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Abstract

In many real-world applications with multiple agents, the agents often take a time-out to leave and

enter the system. In such open systems that allow agents to enter and leave, individual planning is a chal-

lenging task as the agents need to predict the presence of others accurately in addition to their actions. For

example, in the wild�re suppression domain, the �re�ghting agents may run out of the suppressants while

�ghting the �res and leave the system to re�ll their resources before joining the �ght again. This research

focuses on planning in such open systems while allowing agents to model and communicate with only a

subset of others in a restricted communication channel. Though the communicative acts make the predic-

tion of the presence of others easy, predicting what actions they take is tricky as the agents can lie among

themselves. In addition to that, the communicative acts directly impact the beliefs and mental states of

the interacting agents. This research extends on the latest developments in the CIPOMDP framework

in open and multi-agent systems. Planning in such systems is complex and computationally intractable.

This research improves the scalability of the CIPOMDP framework by modeling, communicating with

only a subset of neighboring agents, and extrapolating their behavior to the entire population. Besides,

the proposed framework opts for the Monte Carlo tree search to plan for the single agent. Furthermore,

the agents form strictly closed groups called cliques, restricting the modeling and communication to the



group. The proposed method achieves parallelization of planning using a server-client architecture where

each client runs single-agent planning for a step to improve the speed. Experiments in the wild�re sup-

pression problems show that the proposed method uses communication to increase coordination among

the agents and, in turn, achieve better rewards compared to the other baseline models. The results also

exhibit the potency of the framework in systems that require high coordination.

Index words: POMDP, Monte Carlo, MCTS, Decision Planning, CPOMCP, IPOMDP,

CIPOMDP, IPOMCP-l1, CIPOMCP-l1
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Chapter 1

Introduction

Autonomous agents can replace humans e�ectively and e�ciently in many real-world applications like

search and rescue, transportation, cyber-security, and wild�re suppression. Simply put, an autonomous

agent is any entity that can make rational decisions on its own and receive observations from the environ-

ment to accomplish its goal. In addition, the agent may not have proper sensors, which leads to improper

observations leading to uncertainty. In such scenarios that involve uncertainty, the agent’s planning and

its decision-making are of high importance, which garnered the attention of many AI researchers and, in

turn, led to the development of various algorithms in the �eld of decision-planning.

Systems that have two or more autonomous agents are known as Multi-Agent systems(MAS). Fig-

ure 1.1 depicts the simple MAS with two agents. In a MAS, every agent takes a decision or action and

receives an observation from the environment. In addition, the environment depends on the actions

taken by some or all agents. So the agents need to factor in other agents’ actions during the planning

process to take the optimal actions. In other words, an agent in MAS bene�ts from reasoning about the

behavior of other agents and by predicting the actions they would take. For example, in the autonomous

ride-sharing cars environment, the autonomous car can maximize its revenue by predicting and avoiding

its competitors’ locations and moving to other places where it would expect high customer availability.
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Figure 1.1: Multi-Agent System (Russell & Norvig, 2010).

Modeling other agents in multi-agent systems has its challenges when openness is involved, especially

1) Agent openness, 2) Type openness, and 3) Task openness. Type refers to the di�erence in properties

or skills of the agents, and type openness exists in the system in which the agents can change their type

at any time. Task openness refers to those systems in which the task or goal may change. An open-agent

system is a system in which an agent can enter or leave at any time. The addition of new agents at any time

increases the complexity of decision planning as the agents should plan for the new agents. For example,

adding a new car might make the other cars lose a rider in the autonomous ride-sharing car domain. In

this research, we limit our attention to agent openness and limit the openness with our assumption that

the new agents cannot enter the system, but the existing agents can enter and leave the system at any time.

Though this assumption brings down the complexity to a certain extent, the agent still needs to predict

whether the other agents or neighbors are present or absent in the system. Inaccurate predictions about

the presence of other agents in the system may cause the agent to pick actions that do not give the expected

reward or utility. In a similar example, if an autonomous car predicts the presence of other cars in the

system wrong, it might lose the riders and revenue.

The introduction of communicative acts improves the prediction of the absence and presence of

agents in the system. The agents use the communicated messages to get a faster inference about the agent

that sends the corresponding message. These communicative acts will in�uence the interacting agent’s
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mental state, such as its belief. In other words, the communicative acts would change the receiving agent’s

belief and, in turn, its action. For example, in the autonomous ride-sharing domain, a car might send a

message that it is leaving the system. The receiving cars use this message to infer that the sending agent

is not competing in the environment for some time. Since the agents need not communicate honestly,

the interacting agents might get the wrong inferences. We model such problems as decision planning

problems with communication in open and typed multi-agent systems.

Figure 1.2: An example of wild�re suppression domain in a 5 x 5 grid of forest (Chandrasekaran et al.,

2016)

To illustrate the above scenarios in a cooperative environment, consider the wild�re suppression

domain with �ve agents in a 5x5 grid of forest area as shown in Figure 1.21. Three-ground �re�ghters and

two-helicopters are of two types as they can have di�erent �ghting power or di�erent suppressant levels.

Each agent needs to predict what other agents do in the system to put out the �res e�ectively. Furthermore,

the agents may run out of suppressants �ghting the �res, and it leaves the system to re�ll and may not join

the �ght for few steps. If any agent predicts the presence of its neighbor wrong and starts �ghting the �re,

it wastes valuable resources as not enough agents are present in the system to �ght the particular �re. The
1Some of the icons from www.�aticon.com are used to create the �gures and the use is licensed by CC BY 3.0
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use of communicative acts like ’No Suppressant’ will signal the receiving agent that the sending agent is

likely to be absent for some time steps.

1.1 Related Work

Partial observability is one of the critical aspects of many real-world applications. For example, a simple

automated cleaning robot does not know where it is located in a system. It needs to �nd its way in cleaning

the system while estimating its location. The POMDP is a formalization of such problems in a single

agent system, and it generalizes the Markov Decision Process (Russell & Norvig, 2010). Solving a POMDP

su�ers from the curse of dimensionality and curse of history (Hsu et al., 2007; Kaelbling et al., 1998). The

curse of dimensionality is because the belief space is exponential in the number of state variables. The

curse of history is because the action observation histories are exponential in the planning horizon. So, in

large multi-agent systems, solving a POMDP is intractable.

Many techniques have been developed to counter the high computational complexity of the above

frameworks. One such technique is to employ a Monte Carlo Tree Search(MCTS) to �nd each state’s

utility in the search tree of each agent. The use of MCTS improves the system’s scalability as it breaks the

curse of dimensionality and the curse of history by intelligently exploring and exploiting the tree e�ciently.

The usage of MCTS made solving the POMDPs in large spaces possible (Katt et al., 2017; Lee et al., 2018;

Silver & Veness, 2010; Sunberg & Kochenderfer, 2017).

In a multi-agent system, the POMDPs can be generalized into Decentralized POMDPs and Interactive

POMDPs. DEC-POMDP is a decentralized planning technique in a cooperative setting, where the agents

share the initial beliefs, get a collaborative reward after each time step (Bernstein et al., 2013; Oliehoek

& Amato, 2016). The IPOMDPs can be used in a cooperative or competitive setting. In IPOMDPs,

each agent has its reward function, and it maintains mental models over the other agents while planning

individually (P. Gmytrasiewicz, 2020). Like POMDPs, IPOMDPs su�er from the curse of history and

the curse of dimensionality - the belief space in IPOMDPs is exponential in the interactive state space.
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Besides, IPOMDPs also su�er from the curse of nested reasoning - the nested nature of IPOMDPs makes

the beliefs of agents nested.

In many real-world applications, the system exhibits frame-action anonymity; that is, the state tran-

sitions in the system depend on the number of agents doing an action rather than the speci�cs of the

agent (Sonu et al., 2017). The use of this property can increase the scalability of the system for the POMDP

and IPOMDP planning greatly (Eck et al., 2020).

The CIPOMDP framework (P. Gmytrasiewicz, 2020) extends the IPOMDPs by introducing com-

munication between the agents. This communication impacts the respective beliefs of both interacting

agents. The addition of restricted communication brings newer perspectives that are discussed in detail

in the next chapter.

1.2 Contributions

This research makes the following contributions

1. Use the methods like Frame-action Anonymity and MCTS to scale the CIPOMDP planning in

open and multi-agent systems(MAS). The experiments are run with 2, 3, 4 agents to demonstrate

the scalability in the number of agents.

2. Instead of sequentially planning for each agent, the server-client architecture is used to plan for each

agent in parallel. From the results, we establish that using the server-client architecture, the time

taken for the runs is signi�cantly reduced with the increase in the number of agents and planning

parameters.

3. Assess the behavior and bene�t of communication with the benchmark simulations of the wild�re

domain (Chandrasekaran et al., 2016) with 2,3,4 agents for CIPOMCP-l1. From the results, we

observe that the CIPOMCP-l1 uses the communication to increase coordination among the agents,

thereby putting out the high reward yielding shared �re more. In contrast, the baselines used their

resources to put down individual �res.
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1.3 Document Structure

This thesis is organized into �ve chapters.

• In Chapter 1, Introduction, we start by introducing the autonomous agents and multi-agent systems.

Then, we summarize the thesis and review the related work.

• In Chapter 2, Background, we revisit some of the existing frameworks and concepts like POMDP,

CIPOMDP, and Frame Action Anonymity.

• In Chapter 3, Methodology, we illustrate the concepts of communication, f-function, Monte Carlo

tree search, and the algorithm used to perform the CIPOMCP planning.

• In Chapter 4, Experiments, we start by describing about the run time optimizations. Then we

introduce the setups, baselines followed by an analysis of the experimental results and the run-time

results using the server-client architecture.

• In Chapter 5, Conclusion, we give the deductions from the results, framework limitations, and

possible lines of future work.
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Chapter 2

Background

In this chapter, we present a background on several fundamental frameworks and concepts that form the

foundation for methods used in the later chapters. This chapter is organized as follows:

• In the section 2.1, we �rst de�ne the framework of Partially Observable Markov Decision Pro-

cesses(POMDPs).

• In section 2.2, we describe the extension of Interactive Partially Observable Markov Decision Pro-

cesses(IPOMDP) with communication, called the communicative IPOMDP(CIPOMDP) frame-

work.

• In section 2.3, we introduce the concept of frame action anonymity and its application in the

CIPOMDP framework.
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2.1 PartiallyObservableMarkovDecisionProcesses(POMDP) frame-

work

A partial observable Markov decision process (POMDP) (Åström, 1965; Cassandra et al., 1994; Kaelbling

et al., 1998) is a generalization of the Markov decision process (MDP) in which agents cannot directly

observe the environment or system. The following tuple de�nes a POMDP

POMDP ,〈S,A,Ω, T, O,R, γ〉

• S is the physical state space of the environment. Here, S is the set of states of the decision-making

problem, possibly factored into multiple variablesF1×F2×· · ·Fk, such as the intensities of k wild�res

in the wild�re domain.

• A is the set of actions an agent can perform.

• Ω is the set of observations.

• T : S × A × S ′ → [0, 1] is a stochastic state transition function which provides a distribution over

the next state(S ′) after performing an Action (A) on the current state (S).

• O : S ′×A×Ω→ [0, 1] is a stochastic observation function that provides the probability with which

an agent receives an observation(o) given the resulting state (S ′) and the performed action (A).

• R : S × A→ R is a reward function that provides the reward for the agent given its state and action

from the state.

• γ ∈ (0, 1] s a discount factor used for weighting the reward values over the range of future time steps.

As partial observability prevents the agent from knowing its current state, it maintains a probability

distribution over possible current states, referred to as an agent’s belief or a belief state (b). The agent

uses the previous belief(b) over the states, the agent’s action at a previous time step(a), and the received

observation(o) after the transition to update its belief at each time step using the Bayes rule. The new
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belief, b′ for a current possible state(s′) is given by

b′(s′) = Pr(s′|o, s, a) = αO(o, s′, a)
∑
s∈S

b(s)T (s, a, s′) (2.1)

where α is a normalization constant.

The solution to a POMDP is a policy (π), which is a function that maps the agent’s beliefs to a

distribution over actions, π : B × A → [0, 1]. Simply put, a policy is a strategy for an agent to act in

the given state. A value function (V h(b)) in the form of a Bellman equation is de�ned to get a long-term

expected long-term reward as the utility of action over the given belief. The bellman equation is de�ned

as the

V h(b) = max
a∈A

∑
s∈S

b(s)

(
R(s, a) + γ

∑
s′

T (s, a, s′)
∑
o∈Ω

O(o, a, s′)V h−1(τ(b, o, a))

)
(2.2)

where τ is the belief update as in equation 2.1 and h is the horizon.

2.2 Communicative Interactive POMDP (CIPOMDP) framework

Communicative Interactive POMDP (CIPOMDP) (P. Gmytrasiewicz, 2020) builds on the well-known

�nitely-nested I-POMDP (P. J. Gmytrasiewicz & Doshi, 2005) framework in a straightforward way to

include an additional action of sending a message, an additional observation of receiving a message, and a

set of messages that are sent or received. Formally,

CI-POMDP i,l , 〈Ag, ISi,l, A,Ωi,M, Ti, Oi, Ri, γ, b
0
i,l〉

• Ag is a �nite set of agents, consisting of a subject agenti using the CI-POMDP to decide how to act

and communicate with other agents j, . . . , z modeled by subject agent i.
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• ISi,l is the set of level l interactive states, ISi,l = S×Θj,l−1×Θk,l−1× . . .×Θz,l−1 for l > 0. Here,S

is the set of states of the decision-making problem, possibly factored into variablesF1×F2× . . .×FN ,

such as the intensities of theN wild�res the agents need to suppress. Agent j inAg is ascribed a model

θj,l−1 = 〈bj,l−1, θ̂j〉 from the set of computable models Θj,l−1 where bj,l−1 is the agent’s belief over its

level l− 1 interactive state and θ̂j denotes the agent’s frame. A frame represents the agent’s capabilities

and preferences. The level 0 interactive states ISi,0 = S.

• A = Ai ×Aj × . . .×Az is the set of possible joint actions of the agents; e.g., the individual �res that

each agent chooses to �ght. For notational convenience, a−i ∈ Aj × . . .×Az denotes the joint action

by agents inAg \ {i}.

• Ωi is the set of observations of agent i.

• M is the set of messages that are sent and received by any agent. Letmi→j ∈M denote a message that

is sent to an agent j andmi←j ∈ M denote a message that is received from j. Let mi→−i denote the

vector of messages sent to all other agents, and analogously for received messages mi←−i.

• Ti(s, ai, a−i, s′) = P (s′|s, ai, a−i) gives the probabilities of stochastic state transitions caused by the

actions ofAg.

• Oi(s
′, ai, a−i, oi) = P (oi|ai, a−i, s′) models the probabilities of stochastic observations revealed to

subject agent i after joint action (ai, a−i).

• Ri(s, ai, a−i,mi→−i) ∈ R is the reward function of agent i dependent on the state, joint actions, and

messages sent to the other agents. While there is a cost of sending messages, there is no cost to receiving

(and processing) messages.

• γ ∈ (0, 1] and b0
i,l are the discount factor and initial belief state of i over its level-l interactive state space,

respectively.

An agent with l > 0 in the CI-POMDP framework updates its belief on performing an action

and/or sending a message at the previous time step followed by receiving an observation and/or a message
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at the current time step. The belief update shown below yields the new belief(bti,l).

bti,l = Pr(ISti,l|bt−1
i,l , a

t−1
i ,mt−1

i→−i, o
t
i,m

t
i←−i)

bti,l(is
t) = α

∑
ist−1

bi,l(is
t−1)

×
∏

j∈Ag/{i}

∑
at−1
j

Pr(at−1
j ,mt−1

j→i|θt−1
j,l−1)

Ti(s
t−1, at−1

i , at−1
−i , s

t)

×Oi(s
t, at−1

i , at−1
−i , o

t
i)

∏
j∈Ag/{i}

(∑
otj

τθ̂j(b
t−1
j,l−1, a

t−1
j ,mt−1

j→i, o
t
j,m

t
j←i, b

t
j,l−1)

×Oj(s
t, at−1

j , at−1
−j , o

t
j)

)
(2.3)

Here,mt−1
j→i is the message sent by agent j to i at timestep t− 1, which is same as the message received by

agent i from j at timestep t,mt
i←j , as the framework assumes a perfect communication channel. Therefore,

the termPr(at−1
j ,mt−1

j→i|θt−1
j,l−1) makes those models of j that support sending this message more probable.

τθ̂j(b
t−1
j,l−1, a

t−1
j ,mt−1

j→i, o
t
j,m

t
j←i, b

t
j,l−1) is 1 if agent j’s belief in ist−1 on performing its predicted action

at−1
j and sending message to i mt−1

j→i (which is same as the message received by agent i from j) followed

by receiving possible observation ot−1
j and i’s sent message to j,mt

j←i, updates to btj,l−1 in ist. A level-0

agent updates its belief using the POMDP belief update by �rst marginalizing the other agent from the

transition and observation functions using a �xed probability distribution.

Analogously to I -POMDP s, subject agent i assigns a value to each level l belief, which is the expected

cumulative, discounted rewards over a �nite or in�nite horizonH , r0 + γr1 + γ2r2 + . . .+ γH−1rH−1,

by maximizing over the Bellman equation for each belief and action-message pair:

Qti(b
t
i,l, a

t
i,m

t
i→−i) = ρi(b

t
i,l, a

t
i,m

t
i→−i) + γ

∑
ot+1
i ,mt+1

i←−i

Pr(ot+1
i ,mt+1

i←−i|b
t
i,l, a

t
i,m

t
i→−i) V

t+1
i (bt+1

i,l )

(2.4)
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V t
i (bti,l) = max

ai∈Ai,mt
i→−i

Qti(b
t
i,l, a

t
i,m

t
i→−i) (2.5)

where

ρi(b
t
i,l, a

t
i,m

t
i→−i) =

∑
ist∈ISti,l

bti,l−1(ist)
∑

a−i∈A−i

∏
j∈Ag

∑
mt
j→−j

Pr(atj ,m
t
j→−j |θtj,l−1)Ri(s, ai,a−i,m

t
i→−i)

and bt+1
i,l is the updated belief on performing action ati and sending messages mt

i→−i followed by receiving

observation ot+1
i and messages mt+1

i←−i.

Policy πi,l is then the distribution of those action and message pairs that maximize the Q-value:

OPT (bti,l) = arg max
ai,mi→−i

Qt
i(b

t
i,l, ai,mi→−i) (2.6)

and πi,l(a∗i ,m∗i→−i|bti,l) = 1
|OPT | where (a∗i ,m

∗
i→−i) ∈ OPT .

2.3 Agent Anonymity in IPOMDP

In a Multi-agent system, the transitions (T), observations (O), and rewards (R) depend on the joint action

taken by all the agents. As the number of agents in the system increase, the IPOMDP planning becomes

intractable since the representation of T, O, R is exponential in the number of possible joint actions. For

such systems, a simple exploit called Frame-action anonymity (Sonu et al., 2017) can be implemented

to reduce the above exponential dependency provided that the T, O, and R depend on the number of

agents performing each action rather than the which agent performs actions. Simply put, Frame action

anonymity relaxes the agent identities so that multiple joint actions can lead to the same transitions,

observations, and rewards if they yield the same action count vector. The Action count vector, called

Con�guration is represented asC = 〈na1,θ1 , · · · , na|A|,|Θ|〉where na1,θ1 is the count of agents of frame

or type θ1 that perform the action a1 at the current time step (Eck et al., 2020). Now the representation
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of T, O, R is greatly reduced as they depend on the number of possible con�gurations
(|Ag|+m+1

m+1

)
which

inturn is polynomial in the number of agents wherem = max{|Ai|, |Aj|, · · · , |Az|}.

In addition to that, the state in an IPOMDP is an interactive state which contains the state and

mental model of the neighbors of a subject agent. As the number of agents increases, the interactive

state-space grows exponentially in the number of agents. The frame action anonymity property allows

the subject agent to maintain beliefs for a small random subset of agents from each frame and extrapolate

their predicted behavior to all the agents in corresponding frames with some bounded error. However,

the introduction of communication inhibits the random sampling of agents from each frame which is

explained in section 3.2, in detail.

Frame action anonymity also facilitates the construction and use of a single policy for all level-0 agents

in a frame. Since the level-0 agent does not model others in the environment, maintaining a policy table

consisting of a policy for every possible message set, frame, state, internal state, and planning horizon is

possible. Using the policy table in level-1planner saves the computation time could refer to the table to get

the possible actions for neighbors instead of constructing trees for the neighbors. However, the higher-

level planning is entirely online because constructing a policy table should for every possible belief of the

subject agent (itself and its neighbors), frame, state, internal state, and planning horizon for higher-level

planners is intractable in space and time.
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Chapter 3

Methodology

In this chapter, we introduce several concepts that are employed in this research before laying out the

algorithm. The rest of the chapter is organized as follows:

• In section 3.1, we describe how communication impacts the mental models of the agents.

• Next in section 3.2, we introduce the complication in belief update caused by nested modeling that

inhibits communication and the need for f- function and g-function.

• In section 3.3, we de�ne the concept of cliques and how communication and modeling of agents

occur inside the cliques.

• In section 3.4, we start by discussing the Monte Carlo Tree Search and then the changes introduced

in it to use the entire particle �lter to update the tree.

• Finally, in section 3.5, we discuss the CIPOMCP algorithm used in this research in detail.
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3.1 Communication

By maintaining a new state variablepresent ∈ {true, false} for each neighbor in its neighborhood(N(i) ⊆

Ag, letN(i) = {j, k, l, · · · , z}), the subject agent (say i) can reason about the presence and absence of

the corresponding neighbor. However, the state space increases exponentially due to the addition of a

new state variable. The new state variable present is placed inside the mental model of the neighbor to

eliminate the exponential bloat up in state-space.

In general, the planning agent senses its neighbors’ presence by observing the changes in state-space

variables. The use of communication in the CIPOMDP framework allows the agents to infer the presence

of their neighbors’ faster. However, the inference due to the communication might not be accurate as

the agents can always lie among themselves. In any case, the subject agent who receives the messages from

its interacting neighbor will update the mental models corresponding to that neighbor using the belief

update equation 2.3. The mental models likely to result in the message received will receive a higher weight

than the other models that will not likely give the same message. For example, in the �re�ghting domain,

the message the agent could send is among the set of messages, M={’Full suppressant’, ’Half suppressant’,

’No suppressant’, and ’No Message’}. So if the subject agent receives a "No Suppressant" message from its

neighbor, it would presume that the neighbor is likely to miss the next step in refueling and update the

mental models accordingly.

3.2 NestedModelingComplicatesCommunication anduse of F,G-

Functions

Though the CIPOMDP framework o�ers a way to integrate communication, the nested modeling of

others inhibits communication. A level-l CIPOMDP agent (say i) receives the set of messages (mi←−i)

from an agent at level-(l + 1). It uses this set of messages to update its belief and model the level-(l − 1)

neighbors. This nested modeling and communication continue down to level-0. As the level-0 agent is
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a POMDP agent, it does not ascribe intentional models to others in the environment. It will consider

others in the environment as the random agents and assumes a �at distribution over their actions. As a

result, the messages received from others will not in�uence the level-0 agent’s belief. Because the level-0

agent does not model anyone, it may choose not to communicate as it does not think its message will

impact others in the system. An unintended consequence of this is that level-1 agent may decide not to

communicate with its neighbors because it reasons that any message that it sends may not in�uence its

level-0 neighbor’s belief. A level-1 agent modeling these level-0 neighbors won’t expect to receive any

messages as it thinks that its neighbors will not communicate, resulting in undesired behavior.

We introduce a simple way to incentivize the level-1 agent to communicate. Similar to the level-0 agents

being literal listeners and literal speakers in the original CIPOMDP framework(P. Gmytrasiewicz, 2020),

we consider that the level-0 agents can listen and send messages using the f and g functions, respectively.

Let fj : mr,j −→ aj which maps a message from agent j’s message to its action aj ∈ Aj . Similarly let

gj : sj −→ mj maps the agent j’s state to its message. Consequently, a level-0 POMDP agent models

others using an f-function instead of considering them as random agents and maps their messages to

actions. For more than one other agent, denote the vector of maps, one for each other agent, as f−i.

Then, i’s updated belief bti,0(st)is:

bti,0(st) = Pr(st|bt−1
i,0 , a

t−1
i , gt−1

i (st−1), oti,m
t
i←−i)

= αOi(s
t, at−1

i , f−i(m
t
i←−i), o

t
i)

×
∑
st−1

bt−1
i,0 (st−1)Ti(s

t−1, at−1
i , gt−1

i (st−1), f−i(m
t
i←−i), s

t)

(3.1)

Let this update be common knowledge among the agents. The update above is analogous to a

POMDP belief update with a slight modi�cation that allows messages from others in the neighborhood

to impact the updated belief. As the level-1 agent is aware that an agent modeled at level-0 updates its

belief using the Equation 3.1, it may reason to communicate with its others because the messages sent by

it may impact others’ beliefs over the state. This impact may change their behavior and, in turn, a�ects

their action choice. Consequently, the agent at level 2 or higher may choose to communicate with others

16



and expects to receive messages from others, which now enables the use of the CIPOMDP framework for

its decision-making.

3.3 Communication Cliques

In the absence of communication, the agents randomly sample their neighbors, model them, and use

their behavior to extrapolate to all the agents in the system. When communication is possible between the

agents, the subject agent’s modeled neighbors are the ones with whom the subject agent can communicate.

In other words, the subject agent cannot bene�t from communication with a neighbor that it does not

explicitly model. To illustrate this, in a three agent system with agents {i, j, k}, let agent imodels only j.

So it maintains a belief of j. If agent i receives a message from k, it does not know how to use this obtained

information as it does not model k that is, it does not maintain the belief of agent k. So it cannot update

its belief about the environment or update the k’s model using Equation 3.1. In systems where new agents

can enter, the communication with neighbors that the subject agent does not model can occur. As we

focus on the systems where new agents cannot join, the agents will only communicate with the sampled

neighbors and vice versa. Each such set of agents model and communicate with everyone in the set form

a clique as shown in Figure3.1.

In a scalable system with a high number of agents, the behavior of all the agents can be predicted

by sampling a few neighbors randomly and extrapolating their behavior. Let n̂a,N̂θ̂(i) be the number

of sampled agents whose predicted action is a, where a ∈ {Ai ∪ Aj ∪ . . . ∪ Az}, from the sampled

neighborhood N̂θ̂(i). Eck et al., 2020, proposed that the agents can extrapolate the behavior of sampled

agents into all the agents in the respective frame with the prediction error less than some given error ε

provided that agents sample the minimum(nθ̂) number of agents in each frame.

In small agent systems, each clique should have at least two agents from each frame. In such scenarios,

the extrapolation would not give an accurate estimate of the behavior of all agents. If there is only one

agent per frame, there can be only a single clique, and each agent inside the clique models every one where

the extrapolation error would be zero.
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Figure 3.1: Di�erent types of cliques - a) Single clique(Top left) b) Two Cliques(Top right) c) Three

cliques(Bottom). Here the colored nodes represent di�erent types of agents. Each connected edge rep-

resents the agents modeling each other. Here each agent models the equal number of agents, and so the

cliques are with the same number of agents.
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3.4 Monte Carlo Tree Search in CIPOMCP

MCTS is a well-known online decision planning framework for solving large state spaces like in MAS. The

UCB heuristic in the MCTS algorithm balances the exploration and exploitation of the nodes in the search

tree, thus saving time in exploring the most promising nodes. It also breaks the curse of dimensionality and

the curse of history. to solve POMDPs and IPOMDPs. Unlike POMDPs, the belief space is interactive

for IPOMDP, and hence the belief update is nested.

Figure 3.2: Monte Carlo Tree Search in CIPOMCP(Garg et al., 2019). Initial belief: bt−1
i . Next belief: bti.

Q(bt−1
i , a1): Q-value of the action node a1 from the initial belief. O1, O2, O3, O4: Di�erent Observa-

tions. The black �lled circles represent the particles inside the particle �lter, and the size of the black �lled

circles: weight of the corresponding particle

The normal MCTS samples the belief from the distribution of beliefs and propagates the sampled

belief inside the tree. However, the entire particle �lter inside the tree can give a better estimate of belief
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and improve the algorithm’s scalability (Somani et al., 2013; Thomas et al., 2021). We use the particle �lter

version of MCTS in this research to solve POMDP with communication, referred to as CPOMCP and

CIPOMDP, referred to as CIPOMCP.

The MCTS employs a UCB heuristic to explore the search tree e�ciently provided a su�cient plan-

ning horizon (h), and a decent ucb constant is selected. Figure 3.2. shows how the MCTS simulation for

a single timestep. In simple words, the simulation starts with the initial belief i.e.,particle �lter (bt−1
i ). The

subject agent (say i) picks the best possible action given by the ucb heuristic. The joint action is formed

by planning for the neighbors. Di�erent possible observation_comm (〈observation, mi←−i〉) leads to

di�erent next beliefs (bti) formed by updating the initial belief (bt−1
i ). The planning continues for the next

horizon with the most likely belief from the set of beliefs. The corresponding visits at various nodes are

updated during the planning. Also, the discounted reward is used to update the Q-values of the nodes.

3.5 CIPOMCP Algorithm

The Monte-Carlo Tree Search is used to solve the CIPOMDP framework and is referred to as CIPOMCP.

The algorithm 1 explains the primary CIPOMCP algorithm of this research for MAS. In algorithm1, the

CIPOMCP procedure for the subject agent at level-l iteratively constructs the MCTS tree using the

UpdateTree procedure for a given number of trajectories. This process creates the MCTS trees for its

neighbors at level-(l − 1) using the CIPOMCP for the neighbor agent, which creates the MCTS trees

similarly for its neighbors at level-(l − 2) and so-on till the level-1 agent is planning reached where it uses

CPOMCP to plan for its neighbors. During each of these trajectories, the algorithm would pass the entire

particle �lter, the set of messages the subject agent received from its neighbors at level -(l + 1), into the

tree as illustrated in line 3. At the highest level of planning, the agent starts with the set of messages mi←−i

containing all no message. After updating the tree for given trajectories, the algorithm would return the

action, the message having the optimal q-value, and the observation particle �lters constructed as part of

the planning process as illustrated on line 5.
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The update tree procedure passes the entire particle �lter to every branch of the tree. Initially, it adds

the particle �lter to the root belief node. If the root belief node is already visited, it picks the best possible

action using the UCB heuristic under that belief node, as illustrated in line 16. We construct the empty

observation particle �lters βo, weight lists for these particle �lters, the list of message sets for all possible

observations, list of weights for the corresponding message sets for all weights. Now, for each particle in

the particle �lter, we get state from the particle and plan for the neighbors’ actions, messages their set of

observation particle �lters using the procedure PlanNeighbors as illustrated in lines 23-26. Then

we sample the con�guration and simulate the next state and reward (rk), which in turn is multiplied

with the corresponding particle weight as illustrated in line 31. The Nested Belief Update procedure is

used to update the get the new particle. Through lines 32-37, the new particle is added to the observation

particle �lter with the corresponding observation weight. The simulated messages from line 29 are saved

in the list of message sets for corresponding observation, and the observation weight is saved as a weight

for this message set to the list of weights for message lists. We sample the observation and message set by

normalizing the weights and sampling as illustrated in steps 38-39. The observation_comm is then formed

by combining the sampled observation and message set. Then the new particle �lter is taken from the

resampled observation particle �lter that corresponds to the sampled observation. This new particle �lter

is used to recursively call the UpdateTree procedure with increased horizon each time to calculate

the overall reward obtained, as illustrated in line 43. The visits for the action node, belief node, and the

expected utility for the action node are updated, as shown in lines 44-47.

If the root belief node is not visited before, a leaf node is created, and then the RolloutAll

procedure is used to perform the rollout for each particle in the particle �lter. The Plan Neighbors

procedure is used to trees nested with levels for the neighbors to plan for their optimal action and message.

In addition to these values, the particle �lters corresponding to the visited belief nodes as part of planning

under the action node are returned as the observation particle �lters for di�erent observation _comm and

internal state pairs. The NestedBeliefUpdate procedure updates the nested belief of the subject

agent. To save the computation time, the observation_comm that the neighbor would receive from the
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domain is calculated and used to get the corresponding precomputed belief which is calculated when

planning for neighbors in PlanNeighbors procedure, as illustrated in line 14. If the precomputed

belief is not found for the corresponding observation_comm, a BayesianUpdate on the current belief for

the new state s′ is performed.

The di�erence between the POMCP and CPOMCP is that the POMCP agent assumes others in the

system as the random agents, whereas the CPOMCP agent assumes that the others pick actions based

on the f-function so that the messages the CPOMCP gets from level-1 neighbor in�uences its decision

as discussed in section 3.2. Also, the CPOMCP agent does not maintain the beliefs of its neighbors.

Algorithm2 shows the pseudocode for the CPOMCP. The CPOMCP is similar to the CIPOMCP except

that it simulates the messages that it would receive with NextMessages as it estimates the behavior of other

agents using f-function.

Algorithm 1 CIPOMCPO
Constants: τ :number of trajectories to perform.N(i):neighborhood of subject agent i. N̂(i):{j, . . . , z} are the
subset of neighbors modeled by subject agent i. Nθ(i) and N̂θ(i): neighbors of subject agent i with frame θ. c: is
the constant from UCB-1.
Variables: Ti,l- agent i’s level-l tree (initially empty). h:history of actions and observations. Bi,l(h):particle �lter
representing agent i’s level:l belief. ni,l:the count of the number of visits to each node. Qi,l: agent i’s level-l
approximated Q function. βi,l : particle �lter of agent i at level-l. w: weight associated with particle p in the par-
ticle �lter(β) andwo is weight of observation. β̄i: set of observation particle �lters. oc: observation-communication.

1: procedure CIPOMCP(βi,l,mi←−i, l)
2: for traj ∈ 1, 2, . . . , τ do
3: UpdateTree(βi,l,mi←−i, 0, ε, l)

4: a∗i ,m
∗
i ← argmax

a∈Ai,m∈M
Qi,l(ε, a,m)

5: return a∗i ,m∗i , β̄i
1: procedure RolloutAll(β, t)
2: R← 0
3: for (s, w) ∈ β do
4: R← R+ w·Rollout(s, t)
5: returnR
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6: procedure PlanNeighbors(s, p, l,mi,mi←−i)
7: β̄j ← ∅
8: m′i←−i ← ∅
9: for j ∈ N̂(i) do

10: βj,l−1 ← getBelief(j, p, l − 1)
11: mj←−j ←mi←−i ∪ {mi} \ {mj}
12: if l − 1 ≥ 1 then
13: aj,mj, β̄j ← CIPOMCP(Bj,l−1,mj←−j, l − 1)
14: else
15: aj,mj, β̄j ← CPOMCP(Bj,0,mj←−j)

16: aN̂(i) ← aN̂(i) ∪ {aj}
17: m′i←−i ←m′i←−i ∪ {mj}
18: β̄−i ← β̄−i ∪ β̄j
19: return aN̂(i),m

′
i←−i, β̄−i

1: procedure SampleConfiguration(aN̂(i))
2: C(a, θ)← 0, n̂π(s)=a,N̂θ(i) ← 0 ∀a, θ
3: forMj,l−1 ∈Ml−1 do
4: aj ← aN̂(i)j

5: θj ← frame(Mj,l−1)
6: n̂π(s)=aj ,N̂θj (i) ← n̂π(s)=aj ,N̂θj (i) + 1

7: for θ ∈ Θ do
8: for a ∈ A do
9: p̂a,θ ← n̂π(s)=a,N̂θ(i) / |N̂θ(i)|

10: for j ∈ Nθ(i) do
11: a ∼ Cat(p̂a1,θ, p̂a2,θ, . . . , p̂a|A|,θ)

12: C(a, θ)← C(a, θ) + 1

13: return C

1: procedure SampleRandomConfiguration(s)
2: C(a, θ)← 0 ∀a, θ
3: for θ ∈ Θ do
4: for j ∈ Nθ(i) do
5: a ∼ Uniform(Aj)
6: C(a, θ)← C(a, θ) + 1

7: return C
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8: procedure UpdateTree(βi,l,mi←−i, t, h, l)
9: if t ≥ H then

10: return 0
11: Bi,l(h)← Bi,l(h) ∪ βi,l
12: if h /∈ Ti,l then
13: Ti,l ← Ti,l + CreateLeaf(h, l)
14: return RolloutAll(βi,l, t)
15: else
16: ai,mi ← argmax

a∈Ai,m∈M
Qi,l (h, a,m) + c

√
logni,l(h)
ni,l(ham)

17: r ← 0
18: for o ∈ Z do
19: βo ← ∅
20: ω(o)← 0
21: m̄o,i←−i ← ∅
22: wm,o ← ∅
23: for (pk,l, w) ∈ βi,l do
24: s← pk,l
25: aN̂(i),m

′
i←−i, β̄−i ← PlanNeighbors(s, βi,l, l − 1,mi←−i)

26: C←SampleCon�guration
(
aN̂(i)

)
27: s′, rk← Simulate(s, ai,C)
28: a← ai ∪ aN̂(i)

29: m← mi ∪mi←−i
30: p′ ←NestedBeliefUpdate(s′, pk,l, βi,l,a,m, β̄−i)
31: r ← r + w · rk
32: for o ∈ Z do
33: wo ← w ·O(s′, ai, o)
34: βo ← βo ∪ (p′, wo)
35: ω(o)← ω(o) + wo
36: mo,i←−i(k)←m′i←−i
37: wm,o(k)← wo

38: oi ∼ Norm(ω)
39: m′i←−i ∼ Norm(wm,o,moi,i←−i)

40: oci ← (oi,m
′
i←−i)

41: β′ ← Resample(βoci)
42: h′ ← haimioimi←−i
43: R← r + γ · UpdateTree (β′,m′i←−i, t+ 1, h′, l)
44: ni,l(h)← ni,l(h) + |βi,l|
45: ni,l(haimi)← ni,l(haimi) + |βi,l|
46: Qi,l(h, ai,mi)← Qi,l(h, ai,mi) +

R−Qi,l(h,ai,mi)
ni,l(haimi)

47: returnR
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48: procedure NestedBeliefUpdate(s′, p, a,m, oi, β̄−i)
49: p′(i, l)← belief(s′)
50: for aj ∈ Ag−i do
51: p′(j, l − 1)← ∅
52: for j ∈ N̂(i) do
53: m′j←−j ←m

54: ocj ← (oj,m
′
j←−j)

55: if ocj ∈ β̄−i then
56: β′j,l−1 ← β̄−i
57: else
58: βj,l−1 ← p(j, l − 1)
59: β′j,l−1 ← BayesianUpdate(s′, βj,l−1)

60: p′(j, l − 1)← β′j,l−1

61: return p′

1: procedure Rollout(s, t)
2: R← 0, t′ ← t
3: while t < H do
4: C← SampleRandomCon�guration(s)
5: ai ← SampleAction(Ai)
6: s′, oi, ri← Simulate(s, ai,C)
7: R← R + γt−t

′ · ri, t← t+ 1, s← s′

8: returnR

1: procedure CreateLeaf(h, l)
2: Bi,l(h)← ∅
3: ni,l(h)← 0
4: for a ∈ Ai do
5: form ∈M do
6: ni,l(ham)← 0
7: Qi,l(h, a,m)← 0
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Algorithm 2 CPOMCPO
1: procedure UpdateTree(βi,0,mi←−i, t, h)
2: if t ≥ H then
3: return 0
4: Bi,0(h)← Bi,0(h) ∪ βi,0
5: if h /∈ Ti,0 then
6: Ti,0 ← Ti,0 + CreateLeaf(h)
7: return RolloutAll(βi,0, t)
8: else
9: ai ← argmax

a∈Ai
Qi,0 (h, a) + c

√
logni,0(h)
ni,0(ha)

10: r ← 0
11: for o ∈ Z do
12: βo ← ∅
13: ω(o)← 0

14: for j ∈ N̂(i) do
15: aj ← f(mi←j) . F-Function
16: aN̂(i) ← aN̂(i) ∪ {aj}

17: for (s, w) ∈ βi,0 do
18: C← SampleCon�guration

(
aN̂(i)

)
19: m′i←−i ← NextMessages(mi←−i)
20: s′, ri← Simulate(s, ai,C)
21: r ← r + w · ri
22: for o ∈ Z do
23: wo ← w ·O(s′, ai, o)
24: βo ← βo ∪ (s′, wo)
25: ω(o)← ω(o) + wo

26: for o ∈ Z do
27: oc← (o,m′i←−i)

28: β̄i ← β̄i ∪ (oc, βo)

29: oi ∼ Norm(ω)
30: β′ ← Resample(βoi)
31: h′ ← haioim

′
i←−i

32: R← ri + γ · UpdateTree (s′,m′i←−i, t+ 1, h′)
33: ni,0(h)← ni,0(h) + |βi,0|
34: ni,0(hai)← ni,0(hai) + |βi,0|
35: Qi,0(h, ai)← Qi,0(h, ai) +

R−Qi,0(h,ai)
ni,0(hai)

36: returnR
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37: procedure CPOMCP(βi,0,mi←−i)
38: for traj ∈ 1, 2, . . . , τ do
39: UpdateTree(βi,0,mi←−i, 0, ε)

40: a∗i ← argmax
a∈Ai

Qi,0(ε, a)

41: mi ← EstimateMessage(s)
42: return a∗i ,mi, β̄i

1: procedure CreateLeaf(h)
2: Bi,0(h)← ∅
3: ni,0(h)← 0
4: for a ∈ Ai do
5: ni,0(ha)← 0
6: Qi,0(h, a)← 0
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Chapter 4

Experiments

In this chapter, we start by describing about the runtime optimizations employed in this research. Then,

we introduce the wild�re domain and di�erent setups used for running the experiments. Next, we compare

the results of the proposed framework with several baselines. Then, we show how the cost of communi-

cation impacts overall communication. Finally, we describe the runtime optimizations employed in this

research along with the server-client architecture and compare the runtime results of sequential planning

and planning using server-client architecture.

4.1 Runtime Optimizations

As mentioned in earlier chapters, the server-client architecture is used to run the level1 models to save

computational time. In general, the server acts like a hub coordinating between the clients. Though

the server can perform basic calculations, it divides the most computationally extensive tasks among its

clients. Figure 4.1 illustrates the basic server-client architecture with n clients. The CIPOMCP is an

individual planning framework where the planning for agents is done sequentially at every time step. As

agent planning is the most time-consuming process, any optimizations implemented during the planning

process save time.
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In the CIPOMCP framework, the decision planning can be executed in parallel since the agents plan

individually once they receive the observations from the environment. So, if all agents plan in parallel at

the same time, maximum time e�ciency is achieved. The use of server-client architecture allows reducing

the planning time signi�cantly. At each timestep, the server simulates the environmental changes before

sending the information to its clients. Then, each client performs the decision planning for the agents it

has been assigned and sends the corresponding actions and messages to the server. The server then forms

a joint action, which is used to simulate the environment, and the planning procedure continues to the

next time step.

Also, the server-client architecture works best if the number of agents and the number of clients is

the same. This way, multi-agent decision planning for each time step is completed at the same time as the

sequential planning process completes planning for one agent. In the best case, the overall computational

time is reduced in the number of agents. In addition, the server-client architecture scales well with the

number of agents.

Figure 4.1: A server client architecture
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4.2 Domain Description

In the wild�re domain (Chandrasekaran et al., 2016), an agent can have three suppressant levels - Empty,

Half Suppressant, and Full Suppressant. The agents start with di�erent suppressant levels based on a

probability function. The agents can only �ght the �res which are present adjacent to their location.

The agents will leave the system to re�ll their suppressants, and it takes an average of two-time steps to

complete the re�ll. The �res in the wild�re have four possible intensities starting from 0 (put out) to

4 (burned out). The agents cannot �ght a burned-out �re to reduce its intensity. The putout �res can

re-emerge again in the system with some probability if any �re is present in adjacent locations. The �res in

the domain have three sizes-small, medium, and large. As the size increase, the �repower needed to put out

the corresponding �re also increases, and so does the reward. The agents’ rewards for putting out small,

medium, and large �res are 20, 50, and 125, respectively. The agents get a cost of−1 for the burnout of

the �res. The agents receive an enormous cost if they opt for an illegal action. If the �repower needed to

put out a �re is not met, i.e., not enough agents are �ghting that �re, and hence the �re intensities for that

�re will not decrease. If the �repower needed is met, there is a probability for the �re intensity to decrease.

In addition to that, the probability slightly increases with every added agent once the �repower is met.

As explained earlier, the agents can communicate one of these four messages - {no message, zero

suppressants, half suppressant and, full suppressant}. Also, the communication in the domain can be

costly, i.e., agents receive a cost if they decide to communicate.

Di�erent reasoning methods, including the baselines, are used to compare the performance the

1. NOOP Reasoning: All the agents do a No-Operation(NOOP)

2. Heuristic Reasoning: The agents act at random if they are present in the system.

3. Coordination Reasoning: A coordination agent can be treated as a greedy heuristic agent that keeps

track of the �re intensities at the previous step. It starts as a heuristic agent and remains heuristic

if the �re intensities do not decrease across the time steps. If the agent sees any �re intensities
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decrease, it starts �ghting the same �re until it goes down. In the worst-case scenario, the agent with

coordination reasoning is as bad as the heuristic agent.

4. POMCP Reasoning: A POMCP agent, while planning for itself, thinks that other agents in the

system are heuristic and act at random.

5. IPOMCP-l1 Reasoning: A IPOMCP-l1 agent is a slightly sophisticated planning agent where it

thinks that other agents in the system are POMCP agents.

6. CIPOMCP-l1 Reasoning.: A CIPOMCP-l1 agent considers others as the CPOMCP agents. It

uses communication to in�uence the behavior of other agents in the system

The simulations in the domain are up to 7-time steps. The agents start with Full Suppressants. The

decision planning algorithms - POMCP, IPOMCP-l1, and CIPOMCP-l1 are planned up to 500 trajec-

tories, ucb constant of 50, a planning horizon of 5, and the particle �lter of size 100. As mentioned in

section 2.3, the level- 0 policies for POMCP and CPOMCP planners are constructed and used during the

planning of IPOMCP-l1 and CIPOMCP-l1 respectively to save the computational time. In addition,

the use of server-client architecture saves computational time. The server handles the domain simulations,

whereas each client plans for a single agent during IPOMCP-l1 or CIPOMCP-l1 planning. For achieving

the faster runtimes for IPOMCP-l1, CIPOMCP-l1 a server-client architecture is used. The computed

results are shown in the �gures and the tables. The tabulated results contain the average putout counts

of the �res per run for di�erent setups. The Figures contain the rewards obtained, suppressants used for

respective models, and the impact of the cost of communication on the messages sent between agents,

honest and overall total communication. The F-function is designed in such a way that the

• Full Suppressant is mapped to �ght shared �re with 0.95 probability and 0.05 probability to pick a

random action

• Half Suppressant is mapped to �ght the individual �re with 0.95 probability and 0.05 probability

to pick a random action
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• No Message is mapped to �ght a �re at random

• No Suppressant is mapped to a NOOP.

Figure 4.2: Wild�re Setups. Setups 1 and 2 have a single ground �re-�ghter at each location. Setup 3 has 1

ground �re �ghter and 1 helicopter at each location (Chandrasekaran et al., 2016; Eck et al., 2020).

32



4.3 Setup 1

There are two small �res and a medium �re present in the setup as in Figure 4.2. In locations A1 and A2, a

single ground �re�ghter agent is present, and the agent has enough �re suppressants to put out the small

�re adjacent to its location, whereas both the agents should �ght the shared �re.

Table 4.1 consists of the average putout counts of the �res in setup 1 per single run. The NOOP

method cannot put out any �res as the agents do not �ght any �re. The Heuristic agents pick their actions

randomly. Even if a �re’s intensity decreases at any time step, the agents do not sense the change and

may choose not to �ght that �re. However, the Coordination agents sense the change and shift their

focus to the respective �re till it is put out completely. Hence the Coordination reasoning has slightly

more putout counts. The POMCP reasons that the other agents are random and cannot reason them

to stay long enough to put out the shared �re, pushing them to focus their resources on individual �res.

The IPOMCP-l1 sense the neighbor as the POMCP agents and are likely to reason that the neighbor

concentrates on the individual �res, pushing them to focus on the individual �res. The CIPOMCP-l1

uses the communication to impact its neighbors. However, the agents will still be likely to put out the

individual �re because they can put out these �res on their own, giving them an immediate reward.

Table 4.1: The average putout counts of the �res in setup 1

Method Setup 1
Individual �re at A1 location Shared Fire Individual �re at A2 location

Noop 0 0 0
Heuristic 0.59 0.2 0.49

Coordination 0.8 0.39 0.75
POMCP 1.06 0.3 1.18

IPOMCP-l1 1.02 0.28 1.06
CIPOMCP-l1 1.02 0.25 1.11
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Figure 4.3: Models performance in setup 1: Rewards and Suppressants used.

Figure 4.3 shows the performance of models in setup 1. The NOOP reasoning agent does not use

suppressants as it always chooses NOOP, and the �res eventually burn out, resulting in a negative reward.

All models except Heuristic and NOOP have same almost the same rewards. From the average putout

counts in the Table 4.1, as all the models except Heuristic and NOOP concentrate on putting out the

individual �re, they are likely to use similar rewards and use of suppressants. However, the IPOMCP-l1

and CIPOMCP -l1 use comparatively fewer suppressants for similar rewards.
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Figure 4.4: The impact of cost on the communication between the agents in Setup 1. a) (Left) Percentages

of di�erent messages vs costs of communication, b) (Right) Honest, Overall Communication percentages

vs Cost of Communication

Figure 4.4 depicts the communication results. As the communication cost increases, the agents will

receive higher negative rewards whenever they chose to communicate. As a result, the percentage of com-

munication decreases as with the rise in communication cost. The No Message percentage increases with
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the rise of communication cost, which proves the trend mentioned above. Though the communication

decreases with the rise in cost, the agents start to communicate more honestly, as shown in the Figure 4.4

4.4 Setup 2

There are two medium �res and one large �re in the system. The medium �res require two ground

�re�ghters to �ght the �re, whereas all three agents need to �ght simultaneously for the large shared �re to

be put out. In this setup, every agent needs other agents’ help to put out a �re. That is, the agents need to

coordinate among themselves to put down the �re. Also, the agent at location A2 has four actions (three

�res and a NOOP) that it can take. The �re�ghting in setup 2 depends on the actions of the agent at A2.

If the A2 agent �ghts the individual �re, the individual �res are likely to go down in intensity. If the A2

agent �ghts the shared �re, both the other agents need to �ght in order to put it out.

Table 4.2: The average putout counts of the �res in setup 2

Method Setup 2
Individual �re at A1 location Shared Fire Individual �re at A2 location

Noop 0 0 0
Heuristic 0.1 0.05 0.14

Coordination 0.29 0.12 0.32
POMCP 0.6 0.02 0.49

IPOMCP-l1 0.63 0.2 0.45
CIPOMCP-l1 0.21 0.72 0.06

Table 4.2 consists of the average putout counts of the �res in setup 1 per single run. Similar to setup

1, The NOOP method cannot put out any �res as the agents do not �ght any �re. As the current setup

requires coordination between agents to put out any �re, the heuristic reasoning �nds it hard to put out

any �re as the agents are acting randomly. Coordination reasoning is a modi�ed heuristic method and is

able to put out some more �res than the Heuristic reasoning. The IPOMCP-l1 sense the neighbor as the

POMCP agents and are likely to reason that the neighbor concentrates on the individual �res, pushing

them to focus on the individual �res. The CIPOMCP-l1 uses the communication to impact its neighbors.

In this setup, the CIPOMCP-l1 focuses its resources or suppressants to �ght and put out the shared �re.
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Figure 4.5: Models performance in setup 2: Rewards and Suppressants used

Figure 4.5 shows the performance of models in setup 1. The Coordination, Heuristic, and POMCP

have same almost the same rewards. From the average putout counts in the section 4.4, as all the models

on putting out the individual �re, they are likely to use similar rewards and use of suppressants. Besides,

the CIPOMCP-l1 using almost as many suppressants as the other models receives a very high reward as it

puts out the shared �re lot more.

Figure 4.6 depicts the communication results. Similar to setup 1, as the communication cost increases,

the agents will receive higher negative rewards whenever they chose to communicate. As a result, the per-

centage of communication decreases as with the rise in communication cost. The No Message percentage

increases with the rise of communication cost, which proves the trend mentioned above. Unlike setup 1,

the percentage of Full Suppressant is high when compared to the other messages. As a result, the level-0

CPOMCP predicts that the neighbors are going to �ght the shared �re based on the f-function. So the
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CPOMCP agent focuses its resources on shared �re more often than not. This makes the CIPOMCP-l1

agent also �ght the shared �re. Though the communication decreases with the rise in cost, the agents start

to communicate more honestly, as shown in the Figure 4.6

Figure 4.6: The impact of cost on the communication between the agents in Setup 2. a)(Left) Percentages
of di�erent messages vs costs of communication, b)(Right) Honest, Overall Communication percentages
vs Cost of Communication.
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4.5 Setup 3

This setup is similar to the previous one as it needs coordination between agents to put down any �re.

This setup location contains a ground �re�ghter and a helicopter at each location. Though the helicopter

is twice as potent as a ground �re�ghter, it should �ght along with the ground �re�ghter to put down the

medium individual �re. A shared �re only goes down when the two helicopters and a ground �re�ghter

are �ghting it.

Table 4.3: The average putout counts of a �re in setup 3
Method Setup 3

Individual �re at A1 location Shared Fire Individual �re at A2 location
Noop 0 0 0

Heuristic 0.12 0.04 0.15
Coordination 0.42 0.37 0.46

POMCP 0.54 0.16 0.61
IPOMCP-l1 0.63 0.03 0.64

CIPOMCP-l1 0.23 0.58 0.23

Table 4.3 consists of the average putout counts of the �res in setup 3 per single run. Similar to setup

1, the NOOP method and heuristic method is unable to put out the �res. Coordination reasoning is a

modi�ed heuristic method and is able to put out some more �res than the Heuristic reasoning. Unlike

in setup 202, the coordination algorithm bene�ts from the concentration of agents at two locations and

the reduced action state space of these agents as the chance of �re going down increases with agents

acting randomly. The coordination algorithm successfully exploits this feature as it is the second-best

technique after CIPOMCP. Besides, this setup increases the complexity of coordinating further, pushing

the POMCP and inturn IPOMCP agents to focus on putting down the individual �re. Similar to setup

202, the CIPOMCP - l1 uses communication to coordinate between its agents and shift their focus to

the shared �re.
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Figure 4.7: Models performance in setup 3: Rewards and Suppressants used

Figure 4.7 shows the performance of models in setup 3. The IPOMCP-l1 has almost the same rewards

as the POMCP because the former depends on the decisions made by POMCP agents. As a result, almost

the same actions or �res are picked most of the time resulting in the same reward. In this setup, the

coordination reasoning bene�ts due to the decrease in the action space of agents. As a result, it has almost

as much reward as the CIPOMCP-l1 even though it uses a lot more suppressants than the CIPOMCP-l1.

With its focus on the shared �re, the CIPOMCP-l1 reasoning obtains the highest reward with minimum

least use of suppressants.

Figure 4.8 depicts the communication results. The agents mostly communicated Full Suppressant

and No Message. As a result, the CPOMCP and inturn CIPOMCP-l1 tries to �ght the shared �re due to

the f-function.
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Figure 4.8: The impact of cost on the communication between the agents in Setup 3. a)(Left) Percentages
of di�erent messages vs cost of communication, b)(Right) Honest, Overall Communication percentages
vs Cost of Communication.
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4.6 Runtime Results

Table 4.4 shows the average runtime(in seconds) results for the IPOMCP-l1 and CIPOMCP-l1 models

for di�erent setups and trajectories when run on the server-client architecture and run sequentially. The

server-client architecture runs faster than the sequential planning. As the agents or planning parameters

increase, the sequential planning takes a lot of time to complete a run, whereas the parallel planning using

server-client architecture can complete the run in comparatively less time.

Table 4.4: Average runtime results of IPOMCP and CIPOMCP for di�erent trajectories
Trajectories-500 Trajectories-1000Setup Model Server-Client (s) Sequential (s) Server-Client (s) Sequential (s)

IPOMCP-l1 11.17 15.95 19.99 34.351 CIPOMCP-l1 30.45 41.43 58.42 77.63
IPOMCP-l1 13.38 27.29 25 52.82 CIPOMCP-l1 36.24 75.93 63.86 146.59
IPOMCP-l1 12.69 29.6 26.57 58.933 CIPOMCP-l1 43.78 108.92 74.23 210.2

42



Chapter 5

Conclusion

Decision theoretic planning is a major challenge in open and typed multi-agent systems. Though the use of

communication has its bene�ts, individual planning in such systems is not tractable. Our work extends the

existing CIPOMDP framework by using the Monte Carlo tree search as the solving technique. To counter

the challenges caused by the nested modeling in the framework, we introduce the f, g functions. Besides,

we introduce a group of agents called cliques in which every agent models everyone else. Our approach

demonstrates the utility of various techniques like frame action anonymity, pre-policy computation of

level 0 policies, and server-client architectures in increasing the algorithm’s scalability.

Our experiments in the wild�re suppression domain show the reduction in computational time

through the use of the above-mentioned strategies. The results from the experiments depict that the

agents in CIPOMCP-l1 use communication to put out the shared �re thereby, obtaining a high reward.

Further, they show the potency of the framework in the settings that require high coordination.

Some limitations and future work for the current approach are:

• The planning su�ers from the massive fan out at the possible belief nodes, i.e., observations under

an action node in the search tree. Each possible message set from neighbors produces a di�erent

observation leading to a di�erent belief node. As the number of possible message sets and, in turn,

belief nodes is exponential in the number of agents, the algorithm’s scalability is limited. In addition
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to that, the MCTS planner cannot visit most of the belief nodes during the search in a decent time.

When the planner receives the observation from the domain, the corresponding observation with

the same message set might not be visited in the tree during planning, leading to an empty belief.

Hence the belief update may be improper in-between time steps. Algorithms like PLEASE (Zhang

et al., 2015) and α-DESPOT (Garg et al., 2019) have been proposed in the literature to counter the

large observation spaces which should be tested in the current framework.

• Though the CIPOMCP-l1 agent uses communication to in�uence neighbors in the system, pro-

moting coordination, it does not expect to receive any messages from its modeled level 0 neighbors,

and they do not send messages. As a result, intentional communication in the planning occurs

when the agents start to plan at a level greater than one. However, the algorithm’s complexity in-

creases exponentially with the planning level, which makes the framework highly intractable to plan

at higher levels. Though the proposed framework utilizes the server-client network to parallelize

the planning process, it is not enough to scale the planning to level-2 or more. One direction for

future work is to explore the e�ectiveness of recent MCTS parallelization techniques in decreasing

the planning time to improve the algorithm’s scalability.
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