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ABSTRACT 

 Machine learning models were developed in order to forecast weather variables such as 

solar radiation, temperature, and wind speed for one to 24 hours in advance. Weather predictions 

and ground truth weather observations were sourced from the National Oceanic and Atmospheric 

Administration (NOAA) and the Georgia Automated Environmental Monitoring Network 

(GAEMN) for five cities in Georgia. Results indicate that incorporating weather forecasts 

becomes increasingly more important for accurate solar radiation prediction at longer prediction 

windows, and also that postprocessing of NOAA's weather forecasts can drastically improve 

accuracy beyond usage of the raw forecasts alone. 
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CHAPTER 1 

WEATHER VARIABLE FORECASTING 

 

1.1  INTRODUCTION 

 The effects of weather permeate nearly every aspect of our everyday lives, from travel to 

commerce to government. The average U.S. adult consults weather forecasts 115 times per 

month, for a total of more than 300 billion forecasts used per year (Lazo, Morss, & Demuth, 

2009). Providing accurate weather forecasts can lead to more effective planning and resource 

allocation by persons and businesses alike; it is estimated that U.S. electric utilities save $150 

million annually by using 24-hour air temperature forecasts to estimate load demand (American 

Meteorological Society, 2015). 

 The purpose of this thesis was to analyze current research on weather forecasting and 

compare machine learning techniques in the field. Various inputs to these machine learning 

models were also tested to determine the usefulness of each, as measured by their contribution to 

lowering the difference between predicted values and the ultimate observed ground truth. Data 

for these analyses was sourced from the Georgia Automated Environmental Monitoring Network 

(GAEMN) and the National Oceanic and Atmospheric Administration (NOAA) for five cities in 

Georgia.  

 The GAEMN data consists of 16 observed weather variables: air temperature (ºC), 

humidity (%), dew point (ºC), vapor pressure (kPa), vapor pressure deficit (kPa), barometric 

pressure (kPa), wind speed (m/s), wind direction (º), SD, maximum wind speed (m/s), pan, solar 
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radiation, total solar radiation (KJ/m
2
), photosynthetically active radiation (umole/m

2
s), and two 

rainfall measurements (mm). In addition, time-of-day and day-of-year inputs were added to all 

models. The NOAA historical weather forecasts were downloaded from their servers in the form 

of GRIB files, a standardized format commonly used for weather forecasts and observations 

(World Meteorological Organization, 2003). The machine-learning software Weka (Hall et al., 

2009) was chosen for training and testing all models generated in this thesis. 

 This thesis attempted to analyze the effect of using NOAA predictions for air 

temperature, precipitation rate, visibility, wind speed, wind direction, dew point temperature, air 

pressure, and relative humidity as a means of forecasting solar radiation over one-hour and 24-

hour time frames. While using only persistence models and historical collected data is one 

component of accurate solar radiation predictions, incorporating weather forecasts is 

undoubtedly important as well. At longer prediction windows, it makes intuitive sense that the 

impact of weather forecasts will begin to overtake the impact of using historical data alone; 

Chapter 2's goal was to quantify that impact. In addition, weather variable forecasts from areas 

immediately surrounding the target area were incorporated in order to smooth out forecasting 

error. Larson et al. (2016) reported that global horizontal irradiance (GHI) prediction models 

which use numerical weather prediction (NWP) data can usually be improved by averaging the 

GHI forecasts from NWP grid points surrounding the target site, and Chapter 2 attempts to 

leverage those findings. 

 It was found that including weather forecast data in the prediction models resulted in a 

7.6% reduction in mean absolute error (MAE) for one-hour predictions when compared to using 

historical observations alone, and a 40.2% reduction in MAE for 24-hour predictions. Results 

from several machine learning techniques were compared, with Random Forests achieving the 
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lowest error rate. In addition, inclusion of weather forecasts from nearby areas resulted in a 4.6% 

lower mean absolute error (MAE) in one-hour predictions and a 20.9% reduction in 24-hour 

predictions when averaged across the five cities studied. 

 Chapter 3 analyzes the effect of incorporating the historical biases of weather predictions 

in order to improve them, a widely-used method known as postprocessing. Due to the existence 

of persistent, statistically-significant time- and location-based biases, nearly all current numerical 

weather forecasting systems apply some form of postprocessing to their raw input data 

(Marzban, 2003). While linear regression Model Output Statistics (MOS) is commonly used in 

practice, there is a minimal number of current studies comparing its results to those achievable 

by more advanced models. This thesis compared several different machine learning techniques 

and found that an ensemble model stacking a Random Forest with an artificial neural network 

(ANN) was found to reduce prediction error over MOS on seven of the eight weather variables 

studied (air temperature, cloud cover, visibility, wind speed, wind direction, dew point 

temperature, air pressure, and humidity). The inclusion of additional forecasted weather variables 

from areas immediately surrounding the target location was not found to have an impact on 

prediction error, a contrast to the solar radiation prediction results found in Chapter 2. 
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CHAPTER 2 

SOLAR RADIATION PREDICTION IMPROVEMENT USING WEATHER FORECASTS
1
 

  

                                                 
1
 Sanders, W., Barrick, C., Rasheed, K., and Maier, F. To be submitted to Solar Energy. 
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2.1  ABSTRACT 

 Prediction models were developed to generate forecasts of solar radiation, and, by proxy, 

expected solar plant power output, for one hour and 24 hours in the future. Data was sourced 

from the Georgia Automated Environmental Monitoring Network (GAEMN) and the National 

Oceanic and Atmospheric Administration (NOAA) for five cities in Georgia for the years 2003-

2013.  Early predictive models only made use of historical recorded solar radiation and other 

weather phenomena as inputs, while later models incorporated weather forecasts for the target 

area and surrounding areas. Including weather forecast data in the prediction models resulted in a 

7.6% reduction in mean absolute error (MAE) for one-hour predictions when compared to using 

historical observations alone, and a 40.2% reduction in MAE for 24-hour predictions. Results 

from several machine learning techniques were compared, with Random Forests achieving the 

lowest error rate. These results indicate that weather forecasts are an important component of 

accurate solar radiation prediction even over short- and medium-term prediction timeframes, and 

the inclusion of the surrounding geographical area in addition to the target city is an important 

component of these predictions. 

 

2.2  INTRODUCTION 

 Solar power - the conversion of sunlight into electricity - is forecasted to become the 

world's largest source of electricity by 2050 (International Energy Agency, 2014). Solar power is 

unlike other forms of energy production such as nuclear power or fossil fuels in that it relies 

heavily on an external agent as the key determiner of power output. Output is discernibly higher 

on sunny days during the summer, and lesser on cloudy days or during the winter when the 
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sunlight hits the earth at a less direct angle. Making accurate predictions about expected solar 

power output is paramount to efficiently harvesting power from a solar plant. 

 There are two categories of data commonly used in predicting solar radiation. One 

consists of historical collected data on solar radiation, temperature, and other meteorological 

phenomena. The other is comprised of forecasted weather variables and atmospheric movements. 

Beyond very short-term prediction windows, these forecasts are crucial to making accurate solar 

radiation predictions, and this paper will attempt to quantify their contribution.  

 First, predictions for one hour and 24 hours into the future using only historical collected 

data will be presented and analyzed. Then, additional forecasted data will be used to make new 

one hour and 24 hours predictions for the same historical data range, and it will be shown that 

significant reductions in error rates are possible by virtue of their inclusion. Analysis will first be 

performed on a case study city of Griffin, Georgia, and then extended to four other cities 

throughout Georgia. The results will show that incorporating weather forecasts slightly increases 

prediction accuracy in one-hour results and greatly increases it in 24-hour results, and using 

forecasts from surrounding areas in addition to the target city increases accuracy further than 

using forecasts for the target city alone. 

 

2.3  LITERATURE REVIEW 

 Solar radiation is commonly recorded in watts per meter squared (watts/m
2
), and error 

values in this paper are reported in these units. As with most machine learning models, there are 

many ways to report the accuracy of the methods applied in this paper: correlation coefficient, 

root mean squared error, mean absolute error, relative absolute error, and others. When 

reviewing previous papers, no one method stood out as more popular than any others for this 
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particular area. This results in a lack of directly comparable performance metrics throughout 

current solar radiation forecasting literature (Hamilton, 2016). Mean absolute error (MAE) does 

not overweight outliers, as opposed to other metrics such as root mean squared error (RMSE), 

and therefore MAE was chosen for this paper as the benchmark for all tests. All error rates 

reported here can be assumed to denote the mean absolute error in watts/m
2
 unless stated 

otherwise.   

 Many attempts at predicting solar radiation have been done in recent years. Pedro and 

Coimbra (2016) attempted one-hour predictions using only one-hour averaged radiation data 

collected from a one-megawatt plant in Southern California, and were able to achieve an MAE of 

42.96 watts/m
2
 by using a genetic algorithm to mutate and mate a series of artificial neural 

networks (ANNs). Their time period spans from November 3, 2009 to August 15, 2011, and they 

note that additional weather variables, such as global horizontal irradiance, cloud cover, and 

wind speed and direction were not used in their study, as it was focused on the use of 

endogenous variables for forecasting power output. 

 Spokas and Forcella (2006) obtained one-hour MAEs averaging 57 watts/m
2
 over 18 

different stations from 1997-2004 when adding climate data such as daily precipitation and daily 

air temperature extremes, as well as direct normal irradiance (DNI). Their site list encompassed a 

wide variety of climates: New York, Iowa, Australia, Florida, and more, and therefore may taken 

as a more accurate approximation of reasonable solar radiation prediction error rates than many 

other papers which just focused on one particular weather station. Sfetsos and Coonick (2000) 

evaluated several methods for predicting hourly solar radiation and achieved best results (RMSE 

39.32 watts/m
2
) with the Levenberg-Marquardt algorithm, a backpropogation technique often 

used to solve non-linear least squares problems. Their analysis was focused on the French island 
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of Corsica, a Mediterranean climate, during the late spring and early summer of 1996. Although 

their approach began with simply using lagged solar radiation observations as well as some 

calculated autocorrelation and crosscorrelation statistics, they later added temperature and wind 

direction as additional useful exogenous parameters. 

 Zervas et al. (2008) investigated the correlation of weather conditions and daylight 

duration on the distribution of global solar irradiance (GSI) in Athens, Greece. They broke up 

daily weather conditions into six classifications (clear, few clouds, partly cloudy, cloudy, heavy 

clouds, or rainfall) and used standard equations to calculate the number of daylight hours, then 

fed these inputs into a radial basis function (RBF) neural network to predict daily GSI. They 

found a coefficient of determination R
2
 of 0.985 on a validation set, highlighting the impact of 

cloud cover in predictions. 

 Feudo et al. (2015) found similar correlations between cloud cover and accuracy of solar 

radiation predictions when making hourly predictions  from July 2013 to December 2013 in 

South Italy. They were able to achieve a mean absolute error of 26.7 watts/m
2
 in clear conditions 

versus 43.1 watts/m
2
 in cloudy conditions . They noted that a variability in the optical depth of 

clouds, suggesting cloud cover is not a uniform variable that can be expressed as a simple 

percentage reading, but rather could affect surface readings differently depending on the 

different types of clouds present. 

 Satellite images can also be used as model inputs; when combined with estimates for 

clear-sky solar radiation, these forecasts can be quite effective (Miller et al., 2013; Linares-

Rodriguez et al., 2013). An alternative to these satellite-based approaches are methods using 

Numerical Weather Prediction (NWP) for regional solar radiation prediction (Lara-Fanego et al., 

2012; Perez et al., 2013). Ruiz-Arias, Quesada-Ruiz,  Fernández, and Gueymard (2015) suggest 
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several advantages for NWP methodologies over satellite-based imagery, including the fact that 

NWP models comprehensively simulate the entire atmospheric system, including wind, 

temperature, humidity, and other variables. For forecast horizons extending beyond 6 hours, 

NWP models tend to outperform those without forecasts (Cheung et al., 2015). 

 The results found in these previous works indicate that present- and forward-looking 

approaches such as satellite images and forecasts of multiple weather variables are important 

components to predicting solar radiation, as opposed to using historical solar radiation 

observations alone. This paper will attempt to further quantity their contribution. 

 

2.4  DATA ACQUISITION 

 The Georgia Automated Environmental Monitoring Network (GAEMN)  was developed 

in 1990 to develop a climatic data base used for various agricultural, ecological, water 

management, and other environmental-based research (Hoogenboom, Verma, & Threadgill, 

1990). A variety of weather- and environment-related data including air and soil temperature, 

barometric pressure, wind speed and direction, rainfall, and solar radiation, is collected in 15-

minute intervals across the state of Georgia. This GAEMN data was analyzed for the time period 

of 2003 to 2013 for five cities in Georgia. The data included 43 observed fields, although only a 

handful were proven relevant for solar radiation prediction. 

 In addition to these historical data observations, this paper makes use of weather forecasts 

provided by The National Oceanic and Atmospheric Administration's (NOAA). This data is 

disseminated in the GRIB file format, a compact binary format commonly used to store historical 

and forecasted weather data due to its self-description and flexibility (World Meteorological 

Organization, 2003). Each GRIB file describes a particular geographical region for a single date, 
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and internally splits this region into a grid of cells of a consistent size. For each cell, attribute 

values are listed describing weather attributes in the cell at that time, or, in the case of weather 

forecasts, at a specified time in the future. 

 As a final note, for the purposes of this paper a "forecast" will always reference a NOAA 

weather attribute forecasted variable as obtained through GRIB data or an interpolation, whereas 

a "prediction" will reference a prediction generated for a future solar radiation value. 

 

2.5  DATA VISUALIZATION 

 As solar radiation measures the amount of solar power received from the sun, its value is 

highest during the early afternoon hours and drops to near-zero values between sunset and 

sunrise. 

 
Figure 2.1. Solar radiation data by hour of the day collected from the Griffin, Georgia weather 

station (2003-2013). 
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 The second significant source of seasonality in solar irradiance corresponds to the time of 

year. Due to the variation of tilt of the earth's axis during summer and winter months, solar 

radiation varies significantly throughout the year, peaking in June. 

 
Figure 2.2. Solar radiation data by month of the year collected from the Griffin, Georgia 

weather station (2003-2013). 

 

2.6  RESULTS: ONE-HOUR PREDICTIONS 

 In order to compare one-hour solar radiation predictions made with weather forecast data 

versus those using only historical data, it was necessary to find one-hour weather forecasts which 

overlapped with the historical GAEMN solar radiation data from 2003-2013. NOAA's Rapid 

Refresh (RAP) dataset
2
 generates data on a 13-km resolution horizontal grid across North 

America and every hour makes available hourly forecasts going out 18 hours and was chosen for 

one-hour predictive purposes. While these hourly forecasts have been generated since 2002, only 

a subset is available online due to storage requirements. RAP data was downloaded for the 

period of June 22, 2011 to April 30, 2012, and this period was chosen for one-hour predictions. 

Approximately 2% of the RAP forecast files for this time frame were missing, and these periods 

                                                 
2
 https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/rapid-refresh-rap 
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were not included in any predictions. Finally, since the GAEMN recorded solar radiation data 

was recorded at 15-minute intervals but RAP one-hour data forecasts are generated at a one-hour 

granularity, synthetic RAP weather forecasts were created by linearly interpolating between the 

hours as appropriate. For example, to create a synthetic one-hour weather forecast at 1:15 pm for 

2:15 pm, 75% of the one-hour forecast generated at 1:00 pm (for 2:00 pm) and 25% of the two-

hour forecast generated at 1:00 pm (for 3:00 pm) were added together. In this way a dataset of 

one-hour forecasts every 15 minutes was built, while taking care to only make use of data that 

would have been available the time of prediction. 

 Performing these interpolations resulted in 28,896 instances corresponding to 15-minute 

intervals over 313 different days in the time frame of June 22, 2011 to April 30, 2012. It is 

important to note that this time frame is missing the high-variability months of May and most of 

June, therefore, these predictions should not be indicative of raw prediction accuracy but rather 

are meant to show the relative reduction in error rate when incorporating weather forecasts. Due 

to the relatively small size of the datasets - 28,896 instances for one-hour predictions and 67,720 

instances for 24-hour predictions - 10-fold cross validation in Weka was chosen to compute 

expected error rates, and it is these results which are reported. 

 There are two naive approaches to predicting future solar radiation which can be 

implemented with minimal effort: one uses the current solar radiation as the prediction value and 

the other uses the average solar radiation for the desired day of year and time of day (as 

computed from 2003-2013). These persistence models are easy to calculate and serve as useful 

benchmarks on which to compare future, more advanced methods. Using the current solar 

radiation as the prediction value one hour into the future yields an MAE of 67.28, and using the 

average solar radiation for the desired day and time yields an MAE of 60.70. Using the average 



 

14 

of these two numbers as the prediction value yields a lower MAE of 52.54, which became the 

baseline for future testing for the city of Griffin, Georgia. 

 To improve these predictions, 16 GAEMN weather variables recorded at the time of 

prediction from the Griffin weather station were added to the model's inputs: air temperature 

(ºC), humidity (%), dew point (ºC), vapor pressure (kPa), vapor pressure deficit (kPa), 

barometric pressure (kPa), wind speed (m/s), wind direction (º), SD, maximum wind speed (m/s), 

pan, solar radiation, total solar radiation (KJ/m
2
), photosynthetically active radiation 

(umole/m
2
s), and two rainfall measurements (mm). In addition, the time of day was converted to 

a decimal ranging from 0.00 to 0.99 that represents the time as a proportion of the day passed 

(e.g., 6:00 a.m. is encoded as 0.25) and included in the model's inputs, along with the day of the 

year. These 18 inputs were fed into multiple machine learning techniques in Weka (Hall et al., 

2009) in order to predict solar radiation one hour in advance. (All methods used default Weka 

settings unless stated otherwise.) 

 As evidenced in Table 2.1 below, neural nets underperformed expectations, while 

decision-tree models (in particular, random forest and M5P model trees) emerged as the 

strongest methods. This finding would prove to be a pattern throughout analysis of this dataset; 

accordingly, all future one-hour results reported will be from the application of Random Forest 

to the dataset in question unless stated otherwise. For one-hour predictions, using a Random 

Forest model resulted in a 10-fold cross-validation MAE of 29.96 watts/m
2
 with a correlation 

coefficient of 0.969.  
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Table 2.1. A comparison of machine learning methods for predicting one-hour solar radiation 

for Griffin, Georgia using historical GAEMN weather observations as model inputs. 

Machine Learning Method MAE (watts/m
2
) Time to run 

(seconds)3 

Linear Regression 70.79 4 

Multilayer Perceptron (Neural Net)4 66.18 750 

M5P model tree, unpruned 32.00 36 

M5P model tree, pruned 34.18 66 

Random Tree 43.02 11 

REP Tree, unpruned 37.42 7 

REP Tree, pruned 37.26 11 

Random Forest 29.965 545 

Alternating Model Trees6 36.92 25 

Additive Regression using REP Tree, pruned 36.91 11 

Additive Regression using Alternating Model Trees 37.06 341 

Bagging M5P, unpruned 31.21 264 

Bagging REP Tree, pruned 32.51 33 

 

 To further improve these results, sliding windows were incorporated into the model 

inputs in order to make use of historically recorded solar radiation data instead of simply using 

the current observation. In addition to the 18 inputs above, 24 inputs were added to the model, 

corresponding to the recorded solar radiation value for each of the past 24 hours, on the hour. 

Application of these new inputs to the Random Forest model yielded an MAE of 29.16, a 2.7% 

improvement over using GAEMN recorded data alone. This value becomes the baseline for 

comparing models generated with historical data only to those which incorporate weather 

forecasts. 

 As yet, only collected historical data has been used to make predictions. To test the 

hypothesis that using weather forecasts will increase prediction accuracy, eight one-hour RAP 

                                                 
3
 Time to run 10-fold cross-validation in Weka on Windows 7 with AMD-FX 8350 eight-core processor and 32GB 

memory. 
4
 20% validation set size, maximum 50,000 epochs, 57 hidden nodes 

5
 Compare to 33.55 watts/m2 when using Random Forest to predict one-hour solar radiation for all instances in the 

total dataset from 2003-2013. This discrepancy could be explained by the absence of May and part of June in this 

smaller training set, and it is not unreasonable to assume that inflating all one-hour error rates reported in this paper 

by approximately 12% would be a more accurate assessment of raw prediction accuracy over a broader timeframe. 
6
 With "build decision tree" set to True 
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weather forecast variables were added to the above weather observation and sliding window 

inputs, resulting in a total of 50 inputs to the one-hour model. The forecasted variables used are 

air temperature, precipitation rate, visibility, wind speed, wind direction, dew point temperature, 

air pressure, and relative humidity. This data was extracted from the relevant GRIB RAP forecast 

file, which consists of splitting the continental United States into cells measuring 13 kilometers 

square. The cell closest to the latitude and longitude of Griffin was extracted from each GRIB 

file and the pertinent forecast values examined. As noted above, linear interpolations between the 

one- and two-hour RAP forecasts were used for intra-hour forecasts. The addition of these eight 

forecasted weather variables to the model resulted in a 2.6% reduction in MAE from 29.16 to 

28.40. 

 Finally, to increase prediction accuracy beyond using NOAA forecasted weather data 

from the Griffin cell alone, the eight forecasted values were included from each of nine cells in a 

three-by-three square of cells, with Griffin in the center. This was intended to take into account 

the not-unlikely possibility of weather in surrounding cells moving into the Griffin cell, a 

scenario which may not have been fully accounted for in the forecasts. The addition of these 

additional eight weather forecast values from each of eight surrounding cells brought the number 

of inputs to 114, and dropped the error rate to 27.43, a 3.4% decrease from using the single cell 

alone. This could be evidence of information existing in surrounding weather forecasts which is 

not embedded in the Griffin weather forecasts directly, or it could be caused by reducing the 

effect of a single inaccurate weather forecast or interpolation. Indeed, global horizontal 

irradiance (GHI) prediction models which use numerical weather prediction (NWP) data can 

usually be improved by averaging the GHI forecasts from NWP grid points surrounding the 

target site (Larson et al., 2016). 
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 In total, adding 72 forecasted weather values (eight values from each of nine cells 

including and surrounding Griffin) reduced the 24-hour solar radiation prediction mean absolute 

error rate from 29.16 watts/m
2
 to 27.43 as compared to using historical collected data alone, a 

5.9% improvement. After these results were found applying Random Forest to extended weather 

forecasts, additional machine learning techniques were then applied to determine if Random 

Forests still produced the best results. After analysis of all techniques detailed in Table 2.1, there 

were no significant changes in ranking. 

 After  these prediction improvements were noted for the city of Griffin, four additional 

cities throughout Georgia were chosen for further analysis: Jonesboro, Attapulgus, Blairsville, 

and Brunswick. Jonesboro sits just 20 miles north of Griffin and was used as a validation city for 

its results, and the other three cities were chosen to represent a broad range of weather conditions 

possible throughout the state of Georgia. Figure 2.3 shows their locations. 

 
Figure 2.3. A map of the five Georgia cities chosen for solar radiation prediction. 
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Table 2.2. Properties of five selected Georgia cities based on GAEMN data (2003-2013). 

 Griffin Jonesboro Attapulgus Blairsville Brunswick 

Average solar radiation 

(watts/m
2
) 

190.4 172.4 185.1 180.7 199.1 

Standard deviation of 

solar radiation (watts/m
2
) 

277.1 259.9 267.0 273.9 281.6 

Average solar radiation, 

8:00 a.m. - 8:00 p.m. 
(watts/m

2
) 

363.1 329.1 353.1 345.6 373.8 

Average air temperature 

(°F) 
62.1 61.6 65.6 56.1 67.3 

Average air temperature, 

8:00 a.m. - 8:00 p.m. 
(°F) 

66.5 66.7 71.0 61.4 71.3 

Average humidity (%) 68.8 72.8 75.3 75.3 74.9 

Average wind speed 

(mph) 

4.4 3.1 3.7 3.4 3.6 

 

 Average statistics for these five different cities based on recorded GAEMN data were 

calculated. Their results are shown in Table 2.2, and a few observations may be made here. 

Jonesboro was specifically chosen as the closest and purportedly most identical site to the case 

study city of Griffin; it lays just 21 miles northwest of Griffin and sits at a nearly identical 

elevation (919 feet to Griffin's 978 feet). However, its average solar radiation was the actually 

the furthest from Griffin's average out of these four additional cities. This could be caused by 

several different factors, including the type of sensors and arrays used in the weather stations, 

their cleaning and maintenance schedule, or suboptimal positioning relative to the sun's path.  

 Brunswick, sitting on the southeastern edge of the state on the coast of the Atlantic ocean, 

recorded the highest average solar radiation and air temperature. Blairsville, in the northeastern 

Georgian foothills at an elevation of 1,883 feet, recorded the lowest values outside of Jonesboro, 

and Attapulgus fell somewhere in the middle.  

 Figure 2.4 charts the average solar radiation readings by year for each city, and lends 

credence to the theory that cleaning and maintenance differences can result in discrepancies 
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between readings. The readings for each of the five cities were very close to each other in 2003, 

the earliest year for which data was available. As time goes on, the readings diverge from one 

another, and Jonesboro in particular appears to have a decidedly negative slope. 

 Figure 2.4. Average solar radiation by year for five selected cities in Georgia (2003-

2013). 

 

 A final note on sensor differences can be made by examining average readings at 

nighttime across sites. Between sunrise and sunset, observed solar radiation should be zero or 

very near zero. Table 2.3 displays the average recorded solar radiation at midnight for each of the 

five cities; note that Brunswick did not record a value less than 3.1 watts/m
2
 in the entire dataset. 

While this is not an issue for this paper which trains and applies models on a city-by-city basis, 

care must be taken if models were to be trained on one city and then applied to another. The 

outputs would need to be calibrated for the "nighttime bias" of each site's solar radiation sensor 

to avoid errors that could account for a nontrivial proportion of the overall MAE for the model 

during nighttime hours. 
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Table 2.3. Average recorded solar radiation at midnight for five Georgia cities (2003-2013). 

City Average solar radiation at midnight (watts/m
2
) 

Griffin 2.01 

Jonesboro 2.61 

Attapulgus 1.93 

Blairsville 0.66 

Brunswick 6.28 

 

 One-hour solar radiation predictions for each of these cities were then generated using the 

same methods as for Griffin. GAEMN historical data and GRIB weather forecast data were 

collected, and GRIB interpolations were created to create synthetic intra-hour forecasts. Analysis 

was then run using several different sets of model inputs to discern whether future weather 

forecasts from the city's GRIB cell and surrounding cells reduced prediction error in these cities 

as it did in Griffin; these results are presented in Table 2.4. 

Table 2.4. A comparison of error rates for different model inputs to Random Forest when 

predicting one-hour solar radiation for five Georgia cities. 

 Griffin Jonesboro Attapulgus Blairsville Brunswick Average 

Persistence model 

baseline (MAE, 

watts/m
2
) 

52.54 45.53 48.45 50.94 51.97 49.89 

GAEMN weather 

observations + 24 

hour sliding 

window (MAE, 

watts/m
2
) 

29.16 27.63 30.17 31.44 32.00 30.08 

GAEMN weather 

+ window + single 

GRIB cell 

forecasts (MAE, 

watts/m
2
) 

28.40 26.73 29.26 30.39 31.04 29.16 

Improvement when 

incorporating 

GRIB cell 

forecasts (%)7 

2.6% 3.3% 3.0% 3.4% 3.0% 3.1% 

GAEMN weather 

+ window + GRIB 

cell and eight 

27.43 25.68 28.07 28.45 29.32 27.79 

                                                 
7
 Over using GAEMN weather observations + 24 hour sliding window alone 
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surrounding cell 

forecasts (MAE, 

watts/m
2
) 

Additional 

improvement when 

incorporating 

surrounding cell 

forecasts (%)8 

3.4% 3.9% 4.1% 6.4% 5.5% 4.6% 

Total improvement 

when incorporating 

GRIB cell and 

surrounding cell 

forecasts (%)9 

5.9% 7.1% 7.0% 9.5% 8.4% 7.6% 

 

 The results from these additional four cities underscore the importance of including 

weather forecast variables even for prediction windows as short as one hour. Over the five cities 

studied, incorporating single-cell weather forecasted variables reduced MAE by an average of 

3.1%, and including forecasts from surrounding cells brought the improvement up to 7.6% over 

using historical observations alone. Additionally, although this paper is focused on quantifying 

relative improvements and not on raw accuracies, the MAEs reported here appear to be relatively 

stable across cities.  

 

2.7 RESULTS: 24-HOUR PREDICTIONS 

 The difficulty with attempting 24-hour predictions as opposed to one-hour predictions is 

that relatively slight weather changes are probable over a 60-minute period from the current 

environment, but much could happen over the next 24 hours, such as a storm front moving in. In 

this case, no historical data collected could predict the effect of a weather condition that has yet 

to manifest itself. Therefore, using forecasted weather data is imperative to see what is in store 

over the next 24 hours. 

                                                 
8
 Over using GAEMN weather observations + 24 hour sliding window + single-cell weather forecasts 

9
 Over using GAEMN weather observations + 24 hour sliding window alone 
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 In order to make 24-hour predictions using weather forecasts, the North American 

Mesoscale (NAM) Forecast System
10

 dataset was chosen. This system splits the continental 

United States into 40-km by 40-km cells and provides weather forecasts for hundreds of 

variables every 12 hours for each three hours into the future, out to 60 hours. This NAM data has 

been generated on a consistent basis since June 2003 but only a subset of the data is available to 

the public. An online data request form is available but due to size constraints the training/testing 

period was restricted from June 2003 to May 2005. Approximately 4% of the NAM forecast files 

for this time frame were missing, and these periods were not included in any predictions.  

 The NAM forecasts dataset includes similar weather variables as the RAP dataset, but 

there are some differences. One important change is the inclusion of a cloud cover percentage 

variable; this is an important addition because it is estimated that 90% of the short-term variance 

in solar radiation is due to changes in cloud cover (Zack, 2014). In total, eight forecasted 

variables were extracted from the NAM forecasts: air temperature, cloud cover, precipitation 

probability, wind speed, wind direction, maximum temperature, minimum temperature, and dew 

point temperature. 

 Because NAM data forecasts are generated in three-hour intervals, in order to make 

forecasts every 15 minutes linear interpolation was used to generate synthetic forecasts for intra-

frequency instances. While this technique was also used with RAP data for the one-hour weather 

forecasts, it must be noted that 15-minute linear interpolations between three-hour intervals are 

less accurate than those interpolating between one-hour intervals, and this may be a significant 

source of noise. Incorporating seasonality and non-linear models to create more accurate 

synthetic forecasts could be the focus of further research. Performing these interpolations 

                                                 
10

 More information available at https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-

mesoscale-forecast-system-nam 



 

23 

resulted in 67,720 instances corresponding to 15-minute intervals over 720 different days in the 

time frame June 2, 2003 to May 25, 2005. 

 Naive persistence models were first applied in order to develop a baseline of performance 

for 24-hour predictions. Using the current solar radiation to predict the solar radiation 24 hours 

into the future achieved an MAE of 68.51 watts/m
2
, and using the average solar radiation for the 

desired day of year and time of day achieved an MAE of 62.53. Using the average of these two 

numbers as the prediction value yields an MAE of 59.80, which became the baseline for future 

testing for the city of Griffin. 

 As with one-hour predictions, the 18 weather observations collected from GAEMN, 

along with time of day and day of year values, were fed into multiple machine learning 

techniques in Weka in order to predict the solar radiation 24 hours in advance. (All methods used 

default Weka settings unless stated otherwise.) Table 2.5 illustrates that decision-tree based 

models were the strongest methods in predicting 24-hour solar radiation, a similar finding to the 

one-hour results shown in Table 2.1. Use of Random Forests resulted in the lowest overall MAE, 

and all further 24-hour results reported will be from the application of this method unless noted 

otherwise. For 24-hour predictions, analysis with a Random Forest model resulted in a 10-fold 

cross-validation MAE of 44.11 watts/m
2
 with a correlation coefficient of 0.944.  
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Table 2.5. A comparison of machine learning methods for predicting 24-hour solar radiation 

using historical GAEMN weather observations as model inputs. 

Machine Learning Method MAE (watts/m
2
) Time to run 

(seconds)11 

Linear Regression 82.59 19 

Multilayer Perceptron (Neural Net)12 90.37 11,616 

M5P model tree, unpruned 48.12 120 

M5P model tree, pruned 54.07 121 

Random Tree 58.61 17 

REP Tree, unpruned 52.15 28 

REP Tree, pruned 54.14 22 

Random Forest 44.1113 646 

Alternating Model Trees14 62.46 55 

Additive Regression using REP Tree, pruned 51.92 418 

Additive Regression using Alternating Model Trees 61.33 1,232 

Bagging M5P, unpruned 47.09 988 

Bagging REP Tree, pruned 48.50 165 

 

 Sliding windows were then added to include the past 24 hourly observations of solar 

radiation in the model. While this tactic improved the one-hour predictions slightly, it resulted in 

worse 24-hour predictions; MAE rose 4.3% from 44.11 to 45.99. This result suggests that past 

solar radiation readings bear very little predictive power to solar radiation 24 hours in advance 

when added to current climate conditions. 

 The next iteration of analysis incorporated NAM weather forecasted variables into the 

model inputs. The addition of these eight variables lowered the MAE from 45.99 when using 

GAEMN data and 24 historical windows to 35.40, a 23.0% improvement. Finally, eight 

forecasted values were included from each of nine cells in a three-by-three square of cells, with 

Griffin in the center, bringing the total number of model inputs to 114. These additional inputs 

                                                 
11

 Time to run 10-fold cross-validation in Weka on Windows 7 with AMD-FX 8350 eight-core processor and 32GB 

memory. 
12

 20% validation set size, maximum 50,000 epochs, 57 hidden nodes 
13

 Compare to 50.61 watts/m2 when using Random Forest to predict 24-hour solar radiation for all instances in the 

total dataset from 2003-2013. This appears to be evidence of a particularly nonvolatile training set, and it is not 

unreasonable to assume that inflating all 24-hour error rates reported in this paper by approximately 15% would be a 

more accurate assessment of raw prediction accuracy over a broader timeframe. 
14

 With "build decision tree" set to True 
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decreased the MAE from 35.40 to 28.70, a further 18.9% decrease from using data from the 

single Griffin cell alone. In total, adding 72 forecasted weather values (eight values from each of 

nine cells including and surrounding Griffin) reduced the 24-hour solar radiation prediction mean 

absolute error rate from 45.99 watts/m
2
 when using historical collected data alone to 28.70, a 

37.6% improvement.  

 After these results were found applying Random Forest to extended weather forecasts, 

additional machine learning techniques were then applied to determine if Random Forests still 

produced the best results. After analysis of all techniques detailed in Table IV, there were no 

significant changes in ranking. 

 As with one-hour predictions, data from Jonesboro, Attapulgus, Blairsville, and 

Brunswick were next analyzed to quantify the ramifications of incorporating weather forecasts 

into their 24 hour solar radiation predictions. Table 2.6 shows the results of using various sets of 

model inputs into a Random Forest model. As compared to one-hour prediction results, these 24-

hour results appear to provide evidence for the variability of the weather in the five different 

cities. Blairsville sits in the northeastern Georgia mountains and generates one of the lowest 

average solar radiation readings, but has the highest 24-hour prediction error rates here when 

examining the persistence models and historical data observations alone. Brunswick, a more 

stable city on the coast with the highest average solar radiation, recorded some of the lowest 

error rates in these models. However, Blairsville was able to notch the highest gain in accuracy 

when incorporating single-cell and multi-cell weather forecasts, suggesting that higher-

variability cities benefit disproportionally more from weather forecasts when attempting longer-

term predictions than lower-variability cities (this phenomenon did not appear to manifest itself 

in the one-hour prediction results). 
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Table 2.6. A comparison of error rates for different model inputs to Random Forest when 

predicting 24 hour solar radiation for five Georgia cities. 

 Griffin Jonesboro Attapulgus Blairsville Brunswick Average 

Persistence model 

baseline (MAE, 

watts/m
2
) 

59.80 61.06 62.08 68.06 56.98 61.60 

GAEMN weather 

observations + 24 

hour sliding 

window (MAE, 

watts/m
2
) 

45.99 49.85 51.59 52.72 48.14 49.66 

GAEMN weather 

+ window + single 

GRIB cell 

forecasts (MAE, 

watts/m
2
) 

35.40 36.93 40.50 38.11 36.59 37.51 

Improvement when 

incorporating 

GRIB cell 

forecasts (%)15 

23.0% 25.9% 21.5% 27.7% 24.0% 24.4% 

GAEMN weather 

+ window + GRIB 

cell and eight 

surrounding cell 

forecasts (MAE, 

watts/m
2
) 

28.70 29.05 32.89 29.53 28.14 29.66 

Additional 

improvement when 

incorporating 

surrounding cell 

forecasts (%)16 

18.9% 21.3% 18.8% 22.5% 23.1% 20.9% 

Total improvement 

when incorporating 

GRIB cell and 

surrounding cell 

forecasts (%)17 

37.6% 41.7% 36.2% 44.0% 41.5% 40.2% 

 

 This analysis indicates that incorporating weather forecasts greatly enhances accuracy for 

24-hour predictions, even more so than for one-hour predictions. Adding single-cell weather 

forecasted variables to the model inputs reduced MAE by an average of 24.4%, and including 

                                                 
15

 Over using GAEMN weather observations + 24 hour sliding window alone 
16

 Over using GAEMN weather observations + 24 hour sliding window + single-cell weather forecasts 
17

 Over using GAEMN weather observations + 24 hour sliding window alone 
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forecasts from surrounding cells brought the improvement up to 40.2% over using historical 

observations alone. In addition, as with one-hour predictions, the MAEs achieved when using 

weather forecasts are appear to be tightly clustered; geographical disparities notwithstanding, 

results from four of the cities lay within 1.52 watt/m
2
 of each other. 

 

2.8  CONCLUSIONS 

 The improvement in accuracy in both one-hour and 24-hour predictions shown here 

indicates that predictive data such as future weather forecasts or real-time satellite imagery is an 

important component of solar radiation prediction over short- and medium-term prediction 

timeframes.  Large-scale collection and dissemination of this data is likely to enhance current 

prediction models and improve the operations and resource allocation of current and future solar 

power plants. 

 There are several clear paths forward to extending the analysis detailed in this paper. The 

first is made possible by improvements in NOAA's weather forecasting methodology. While the 

24-hour forecasts for 2003-2005 made use of NAM data generated every 12 hours at a 40 

kilometer grid size, current NAM data generates forecasts every six hours and reduces the grid 

size to 12 kilometers, providing both more frequent and more granular forecasts. This increased 

data reporting will no doubt reduce prediction error rates by virtue of more rapid updating of 

forecasts in addition to increased accuracy as a result of the smaller geographical cell size. 

 A second approach would be to use NOAA weather forecasts to directly predict NOAA 

weather variables, such as air temperature and precipitation probability, in effect using their 

published data to beat their own forecasts. The rationale for expected success here can be seen by 

comparing solar radiation forecasts using the single-cell weather forecasts to those using the 
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three-by-three square of cells surrounding the weather station. The improvement in accuracy 

when using multi-cell forecasts suggests that there is important weather data contained in these 

surrounding  cells which isn't reflected in the single cell forecasts alone. It is a reasonable 

assumption to make that because these surrounding weather forecasts improve predictions of 

solar radiation at a particular location, they may also be used to improve forecasts for more direct 

weather variables such as air temperature at that location. 

 A final obvious avenue of extension would analyze a broader range of climates and 

macroclimates. The variations in weather throughout the state of Georgia are modest in 

comparison to the spectrum of temperature, wind, and rainfall present throughout the world at 

any given time. It would be interesting to see if the improvements in accuracy noted here with 

the inclusion of weather forecasts continue to hold when moving into more variable - and less 

predictable - weather systems. 
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CHAPTER 3 

A COMPARISON OF MACHINE LEARNING TECHNIQUES FOR POSTPROCESSING 

WEATHER FORECASTS
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3.1 ABSTRACT 

 Machine learning models were developed and compared to increase the accuracy of 24-

hour forecasts of eight weather variables (air temperature, cloud cover, visibility, wind speed, 

wind direction, dew point temperature, air pressure, and humidity) for five cities in Georgia for 

the time period June 10, 2016 to June 10, 2017. Sinusoidal representations of the hour-of-day 

and day-of-year being forecasted were found to significantly decrease prediction errors when 

included as model inputs in order to extract cyclical patterns. The industry-standard technique of 

linear regression Model Output Statistics (MOS) was analyzed as a baseline performance 

measure, and an ensemble model stacking a Random Forest with an artificial neural network 

(ANN) was found to reduce prediction error over MOS on seven of the eight weather variables 

studied. The inclusion of additional forecasted weather variables from areas immediately 

surrounding the target location was not found to have an impact on prediction error. 

 

3.2 INTRODUCTION 

 Short-range weather forecasting is of vital importance to a wide range of consumers, 

including pilots, drivers, local and federal emergency services, recreation facilities, the 

construction industry, and the military (National Center for Atmospheric Research, 2017). With 

such a large impact surface, even small improvements in prediction accuracy can translate into 

noticeable economic impacts on these sectors. One such example where accurate forecasts have 

led to direct financial benefits is in predicting demand for electricity; it is estimated that U.S. 

electric utilities save $150 million annually by using 24-hour air temperature forecasts to 

estimate load demand (American Meteorological Society, 2015). 
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 This paper's goal was to compare machine learning techniques to detect and correct for 

systematic biases in 24-hour forecasts generated and disseminated by The National Oceanic and 

Atmospheric Administration (NOAA), an approach referred to as postprocessing. In addition, an 

attempt was made to incorporate forecasted variables from areas surrounding the target location 

in order to improve forecast accuracy.  

 Weather forecasting is inherently difficult. The chaotic nature of weather leads to a 

considerable sensitivity on initial conditions, and the path to accurate forecasts is limited as 

much by the measurement error of initial conditions as it is by model error (Stensrud et al., 

1999). However, the influence that weather has on our lives cannot be overstated. Up to 90% of 

the emergencies declared by the Federal Emergency Management Agency (FEMA) and 7,000 

road fatalities annually can be attributed to weather, and weather-related air traffic delays cost 

Americans about $6 billion per year (American Meteorological Society, 2015). For these 

reasons, enormous amounts of manpower and computing power have been allocated to weather 

prediction over the past few decades, and this focus has paid off. The British Meteorological 

Service (2017) claims that their current four day forecasts are as accurate now as their one day 

forecasts were 30 years ago. This statement mirrors the estimate that forecast horizons have been 

steadily increasing at approximately one day per decade (Nurmi et al., 2012). These 

improvements in accuracy, coupled with the large number of individuals, businesses, and 

governments who rely on weather forecasts every day, Bauer, Thorpe, and Brunet (2015) claim 

that the impact of weather predictions at high as that of any other physical science. 

 Numerical Weather Prediction (NWP) data are a common form of computer-generated 

weather forecasts created by feeding current weather observations into mathematical models to 

develop estimates for the future state of the weather. These models generally represent a three-
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dimensional projection of various weather elements for a specified time in the future. NOAA 

alone generates eight different NWP models on a continuous basis which are widely used both 

on a standalone basis and as part of ensemble models by both the National Weather Service and 

third-party weather forecast vendors such as Weather Underground and AccuWeather. 

 

3.3 POSTPROCESSING 

 While vast amounts of research and processing power go into generating these NWP 

forecasts (Lin, Atlas, and Yeh, 2004), there have been a number of attempts at improving their 

accuracy further by finding and detecting various time- or location-based biases which may exist 

by postprocessing the data. Postprocessing is commonly used to refine near-surface forecasts, as 

forecasts of NWP models are generated at a relatively coarse horizontal resolution and may only 

crudely approximate the specific physical processes that occur at or near ground level. In 

addition, NWP models represent the world simply as an array of gridpoints, which simplifies and 

homogenizes surface conditions while possibly ignoring the small-scale effects that topological 

features or small bodies of water may have on hyper-local forecasts (Wilks, 2011).  

 One of the most elementary forms of correction is simply to add (subtract) a forecast's 

mean historical error to the current forecast value in order perform a bias correction if a forecast 

is consistently too low (high). Generally, however, more advanced techniques are applied. Model 

Output Statistics (MOS) is a multiple linear regression postprocessing technique which involves 

correlating local and regional weather observations with numerical model outputs in an attempt 

to reduce bias and increase accuracy by factoring in local climatology (Klein & Glahn, 1974). At 

its essence, MOS assumes consistent error patterns and attempts to correct current weather 
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forecasts by analyzing errors from past forecasts (Mathiesen & Kleissl, 2011), and has 

historically been the preferred method for NWP postprocessing (Wilks, 2011).  

 MOS models for widely-recorded weather variables such as temperature and wind speed 

are commonly generated for each individual weather station in a region (Rudack & Ghirardelli, 

2010). The National Weather Service (NWS) has long applied MOS statistical techniques to 

forecasts generated by the National Centers for Environmental Prediction, resulting in more 

accurate guidance by using an ensemble technique of melding multiple models followed by 

statistical adjustments to correct for model biases and to properly weight each model's 

contribution (Dallavalle & Erickson, 1999). Such methods can even be used to infer forecasts for 

additional weather variables which weren't explicitly predicted in the initial dataset.  

 One drawback for these postprocessing models is the necessity of including sufficient 

data in the training set. Wilks and Hamill (2007) found "significant" improvement in forecast 

skill when making use of 15- and 25-year training sets for MOS corrections as compared to using 

shorter periods of 1 to 5 years. If the underlying NWP models are updated on a more frequent 

basis in an attempt to remove bias or otherwise provide more accurate forecasts, the MOS model 

would no longer be applicable and would need to be retrained using the forecasts from the new 

NWP model. An additional drawback specific to MOS and other linear regression models is the 

necessity of creating multiple models to account for different time-of-day or seasonal biases. For 

example, a bulletin from the National Weather Service Office of Meteorology (1995) on an MOS 

approach to predicting cloud ceiling heights refers to a "cool season" model and a "warm season" 

model, in effect creating a model tree.  

 In addition to numerous academic studies, postprocessing is widely used in practice. A 

NOAA whitepaper addressing and encouraging postprocessing reports that many National 
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Weather Service (NWS) organizations have substantially improved their services via judicious 

use of postprocessing to minimize noise and correct for biases (Hamill et al., 2015). The authors 

note that it is inevitable that raw guidance will necessarily include systematic errors, and that 

leveraging historical biases along with incorporating additional modeling systems (if available) 

have substantially improved the quality of forecasts.  

 Dennstaed (2006) found that small airports commonly add their own regional expertise to 

numerical weather forecasts by accounting for historical observations to correct for possible 

model biases. In addition,  many local weather forecasters do not merely reiterate forecasts from 

the National Weather Service directly but instead apply their own experience and regional 

knowledge to manually postprocess the data they receive from the NWS. Samenow and Fritz 

(2015) reference a TV meteorologist in Washington who, each morning, tracks the models’ 

forecasts for different variables and layers of the atmosphere to find and correct for potential 

biases. They note that this is not an isolated case but that many local meteorologists have 

impressive academic credentials and take pride in applying their regional knowledge to craft 

their own forecasts.  

 

3.4 LITERATURE REVIEW 

 While the use of standard multiple linear regression Model Output Statistics 

postprocessing is still widespread, in recent years more advanced machine learning techniques 

have been applied to weather datasets in order to evaluate their efficacy. Guarnieri, Pereira, and 

Chou (2006) analyzed day-ahead solar radiation forecasts collected from the Brazilian Center of 

Weather Forecast and Climate Studies (CPTEC) for several weather stations in southern Brazil. 

They fed 36 weather-related predictor variables into an two artificial neural networks (ANNs) 
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with different structures in an attempt to improve the Root Mean Squared Error (RMSE) of the 

raw solar radiation forecasts, and found that each ANN eliminated the systematic bias observed 

from the raw values and dropped the RMSE by over 30%. As they did not perform a comparison 

to results obtained by more traditional techniques such as linear regression, it is not known if 

neural networks outperformed these methods; however, this result is evidence that advanced 

machine learning techniques do show promise in the domain of weather post-processing. 

 Similarly, Lauret, Diagne, and David (2014) performed analysis on historical NWP 

global horizontal solar irradiance (GHI) day-ahead predictions collected over one full year from 

La Reunion Island, a French territory in the Indian Ocean. They found mean bias errors related to 

cloud cover forecasts and the angle of the sun for the forecast period. Specifically, for forecasted 

clear-sky conditions, GHI was overpredicted, while for forecasted cloudy predictions it was 

underpredicted, suggesting the model over-exaggerates the effect of cloud cover or the absence 

thereof. They found that the use of an ANN as a bias-correction step reduced the RMSE of GHI 

predictions by 17.7% as compared to the NWP models alone, and reduced average bias to nearly 

zero. Additional attempts to improve upon this result by using spatial averaging techniques as the 

starting point led to comparable results as those given by the bias removal with no spatial 

averaging. This paper will take a similar approach and attempt to improve accuracy results by 

including information from the GRIB cells immediately surrounding the target site. 

 Mathiesen and Kleiss (2011) also found that NAM (North American Mesoscale) models 

systematically overforecast global horizontal irradiance during clear sky conditions by up to 

40%. In addition, clear sky conditions were overpredicted, resulting in many more false clear sky 

days than false cloudy sky days. These two phenomena resulted in a general hour-ahead 

overforecasting of GHI by 41.0 - 77.5 watts/m
2
 for seven sites across the United States . By 
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applying a more advanced fourth-order multivariate MOS correction based on solar zenith angle 

and forecast clear sky index, the researchers were able to nearly eliminate mean bias while 

reducing the RMSE of the forecasts by an average of 10.3%. The authors state that their work 

may serve as a useful reference point to contrast to other, more advanced, products, but do not 

provide this comparison. 

 Galanis et al. (2006) applied Kalman filter postprocessing to NWP model forecasts of air 

temperature and wind speed in two unnamed locations in southern Europe and noted that the low 

resolution of the model renders it susceptible to systematic interpolation error. They report 

finding that Kalman filters with low-order polynomials appear to perform well in predicting air 

temperature and wind speed from 24 hours to 120 hours ahead. Their results indicate dropping 

absolute errors approximately 64% in temperature prediction and 6% in wind speed prediction 

on Case 1, and 46% and 39%, respectively, in Case 2. In both cases the mean bias was dropped 

to nearly zero, fulfilling the one of the primary goals of postprocessing. It must be noted that 

Case 1 consisted of just one month of forecasts (December 2003) and Case 2 of just three months 

(March-May 2003), which are comparatively smaller data sets than most other experiments 

analyzed. 

 Marzban (2003) analyzed forecasts from the Advanced Regional Prediction System, a 

model which was found to exhibit significant temperature biases depending on the forecast hour. 

To correct these systematic errors, they used customized neural networks on each of 31 weather 

stations and included other weather variables to achieve a 40% reduction in mean-squared 

temperature forecast error across all stations as well as reductions in bias and variance for time 

frames from one hours to 24 hours. For a small number of sites, postprocessing did not appear to 

materially affect results, indicating that some geographic regions may be more susceptible to 
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systematic biases than others. Additionally, the optimal number of nodes in the hidden layer of 

the neural network was calculated for each weather station; it was found that most stations 

required between two and eight hidden nodes, while one didn't require any. Marzban makes the 

observation that this represents an implicit comparison between a neural network and traditional 

MOS, as MOS is based on linear regression and can be represented by a neural network with no 

hidden nodes. The point is made that when the optimal number of hidden nodes is greater than 

zero - which was the case for all but one weather station analyzed - it is indicative that a 

properly-tuned neural network will outperform a linear model. 

 Casaioli et al. (2003) tested different statistical approaches to the post-processing of 

surface air temperatures in the Italian region of Puglia collected from 1985 to 1996. In their 

paper they outline and analyze results obtained from no postprocessing, a vertical interpolation, a 

Kalman filter, a linear neural network (i.e., no hidden layers), and a non-linear neural network. 

While they found that the non-linear neural network resulted in the lowest mean absolute 

deviation (or, mean absolute error) of day-ahead temperature forecasts (1.5° C), just beating out 

the Kalman filter (1.6° C), it was also reported that using no post-processing at all resulted in just 

a 1.5° C mean average error. As the majority of other analyses of post-processing efficacy find 

significant improvement over using raw weather forecasts alone, it must be noted that their 

results do not fall in line with those reported by others. 

 Marzban, Leyton, and Colman (2007) analyzed cloud ceiling and visibility data collected 

during 2001 to 2005 over a broad area of the Pacific Northwest to predict the probability of low 

or high cloud ceilings 6 to 12 hours ahead. They analyze 39 different weather stations and state 

that for stations with sufficient data, neural networks outperform both MOS and logistic 

regression, although the results are displayed graphically by station and no summary statistics are 
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given. Neural networks beat MOS on 9/14 weather stations with statistically significant six-hour 

predictions (64%), and 34/34 on twelve-hour predictions (100%), indicating that weather 

forecasting biases become more non-linear at longer prediction intervals. As this paper will 

attempt day-ahead predictions,  these results would indicate that non-linear methods may 

dominate linear methods at this longer time-frame. 

 The study of related works in this field found two shortfalls which this paper will attempt 

to address. The first is the prevalence of solar radiation as the predicted target variable of choice, 

with fewer papers dedicated to applying advanced techniques towards forecasting more well-

known variables such as temperature and wind speed. The second, and the primary focus of this 

paper, is the dearth of research in comparing these advanced techniques to the industry standard 

multiple linear regression technique, which is computationally fast and easy to interpret. It is 

widely accepted and published that numerical weather forecasts exhibit biases that can be 

corrected through various statistical techniques, both old and new, and this paper will attend to 

compare their results on a direct basis. 

 

3.5 METHODOLOGY 

 Murphy (1993) lays out three criteria for evaluating the "goodness" of a weather forecast: 

type 1 (consistency), type 2 (quality), and type 3 (value).  It is type 2 which this paper will 

attempt to refine. Mean absolute error (MAE) has been chosen as the target function to optimize, 

although it may be noted that many consumers of weather forecasts are nearly as concerned with 

the range of possible outcomes as they are with the single predicted value, and so reducing the 

width of the probability distribution of forecasts would be an important area of inquiry for future 

studies. 
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 In order to develop a baseline for current forecast accuracy, a historical dataset must be 

sourced which includes both historical weather forecasts as well as the actual ultimate weather 

observations for the forecasted time period. This paper makes use of weather forecasts provided 

by The National Oceanic and Atmospheric Administration (NOAA). Their data is disseminated 

in the GRIB file format, a compact binary format commonly used to store historical and 

forecasted weather data (World Meteorological Organization, 2003). Each GRIB file describes a 

particular geographical region for a single date, and internally splits this region into a grid of 

cells of a consistent size. For each cell, attribute values are listed describing weather attributes in 

the cell at that time, or, in the case of weather forecasts, at a specified time in the future. These 

GRIB files can denote either current weather variable observations or predicted weather 

variables for a specified time in the future. 

 There are several datasets published regularly by NOAA, and this paper has chosen the 

North American Mesoscale Forecast System (NAM) GRIB data set for analysis. This dataset was 

available on NOAA's public FTP servers for download and included both 24-hour forecasts and 

0-hour observations for the United States for the time period June 10, 2016 to June 10, 2017. 

NAM forecasts are partitioned into cells of 12 kilometer by 12 kilometer resolution and are 

generated every six hours, at 12:00 a.m., 6:00 a.m., 12:00 p.m., and 6:00 p.m. Coordinated 

Universal Time (UTC). The five cities chosen for analysis in this paper all abide by Eastern 

Standard Time (EST) and Eastern Daylight Time (EDT), which respectively sit five and four 

hours behind UTC. This results in the four daily forecasts being generated at eight different 

possible hours, which will be addressed throughout this paper as follows: 1:00 a.m. or 2:00 a.m. 

(nighttime), 7:00 a.m. or 8:00 a.m. (morning), and 1:00 p.m. or 2:00 p.m. (midday), and 7:00 

p.m. or 8:00 p.m. (evening). For each of the five cities, 24-hour forecasts for their geographic 
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centers were compared to the eventual observations for the aforementioned timeframe in order to 

analyze the quality of their predictions. 

 The machine-learning software Weka (Hall et al., 2009) was chosen for training and 

testing all models generated in this paper. A number of machine learning techniques were run on 

each of the five cities independently, with 10-fold cross-validation Mean Absolute Error (MAE) 

used throughout as a means of assessing model accuracy.  

Table 3.1. Mean Absolute Error of NOAA 24-hour forecasts for eight forecasted variable for five 

Georgia cities, June 10, 2016 to June 10, 2017. 
 Griffin Jonesboro Attapulgus Blairsville Brunswick Average 

Air Temperature  (°F) 2.50 2.46 2.24 2.26 1.96 2.28 

Cloud Cover  (%) 24.41 24.63 25.40 23.67 26.35 24.89 

Visibility (m) 1,490 1,331 2,065 2,918 1,847 1,930 

Wind Speed (m/s) 1.20 1.21 1.09 1.32 1.07 1.18 

Wind Direction (°) 38.23 37.85 39.53 40.03 32.42 37.61 

Dew Point Temperature (°F) 2.67 2.64 2.74 2.38 2.42 2.57 

Air Pressure (Pa) 64.93 63.78 58.94 49.37 62.19 59.84 

Relative Humidity (%) 5.95 6.05 5.73 6.49 5.94 6.03 

 

 Table 3.1 displays the initial 24 hour MAE for each of eight forecasted weather variables 

over five Georgia cities, which appear to be similar across all five cities. In order to improve on 

these forecasts, a two-step approach was taken. The first was an attempt to extract any existing 

biases - patterns in which the predicted temperature systematically overforecasted or 

underforecasted the actual observed variable - by creating machine learning models with time-of-

day and day-of-year as inputs in addition to the NAM forecasts for air temperature and other 

variables. The second approach made additional use of forecasted values for the immediate areas 

("cells", in GRIB parlance) surrounding the target area. Sanders (2017) found that including 

temperature, humidity, and other weather variables from GRIB cells surrounding the target area 

decreased the error in 24-hour solar radiation prediction by 20.9% as opposed to using forecasted 

weather variables from the target cell alone. He hypothesized that improvement in accuracy 
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when using multi-cell forecasts suggests that there is important weather data contained in these 

surrounding  cells which isn't reflected in the single cell forecasts alone. It is a reasonable 

assumption to make that because these surrounding weather forecasts improve predictions of 

solar radiation at a particular location, they may also be used to improve forecasts for more direct 

weather variables such as air temperature at that location. 

 

3.6 RESULTS: AIR TEMPERATURE 

 Air temperature, one of the most commonly referenced weather variables in everyday 

life, was the first variable chosen for improvement. The initial MAE of 2.28° Fahrenheit from the 

NOAA forecasts aligns very closely with results reported by Samenow and Fritz (2015), who 

found that one-day temperature forecasts are typically accurate to within 2.0° to 2.5° Fahrenheit. 

As mentioned before, the NAM dataset generates four 24-hour forecasts, at nighttime, morning, 

midday, and evening. Table 3.2 shows the average bias of the air temperature data when broken 

down by time of day.   

Table 3.2. Average 24-hour air temperature forecast bias by time of day. 
Time of 

Day 

Average 

Prediction 

Average 

Observation 

Average bias 

(predicted-

observed) 

Standard 

deviation of 

bias 

Number of 

Observations 

P-Value 

of bias 

All 66.36 66.15 0.21 2.98 5615 <0.001 

Nighttime 63.74 61.97 1.77 2.69 1375 <0.001 

Morning 62.00 61.14 0.86 2.27 1395 <0.001 

Midday 70.06 71.84 -1.78 2.92 1380 <0.001 

Evening 69.50 69.48 0.02 2.83 1465 0.394 

 

 These results indicate that the coolest times (nighttime and morning) tend to be 

overforecasted, while the warmest time (midday) tends to be underforecasted. Given that the 

extremes led to the largest biases on an intraday level, the next analysis performed was to 

determine if any seasonal biases existed in warmer months versus cooler months.  
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Table 3.3. Average 24-hour air temperature forecast bias by month. 
Month Average 

Prediction 

Average 

Observation 

Average bias 

(predicted-

observed) 

Standard 

deviation of 

bias 

Number of 

Observations 

P-Value 

of bias 

January 51.77 52.17 -0.40 2.88 520 <0.001 

February 56.71 57.31 -0.60 3.04 465 <0.001 

March 54.70 55.56 -0.86 2.79 435 <0.001 

April 68.42 68.29 0.13 3.87 535 0.218 

May 71.67 71.42 0.25 3.23 620 0.027 

June 77.42 77.08 0.33 3.02 470 0.009 

July 81.33 79.70 1.63 2.92 355 <0.001 

August 79.98 78.93 1.06 2.38 515 <0.001 

September 77.25 76.12 1.14 2.47 415 <0.001 

October 67.81 67.52 0.28 2.33 495 0.004 

November 59.28 58.87 0.42 2.43 270 0.002 

December 50.81 51.13 -0.32 2.72 520 0.003 

 

 Table 3.3 shows that a bias is apparent in this analysis which has the effect of 

counteracting the previous time-based bias. The warmer months are overforecasted, while the 

cooler months are underforecasted. The Pearson correlation coefficient of a month's average 

observed temperature and its historical temperature forecast bias (predicted temperature less 

observed temperature) is 0.845. 

 One explanation for these presence of these biases is that they are random artifacts of this 

particular dataset which would not persist when analyzing other cities or time frames in out-of-

sample data. However, a look at the p-values for each row shows that most of these results are 

highly statistically significant, and such results would be improbable for data without biases. As 

a counter-argument, these p-values may somewhat overstate statistical significance because they 

most likely violate the assumption of independency - if the temperature for one city in Georgia is 

overforecasted, it is likely that temperatures for the other cities are as well. To address this 

concern, intraday timeframes from just one city (Griffin, Georgia) were analyzed in order to 

assure independency in the forecasted instances. Table 3.4 displays these single-city findings, 

which mirror the ones obtained over all cities in maintaining statistical significance. 
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Table 3.4. Average 24-hour air temperature forecast bias by time of day for Griffin, Georgia. 
 Average 

Prediction 

Average 

Observation 

Average bias 

(predicted-

observed) 

Standard 

deviation of 

bias 

Number of 

Observations 

P-Value of 

bias 

All 66.31 65.74 0.57 3.19 1123 <0.001 

Nighttime 63.56 61.21 2.35 3.03 275 <0.001 

Morning 61.22 60.15 1.06 2.23 279 <0.001 

Midday 70.15 71.50 -1.35 3.01 276 <0.001 

Evening 70.13 69.90 0.23 3.23 293 0.111 

 

 The appearance of these biases explains the popularity of postprocessing raw forecasts, as 

detailed earlier. One explanation of the continued existence of these biases is that regional 

patterns may exist which cancel each other out when analyzing nationwide data as a whole, thus 

making detection difficult unless each region is analyzed independently. There is some 

precedence for regional biases existing in weather forecasting. The National Weather Service 

(2017) outlines a few known regional flaws in their various models, such as the Global Forecast 

System (GFS) overestimating the strength of weather systems crossing the Sierra mountains in 

the Southwestern United States.  

 In order to test the effectiveness of various post-processing techniques, models were run 

using eight NAM predicted weather variables (air temperature, cloud cover, visibility, wind 

speed, wind direction, dew point temperature, air pressure, and humidity) as inputs to predicting 

the actual observed temperature 24 hours later. In addition, to extract cyclical patterns from the 

data such as those detailed in Table 2, 10 temporal inputs were included into the models: day-of-

year, hour-of-day, and the first two harmonics of the sine and cosine of each; this approach was 

outlined in Klein (1974). All methods were run with default Weka settings unless indicated 

otherwise. 
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Table 3.5. A comparison of machine learning methods for postprocessing 24-hour NAM 

temperature predictions over five cities in Georgia. Results indicate Mean Absolute Error (MAE) 

in °F. 
Technique Griffin Jonesboro Attapulgus Blairsville Brunswick Average 

Baseline (no 

postprocessing) 

2.50 2.46 2.24 2.26 1.96 2.28 

Model Output Statistics 

(Linear Regression) 

1.97 1.94 1.77 1.72 1.65 1.81 

Multilayer Perceptron 

(Neural Net) 

2.19 2.03 1.83 1.85 1.82 1.94 

Multilayer Perceptron 

(Neural Net)* 

1.94 1.94 1.65 1.72 1.69 1.79 

Support Vector Machine 

(SVM) for Regression 

1.95 1.93 1.77 1.72 1.66 1.81 

M5P model tree, unpruned 1.95 2.18 7.87 2.73 2.47 3.44 

M5P model tree, pruned 1.96 1.94 1.77 1.73 1.65 1.81 

REP Tree, unpruned 2.44 2.46 2.24 2.16 2.15 2.29 

REP Tree, pruned 2.34 2.42 2.19 2.16 2.12 2.25 

Random Forest 2.00 1.97 1.66 1.82 1.64 1.82 

Stacking Random Forest 

with MLP*† 

1.83 1.80 1.55 1.63 1.52 1.67 

* 20% validation size, max 50,000 epochs, learning rate 0.05 

† Linear regression used as a meta-classifier 

 

 The results are shown in Table 3.5 and proved to be relatively consistent across all five 

cities. The baseline linear regression model most commonly used in Model Output Statistics 

postprocessing significantly improved on the original NOAA forecasts, dropping the average 

MAE 20.6% from 2.28 to 1.81. Stacking Random Forests with a customized neural network 

produced the best results in all five cities and logged an average MAE of 1.67, 7.7% better than 

the linear regression model. It may be noted here that one potential advantage to using linear 

regression is that the output from the model is human-readable, as contrasted with the other 

black-box techniques applied in this analysis.  
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 For example, below is the air temperature linear regression model for the city of Griffin 

for this time period:  

target = -0.714  * cosine_day + 

0.2028 * sine_day + 

-0.1968 * cosine_twice_day + 

-0.1816 * hour + 

-2.1299 * cosine_hour + 

-3.4201 * sine_hour + 

-0.5143 * sine_twice_hour + 

0.8483 * predicted_temp + 

0      * predicted_visibility + 

0.0612 * predicted_dew_point + 

-0.0181 * predicted_humidity + 

8.7202 

  

 To further enhance accuracy of these forecasts, the inclusion of air temperature forecasts 

for the areas surrounding the target location was analyzed. Eight additional inputs were added to 

the existing model, which represent eight forecasted temperatures from the NAM cells lying to 

the northwest, north, northeast, east, southeast, south, and southwest of our target cell. As 

stacking Random Forests with a customized neural network resulted in the best performance in 

the previous section, this technique was run again with the additional surrounding inputs in order 

to determine if any performance increase was noted. 

Table 3.6. Comparison of a model incorporating forecasts from surrounding GRIB cells. Results 

indicate Mean Absolute Error (MAE) in °F. 
City Initial model run Inclusion of temperature from surrounding cells 

Griffin 1.83 1.78 

Jonesboro 1.80 1.78 

Attapulgus 1.55 1.59 

Blairsville 1.63 1.62 

Brunswick 1.52 1.57 

Average 1.67 1.67 

 

  As Table 3.6 indicates, inclusion of these eight forecasted temperatures did not decrease 

prediction error when averaged across all five cities. It appears that there is not enough additional 



 

49 

information available in the surrounding GRIB cells to improve on the original temperature 

forecasts. This finding mirrors results published by Lauret, Diagne, and David (2014), who applied 

MOS analysis to prediction of solar radiation for La Reunion Island, a French oversea territory located in 

the Indian Ocean. They found that including spatial averaging by taking the mean of irradiance over 

several grids centered around the station did not enhance accuracy further than applying MOS correction 

alone. Merely including time- and date-based inputs in addition to seven additional forecasted 

weather variables results in the lowest predictive error for air temperature over this dataset. 

 At this point, an attempt was made to determine if there was any cross-predictive 

accuracy among cities in our dataset. If a model was trained on City A, how would it perform 

when attempting to predict City B? The structure of the data required a slight shift  in 

methodology. Simply training a model over all dates in City A and then applying it to City B 

would allow information leakage from the training set into the test set for the matching dates and 

times. To remedy this, all cities were split into two sets based on the day-of-week of the time to 

be predicted: Sundays through Wednesdays were used for training, and Thursdays through 

Saturdays for testing. The ensemble model was trained on each city's training set and then 

applied to every city's testing set to determine how robust the models were to changes in 

location. 

Table 3.7. Analysis of cross-predictive accuracy across cities. Results indicate Mean Absolute 

Error (MAE) in °F. 
 Testing City 

  Griffin Jonesboro Attapulgus Blairsville Brunswick Average 

Griffin 1.88 1.90 2.52 2.03 2.81 2.23 

Jonesboro 1.80 1.81 2.79 1.98 3.13 2.30 

Attapulgus 2.10 2.20 1.56 2.58 1.82 2.05 

Blairsville 2.10 2.15 1.99 1.90 1.97 2.02 

Brunswick 2.43 2.56 1.97 3.45 1.70 2.42 

Average 2.06 2.12 2.17 2.39 2.29  
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 Table 3.7 shows that the five models which were tested on the same cities on which they 

were trained recorded an average MAE of 1.77, whereas the 20 models tested on different cities 

than their training recorded an MAE of 2.31, a 30.5% increase. However, further information can 

be gleaned by examining the geographical disparity of the cities. Jonesboro and Griffin lie just 

20 miles apart in the middle of Georgia and experience very similar weather conditions; it is 

most likely not coincidental that models trained on either of these cities perform very similarly 

when tested on the other. Further study can be done to determine if cities very close to one 

another with similar weather would benefit from combining their data to exploit the inherent 

machine learning advantage of more numerous training instances.  

 

3.7 RESULTS: ADDITIONAL WEATHER VARIABLES 

 After air temperature was analyzed, the best-performing model was applied to the seven 

other weather variables chosen for analysis. For each variable, the inputs to the model were the 

seven other predicted variables in addition to the 10 calculated temporal fields as detailed in an 

earlier section. Table 3.8 shows the results of forecasting all eight weather variables as compared 

to the original NOAA forecasts.  

 

 

 

 

 

 

 



 

51 

Table 3.8. 24 hour forecast error rates for eight weather variables.  
Weather 

Variable 

NOAA 

Forecasts 

Linear 

Regression 

(MOC) 

MOC 

Improvement 

over NOAA 

(%) 

Stacking 

Model 

Stacking 

Improvement 

over NOAA 

(%) 

Stacking 

Improvement 

over MOS 

Linear 

Regression  

(%) 

Air 

Temperature 

2.28 1.81 20.5% 1.67 26.8% 7.7% 

Cloud Cover 

(%) 

24.89 26.79 -7.6% 25.51 -2.5% 4.8% 

Visibility 1,930 2,865 -48.4% 1,901 1.5% 33.6% 

Wind Speed 1.18 0.80 32.3% 0.75 36.4% 6.3% 

Wind Direction 37.61 44.59 -18.6% 38.50 -2.4% 13.7% 

Dew Point 

Temperature 

2.57 2.06 19.8% 1.87 27.2% 9.2% 

Air Pressure 59.84 50.19 16.1% 52.25 12.7% -4.1% 

Relative 

Humidity 

6.03 5.87 2.7% 5.74 4.8% 2.2% 

   

 As a result of applying the stacking model, error rates were improved over NOAA raw 

forecasts on six out of the eight variables studied, and over the industry standard MOS on seven 

of them.  

 

3.8 CONCLUSION 

 Postprocessing of weather forecasts is undoubtedly a common means of refining the data 

and increasing forecast accuracy. Marzban (2003) claims that most current numerical weather 

forecasting systems employ some sort of statistical postprocessing in order to improve 

performance. In this paper, simple time-of-day and day-of-year analysis uncovered highly 

statistically significant biases for air temperature forecasts over five cities in Georgia. Using 

these two variables as inputs into an ensemble machine learning models yielded a decrease in 

error of 26.8% over using NOAA's temperature forecasts alone and 7.7% over using the 

industry-standard Model Output Statistics (MOS) postprocessing technique. 
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 Applying this technique to all eight weather variables chosen for analyses resulted in 

decreases in error for six of them over using NOAA's forecasts and for seven of them over using 

MOS alone. There appears to be  extractable patterns in this data which NOAA's forecasts do not 

take into account in their forecasts, and there also appears to be the potential to improve upon the 

results obtained by standard Model Output Statistics. 

 There are a few clear steps forward to extending the research presented in this paper. 

While it was found that the addition of predicted weather from the GRIB cells surrounding the 

target area did not improve air temperature forecasts, there were also slight improvements in 

accuracy noted when combining data from geographically similar cities to build a single model. 

More research could be done to quantify this effect; if it persists, it could prove useful when 

working with data sets of limited size. 

 In addition, supplementary data from predicted times other than the target time could be 

integrated into the model. Klein (1978) notes that numerical weather forecasting models can be 

systematically slow or fast, and therefore predictors within a short period of the predictand time 

could potentially be useful as inputs. 

 Finally, Glahn (2014) noted that using historical data decay factors between 0.025 and 

0.1 improved the MAE of 72-hour temperature forecasts over using MOS alone, and posited that 

the ever-changing nature of NWP models can render post-processing techniques stale if they do 

not underweight older data. More research could be done when using the more advanced 

techniques detailed in this paper to quantify the effect of this phenomenon. 
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CHAPTER 4 

CONCLUSION AND FUTURE DIRECTIONS 

 

4.1 CONCLUSION 

 The results presented here indicate that properly-chosen and tuned machine learning 

algorithms can lead to a reduction in predictions errors in several weather forecasting scenarios. 

Chapter 2 suggests that predictive data such as future weather forecasts or real-time satellite 

imagery is an important component of solar radiation prediction over short- and medium-term 

prediction timeframes. Large-scale collection and dissemination of this data is likely to enhance 

prediction models and improve the operations and resource allocation of current and future solar 

power plants. In addition, the inclusion of weather forecasts from areas immediately surrounding 

the target area was found to increase predictive accuracy in both one-hour and 24-hour solar 

radiation predictions.  

 In Chapter 3, simple time-of-day and day-of-year analysis uncovered highly statistically 

significant biases for forecasts of eight weather variables (air temperature, cloud cover, visibility, 

wind speed, wind direction, dew point temperature, air pressure, and humidity) for five cities in 

Georgia. Correction of these biases in raw forecast data is known as postprocessing, and the most 

common postprocessing technique currently used in practice is a standard linear regression 

model termed Model Output Statistics (MOS). Incorporating the sinusoidal representation of the 

time-of-day and day-of-year into an MOS model results in a 20.5% reduction in Mean Absolute 

Error (MAE) in air temperature prediction and reductions in five of the eight weather variables 
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analyzed. Additionally, an ensemble machine learning model consisting of a Random Forest 

stacked with an artificial neural network (ANN) yielded a decrease in error of 7.7% over using 

MOS for air temperature prediction, and a reduction in error over MOS in seven of the eight 

weather variables analyzed. 

 As stated at the beginning of this thesis, the effects of weather and weather forecasting 

affect millions of lives daily. Improvements in the accuracy of published weather forecasts could 

have a positive net economic and social benefit on their many users. The results reported here 

indicate that advanced machine learning techniques such as Random Forests and Artificial 

Neural Networks can compete with or surpass the predictions given by the state-of-the-art 

models currently in production. As more weather-related data is collected every day, at ever-

larger scales and ever-smaller granularities, the advantages held by these advanced models may 

grow further still. 

 

 

4.2 FUTURE DIRECTIONS 

 One obvious avenue of  research extension would be to attempt weather predictions for a 

broader range of climates and macroclimates. The variations in weather throughout the five cities 

in Georgia analyzed in this thesis are relatively modest in comparison to the wide range of 

atmospheric conditions present throughout the world. It would be interesting to see if the results 

published here are applicable to more variable weather systems. 

 Supplementary data from predicted times other than the target time could also be 

integrated into the models presented here. Klein (1978) notes that numerical weather forecasting 

models can be systematically slow or fast, and therefore predictors within a short period of the 
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predictand time could potentially be useful as inputs. If this concept were explored, it must be 

noted that NOAA's data is produced at infrequent intervals, which could limit the effectiveness 

of additional data inputs. Other data sources could be researched and added as well. 

 Chapter 2 noted that inclusion of weather forecasts from areas immediately surrounding 

the target area improved solar radiation prediction accuracy for both one-hour and 24-hour 

predictions, but Chapter 3 showed that those improvements did not translate into an error 

reduction when included in postprocessing models to predict air temperature. However, it was 

found that there were slight improvements in accuracy when combining data from 

geographically similar cities into a single model. More research could be done to quantify this 

effect; if it persists, it could prove useful when working with data sets of limited size. Many 

historical weather data sets for a single target area are limited in size, especially once seasonality 

effects are taken into account. Any techniques which could leverage additional data to add 

further statistical significance to model results would be a valuable step forward. 

 Finally, NOAA and other providers of raw weather forecasts update their models on a 

frequent basis in order to improve accuracy and reduce the variation of residual errors. Glahn 

(2014) reported that using historical data decay factors between 0.025 and 0.1 improved the 

MAE of 72-hour temperature forecasts over using MOS alone, and posited that the ever-

changing nature of NWP models can cause post-processing techniques to become stale if they do 

not underweight older data. More research could be done on this phenomenon to determine how 

the more advanced techniques detailed in this thesis react to changes in the underlying raw 

forecast models. 
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