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Abstract

Recent advances in computer vision, most notably deep convolutional neural networks (CNNs), are

exploited to identify and localize various plant species in salt marsh images. Three distinct approaches are

explored that provide estimations of abundance and spatial distribution at varying levels of granularity in

terms of spatial resolution. Overall, a clear trade-o� is observed between the CNN estimation quality and

the spatial resolution of the underlying estimation thereby o�ering guidance for ecological applications

of CNN-based approaches to automated plant identi�cation and localization in salt marsh images. A

novel way to train neural networks for semantic image segmentation, termed as Compositional Sparse

Network (CSN), is also conceptualized and tested. By leveraging the properties of dynamic expansion,

interconnection richness, and sparsity, a CSN is used as the backbone for the DeepLab-V3 architecture.

Since CSN is analogous to Neural Architecture Search (NAS), it is also compared to a NAS-based semantic

image segmentation approach.

Index words: Deep Learning, Semantic Segmentation, Image classi�cation, Pruning, Dynamic

Expansion, Ecological monitoring, Salt marsh monitoring.
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Chapter 1

Introduction and Literature

Review

1.1 CNNs in Ecological Research

Ecological studies are often limited in spatial and temporal scale by the time needed to characterize the

distribution and abundance of the constituent species. For example, most assessments of plant and inver-

tebrate species distributions are limited to analysis of abundance or presence/absence within small areas

of the study site (termed as quadrats). The quadrats typically comprise < 1% of the total study area, due

to the intensive e�ort required to manually analyze these ecological systems [51]. The combination of

computer vision and machine learning tools o�er the possibility of automating and accelerating this work,

making it possible to increase the spatial and temporal resolution of ecological surveys. In particular, deep

learning approaches are rapidly gaining popularity for these tasks since they provide a uni�ed computer

vision and machine learning framework whose performance typically exceeds that of previous approaches

that use predetermined hand-crafted features [9].

In Chaper 2, we examine deep learning approaches for identi�cation, enumeration, and spatial local-

ization of plant species in salt marsh ecosystems. Salt marshes are highly productive, inter-tidal marine

habitats found along protected coastlines or behind barrier islands spanning temperate and subpolar re-
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gions on the earth’s surface [35]. Salt marsh sediments store high densities of organic carbon making them

important blue carbon ecosystems, in which carbon is sequestered that would otherwise be released to

the atmosphere increasing atmospheric CO2 concentrations [34]. Few species inhabit the salt marsh

ecosystem due to its harsh conditions. However, on account of the ecosystem’s high productivity, the

resident species capable of surviving salt marsh conditions often exhibit high abundance. Given their low

biodiversity, salt marshes have long served as model ecosystems that are amenable to both experimental

and observational work [7].

Salt marsh plant communities on the east coast of the United States are typically dominated by grasses

in the genus Spartina, especially at lower marsh elevations as only this genus is capable of tolerating

frequent �ooding with salt water [38]. At higher marsh elevations, several additional species are also

found, many of which are succulents or otherwise adapted to handle the harsh salt marsh conditions. The

abundance and distribution of these resident species is commonly assessed using several semi-quantitative

methods, employed either in real time in the �eld or on archived images. One approach is to simply

indicate within a small quadrat (e.g. 0.25 m× 0.25 m) which plant species are present and which are absent.

An alternative approach is to estimate the percent cover within the quadrat, i.e., the percentage of space

occupied by each plant species or substrate, by randomly choosing points (25–100) within a small area (on

the ground or in the image) and identifying the resident plant species (or substrate) at the chosen point. In

this paper, we explore and assess various deep learning approaches to automate the aforementioned tasks

on input images of salt marshes. Going beyond what is typically done in ecological studies due to time

constraints, we also assess the ability of CNN architectures to perform semantic segmentation of salt marsh

images. Semantic image segmentation potentially provides more accurate estimates of species abundance

and the spatial distribution of plants at a much �ner level of granularity de�ned by spatial resolution.

In this work, the DeepLab-V3 CNN architecture is employed for the semantic image segmentation task.

As is typically encountered in studies of most ecological systems, the salt marsh images are characterized

by �ne-grained interleaving of classes, ambiguous class boundaries, and wide-variations in lighting and
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viewing perspective that complicate automated image analysis procedures, particularly those pertaining

to semantic image segmentation.

We speci�cally explore multi-layer convolutional neural network (CNN) architectures such as the

ResNet [21], PyramidNet [18], residual attention network (RAN), DenseNet [23], ResNext [57], and

Inception-V3 [46] in the context of multi-label classi�cation. These CNN architectures are also employed

for the percent cover computation task, which is formulated as the more simple image classi�cation prob-

lem. In both presence absence and percent cover approaches, we found that that ResNext and Dual Path

networks performed quite well. Both these approaches are multi-path approaches where interconnection

richness is leveraged to produce better results. This idea of interconnection richness led us to question

the reasons behind success of modern deep learning architectures. Therefore, we continued our research

on the formulation of general-purpose CNN architectures based on these insights.

1.2 Searching for General-purpose CNNs

In deep learning, we observe that the search for general-purpose CNN architecture design can be di�er-

entiated based on the underlying problem formulation. We believe that such di�erentiation only helps us

create general models if we can �nd a way to segregate high-level features based on their underlying neu-

ronal structures. Since arti�cial neural networks are a black box, the problem-speci�c architecture search

is tantamount to merely solving speci�c problems. A manual search of architectures for speci�c problems

does not contribute to e�cient out-of-distribution (O.O.D) generalization and general intelligence. We

should be able to �nd deep learning architectures that, except for a few input and output layers, share

exactly the same structure. One e�cient approach to architecture search is termed as Neural Architecture

Search (NAS) [33]. Although NAS approaches are e�cient in their search procedure, their search space is

limited to determining which stacking of convolution �lters is optimal. NAS approaches typically usually

focus their search on performing minor CNN enhancements to yield the optimal architecture. In typical

NAS approaches, the CNN architectures are usually modeled as a rigid three-level hierarchy comprising
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of (a) CNN channels, (b) blocks, and (c) network architecture. Being forced to act within the bounds of

this hierarchy, NAS approaches have only produced incremental improvement in CNN performance.

We propose an alternative approach that tackles the above limitations. First, we recommend that

future deep learning research focus on the study of inter-connectivity of individual neurons, and how

features are learned and composed [10]. This knowledge, will allow us to con�dently construct general-

purpose architectures that are capable of generalization to a wide array of problems. Based on a hypothesis

of how neural networks generalize using interconnection richness, we propose a new paradigm of training

neural networks that performs, what we term as, a pseudo neural architecture search, essentially creating

more complex architectures from simpler ones. Our primary vision underlying this approach is to leverage

the rich interconnections within shallow sub-networks. Many intuitive ideas behind CNN architecture

design have followed this simple heuristic of feature composition such as gradual down-sampling of the

image, dilated convolution [11], and design of residual networks [21]. Recent work in demystifying the

reasons for the success of residual networks has pointed towards their capacity to behave like ensembles

of relatively shallow networks [49].

We believe that the proposed pseudo NAS process, termed as the Compositional Sparse Network

(CSN), should be performed on a carefully chosen base network such as the Graph Neural Network

(GNN) [59] or fully connected dense neural network (FCNN). In this work, however, we choose the

3× 3-size kernel, the most basic CNN unit, as the minimalist base network to construct a modular archi-

tecture capable of composing features on its own, without the external help of down-sampling or dilated

convolution. Moreover, the current movement towards general-purpose networks is not motivated by

the need to tackle real-world data sets, but by novel problem-solving approaches such as meta-learning,

few-shot learning, and continual learning [13]. These problem-solving approaches usually use toy data

sets and toy networks of small size that have not been tested on larger real-world data sets and often do not

generalize well in many cases. This begs the question: why can we not implement our theories of general-

purpose architectures on common problems such as semantic image segmentation? Since, at an intuitive

level, we can safely claim that a general-purpose network would, most likely, signi�cantly outperform a
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custom designed CNN, why do we not combine our hypotheses for O.O.D generalization [28], derived

from problem solving approaches such as meta-learning, few-shot learning, and continual learning, and

apply them to speci�c problems such as semantic image segmentation to test their e�cacy [4], [31]. With

that in mind, we have formulated a CSN-based approach to semantic image segmentation.

Deriving inspiration from Neuroscience [40] and continual learning-based approaches [31], the CSN

performs a pseudo NAS procedure that combines our understanding of three basic principles required

for incorporating general intelligence in neural networks: (a) interconnection richness hypothesis, (b) dy-

namic expansion, and (c) sparsity. The interconnection richness hypothesis is based on the idea that

interconnections between local sub-networks and the respective interconnections between neurons in

local sub-networks are key to the design of an e�ective architecture. The implementation of intercon-

nection richness within a CSN-based framework is inspired by the structure of neocortex in the human

brain [40]. To create a hierarchy of sub-networks we facilitate the dynamic expansion of repeating units.

This idea is based on the intuition that a network must be able to increase its size based on the complexity

of the problem. Optimization-based dynamic expansion is short-sighted and leads to a cuto� depth that is

much lower than the optimal depth needed for a speci�c problem[24]. Therefore we formulate a manual

external dynamic expansion coupled with network pruning to �nd general architectural solutions [3].

While expanding a network dynamically, we should also be able to simultaneously decrease its complexity

to �nd the most essential features for the purpose of feature composition. To this end, network pruning

is shown to increase the performance of a given network despite deletion of 60%-90% of its neurons [16].
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Chapter 2

Estimation of Abundance and

Distribution of Salt Marsh

Plants from Images Using Deep

Learning1

1Jayant Parashar*, Suchendra Bhandarkar, Jacob Simon, Brian Hopkinson, Steven Pennings. 2020. Submitted to the In-
ternational Conference on Pattern Recognition, 06/15/2020.
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2.1 Abstract

Recent advances in computer vision and machine learning, most notably deep convolutional neural net-

works (CNNs), are exploited to identify and localize various plant species in salt marsh images. Three

di�erent approaches are explored that provide estimations of abundance and spatial distribution at vary-

ing levels of granularity in terms of spatial resolution. In the coarsest-grained approach, CNNs are tasked

with identifying which of six plant species are present/absent in large patches within the salt marsh images.

CNNs with diverse topological properties and attention mechanisms are shown capable of providing

accurate estimations with > 90% precision and recall in the case of the more abundant plant species

whereas the performance declines for less common plant species. Estimation of percent cover of each plant

species is performed at a �ner spatial resolution, where smaller image patches are extracted and the CNNs

tasked with identifying the plant species or substrate at the center of the image patch. For the percent

cover estimation task, the CNNs are observed to exhibit a performance pro�le similar to that for the pres-

ence/absence estimation task, but with an ≈ 5–10% reduction in precision and recall. Finally, �ne-grained

estimation of the spatial distribution of the various plant species is performed via semantic segmentation.

The DeepLab-V3 semantic segmentation architecture is observed to provide very accurate estimations for

abundant plant species; however, a signi�cant degradation in performance is observed in the case of less

abundant plant species and, in extreme cases, rare plant classes are seen to be ignored entirely. Overall,

a clear trade-o� is observed between the CNN estimation quality and the spatial resolution of the un-

derlying estimation thereby o�ering guidance for ecological applications of CNN-based approaches to

automated plant identi�cation and localization in salt marsh images.

Keywords: Salt marsh monitoring, convolutional neural networks, network topology, attention mech-

anism, deep learning, ecological monitoring
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2.2 Introduction

Ecological studies are often limited in spatial and temporal scale by the time needed to characterize the

distribution and abundance of the constituent species. For example, most assessments of plant and inver-

tebrate species distributions are limited to analysis of abundance or presence/absence within small areas

of the study site (termed as quadrats). The quadrats typically comprise < 1% of the total study area, due

to the intensive e�ort required to manually analyze these ecological systems [51]. The combination of

computer vision and machine learning tools o�er the possibility of automating and accelerating this work,

making it possible to increase the spatial and temporal resolution of ecological surveys. In particular, deep

learning approaches are rapidly gaining popularity for these tasks since they provide a uni�ed computer

vision and machine learning framework whose performance typically exceeds that of previous approaches

that use predetermined hand-crafted features [9].

In this paper, we examine deep learning approaches for identi�cation, enumeration, and spatial local-

ization of plant species in salt marsh ecosystems. Salt marshes are highly productive, inter-tidal marine

habitats found along protected coastlines or behind barrier islands spanning temperate and subpolar re-

gions on the earth’s surface [35]. Salt marsh sediments store high densities of organic carbon making them

important blue carbon ecosystems, in which carbon is sequestered that would otherwise be released to

the atmosphere increasing atmospheric CO2 concentrations [34]. Few species inhabit the salt marsh

ecosystem due to its harsh conditions. However, on account of the ecosystem’s high productivity, the

resident species capable of surviving salt marsh conditions often exhibit high abundance. Given their low

biodiversity, salt marshes have long served as model ecosystems that are amenable to both experimental

and observational work [7].

Salt marsh plant communities on the east coast of the United States are typically dominated by grasses

in the genus Spartina, especially at lower marsh elevations as only this genus is capable of tolerating

frequent �ooding with salt water [38]. At higher marsh elevations, several additional species are also

found, many of which are succulents or otherwise adapted to handle the harsh salt marsh conditions. The
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abundance and distribution of these resident species is commonly assessed using several semi-quantitative

methods, employed either in real time in the �eld or on archived images. One approach is to simply

indicate within a small quadrat (e.g. 0.25 m × 0.25 m) which plant species are present and which are

absent. An alternative approach is to estimate the percent cover within the quadrat, i.e., the percentage

of space occupied by each plant species or substrate, by randomly choosing points (25–100) within a

small area (on the ground or in the image) and identifying the resident plant species (or substrate) at

the chosen point. In this paper, we explore and assess various deep learning approaches to automate the

aforementioned tasks on input images of salt marshes. We speci�cally explore multi-layer convolutional

neural network (CNN) architectures such as theResNet [21],PyramidNet [18], residual attentionnetwork

(RAN), DenseNet [23], ResNext [57], and Inception-V3 [46] in the context of multi-label classi�cation.

These CNN architectures are also employed for the percent cover computation task, which is formulated

as the more simple image classi�cation problem.

Going beyond what is typically done in ecological studies due to time constraints, we also assess the

ability of CNN architectures to perform semantic segmentation of salt marsh images. Semantic image seg-

mentation potentially provides more accurate estimates of species abundance and the spatial distribution

of plants at a much �ner level of granularity de�ned by spatial resolution. In this paper, the DeepLab-V3

CNN architecture is employed for the semantic image segmentation task. As is typically encountered in

studies of most ecological systems, the salt marsh images are characterized by �ne-grained interleaving of

classes, ambiguous class boundaries, and wide-variations in lighting and viewing perspective that compli-

cate automated image analysis procedures, particularly those pertaining to semantic image segmentation.

2.3 Background

2.3.1 Deep Learning Applications in Ecology

Previous applications of computer vision and machine learning techniques to the analysis of ecosystem im-

agery has progressed from traditional pipelines that extract predetermined, hand-crafted features, followed
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Figure 2.1: Example images of marsh plant species (from left to right and top to bottom): Sarcocornia,
Spartina, Limonium, Borrichia, Batis and Juncus.

by application of traditional classi�ers such as support vector machines (SVMs) to employing end-to-end

deep neural networks (DNNs) or deep learning (DL) methods. The pioneering work of Beijbom et al. [5],

[6], focusing on coral reef surveys, is an excellent example of the traditional approach to automated classi�-

cation of ecosystem images. Employing a maximum response �lter bank in conjunction with a multiscale

patch/texton dictionary to characterize the features in underwater coral reef images, Beijbom et al. [5] use

a traditional SVM-based classi�er to categorize the image patches as belonging to various coral organism

classes. Beijbom et al. [6] also outline the many challenges unique to the task of automated analysis of

ecological images such as extreme variations in the size, color, shape, and texture of each of the taxa, the

organic and ambiguous nature of the class boundaries and signi�cant alterations in ambient lighting and

image colors. In the ecological remote sensing literature, classi�cation approaches have focused almost

exclusively on pixel-level spectral information ignoring spatial context, although there have been some
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notable exceptions [22]. However, classi�ers based entirely or primarily on pixel-level spectral data are less

relevant to local ecosystem images which are typically acquired with consumer-grade RGB cameras.

In recent times, CNNs (or ConvNets) and related deep neural networks (DNNs) have revolutionized

computer vision, especially with regard to image segmentation, feature extraction and classi�cation, and

object detection and recognition [27], [29]. The superior performance of CNN- and related DNN-based

approaches has led to their rapid adoption in ecological research [9], [52]. Brodrick et al. [9] argue that

CNNs may become essential tools for ecologists due to their power, generality, and relative ease of use.

CNNs have shown notable success in detection of animals, such as hummingbirds [53] and shorebirds [8].

In several remote sensing applications, CNNs have led to dramatically improved methods for speci�c

tasks such as to automatically identify and inventory termite mounds [9] and various species of trees [2],

[54].

In addition to very speci�c tasks, progress has also been made on using CNNs to provide a broad-scale

overview of community composition. Williams et al. [56] have employed CNNs to assess the abundance

of major taxa and substrates on coral reefs, achieving classi�cation accuracies similar to those attained by

human annotators. In contrast to traditional approaches to ecosystem image analysis [5], [6] that employ

complex feature extraction and classi�cation algorithms requiring extensive knowledge of computer vision

and machine learning, a typical CNN-based computational pipeline provides an integrated image analysis

framework by leveraging existing, pre-trained CNNs wherein the feature extractors and classi�ers have

been automatically learned from training data. Their user-friendliness, superior performance, and the

fact that they require minimal background in computer vision and machine learning suggest that CNNs

will be widely adopted to accelerate ecological research in the near future.

2.3.2 Convolutional Neural Networks (CNNs)

CNNs have become a standard tool for several machine vision tasks such as image classi�cation, semantic

image segmentation and automated image captioning. The various CNN architectures described in the

research literature di�er from each other based on their topological properties across multiple dimen-
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sions such as, the type of convolution operation performed, network depth, spatial dimensions of the

network layers, and the width and design of multiple network pathways [25]. The three-layer ConvNet

with backpropagation-based weight learning proposed by LeCun et al. [30] for automated recognition of

hand-written zip codes represents one of the early successful applications of the CNN architecture to an

important real-world problem.

Inception CNN The InceptionCNN employs the principles of variability and modularity to deal with

increasing model size and computational costs associated with scaling up of CNNs to address real-world

computer vision problems [46]. A key feature of the InceptionCNN is the introduction of inception layers

comprising of multiple-size convolutional �lter kernels. Earlier versions of the Inception CNN used small-

size convolutional �lters arguing their computational e�ciency. Subsequent versions of the Inception

CNN create a much deeper network by combining blocks of varying �lter sizes using split, transform

and merge strategies [46]. These strategies ensure a multi-path �ow of information with varying �lter

sizes allowing for e�ective design of deeper CNNs. The varying �lter sizes capture spatial information at

multiple scale which is subsequently combined within a single block using 1× 1 convolutional �lters [32].

Additionally, the Inception CNN uses an auxiliary classi�er to deal with the problem of degradation of

input between successive network layers [45].

Residual Learning CNN Construction of deeper CNNs cause degradation of the input between

successive network layers leading to the vanishing gradient problem that severely limits backpropagation

learning [45]. Residual learning CNNs, termed ResNets, mitigate this problem by introducing skip con-

nections between CNN layers [21]; an idea that represents a paradigm shift in CNN architecture design.

Various versions of theResNet have been shown to yield highly competitive performance across a variety of

datasets [47]. ResNets do not alter the topology of the network connections, rather they simply combine

the outputs of alternating layers making it possible to stack as many as 200 layers without over�tting or

having to deal with the vanishing gradient problem.
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Densely Connected CNN (DenseNet) Densely Connected CNNs, termed DenseNets [23], unlike

ResNets, concatenate the output of every layer with the outputs of all previous layers in a given block.

DenseNetshave compelling advantages in that they alleviate the vanishing gradient problem and strengthen

feature propagation. Although the number of direct connections increases quadratically in the number

of layers, DenseNets reduce the number of parameters substantially by encouraging feature reuse while

simultaneously addressing the problem of input degradation between successive layers.

Dual Path Network (DPN) The dual path network (DPN) uni�es the ResNet and DenseNet archi-

tectures to generate a higher-order recurrent neural network (HORNN) [12]. The HORNN architecture

introduces recurrent connections between non-neighboring units based on an order hyper-parameter [43].

Since ResNets [21] allow for e�cient feature reuse whereas DenseNets [23] are particularly e�ective at fea-

ture discovery, a multi-path network comprising of bothDenseNets andResNets allows one to achieve the

best of both worlds.

ResNext and PyramidNetworks TheResNext [57] is a simple, highly modularized network architec-

ture that is constructed by repeating a building block that aggregates a set of transformations with the same

topology. In a sense, the ResNext combines the best of the Inception [46] and ResNext [21] architectures.

The ResNext creates blocks with multiple pathways using group convolutions [27] which are later com-

bined using 1×1 convolutional �lters [32]. The pyramidal networkPyramidNet [18] is an enchancement

of the ResNet wherein the dimensions of the feature map are increased gradually following an arithmetic

progression (additive PyramidNet) or geometric progression (multiplicative PyramidNet). The Pyra-

midNet is shown to perform better than the ResNet on image classi�cation tasks since it circumvents loss

of useful information [18].

Semantic Segmentation The aforementioned CNNs are used primarily for image classi�cation tasks

where an entire image is classi�ed as belonging to a certain category. However, for more �ne-grained

analysis, one needs to perform semantic segmentation of the image where each image pixel is classi�ed as
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belonging to a certain category. In this paper, we employ the DeepLab-V3 architecture which leverages

atrous convolution and atrous pyramid spatial pooling to generate pixel-wise labels for semantic image

segmentation [11]. Atrous convolution is a special type of convolution which acts over a dilated sub-grid

of the input [11].

2.3.3 Attention Mechanisms

When training a CNN model, it is imperative that the model be able to focus on important portions of

the image while discarding the irrelevant portions in order to speed up the training process. One way of

accomplishing this is via incorporation of attention mechanisms within the training procedure. In this

work, we employed the residual attention network (RAN) architecture, which creates stacks of trunk and

mask branches where the mask branches perform downsampling (i.e., convolution) and upsampling (i.e.,

deconvolution) to create attention masks [50]. In contrast, the trunk branch performs only convolution.

Upsampling e�ectively recreates the image dimensions after convolution has reduced them. The RAN

stacks are trained in an end-to-end fashion.

2.4 Datasets

Overhead images of a roughly rectangular section of a salt marsh on Sapelo Island, Georgia, USA were

collected in June 2014 using a consumer grade DSLR camera (Nikon D7100) with a wide-angle lens (24

mm). The camera was attached ≈1.5 m above the ground to a wheeled platform that was pulled across the

marsh while high-resolution images (4000 × 6000 pixels) were continuously acquired at a rate of 1 Hz (1

frame/sec). After the camera had traversed ≈ 20–40 m the mobile platform was stopped, and the images

acquired over that distance were deemed to comprise a row. The imaging platform was then moved ≈ 1 m

perpendicular to the previous row and pulled again across the marsh to image an adjacent row. A section

of marsh covering 80 rows was imaged in this manner moving from higher marsh elevation (with a low

row number) to lower marsh elevations (with high row numbers).
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Six plant species are commonly found in salt marshes on Sapelo Island and all six were present in the

images: Spartina alterifora, Juncus roemerianus, Batis maritima, Sarcocornia spp., Borrichia frutescens,

and Limonium carolineanum, all of which are subsequently identi�ed by their genus (Fig. 2.1). The only

plant species found at low marsh elevations is Spartina, but all species are found at high marsh elevations

with Spartina gradually disappearing from the assemblage at the highest elevations giving way to a diverse

mix of the remaining species. Spartina is a medium to tall grass (height: 0.3–2 m) with wide blades that

emerge from a thick stem. The blades appear dark green to light green depending on the time of the day

and dead blades attached to the stems are not uncommon. Juncus is a tall rush (height≈ 1 m) with smooth

cylindrical leaves that are gray-green in color. Sarcocornia is a low growing succulent plant with branching

stems that lack leaves. Most of the stems are green but shade into red. Batis is a dense, succulent shrub

with alternate, green to yellow leaves growing to≈ 0.3 m tall in the imaged section of the marsh. Borrichia

is a shrub with characteristic, grey-green oval leaves and bright yellow �owers at the end of each branch

throughout most of the summer. We created three separate data sets for training, validation, and testing

for each of the tasks, i.e., presence/absence determination, percent cover computation and semantic image

segmentation as shown in Fig. 2.2.

2.4.1 Presence/Absence Determination

In the presence/absence determination task, the input images were divided into 15 sections (3 rows × 5

columns) as shown in Fig. 2.2. An expert human annotator then performed multi-label classi�cation, i.e.,

delineation of all the plants in each image section for randomly selected images from the Sapelo Island

marsh image data set. The multi-label classi�cation dealt with seven classes, the six aforementioned plant

classes and one background class. The most dominant class encountered in the presence/absence task was

Spartina which was present in more than half of the image sections. In contrast, Batis and Sarcocornia

were present in ≈ 17% of the image sections whereas Limonium, Batis and Juncus were observed to be rare

classes, each accounting for ≈ 4% of the image sections.
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2.4.2 Percent Cover Computation

Percent cover, the fraction of space occupied by a particular plant species when viewed from overhead,

provides a more re�ned abundance metric than presence/absence. In the percent cover computation

task, 25–50 points were randomly selected in an image. An image patch (512 × 512 pixels) surrounding

each point was presented to an expert human annotator who performed single-label classi�cation of the

patch, i.e., labeled the patch based on the class present at the selected point (Fig. 2.2). There were 9 classes

under consideration for this task: the aforementioned six plant classes, Soil, Other, and Unknown. The

class Other was used to indicate an identi�able entity that did not belong to one of the six plant classes or

Soil, such as invertebrates (crabs, snails, etc.) or portions of the imaging platform captured by the camera.

The Unknown class denotes a situation where the class underlying the selected point was not identi�able,

which typically occurred when the image section was out of focus or heavily shadowed. The dominant

classes encountered in this task were Spartina, Batis and Sarcocornia which collectively accounted for ≈

85% cover in approximately equal proportion. Borrichia and Juncus were deemed rare classes, each with

≈ 6% cover and Limonium the rarest class with ≈ 3% cover.

2.4.3 Semantic Image Segmentation

The goal of semantic image segmentation is to classify each pixel in an image into one of predetermined

categories. To generate training data for the semantic image segmentation task, we used a superpixel label-

ing tool described in [26]. Each pixel was classi�ed into one of nine classes, which were slightly di�erent

than those used for percent cover cpmputation: the aforementioned six plant classes, dead Spartina (due

to its common occurrence and substantially di�erent appearance compared to live Spartina), background

(which accounts for the classes Soil and Unknown in percent cover computation), and Other (which ac-

counts for invertebrates, and portions of imaging platform captured by the camera).
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Figure 2.2: Image analysis tasks from left to right and top to bottom: percent cover computation, pres-
ence/absence determination, semantic image segmentation and the corresponding segmentation masks.
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2.5 Experimental Results

2.5.1 Performance Evaluation Metrics

Precision, recall and f-1 scores were used as evaluation metrics to compare the various deep learning models

both in terms of overall performance and performance on speci�c classes. For overall performance assess-

ment, both micro- and macro-averaged metrics were computed. Macro-averaged metrics were computed

by �rst computing the precision, recall and f-1 score metrics for each individual class and then averaging

these metrics across all classes. In contrast, micro-averaged metrics were computed by summing the true

positives, false positives, false negatives, and true negatives across the entire data set regardless of class and

then computing precision, recall, and f-1 score metrics. In the case of single-label classi�cation (as is done

in percent cover computation and semantic image segmentation) micro-averaged precision, recall, and f-1

score metrics are equal to overall accuracy.

2.5.2 Evaluation of Presence/Absence Computation

Approximately 24,000 salt marsh image sections (from 1600 images) were manually labeled for pres-

ence/absence of the six plant species. Images in the manually annotated data set were split into training

(60%), testing (20%) and validation (20%) datasets. CNNs were trained for multi-label classi�cation on

the training data set using the Adam optimizer and binary cross entropy loss function. We initialized the

model weights with values pre-trained on ImageNet [14] for all models and trained the weights until the

loss value stopped declining on the validation data set.

After an initial examination of the performance of a trial model (ResNet) on the task, we found

the classi�er performed reasonably well on most classes, but had trouble identifying Juncus and falsely

predicted the presence of Sarcocornia (and occasionally Batis) in low-elevation marsh regions where only

Spartina was present. Juncus was rare and an examination of the classi�er showed that Juncus was being

misclassi�ed as the more common Spartina grass. In an attempt to overcome this issue, additional images
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containing Juncus were identi�ed and manually labeled to increase the representation of Juncus in the

training data set. To address the false positives associated with Sarcocornia in the low-elevation marsh

regions, additional low-elevation marsh images containing only Spartina were manually classi�ed and

added to the data sets. The addition of targeted training data helped improve the performance of the trial

model (ResNet) and we proceeded to evaluate the performance of the remainder of the CNN architectures

under consideration.

The seven CNN architectures that we assessed were generally observed to yield similar performance

with micro-averaged precision, recall, and f-1 scores, all exceeding 0.9 (Table 2.1). The macro-averaged

metrics were somewhat lower due to poorer performance on the rarer plant species (Table 2.2). The

relative performance of individual models was generally consistent across micro- and macro-averaged

metrics with ResNext yielding the best precision and f-1 score values and DPN the highest recall values.

Unlike the other CNN architectures, DPN andResNext both use a multi-path strategy which potentially

helps to generate complex feature combinations.

The performance of the CNN architectures on individual classes was observed to vary signi�cantly

based on the relative abundance of the plant species in the data set (Figs. 2.3 and 2.4). Spartina, the most

abundant species, was classi�ed extremely accurately with precision and recall values exceeding 0.95. The

recall value for Sarcocorniawas also exceedingly high (> 0.95) but the precision was notably lower at≈ 0.9

due to the presence of false positives in the low-elevation marsh regions despite attempts at improvement.

Although Sarcocornia is commonly present in most image sections, it is often not very abundant with only

a few stems present in a given image section, which potentially contributes to the di�culty in achieving

high precision values for this class. The quality of predictions for the remaining classes (Batis, Borrichia,

Limonium, and Juncus) was generally observed to follow their occurrence frequency in the manually

annotated data sets. While the performance of di�erent CNN architectures at the class level was generally

similar, both the DPN and ResNext exhibited uniquely high individual precision and recall values for

multiple plant categories (Figs. 2.3 and 2.4). The recall values for DPN for Limonium and Juncus were at

least 5% higher than those of all other CNN models. The precision value for Limonium was the highest
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in the case of the ResNext, showing an 8% di�erence from the next best CNN architecture. The RAN

performed the worst overall in terms of the f-1 score. However, theRAN was observed to yield a precision

value that almost matched that of the ResNext. The attention mechanism used in the RAN did not seem

to hold any advantages for this data set and task.

Table 2.1: Presence/absence micro-averaged results

CNN type Micro precision Micro recall Micro f-1 score
ResNet101 0.918 0.932 0.925

DenseNet121 0.912 0.930 0.921
DPN92 0.906 0.938 0.922

ResNext101 0.928 0.931 0.930
Inception 0.910 0.923 0.916

RAN 0.924 0.889 0.906
PyramidNet101 0.911 0.923 0.917

Table 2.2: Presence/absence macro-averaged results

CNN type Macro precision Macro recall Macro f-1 score
ResNet101 0.844 0.872 0.858

DenseNet121 0.838 0.868 0.853
DPN92 0.827 0.884 0.855

ResNext101 0.861 0.867 0.864
Inception 0.834 0.845 0.839

RAN 0.848 0.761 0.802
PyramidNet101 0.820 0.840 0.830

2.5.3 Evaluation of Percent Cover Computation

To assess the ability of CNNs to automate percent cover computation, approximately 15,000 points were

manually labeled in ≈ 500 images randomly sampled from the salt marsh image data set. The manually

annotated data set was split, at the level of an individual image, into training (60%), validation (20%),

and test (20%) data sets. The CNN models were trained in a manner similar to that described for the

presence/absence computation task except that a multi-class cross entropy loss function was used. Table 2.3
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Figure 2.3: Precision values for individual classes in presence/absence computation for (a) ResNext, (b)
Dual Path Network, and (c) ResNet
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Figure 2.4: Recall values for individual classes in presence/absence computation for (a) ResNext, (b) Dual
Path Network, and (c) ResNet
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reports the results of the same seven CNN architectures used in presence/absence computation, for the

percent cover computation task. Since percent cover is a multi-class, single-label classi�cation problem,

the micro-averaged precision and recall values are equal and denoted by the term accuracy. The values

of the macro-averaged precision, recall, and f-1 scores were observed to be ≈ 0.10 lower for percent cover

computation compared to presence/absence computation for each of the seven CNN architectures.

A signi�cant challenge for the percent cover computation is the �ne-grained interleaving of classes

in salt marsh images. Image patches extracted for percent cover computation often contain multiple

plant species and the classi�er must learn to classify the plant observed in the center of the image patch.

Recognizing this issue, we tested an attention-based CNN, i.e., theRAN, hypothesizing thatRAN would

learn to focus attention on the center of the image patch for the purpose of classi�cation while using the

outer regions of the patch for context. However, the performance of the RAN was generally observed

to be inferior to that of the other CNN architectures. The initial patch size used (512 × 512 pixels) was

relatively large so we attempted to reduce the size of the patch to 256 × 256 pixels to limit the number

of classes present in image patches. However, the performance of all the CNN architectures, in terms of

recall, dropped precipitously by ≈ 0.20 on the smaller patches across all classes. This was likely because

the smaller patches did not provide su�cient context that was critical for accurate classi�cation, such as

overall leaf shape, instead, forcing the classi�er to rely on small-scale texture and color features. As shown

in Table 2.3, theResNext was observed to achieve the highest overall accuracy and f-1 score closely followed

by the PyramidNet and DPN. The confusion matrix in Fig. 2.5 shows that even the best performing

ResNext CNN had particular di�culty recognizing lower abundance classes such as Juncus, Limnonium,

and, in some cases, Borrichia.

2.5.4 Evaluation of Semantic Image Segmentation

Semantic image segmentation is not commonly employed in ecological research due to the labour in-

tensive nature of labelling entire images at the pixel level. However, automated semantic segmentation

o�ers potentially unprecedented spatial resolution in the �eld of ecology allowing novel insights into

spatial relationships amongst organisms as well as computation of a more accurate abundance metric. We
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Table 2.3: Results of percent cover computation

CNN type precision recall f-1 score Accuracy
ResNet101 0.742 0.700 0.720 0.833

DenseNet121 0.717 0.668 0.692 0.846
DPN92 0.743 0.732 0.737 0.843

ResNext101 0.767 0.736 0.751 0.857
Inception 0.738 0.672 0.703 0.833

RAN 0.713 0.618 0.662 0.851
PyramidNet101 0.751 0.743 0.748 0.844

Figure 2.5: Confusion matrix for percent cover computation for ResNext

24



manually labeled ≈ 200 salt marsh image sections for semantic image segmentation using a super-pixel

segmentation and labeling tool developed in [26]. The manually labeled data set was split into training

(60%), validation (20%), and testing (20%) sets. The DeepLab-V3 CNN [11] was trained on the training

dataset for 100 epochs, while retaining the model that performed best on the validation set.

The training of the DeepLab-V3 CNN employed a stochastic gradient descent optimizer with a learn-

ing schedule for weight decay. The best mean Intersection-over-Union (mIoU ) measure was achieved with

the ResNet backbone of Deeplab-V3 which was more than twice of that achieved using the Inception back-

bone. ThemIoU measure achieved using theResNet backbone on the test data set was 0.54 with an overall

pixel accuracy of 85%, and macro-averaged precision and macro-averaged recall scores of 0.570 and 0.607

respectively. For abundant classes such as Spartina, Sarcocornia andBatis, the semantic segmentation was

highly accurate as illustrated in Fig. 2.6 and re�ected in the high overall pixel-level accuracy (Table 2.4).

However, the less abundant classes were either poorly predicted (Borrichia) or neglected entirely (Limo-

nium and Juncus), which negatively impacted the macro precision and macro recall metrics. The current

performance of the semantic segmentation approach is su�ciently accurate that it could be applied in

ecological research to estimate the abundance and spatial distribution of abundant classes, but it clearly

needs to be further improved before it can be used to study the rarer taxa. Additional training data on these

less abundant classes is likely the best way to improve the performance of semantic image segmentation.

2.5.5 Comparison of Approaches

Three distinct tasks, i.e., presence/absence computation, percent cover computation, and semantic image

segmentation, were evaluated as alternative approaches to assess the abundance and distribution of plants

in salt marsh images. There are multiple potential scienti�c applications for these distinct approaches and

our intent was not necessarily to determine the best approach but rather to explore the performance of

these approaches and identify the underlying trade-o�s. When the best performing CNN architecture

was employed, all of the approaches performed reasonably well at classifying the abundant classes, i.e.,

Spartina and Sarcocornia, with > 85% precision and recall. The performance was observed to decline
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Figure 2.6: Semantic segmentation results for DeepLab-V3, showing from right to left : original image,
output mask and target mask

for less abundant classes. The decline was more dramatic in the case of percent cover computation and

semantic image segmentation. For example, semantic image segmentation was observed to completely

ignore the Limonium and Juncus classes whereas presence/absence computation attained relatively high

values of precision and recall for both classes compared to the other approaches. On many ecological

tasks inter-agreement between human annotators is 70-90% indicating that in many cases our automated

classi�ers are likely to be as accurate as humans [6].

In essence, there was a clear trade-o� observed between the performance (in terms of precision and re-

call) and spatial resolution of estimation with higher-resolution approaches exhibiting lower performance.

Table 2.4 illustrates this trade-o� showing that accuracy (i.e., micro-averaged f-1 score) and the f-1 score

(macro-averaged f-1 score) decrease from the presence/absence computation task to the semantic image

segmentation task whereas the estimation resolution (i.e., estimations per pixel) increases. One caveat of

these comparisons is that di�erent data sets were used for each approach. We put roughly the same e�ort

in terms of human annotation hours into producing each manually annotated data set. Consequently,

the comparison in Table 2.4 represents trade-o�s for a similar amount of training data. It is expected that

the performance of any of the approaches could be increased, to some extent, with additional training data.

However, the di�culty of accurately detecting salt marsh plants at high resolution might require machine
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learning approaches capable of representing concepts such as ambient lighting, object boundaries and

object shapes.

Table 2.4: Comparison of results from di�erent approaches

Approach Model Accuracy f-1 score Resolution
Presence/Absence ResNext 0.929 0.853 e-7

Percent Cover ResNext 0.857 0.770 e-3
Segmentation DeepLab 0.849 0.587 1

2.5.6 Application example: Plant distribution across an elevation gradient

As a demonstration of the potential use of these methods, we employed the ResNet101 classi�er designed

for presence/absence computation for all the images from the Sapelo Island marsh data set. The images

were split into 15 sections (3 rows× 5 columns), as is done in the training procedure. The presence/absence

classi�er was used to determine which plant species were present in each image section. The total number

of image sections (ranging from 0 to 15) in which a plant was present in each image was used as a semi-

quantitative metric of plant abundance. This semi-quantitative index was averaged over all images for a

given row to produce an estimate of plant abundance as a function of the row number, and plotted for

all 80 rows as shown in Fig. 2.7. The results show a diverse plant community in the high-elevation marsh

regions (row numbers< 25) transitioning to Spartina dominance in the low-elevation marsh regions (row

numbers> 35) which is consistent with the expected distribution. Some spurious Sarcocornia predictions

were observed in the low-elevation marsh regions (row numbers > 35) and e�orts are currently underway

to provide additional training data in this section to improve the quality of estimations. Nonetheless,

this example illustrates the presence/absence computation method’s potential to rapidly assess plant com-

munity structure across environmental (i.e., elevation) gradients in a salt marsh. Future work aims to

apply these tools to assess changes in plant community structure over time at this Sapelo Island site and

to extend the spatial scale of the sampling to additional sites.
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Figure 2.7: Row-wise distribution of plants across an elevation gradient
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2.6 Future Work

In future work, we plan to introduce cross-talk between percent cover computation, presence/absence

computation and semantic image segmentation. Rather than comparing these approaches based on results

on their individual test data sets, we plan to devise a common testing data set to ascertain the relative

performance of these approaches on producing a spatial plant class distribution. Since our plant classes

are interweaved and require deep understanding of many high-order concepts, we argue that the best

CNN models for our approach must possess generality. We also hypothesize that the best way to create

neural networks capable of generality is through dynamic modularity [4]. Our proposed data set will

provide a test for novel image analysis approaches that incorporate dynamic modularity. We propose to

address these issues in our future work.
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Chapter 3

Compositional Sparse Networks

for Semantic Segmentation on

Salt Marsh Images1

1Jayant Parashar*, Suchendra Bhandarkar,Brian Hopkinson, Steven Pennings. 2020. To be submitted to the International
Conference on Pattern Recognition.

30



3.1 Abstract

In this chapter, we seek inspiration from the �elds of neuroscience and continual learning to create net-

works that can compose meaningful features. We identify three critical principles lacking in modern neural

networks that should be part of general-purpose networks: (a) interconnection richness, (b) sparsity, and

(c) dynamic expansion. These principles form the basis of a general-purpose network architecture which

we term as a Compositional Sparse Network (CSN). Since we dynamically expand the network and use

learned weights from lower levels to train higher levels in the CSN, the CSN design process can be viewed

as a pseudo Neural Architecture Search (NAS) procedure. The CSN is �rst tested on the CIFAR-10

image data set, and subsequently on the salt marsh image data set where the CSN is used as a backbone

for the DeepLab-V3 architecture. We compare the performance of the CSN with a NAS-based approach

called Auto-DeepLab which serves as a backbone for the DeepLab-V3 architecture. The proposed CSN

approach is observed to perform worse than the NAS-based approach because the higher-level CSNs are

seen to not �t the data distribution.

Keywords: convolutional neural networks, network topology, deep learning, semantic segmentation,

compositional sparse networks, neural architecture search.

3.2 Introduction

In deep learning, we observe that the search strategies for the optimal network architecture are typically

di�erentiated based on the underlying problem formulation. We believe that such di�erentiation helps us

create general-purpose models only if we can �nd a way to segregate features based on their underlying neu-

ronal structures. Since neural networks are a black box, the problem-speci�c architecture search process is

merely tantamount to solving a set of speci�c problems. A manual search of neural network architectures

for di�erent problems does not contribute to e�cient out-of-distribution (O.O.D) generalization and

general intelligence. We should aim to �nd deep learning architectures that, except for a few input and

output layers, share the same structure. Neural architecture search (NAS) [33] is an e�cient architecture
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search procedure used to determine an optimal neural architecture. Although NAS-based approaches are

e�cient in terms of the search procedure, they are usually limited to determining which stacking order of

convolution �lters is optimal. NAS-based approaches usually focus their search on the discovery of minor

CNN enhancements that would potentially lead to an optimal architecture.

The architecture of a typical CNN follows a rigid three-level hierarchy comprising of: (a) CNN chan-

nels, (b) blocks, and (c) network architecture. Acting within the bounds of this hierarchy, the NAS

procedure typically results in only incremental improvement in classi�cation accuracy. We propose an

alternative approach that tackles the above limitations. First, we recommend that deep learning research

focus on the inter-connectivity of individual neurons, and how features are learned and composed [10].

Only based on this knowledge, can we then con�dently construct general-purpose architectures that are

capable of generalization on a wide array of problems. Based on a hypothesis of how neural networks

generalize using interconnection richness, we propose a new paradigm for training neural networks. This

paradigm is one of pseudo neural architecture search (NAS) that essentially constructs more complex

neural architectures from simpler ones. The guiding vision behind this paradigm is to leverage rich in-

terconnections within shallow sub-networks. Many intuitive ideas underlying CNN architecture design

have followed this simple paradigm of feature composition such as gradual down-sampling of the image,

dilated convolution [11], and residual network design [21]. Recent work in demystifying the reasons for

the success of residual network has pointed towards their capacity to behave like ensembles of relatively

shallow networks [49].

We believe that the proposed pseudo NAS process, termed as Compositional Sparse Network (CSN)

design should be performed on carefully chosen base networks such as graph neural networks (GNNs) [59]

or fully connected dense neural networks (FCNNs). However, in our work, we choose a 3× 3 kernel, the

most basic CNN unit, as our base network. The primary motivation behind choosing such a minimalist

base networks is to construct a modular architecture capable of composing features on its own, without

the external help of image down-sampling or dilated convolution. Moreover, the current trend towards

general-purpose network design is not motivated by the need to tackle real-world data sets, but by novel
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problem formulations such as meta-learning, few-shot learning, and continual learning[13]. These novel

problem formulations usually exploit toy data sets and/or toy networks of small size. They have not been

tested on larger real-world data sets and have been seen to not generalize well in many cases. This begs the

question; why do we not implement our theories of general-purpose architecture design on common real-

world problems such as semantic image segmentation? Since intuitively, we can expect a general-purpose

network to signi�cantly outperform a CNN that is custom designed for a speci�c problem, why do we

not combine our hypotheses for out-of-distribution (O.O.D) generalization [28] arising from problem

solving strategies such as meta-learning, few-shot learning, and continual learning and apply them to

speci�c real-world problems such as semantic image segmentation to test their e�cacy [4], [31]? With this

in mind, we have formulated the concept of the CSN.

Deriving inspiration from the �elds of Neuroscience [40] and Continual Learning [31], a CSN-based

approach performs a pseudo NAS procedure that integrates our understanding of three basic principles

required for incorporating general intelligence in neural networks: (a) interconnection richness hypothesis,

(b) dynamic expansion and (c) sparsity. The interconnection richness hypothesis is based on the idea

that the interconnections between local sub-networks and the corresponding interconnections between

neurons in local sub-networks are critical to the performance of a neural architecture. The implementation

of interconnection richness within a CSN framework is inspired by the structure of neocortex in the

human brain [40]. In the CSN framework, to create a hierarchy of sub-networks, we facilitate dynamic

expansion of repeating units. This idea is based on the intuition that a network must be able to increase

its size based on the complexity of the problem. Traditional optimization-based dynamic expansion is

short-sighted and leads to a cuto� depth that is much lower than the optimal depth required for a speci�c

problem. Therefore, we propose and formulate a manual external dynamic expansion procedure coupled

with network pruning to �nd general solutions [3]. While expanding a network dynamically, we should

also be able to decrease its complexity to determine the most essential features to be composed, which

is achieved via network pruning. Network pruning has been found to enhance the performance of a

network despite deleting 60%-90% of its constituent neurons [16].
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3.3 Background

Our main goal in this work is to create a general purpose training algorithm and network that is capable

of O.O.D generalization [28] when applied to the salt marsh image data set [37]. The main idea behind

O.O.D generalization is to learn stable features instead of spurious ones where stable features are deemed

to be meaningful features with less variance in the training distribution compared to the spurious ones.

The proposed CSN framework is intended as an alternative to the more common NAS framework in the

context of semantic image segmentation. First, we expand on the three basic principles that CSNs are based

on, and then describe recent developments in NAS techniques in the context of semantic segmentation,

especially Auto-DeepLab [33].

3.3.1 Interconnection Richness Hypothesis

The overall structure of the neocortex in the human brain has been well known for several years [40].

In the neocortex, 80-110 neurons are arranged to form a cortical minicolumn with 50-100 cortical mini-

columns forming a hypercolumn. Similarly, these hypercolumns collectively form uniform structures of

cortical layers that culminate in speci�c cortices, resulting in a hierarchical organization of the neocortex.

The interconnections between the cortical layers also exhibit a similar hierarchical structure. It is well

known that the neocortex exhibits rich inter-connectivity across all levels of its structural hierarchy. We

derive inspiration from the topology of the neocortex and argue that we can enhance the performance of

arti�cial neural networks by ensuring interconnection richness. Recent research in combining ideas from

Machine Intelligence and Neuroscience has shown that multiple models of the same concept or object are

formed at a particular position in the cortical hierarchy [20]. This shows that biological neural networks

probably have functional hierarchy, where at a particular point in hierarchy, the neocortex behaves as an

ensemble of its smaller constituent units. We hypothesize that this structure could be highly conducive to

feature composition and generality. Seeking inspiration from Neuroscience is not a new trend in Machine

Learning and it is critical to the e�ort to design general-purpose neural networks [19].
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But why is interconnection richness important? Input degradation and intermediate feature degra-

dation, limit the capacity for learning general compositional features within a neural architecture. The

degradation problem is a primary reason for limiting the number of layers within a deep network. Residual

networks have partly solved the degradation problem and are considered a paradigm shift in CNN de-

sign [21]. But how exactly did they solve the degradation problem? Recent research indicates that residual

networks unfold deep networks as an ensemble of relatively shallow networks [49]. The skip connections

could also potentially help in creating multiple mini-modules within a ResNet by attempting to learn the

same high level features as is done in the neocortical grid cells [20]. It is also probable that the features

composed by a network ensemble that try to perform the same task is what produces a stable feature

instead of a spurious one.

However, how does one progress beyond residual learning? How can we preserve the input and

the intermediate- and high-level features so that we can facilitate their composition into general features

through rich interconnections? One modern architecture that has circumvented the degradation prob-

lem and maintained rich interconnections is the transformer architecture [48]. Intuitively speaking,

transformer architectures have managed to avoid the degradation problem by de�ning relatively shal-

low networks that are highly parallel in nature. By ensuring rich interconnections between input and the

intermediate- and high-level features via self-attention, they enable multiple theories of an object or con-

cept using multiple heads of attention. The multiple heads of attention function as an ensemble within

the transformer network. However we do not envisage transformer networks as a long-term solution. A

long-term solution would entail the hard path to �nd a way to merge memory systems with reasoning

systems [55]. Replaying of memories can solve the degradation problem by preserving the input and

the intermediate- and high-level features for an in�nitely deep network. Therefore, the interconnection

richness hypothesis will likely be able to achieve composition of general features if the inputs and the

intermediate- and high-level features are preserved in memory. In the present work, we do not address the

memory component required for composition of features, rather we merely exploit the residuals in our

base network and the repeating network structure.
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In our previous work on comparison of deep learning techniques for analysis of salt marsh image

data, we found that multi-path networks such as the DPN [12] and ResNext [57] performed better than

the ResNet, albeit slightly. Thus, the richness of interconnections across varying levels of the network

hierarchy may yield high-level features that are stable and thus generalize well even beyond the given

training data distribution. Next, we discuss how we may be able to create such features incrementally

through dynamic expansion.

3.3.2 Dynamic Expansion

A great deal of work towards building general purpose networks has been done within the continual

learning and meta-learning problem formulations. The main goal of continual learning is to prevent

catastrophic forgetting. This is achieved by producing general features across separate domains that are

re-usable. A seminal work in continual learning via dynamic expansion is the formulation of theDynamic

Expandable Network (DEN) [31]. The intuition underlying the DEN is to prevent semantic drift by

duplicating and splitting units using relevant measures. Lee et al. [31] show the e�cacy of small DENs that

can expand units and duplicate network structures for small-scale continual learning problems. They show

DENs to be a part of an incremental learning formulation where the classes are added incrementally. The

expansion procedure is external to the network, and is not part of the optimization of the loss function,

as is the case with our CSN formulation. Lee et al. [31] also use group-sparsity regularization, which is

an optimization-based method, to introduce sparsity. Although the DEN formulation of Lee et al. [31]

bears some resemblance to our CSN formulation, it should be noted that unlike Lee et al.[31] we choose

to apply the proposed CSN framework to a larger-scale real-world problem.

There are other ways to expand a neural network, such as by using optimization-based methods. Con-

tinuously Constructive Deep Neural Networks (CCDNNs) [24] employ optimization-based expansion

which either expands the network to introduce a new unit or a new layer based on a control parameter

which is part of the network structure. While training, the size of the network increases rapidly and then
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decreases gradually during inference. Moreover, Irsoy and Alpaydin [24] have not yet generalized their

CCDNN formulation to include CNNs.

The problem with current optimization-based expansion methods is that they do not naturally tend

to result in deeper networks. This is partly because larger networks are harder to train. Moreover, there

is always a local minimum that a smaller or shallower network can �nd which obviates the need for a

larger or deeper network. Non-parametric neural networks [39] is also an emerging approach to dynamic

network expansion using optimization-based methods. However, instead of adding layers gradually, they

can generate a network of any arbitrary size in a single step. The number of network layers is determined by

the network parameters which are regularized to eliminate redundancies. We consider dynamic expansion

to be an essential property for incorporating general intelligence in arti�cial neural network design and

regard cortical reorganization in Neuroscience [15] to be the analogy of dynamic expansion in arti�cial

neural networks.

3.3.3 Sparsity

There are many ways to incorporate sparsity in deep learning models. Sparsity can be introduced using

group-sparsity regularization [42], neuromodular meta-networks [4], attention and pruning. It is a well

known fact that human brain works on sparse representations and some recent research has shown that

sparse representations are more robust to noise and interference and hence should be implemented in

arti�cial neural networks despite the recent success of overparameterized neural networks [1]. In our

proposed CSN framework, we focus on pruning to induce sparsity. In their seminal work in network

pruning, termed as the Lottery Ticket (LT) hypothesis, Frankle and Carbin [16] showed that reinitializing

the network weights to their initial (i.e., prior to pruning) values after the pruning procedure can produce

better performance than the original (i.e., unpruned) dense network. Their LT algorithm [16] essentially

�nds the winning ticket, i.e., the best sub-network within a dense network. The results of the LT algorithm

came as a surprise to the research community and caused a great deal of speculation as to the cause(s) for its
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success. The success of the LT algorithm also spawned research in the area of better initialization methods

based on determining winning tickets across di�erent data sets [36].

Signi�cant recent work by Zhou et al. [58] at UberAI has attempted to answer the important question

of why pruned networks outperform their non-pruned counterparts when reinitialized with their initial

weights before training. They formulate supermasks that give more than chance accuracy when applied to

models and show that signs of the initial weights initialization play a signi�cant role in the performance

of the LT network. Their explanation of why e�ective pruning is so tightly coupled with the choice of

the initial weights is that pruning eliminates weights that were going towards zero anyway in the initial

random initialization. Their results show that overparameterized networks can heavily bene�t from sparse

representations [58].

Our primary interest in the pruning procedure is to extract general features from the network. The

work of Bartoldson et al. [3] presents an interesting generalization versus stability tradeo� during the

network pruning process. The more pruning causes instability in testing accuracy in the immediate term,

the greater the generalization achieved upon convergence. The e�ect of the generalization determined by

the degree of destabilization is similar to one achieved by neuronal dropout. Thus, pruning can either

hasten or destabilize the training procedure to improve generalization accuracy in faster networks [3].

3.3.4 Neural Architecture Search (NAS) on Semantic Segmentation

NAS architectures typically have a two-level hierarchy comprising of the cellular level and the network level;

however, most NAS architectures perform search solely on the cellular level. The Auto-DeepLab [33]

architecture improves the NAS procedure by searching through both, the cellular and network levels.

Auto-DeepLab is also the �rst attempt to extend the NAS approach to the semantic image segmentation

problem. Auto-DeepLab traverses the entire search space of neural architectures using a continuous

relaxation technique and is optimized via an appropriate choice of meta-parameter values. The best

searched neural architecture is then deciphered after measuring the dense cellular-level meta-parameters
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and network-level meta-parameters. The best searched architecture is then used as a backbone for the

DeepLab-V3 architecture [11].

3.4 Data Sets

3.4.1 Semantic Image Segmentation on the Salt Marsh Data Set

We have≈ 500 labeled images in the salt marsh image data set. We use 350 images for training, 50 images for

validation and 100 images for testing. The goal of semantic image segmentation is to classify each pixel in

an image into one of predetermined categories or classes. To generate training data for the semantic image

segmentation task, we used a superpixel labeling tool described in [26]. Each image pixel is classi�ed into

one of nine classes, which are slightly di�erent from those used for percent cover computation. The nine

classes include the previously mentioned six plant classes, dead Spartina (due to its common occurrence

and substantially di�erent appearance compared to live Spartina), background (which accounts for the

classes Soil and Unknown in percent cover computation), and Other (which accounts for invertebrates,

and portions of imaging platform captured by the camera).

3.4.2 The CIFAR-10 Data Set

CIFAR-10 is a general image classi�cation data set comprising of ≈ 60,000 images with ≈ 40,000 images

used for training and≈ 10,000 images each for validation and testing. The ten di�erent classes are airplane,

car, bird, cat, deer, dog, frog, horse, ship, and truck where each class has ≈ 6,000 images. The size of each

image is 32× 32 pixels which makes testing new architectural models easier. We used the CIFAR-10 data

set to search the best hyper-parameters for the proposed CSN such as e�cacy of pruning, network depth,

network width, number of exponential expansion levels etc.
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3.5 CSN Design Methodology

The design of a Compositional Sparse Network (CSN) is based on the uni�cation of three principles:

interconnection richness, dynamic expansion and sparsity. The CSN design starts with a base network,

copies of which are combined using a cerebral cortex-like design in a cerebral module and inter-connected

using an interconnectionmodule. The cerebral module is a generic design that can work on a base network

and itself. It represents a recursive structure which interconnects prede�ned modules with a prede�ned

interconnection class. It is inspired by the structure of the neocortex in the human brain [40].

The proposed CSN design methodology can compose increasingly complex networks by stacking its

lower-level network structure across a given depth and width. These modules are then pruned, result-

ing in a minimal set of performing units which are then repeated to generate higher levels in the CSN

architecture. The CSN design methodology thus comprises of multiple cycles of training, pruning and

expansion procedures, resulting in a pseudo NAS process that �nds then best neural network structure

through dynamic expansion, pruning and interconnection richness. We have implemented two expansion

procedures, i.e., exponential expansion and linear expansion which di�er in the manner in which the pa-

rameters of the base network scale with increasing CSN levels. Note that the concept of linear expansion

derives inspiration from the cortical reorganization phenomenon in the human brain [15].

3.5.1 Base Network for CSN Design

For the base network in the CSN, we use three convolution layers of size 3× 3 with 64 channels. We have

one residual connection in the base network and one residual connection in each cerebral module. We

experimented with multiple designs inspired by the early-age CNN architectures.

3.5.2 Interconnection Richness Hypothesis

The interconnection richness hypothesis is based on a premise that the general stable features extracted in a

network are dependent on the interconnection distribution across the network architecture in the context
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of the provided input signals. Therefore, we hypothesize that the best way to build neural networks capable

of O.O.D generalization [28] is to leverage the hierarchical interconnections between the various levels of

sub-networks within the neural architecture. This may lead to compositional features by creating locally

deeply connected sub-networks at multiple hierarchical levels of the neural architecture. Moreover, these

features learned by small networks of similar shape and size would function as several brains in tandem

thereby producing generality [20]. Note that even the success of residual learning can be explained by the

unfolding of their depth into an ensemble of smaller-size networks [49].

We take an idealistic approach to designing architectures for neural networks by letting the architecture

compose features on its own, guided by its design. We do not down-sample the input or use dilated

convolution, rather we seek to compose features using only 1× 1 convolutions and the cerebral cortex-

like design. It is important to note that width of the proposed CSN architectures is designed to be orders

of magnitude higher than that of typical CNNs since the cerebral module is designed to symmetrically

expand across depth and width of the neural architecture.

The biggest obstacle to feature composition within a deep neural network, in our opinion, is mem-

ory [55]. Free �ow of information in a neural network leads to a rapid �tting phase and potentially respon-

sible for high-level feature composition [41]. The manner in which low-level features are combined to

produce high-level features depends largely on how easy it is for information to �ow within the network.

The biggest impediment to such feature composition is the degradation of the input and the features over

the depth of the network. The multiple levels of hierarchy of sub-networks are characterized by varying

levels of interconnections that could potentially contribute towards the composition of features. Since

the incorporation of pooling, strides, convolutional �lters and dilated convolution increase the neural

receptive �elds and thus promote richer interconnections, the success of architectures that leverage them

is no surprise. We maintain the same input image size across a majority of the CSN design to promote a

neural network that can combine features on its own without having to resort to stride- and pooling-based

feature combinations. The proposed CSN design is based on an intuition about the �ow of information

in neural networks. It aims to train many small network sub-modules to get them to �nd independent
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features in a manner similar to manual feature construction based solely on network topology. In this

regard, the proposed CSN approach bears some similarity to the NEAT system proposed by Stanley and

Miikkulainen [44].

3.5.3 Cerebral Module and Interconnection Module

The cerebral module stacks multiple children networks, for example the base network, across the given

width and depth values of the neural architecture. The children networks are interconnected using an

interconnection module that also has a depth value of 2 or 3. The output of each cerebral module also con-

tains residuals from its input causing every module to output a residual value from its input to its output.

The channel size of the interconnection module is based on number of modules it is connecting. The

goal of the interconnection module is to sew together multiple sub-networks and ensure interconnection

richness.

3.5.4 Network Expansion

The cerebral module recomposes itself when expanded. There are two ways in which the cerebral mod-

ule can expand; the �rst is exponential expansion where both the network depth and width increase

exponentially which increases the number of levels of hierarchy in the network (Fig. 3.1). The second

is linear expansion, which adds multiple low-level CSNs across the network depth or network width or

both (Fig. 3.2). Linear expansion does not increase the size of network exponentially but enables a slower

linear network growth. Most of our experiments are done using linear expansion as exponential expansion

turned out to be di�cult to implement on a GPU. The manner in which the weights from lower-level

CSNs are used for subsequent CSNs is illustrated in Fig. 3.1 and Fig. 3.2. In the case of exponential expan-

sion, all the CSN weights are reused multiple times whereas in the case of linear expansion, the weights

from the lower-level CSNs are inserted in the middle of the network.
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Figure 3.1: An example of exponential expansion is shown. Weights from lower levels are used at higher
levels.

Figure 3.2: An example of linear expansion is shown. Weights from lower levels are reused at higher levels
as indicated by blocks and lines of the same color.
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3.5.5 Network Pruning

We prune our Cerebral Modules using either structured or global pruning. Structured pruning is when

percentage of pruning is evenly distributed on each layer. Whereas global pruning prunes a network by

comparing weights to all other weights in the network. Structural integrity becomes a problem in global

pruning, but not in structured pruning. We also randomize the pruned weights by taking a weighted

mean of the pruned weights with random initialization of the same. The motivation behind randomizing

weights is to induce instability that leads to better generalization[3].

3.5.6 CSN Algorithm

The CSN algorithm expands the base network using either exponential expansion or linear expansion as

illustrated in Fig. 3.1 and Fig. 3.2 respectively. The base network model is the �rst trained model and is

chosen before training the entire network. The base model is used to construct the CSN model at level

i denoted by CSNi by using CSN training algorithm with the expansion procedure but without the

training and pruning procedures. The CSN algorithm is illustrated in Algorithm 1.

3.6 Experimental Results

3.6.1 Experimental Setup

We experimented with base networks with a varying number of CNN �lters. The �rst level of the proposed

CSN architecture, termed as CSN1, is shown in Fig. 3.3. We settled on three 3 × 3 × 64 convolution

�lters and used a Tesla P100 GPU. For exponential expansions, we considered network width and depth

values of 2 since higher depth and width values resulted in fewer expansions due to limited computational

resources. In the case of linear expansion, we expanded the network depth by 4 units at each step whereas

the network width was kept constant because of limited computational resources. The �rst trained model
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Algorithm 1: CSN Training Algorithm
CSN0 = BaseNetwork
BaseModel−Level = i
Exponential−Expansion−Level = j
Linear−Expansion−Level = k
CSNi = Expand(CSN0, i)
for num in range(0, j) do
CSNi+num = Expand(CSN0, i+ num, ”Exponential”)
Load Weights of CSNi+num−1 into CSNi+num

Train(CSNi+num)
Prune(CSNi+num)
Save Weights(CSNi+num)

end for
for num in range(0, k) do
CSNi+j+num = Expand(CSN0, i+ num, ”Linear”)
Load Weights of CSNi+j+num−1 into CSNi+j+num

Train(CSNi+j+num)
Prune(CSNi+j+num)
Save Weights(CSNi+j+num)

end for

Figure 3.3: CSN Level 1 architecture
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whose weights are used for subsequent CSNs is termed the base model. We typically start with a 1-2 level

exponential expansion followed by 2-4 level linear expansion.

3.6.2 Proof of Concept Implementation on the CIFAR-10 Data Set

The CSN training algorithm pipeline was fully implemented on the CIFAR-10 data set as a proof of

concept. We used the Adam optimizer and found a learning rate of 5e-4 to perform the best. In case of

exponential expansion, the width and depth values are kept perfectly symmetrical. We ran exponential

expansion on CSN1 and CSN2 and, as a result, CSN3 was our largest exponentially expanded model

with 12 million parameters. We found that most of our models converged to around 70%-80% test accu-

racy with global and structured pruning with structured pruning performing slightly better than global

pruning. As expected, higher-level CSNs took longer to train and were found to perform slightly better

than lower-level CSNs.

We conducted experiments without pruning to see the e�ect of dynamic expansion. Without pruning,

the larger-size networks were observed to always over�t. The generalization error increased rapidly as we

increased the number of levels from 1 to 4 as shown in Table 3.1. The results in Table 3.1 suggest that the

higher-level CSNs without pruning are highly susceptible to �tting to the noise. It is possible that the re-

using of weights led to convergence to the same local minima. When we pruned the weights and randomly

varied them, we observed lower generalization error in the case of higher-level CSNs as shown in Table 3.2.

However, as seen in Table 3.2, CSN3 and CSN4 are not able to completely learn the features produced

by CSN1. We surmise that this is because higher-level CSNs are merely trying to relearn what CSN1 has

already learned. The entire training process just reversing the instability we induced [3]. We had expected

that, like ensembles, the di�erent modules in the CSN would start to specialize in the formulation of

distinct features. However, the experimental results ran quite contrary to that expectation. Also, despite

the presence of residuals at multiple levels of the CSN hierarchy, we witnessed vanishing gradients above

CSN5.
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Table 3.1: Performance of CSN on CIFAR-10 without pruning

Model Train Accuracy Test Accuracy Optimizer
CSN1(Base) 84.03 74.46 Adam

CSN2 96.53 75.32 Adam
CSN3 92.26 69.33 Adam

Table 3.2: Performance of CSN on CIFAR-10 with pruning

Model Train Accuracy Test Accuracy Optimizer
CSN1(Base) 83.31 77.87 Adam

CSN2 85.61 78.01 Adam
CSN3 88.64 78.07 Adam
CSN4 71.205 73.27 Adam

3.6.3 Semantic Segmentation on Salt Marsh Image Data Set

We tested the CSN training algorithm as a backbone for DeepLab-V3 [11] and compared it with a ResNet101

backbone for DeepLab-V3 and with Auto-DeepLab [33]. The performance of DeepLab-V3 was observed

to be the best. The Auto-DeepLab search was performed on a smaller subset of the entire data set where

the input images were resized to a low resolution for faster search. Auto-DeepLab’s search produced a

model that performed slightly worse than DeepLab-V3 as shown in Table 3.3. The CSN was also tried

and tested as a backbone for DeepLab-V3. The CSN stem for the backbone was created such that input

was down-sampled to 1/4 before input to the core CSN and subsequently down-sampled to 1/4 after the

core CSN resulting in an overall down-sampling rate of 1/16 for the backbone. This was done to test the

e�cacy of the structure of the CSN.

In our experiments, the CSN performed worse than both, Auto-DeepLab and DeepLab-V3. This is

not a complete surprise given that testing on the CIFAR-10 data set also showed that the CSN design is

not learning at par with modern CNNs. The degradation in mIoU values can be primarily attributed

to the underrepresented classes. We observe that CSN1 CSN2 and CSN3 exhibit similar performance

47



despite the exponential variation in the number of parameters. We also see that theCSN3 base model does

not perform any worse than CSN3. This indicates that the reuse of weights from CSN1 and CSN2 via

dynamic expansion is not the cause for the lacklustre performance of CSN3. However, it points towards

a problem in the construction of either the base network or the cerebral module.

Table 3.3: Performance comparison between CSN and CNNs on Salt Marsh image data set with network
pruning

Model mIOU Pixel Accuracy Optimizer
DeeplabV3 0.451 86.54 SGD

AutodeepLab 0.3706 85.049 SGD
CSN1(Base) 0.2483 81.6 Adam

CSN2 0.2411 81.6 Adam
CSN3 0.2361 81.76 Adam

CSN3(Base) 0.2379 81.04 Adam

3.7 Conclusion

The consequence of the increased computational cost of exponential expansion and linear expansion is that

the interconnection hypothesis is not implemented properly. Since we are only able to reach hierarchies

of up to 3 levels in the CSN, this is merely 1 level above that of modern CNN’s. Another cause for concern

is that the CSN base models at higher levels are prone to not learning anything new. The challenge of

training extremely deep and wide networks is evident in our work. We believe that the solution to this

problem will be pivotal in moving the �eld forward. A lot more work will be needed to �nd general-

purpose neural network architectures that work and scale well on real-world problems. We believe that

the reward for this e�ort will be in the form of solutions that are extremely unique and useful. The reason

that our interconnection design has under-performed is likely due to the fact that the cerebral module or

base network design needs to be revamped. We believe our interconnection design may not have met our

criterion of interconnection richness due to the lack of a memory system [55]. Most modern CNNs are

organized to compose features hierarchically before degradation of the input is observed. Unfortunately,
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in our e�orts to �nd a novel CSN-based approach, we negated many architectural advancements that have

contributed to the success of modern CNNs.
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Chapter 4

Conclusion and Future Work

By comparing various approaches for percent cover computation, presence/absence determination and

semantic image segmentation on salt marsh images we found a trade-o� between resolution and preci-

sion of predictions. The presence/absence determination approach was the most accurate but lacked in

resolution. In contrast, the semantic image segmentation approach was the highest in terms of resolution

but lacked in precision as it missed low frequency classes. Moreover, while comparing the performance of

various convolutional neural networks (CNNs) on salt marsh image classi�cation, we found that multi-

path networks outperformed others. This observation inspired us to design cerebral cortex-like neural

network architectures and thus de�ne a principle called interconnection richness. We tested this hypothesis

in conjunction with dynamic expansion and pruning. However, current results show that a lot more work

needs to be done.

There is a much room for improvement in designing the cerebral module and base network. We see

this as an opportunity and an unexplored area for future research. We believe that continual learning,

meta-learning and few-shot learning problems should be speci�cally targeted by compostional sparse

networks (CSNs). A clear and precise mathematical de�nition of the interconnection hypotheses in

terms of information �ow is needed [17]. We have to essentially decrease cost of information �ow through

the network interconnections. Thus, a more rigorous analysis of information �ow in neural network

architectures is called for.

50



Network pruning turned out to be a niche concept in our experimental setting, having little impact

on �nal performance. Our initial expectation of network pruning was that it would, like dropout, lead to

the formulation of more general features. However, pruning, at least in our case, remains merely a curious

phenomenon of preservation or �ne-tuning of current features, rather than learning of new ones. Net-

work pruning might not be the best way forward for creating or exploiting sparsity. Optimization-based

methods for creating sparsity such as group-sparsity regularization may be a better �t for this problem.

We think that dynamic expansion of CSNs also holds a lot of promise and we did observe early con-

vergence resulting from dynamic expansion compared to static architectures. However, our aim was to

�nd convergence in situations where low-level hierarchies would fail to do so. Our experiments did not

point to any viable results in that direction. We did not anticipate that high-level CSNs might potentially

reuse weights of lower-level CSNs to converge to the same local minima.

Future work should focus on formulating interconnection schemes for cerebral modules by taking

dense connections into account. Base networks could also be formulated solely in terms of graph neural

networks [59] as they have been shown to be uniquely successful in few-shot learning problems with

their inherent interconnection richness design. Moreover, dynamic expansion should be attempted with

much larger computational resources. There is also hope for unifying the concept of the CSN with meta-

learning approaches under an optimization-based framework that also incorporates long-term memory

in its design [55].
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