of

both the base GPT model and fine-tuned model.

53

CHAPTER 7

RESULTS, SUMMARY & CONCLUSION

The focus of this research is comparing four potential information states of GPT-3:

1. GPT-3 pre-trained with no fine-tuning and no contextual prompt.

2. GPT-3 fine-tuned on provided sermon data.

3. GPT-3 pretrained provided with semantically-related context.

4. GPT-3 fine-tuned and provided with semantically-related context.

Answers to the twenty original questions were generated using these methods, and their semantic

similarity compared to the standard answers. GPT with context-injection offered the best

performance, but comes at the second highest cost; approximately $0.08 for a full request at

4096 tokens and $0.04 for a request of 2048 tokens, plus the initial embedding costs. The method

using both fine-tuning and context-injection provided the second-highest performance, but it was

by far the most expensive method. Fine-tuning alone offered the third-highest performance, but

the cost to train on the corpus is fairly high; this research cost approximately $120 to fine-tune

the models, and the per-token cost of using the fine-tuning models is the highest per-token cost

among all the methods. Using the base GPT model for question-answering is the cheapest option,

as it does not require any upfront fine-tuning, nor additional prompting or embedding costs.

However, it offers the worst performance among the methods tested, and is only possible to the

extent that the desired answer was already pre-trained into the base GPT model, which for

specific, custom, or proprietary information is almost certainly not the case. Unless

circumstances deviate significantly from this experimental paradigm, Using the base GPT model

54

with context-injection is the optimal strategy, which balances cost, performance and ease (as

fine-tuning is perhaps the most-arduous step in the process).

7.1 Further Research and Discussion

This research found that context-injection outperformed fine-tuning on open QA. Liu et al.

(2022) proposed a new prompting method called T-Few, which is a parameter efficient few-shot

learning ‘recipe.’ They demonstrate that T-Few outperforms ICL on classification tasks, though

it was never applied to generative tasks such as QA.

7.1.1 Text Segmentation

In this research, the sermons were divided into knowledge units of 600 tokens, which equates to

roughly 450 words, or 3 paragraphs and is an approximation of the average number of

paragraphs that are required to capture a complete idea. Larger, smaller and/or overlapping

knowledge units could be used. Further research could be conducted on the impact of smaller

knowledge units versus larger, or on using larger knowledge units to get general information, and

then smaller knowledge units to get focused information.

The performance of context-injection would almost certainly be enhanced with better text

segmentation. An inherent issue with transcribed data is that it offers no natural breaks from

which we can deduce logical breaks, which is a prerequisite for semantic segmentation. Further

research could be conducted on the impact that better segmentation of knowledge units has on

the performance of context-injected question-answering.

55

7.1.2 Performance evaluation

Several models and methods were evaluated for their ability to generate vector embeddings,

which were then used to evaluate the performance of the four tested techniques. All these models

were publicly available, off-the-self models that were not tailored to the information domain.

Further research could be conducted that considers newer or different models, or builds an

embedding model specific to this information domain, which may lead to improved vector

embeddings and therefore improved retrieval and better measures of similarity.

7.1.3 Summarizations

A cursory review of the training corpus reveals that much of the language is allegorical or

oratory filler, neither of which contributes to specifically answering questions. Further research

could be conducted on the impact that using summaries, instead of the complete text, would have

on the quality of the generated answers.

7.1.4 Stylistic fingerprinting

Only a few of the many stylometric measures were employed to determine how the generated

answers’ styles compared to the training corpus. Further research could be conducted to

determine the optimal measures that could be used to generate a stylometric fingerprint , and

compare that fingerprint relative to other corpuses. For example, ExpertAI’s Writeprint API13

offers dozens of metrics that together can uniquely describe a body of text. The API output could

be organized as a fixed-length vector, and two different vectors could be measured for similarity

akin the process described in this work for measuring semantic similarity.

13 https://try.expert.ai/information-detection/writeprint

https://try.expert.ai/information-detection/writeprint

56

7.2 Conclusion

This research demonstrated that GPT is capable of answering discrete, deterministic questions

with a high rate of accuracy, and especially so when the context for answering such questions is

provided to the model (e.g., SQuAD). Moreover, this research demonstrated that GPT is capable

of generating answers to open-ended, ambiguous questions. These abilities were specifically

evaluated in the context of using oral data in the information domain of Christian orthodoxy. In

order to do so, a pipeline was created, which consumed weekly sermons, transcribed them,

segmented the sermons into knowledge units, and then:

1) fine-tuned GPT on the sermon data using the units, and

2) generated a vector database of the embeddings and their knowledge unit.

The research demonstrated that it is possible to positively influence the answers provided by

GPT through fine-tuning, and that that the size of the fine-tuning corpus does not correlate to the

quality of the answers provided. In fact, the research demonstrated that a larger fine-tuning

corpus could lead to lower-quality results.

This research also found that the answers generated through context-injection were better than

both fine-tuned and base GPT models; context-injection without fine-tuning offers better answers

than context-injection answers with fine-tuned models, and at lower costs. This is also true for

newer GPT models such as ChatGPT and GPT-4 models, as context-injection led to better

performance over their base model counterpart. Through context-injection, the information used

to generate the answer can be controlled, logged and extemporaneously reviewed, which is a

regulatory requirement for applications in a regulatorily-controlled environment, e.g.,

57

applications that operate under the jurisdiction of 21 CFR Part 11. This is not possible with fine-

tuned or base LLM models.

This research evaluated both methods for the manifestation of hallucination, which is when an

LLM fabricates or provides inaccurate information. The phenomenon of hallucination was only

observed with fine-tuned models. While LLM hallucination can be mitigated in context-injection

via prompt engineering, it cannot be mitigated with fine-tuned models because of the

fundamental nature of their operations.

Finally, the research showed that while GPT alone is capable of generating logical answers to

these types of questions, they are lower-quality answers compared to the other methods, and

naturally base GPT cannot consider additional, proprietary information to which it has no

training or access. From this research we can conclude that the context-injection method for

influencing GPT is cheaper and provides better results, both in terms of fidelity to the contextual

corpus (i.e., no hallucinating) and semantic similarity to the standard answer. Context-injection,

therefore, is the first method that architects and practitioners should consider when seeking to

employ question-answering on a proprietary corpus. In contrast, fine-tuning is best when the goal

is to output text whose style is significantly similar to the textual style of the training corpus.

58

REFERENCES

[1] Abraham, A. (2018). The neuroscience of creativity. Cambridge University Press.

[2] Agirre, E., Banea, C., Cer, D., Diab, M., Gonzalez Agirre, A., Mihalcea, R., ... & Wiebe, J.
(2016). Semeval-2016 task 1: Semantic textual similarity, monolingual and cross-lingual
evaluation. In SemEval-2016. 10th International Workshop on Semantic Evaluation;

2016 Jun 16-17; San Diego, CA. Stroudsburg (PA): ACL; 2016. p. 497-511.. ACL

(Association for Computational Linguistics).

[3] Awadalla, A., Wortsman, M., Ilharco, G., Min, S., Magnusson, I., Hajishirzi, H., and Schmidt,
L. (2022) Exploring The Landscape of Distributional Robustness for Question Answering

Models. In Findings of the Association for Computational Linguistics: EMNLP 2022,
pages 5971–5987, Abu Dhabi, United Arab Emirates. Association for Computational

Linguistics.

[4] Baradaran, R., Ghiasi, R., & Amirkhani, H. (2022). A survey on machine reading

comprehension systems. Natural Language Engineering, 28(6), 683-732.

[5] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine

Learning research, 3(Jan), 993-1022.

[6] Bommarito II, M., & Katz, D. M. (2022). GPT Takes the Bar Exam. arXiv preprint

arXiv:2212.14402.

[7] Brainly. (n.d.). “Shakespeare’s complete works have approximately 3.5 million characters.”

Retrieved from https://brainly.com/question/6037509

[8] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D.
(2020). Language models are few-shot learners. Advances in neural information

processing systems, 33, 1877-1901.

[9] Cai, D., Wang, Y., Bi, W., Tu, Z., Liu, X.. Lam, W., and Shi, S. (2019a). Skeleton-to-

response: Dialogue generation guided by retrieval memory. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages

1219–1228.

[10] Cera, D., Diabb, M., Agirrec, E., Lopez-Gazpioc, I., Speciad, L., & Donostia, B. C. SemEval-
2017 Task 1: Semantic Textual Similarity Multilingual and Cross-lingual Focused

Evaluation.

[11] Kenton, J. D. M. W. C., & Toutanova, L. K. (2019, June). Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT

(Vol. 1, p. 2).

[12] Covington, M. A. (2009, March). Idea density—A potentially informative characteristic of

retrieved documents. In IEEE Southeastcon 2009 (pp. 201-203). IEEE.

59

[13] Dave, P. (2023, June 23). GPT vs BERT: Which is Better? Comparing two large-language
models: Approach and example. Retrieved from https://towardsdatascience.com/gpt-vs-

bert-which-is-better-2f1cf92af21a

[14] Dunn, A., Dagdelen, J., Walker, N., Lee, S., Rosen, A. S., Ceder, G., ... & Jain, A. (2022).
Structured information extraction from complex scientific text with fine-tuned large

language models. arXiv preprint arXiv:2212.05238.

[15] Feng, J. E., Anoushiravani, A. A., Tesoriero, P. J., Ani, L., Meftah, M., Schwarzkopf, R., &
Leucht, P. (2020). Transcription error rates in retrospective chart reviews. Orthopedics,

43(5), e404-e408.

[16] Hämäläinen, P., Tavast, M., & Kunnari, A. (2023, April). Evaluating large language models in
generating synthetic hci research data: a case study. In Proceedings of the 2023 CHI

Conference on Human Factors in Computing Systems (pp. 1-19).

[17] Han, M, Zhang, X, Yuan, X, Jiang, J, Yun, W, Gao, C. (2021). A survey on the techniques,

applications, and performance of short text semantic similarity. Concurrency Computat

Pract Exper. 2021; 33:e5971. https://doi.org/10.1002/cpe.5971

[18] Hare, T. (2014). Translation and the Sacred: Translating Scripture. A Companion to

Translation Studies, 529-542.

[19] Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., ... &
Hadsell, R. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings

of the national academy of sciences, 114(13), 3521-3526.

[20] Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des Alpes et

des Jura. Bull Soc Vaudoise Sci Nat, 37, 547-579.

[21] Jatnika, D., Bijaksana, M. A., & Suryani, A. A. (2019). Word2vec model analysis for

semantic similarities in english words. Procedia Computer Science, 157, 160-167.

[22] Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., ... & Fung, P. (2023). Survey of

hallucination in natural language generation. ACM Computing Surveys, 55(12), 1-38.

[23] Kontostathis, A., & Pottenger, W. M. (2006). A framework for understanding Latent Semantic

Indexing (LSI) performance. Information Processing & Management, 42(1), 56-73.

[24] Le, Q., & Mikolov, T. (2014, June). Distributed representations of sentences and documents.

In International conference on machine learning (pp. 1188-1196). PMLR.

[25] Lee, J. S., & Hsiang, J. (2020). Patent claim generation by fine-tuning OpenAI GPT-2. World

Patent Information, 62, 101983.

[26] Li, H., Su, Y., Cai, D., Wang, Y., & Liu, L. (2022). A survey on retrieval-augmented text

generation. arXiv preprint arXiv:2202.01110.

https://towardsdatascience.com/gpt-vs-bert-which-is-better-2f1cf92af21a
https://towardsdatascience.com/gpt-vs-bert-which-is-better-2f1cf92af21a
https://doi.org/10.1002/cpe.5971

60

[27] Liu, H., Tam, D., Muqeeth, M., Mohta, J., Huang, T., Bansal, M., & Raffel, C. A. (2022).
Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning.

Advances in Neural Information Processing Systems, 35, 1950-1965.

[28] Mahowald, K., Ivanova, A. A., Blank, I. A., Kanwisher, N., Tenenbaum, J. B., & Fedorenko,
E. (2023). Dissociating language and thought in large language models: a cognitive

perspective. arXiv preprint arXiv:2301.06627.

[29] Martino, A., Iannelli, M., & Truong, C. (2023, May). Knowledge injection to counter large
language model (LLM) hallucination. In European Semantic Web Conference (pp. 182-

185). Cham: Springer Nature Switzerland.

[30] Mendsaikhan, O., Hasegawa, H., Yamaguchi, Y., Shimada, H., & Bataa, E. (2020).
Identification of cybersecurity specific content using different language models. Journal

of Information Processing, 28, 623-632.

[31] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

[32] Mosbach, M., Pimentel, T., Ravfogel, S., Klakow, D., and Elazar, Y. (2023). Few-shot Fine-

tuning vs. In-context Learning: A Fair Comparison and Evaluation. In Findings of the
Association for Computational Linguistics: ACL 2023, pages 12284–12314, Toronto,

Canada. Association for Computational Linguistics.

[33] Muennighoff, N., Tazi, N., Magne, L., & Reimers, N. (2022). MTEB: Massive text

embedding benchmark. arXiv preprint arXiv:2210.07316.

[34] Noah, W. (2005). Ink & Blood: Dead Sea Scrolls to the English Bible. AcO Publishing.

[35] Ofori, D. (2023, February 10). GPT-3 vs Other Text Embeddings Techniques for Text
Classification: A Performance Evaluation. Retrieved from

https://derrickofori015.medium.com/gpt-3-vs-other-text-embeddings-techniques-for-text-

classification-a-performance-evaluation-b3a3e6e84cb7

[36] Oniani, D. and Wang, Y. (2020). A Qualitative Evaluation of Language Models on Automatic
Question-Answering for COVID-19. In Proceedings of the 11th ACM International
Conference on Bioinformatics, Computational Biology and Health Informatics (BCB

'20). Association for Computing Machinery, New York, NY, USA, Article 33, 1–9.

https://doi.org/10.1145/3388440.3412413

[37] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language

models are unsupervised multitask learners. OpenAI blog, 1(8), 9.

[38] Raunak, V., Menezes, A., and Junczys-Dowmunt, M. (2021). The curious case of
hallucinations in neural machine translation. In Proceedings of the 2021 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologys (NAACL-HLT’21). 1172–1183.

[39] Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100,000+ questions for

machine comprehension of text. https://aclanthology.org/D16-1264/.

https://derrickofori015.medium.com/gpt-3-vs-other-text-embeddings-techniques-for-text-classification-a-performance-evaluation-b3a3e6e84cb7
https://derrickofori015.medium.com/gpt-3-vs-other-text-embeddings-techniques-for-text-classification-a-performance-evaluation-b3a3e6e84cb7
https://doi.org/10.1145/3388440.3412413
https://aclanthology.org/D16-1264/

61

[40] Rodriguez, S. (2023, August 22). Optimizing Transformation. Axendia.

https://axendia.com/blog/2023/08/22/optimizing-transformation/

[41] Rozado D. (2023) The Political Biases of ChatGPT. Social Sciences. 2023; 12(3):148.

https://doi.org/10.3390/socsci12030148

[42] Rozado, D. (February 16, 2023.). RightWingGPT. Retrieved from

https://davidrozado.substack.com/p/rightwinggpt

[43] Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval.

Information processing & management, 24(5), 513-523.

[44] Sawicki, P., Grzes, M., Jordanous, A., Brown, D., Peeperkorn, M. (2022) Training GPT-2 to
represent two Romantic-era authors: challenges, evaluations and pitfalls. In: 13th
International Conference on Computational Creativity. pp. 34-43. Association for

Computational Creativity (ACC) ISBN 978-989-54-1604-2. (KAR id:94992).

[45] Sawicki, P., Grzes, M., Goes, F., Brown, D., & Peeperkorn, M. Khatun, Aisha (2023). Bits of

Grass: Does GPT already know how to write like Whitman? Proceedings of the 14th

International Conference for Computational Creativity.(In press).

[46] Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., ... & Wen, J. R. (2023). A survey

of large language models. arXiv preprint arXiv:2303.18223.

https://doi.org/10.3390/socsci12030148
https://davidrozado.substack.com/p/rightwinggpt
https://kar.kent.ac.uk/94992

62

APPENDICES

Appendix A: Stylometric assessments of the generated outputs

An analysis was also conducted on the text to determine the impact that fine-tuning and

context-injection have on the style of the output text. Generated answers from fine-tuned models

are stylistically closer to the fine-tuning text than answers generated through context-injection.

Propositional idea density:

Idea density is a measurement of the ratio of propositional ideas in a text to the number of words

in the same text. The pioneer of Propositional Idea Density, Dr. Michael Covington, described it

as one measurement in a suite of measurements for stylometric analysis, and serves to describe

the level at which the text is written.

Table 11: Comparison of the four generated answer types and their relative propositional idea densities.

All Context-Injection Answ’s Average of All Sermons All Fine-tuned Answers Fine-tune with C.I.

1239 propositions
 2378 words

 0.521 idea density

 0.501 95% conf min

 0.541 95% conf max

Props: 4108.625
Words: 7563.7125

Density: 0.542675

Conf min: 0.5311375

Conf max: 0.5540875

 1922 propositions
 3347 words

 0.574 idea density

 0.557 95% conf min

 0.591 95% conf max

 2048 propositions
 3551 words

 0.577 idea density

 0.560 95% conf min

 0.593 95% conf max

Analyzing the two sets of fine-tuned answers, with and without context-injection, along with the

set of answers generated from context-injection alone, there is no clear stylistic gravitation

towards or away from the source training corpus, as the answers generated with context-injection

have the lowest idea density at 0.521, and both answer sets generated with fine-tuning have

almost identical idea densities, 0.574 and 0.577 respectively, while the average idea density of

the training corpus is right in the middle at 0.542675.

63

The chart below comes from Covington (2009) and shows the distribution of the example texts

that were analyzed as part of their research. All four sets of documents in this research fall within

the ‘Technical’ document category, though the answers generated via context-injection fall along

the upper bound for ‘Scholarly’ document.

Figure 14: Comparison of four document types, taken from Covington (2009) showing the distribution of tested document types and their
propositional idea densities.

Signature Stylometiric System

The Signature Stylometiric System14 was used to assess the following pieces of text (Note: in
2013, Signature was used to reveal J.K. Rowling’s pseudonym, Robert Gailbraith15):

1) All the sermon text (80 sermons total)

2) All the generated answers from the final fine-tuned model

3) All the generated answers from the base GPT model with context-injection

4) All the generated answers from the from the final fine-tuned model with context-injection

5) All the text in the standard answers provided by the author.

Signature uses 5 main categories to analyze the stylometric characteristics of text: Word length,

Sentence length, Paragraph length, Letters, and Punctuation. Only the distribution of sentence

14
 https://www.philocomp.net/texts/signature.htm

15
 https://www.digitaltrends.com/computing/computer-software-reveals-jk-rowling-as-author-of-novel-written-under-pen-name/

https://www.philocomp.net/texts/signature.htm
https://www.digitaltrends.com/computing/computer-software-reveals-jk-rowling-as-author-of-novel-written-under-pen-name/

64

lengths varied among the metrics of the documents, correlating the fine-tuned-generated answers

with the training corpus, and not with the context-injection-generated answers. All supporting

graphs are shown in Appendix B.

Word length:

The distribution of the lengths of the words used among all five documents were roughtly the

same, and not statistically significant.

Paragraph length:

The distribution of the number of paragraphs used among the sermons was the same, zero, for

the fine-tuned answers and fine-tuned answers with context-injection. Likewise, the training

corpus was a list of sentences, and did not contain any paragraphs. Only the standard answers

and the answers generated using base GPT with context-injection contained any paragraphs.

There was no correlation in the distribution of paragraphs between the standard answers and the

answers generated using contex-injection.

Letters used:

The distribution of the letters used among the five document types were almost exactly the same,

and showed no stylometric differences.

Punctuation distribution:

The ratios of used punctuation among the five documents are roughly equivalent. The notable

differences are between the base GPT model with context-injection and the standard answers,

65

which both include biblical references in the format (book chapter:verse). The sermon text and

fine-tuned answers spelled out the references as book, chapter and verse, demonstrating that the

answers generated from the fine-tuned models drew inspiration directly from the fine-tuning

corpus, thereby mimicking its ‘writing’ style.

Sentence lengths:

Where the documents varied the most was in the sentence lengths. The sermon text tended to use

shorter sentences, with progressively fewer longer sentences. This pattern is almost perfectly

matched in the fine-tuned answers and to a smaller degree, in the standard answers. In contrast,

the answers generated using context-injection had a classically normal distribution. The answers

that were generated with context-injection on fine-tuned models showed balance between both

distributions.

Sermon text versus fine-tuned-generated answers:

Comparing the distribution of sentence lengths between the fine-tuning answers and sermon text,

there is a clear congruency between the distributions. Both texts contain more short sentences

and fewer long sentences. In contrast, Signature found that the difference between the sermon

text and the answers generated using context-injection was significant. Therefore, the

fine-tuned-generated answers do not reflect the stylistic fingerprints of the underlying training

corpus.

Finally, the generated answers that were created using the final, Phase 8 fine-tuned model with

context-injection reveal a distribution of sentence lengths that reflects both the sermon text and

66

the base GPT-generated text, with fairly consistent sentence lengths of between 1 and 30 words,

and then progressively fewer longer sentences, thereby demonstrating that fine-tuning with

context-injection partially mimicks the style of the underlying training corpus, but this style is

diluted by the stylistic effects of context-injection.

Direct Comparison of Answers

When comparing the styles of the generated answers side by side, the differences become clear.

The fine-tuned answers mirror the training corpus text very closely. The answers are generated in

the first-person singular form, and are presented from the perspective of the author (occasionally

referring to ‘itself’ by the author’s name), speaking in front of an audience and occasionally in a

manner that elicits a response. The answers generated through context-injection are not offered

in the first-person and take a more-muted tone.

Another major difference is that the fine-tuned answers are much more likely to contain wrong,

hallucinated or conflated information. The fine-tuned model’s answer to question 14 referred to

“Israel's return from Babylonian captivity back in 1948.” There are four references in the training

corpus to Israel’s Babylonian captivity; two in relation to the time of Ezra and two more to the

captivity itself; never in relation to 1948. One sermon refers to a poll that was started in 1948,

but no texts reference Israel’s Babylonian captivity in 1948.

Again, in Question 14, the answer generated from the fine-tuned model includes the phrase

“…when they come visit me at [the church] where I serve as pastor down here in Atlanta Georgia.”

The answer does include the correct name of the church, but that church is not located in Atlanta,

Georgia.

67

In another answer generated from fine-tuning, the model listed a YouTube video link which does

not exist (if it ever did). No similar fabrications, or “hallucinations,” have been observed in the

answers generated through context-injection.

Question (14): Why is it important that Jesus lives?

Fine-tuned Answer:
Because if Jesus didn't live, we wouldn't have a Savior. If Jesus didn't live, there would be no atonement

for our sins. If Jesus did not live and die on the cross as a sacrifice for us, then all of humanity is lost

forever. But because he lived and he died and he rose again on the third day so that you could receive him

into your life to forgive you of your sins and give you eternal life in heaven with Him after this one here on

earth is over. Why is it important that Jesus lives? Number two I want to talk to you about today is this

biblical prophecy fulfilled by Israel's return from Babylonian captivity back in 1948. Now listen, before I

begin my message today let me just tell you something very quickly about myself personally because people

always ask me questions whenever I get up behind this pulpit or when they come visit me at [the church]

where I serve as pastor down here in Atlanta Georgia.

Fine-tuned and Context-injected:
Because when Jesus lives, we get to live. When he goes on up to heaven and ascends into heaven, it's like

the book says in Acts one that same night He was taken up into heaven. And then a cloud covered the place

where they were staying. Then suddenly there was a voice from above them saying, this is my Son whom I

love dearly. Listen, you need to know two things about your life today if you're going to be victorious over

fear and worry and depression and hopelessness in your life. You need to know two t hings about yourself

number one is this you are loved by God with an everlasting love that will never die because of his great

compassion for us as sinners who needed Him so much more than we ever could have imagined needing

Him before he died for us on the cross of Calvary. But now listen here's what I want you to do today while

we sing worship songs during our time together here at church service right now while people are singing

worship songs.

Context-Injected Answer:
We should pursue God's presence because it is the only way to truly experience Him. When we come into

His presence, He speaks to us and reveals Himself in ways that cannot be experienced outside of His

presence. Pursuing God's presence also helps us draw closer to Him and build a deeper relationship with

Him. It allows us to hear from Him more clearly, receive direction for our lives, and gain strength when

facing difficult times. Additionally, pursuing God's presence gives others around us an example of what it

looks like to seek after the Lord and encourages them in their own faith journey as well.

Even with simply a cursory view of the two sets of generated answers, the answers generated via
fine-tuning adopted the style of the training corpus, while the answers generated via
context-injection did not.

68

Appendix B: Graphs of the measurements from the Signature Stylometric System

Figure 15: Distribution of word lengths between the document types as displayed in the Signature

software.

69

Figure 16: The distribution of the lengths of the paragraphs in the respective document types.

Figure 17: The distribution of letters used in the respective document types.

70

Figure 18: The distribution of punctuation marks in the respective document types.

Figure 19: The distribution of sentence lengths in the respective document types.

71

Figure 20: The distribution of sentence lengths for only the answers generated from the fine-tuned
models and the original transcribed sermon text, showing a correlation.

72

Figure 21: Signature found no significant difference between the sentence lengths of the answers

generated by the fine-tuned models and the original transcribed sermon text.

73

Figure 22: Distribution of sentence lengths for only the answers generated using context-injection

and the original transcribed sermon text.

 Figure 23: Signature found a significant difference between the sentence lengths of the

answers generated with context-injection and the original transcribed sermon text.

74

Figure 24: Distribution of sentence lengths for the answers generated with

context-injection using the fine-tuned models, and the original transcribed sermon text.

75

Appendix C: Individual fine-tuning graphs for Question 3 through Question 20

The following graphs (Figures 25 - 42) show the evolution of the similarity scores for each

iterative fine-tuning phase 1 - 8 in relation to the standard answer, for each of the remaining

questions, Question 3 through Question 20. Phase 0 represents base GPT with no fine-tuning.

76

77

78

79

80

81

	1.1 Use-case and Dataset
	1.2 Research Questions
	1.3 Contributions
	2.1 Fine-tuning as a source of influence
	2.2 Context-injection
	3.1 SQuAD Question-Answering
	3.2 Textbook Question-Answering
	3.3 Conclusions
	4.2 Training Corpus
	4.3 Fine-tuning
	4.4 Context-Injection

	5.1 Overview of Similarity Measurements
	5.2 Experimental Paradigm for Similarity
	5.3 Similarity Results
	6.1 Fine-tuning Results
	6.2 Context-injection Results
	6.3 Computational cost comparison
	7.1 Further Research and Discussion
	7.2 Conclusion

