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ABSTRACT

In this thesis, we propose an approximation of the Spectral Clustering algorithm to cluster

high-dimensional large datasets. Spectral Clustering is limited in its application as it suffers

from a scalability problem in both memory use and computational time when the size of the

data is very large. In this work, we modify the spectral clustering algorithm by developing

an open source framework for approximate spectral clustering on a distributed level using

Apache Spark. To perform clustering on large data sets we implement a distributed design

of the algorithm and we construct a sparse affinity matrix using approximate nearest neigh-

bors. The design reduces the affinity matrixs construction time and storage requirements

without significantly affecting the accuracy of clustering. Experimental results on synthetic

and real datasets demonstrate the effectiveness of our framework with respect to both time

consumption and accuracy.
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CHAPTER 1

INTRODUCTION

In this chapter, we provide a brief introduction to clustering algorithms. The organization

of the thesis is given at the end of this chapter.

1.1 Introduction

The goal of clustering algorithms is to partition a set of data into groups of similar

objects [1]. Among the clustering algorithms, Spectral Clustering, a class of methods based

on eigen-decomposition of matrices, often gives a superior performance as compared to other

algorithms [2]. Because of its effectiveness in finding clusters [3], spectral clustering has

been widely used in several areas such as computer vision, information retrieval and pattern

recognition. (e.g. [4], [5], [2], [6]). Unfortunately, spectral clustering suffers a computational

bottleneck with the increase in the number of data points to cluster [7][8].

The proposed algorithm is open source and the implementation can be found here.

1.2 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we introduce the Apache

Spark framework, and provide a brief review of clustering algorithms. We also discuss the

challenges in clustering large datasets in this chapter. In Chapter 3, we briefly talk about the

Approximate Nearest Neighbor library ANNOY, and how it is used in our implementation

of the distributed framework. We also discuss the proposed framework in this chapter. In

Chapter 4 and Chapter 5, we discuss the experimental set up and experimental results using

synthetic and real-world datasets. We conclude the thesis in Chapter 6.

1
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CHAPTER 2

BACKGROUND & RELATED WORK

In this section, we discuss the Apache Spark framework and provide an overview of clustering

algorithms. After that we summarize the previous work related to our work.

2.1 Apache Spark Framework

Apache Spark is a powerful open source distributed processing engine originally devel-

oped at UC Berkeley in 2009 [9]. The main feature of Apache Spark is the memory cluster

computing. This feature increases the processing speed of an application. Spark is designed

to cover a vast range of workloads such as batch applications, iterative algorithms, interactive

queries and streaming.

2.1.1 Spark Architecture

Apache Spark follows a master/slave architecture with two main daemons and a cluster

manager.

1. Master Daemon (Master/Driver process)

2. Slave Daemon (Worker process)

Resilient Distributed Datasets (RDDs) are the lowest level data structures in Spark.RDDs

and their transformations describe how to compute operations. Directed Acyclic Graphs

(DAGs) represent transformations and dependencies between RDDs. A Spark Application at

a high level consists of a SparkContext and user code which interacts with it creating RDDs

and performing a series of transformations to achieve the result. These transformations of

2
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RDDs are then translated into a DAG and submitted to a Scheduler to be executed on a set

of worker nodes.

A Spark cluster consists of a single master and any number of workers. Let us discuss

the Spark architecture [17] as seen in Figure 2.1.

1. The Driver Program runs on the master node of the Spark cluster and schedules the

job execution and negotiates with the cluster manager. It translates the RDDs into the

execution graphs and stores their metadata and partitions.

2. Workers are the distributed agents responsible for the execution of tasks. Workers

usually run for the entire lifetime of a Spark application. Workers perform the data

processing tasks and interact with the storage system. They read data from and write

data to external sources.

3. The Cluster Manager is responsible for acquiring resources on the Spark cluster and

allocating them to a Spark job. There are three different types of cluster managers a

Spark Application can leverage for the allocation and deallocation of various physical

resources such as memory for client Spark jobs, CPU memory, etc. Hadoop YARN,

Apache Mesos or the simple standalone Spark cluster manager, either of them can

be launched for a Spark application to run. Choosing a cluster manager for any Spark

application depends on the goals of the application because all cluster managers provide

different set of scheduling capabilities.

Figure. 2.1: Apache Spark Architecture [17] consists of a Driver program, a Cluster Manager
and Worker Nodes.
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2.1.2 Resilient Distributed Datasets [RDDs]

Resilient Distributed Datasets (RDDs) are a distributed memory abstraction that lets

programmers perform in-memory computations on large clusters in a fault-tolerant manner.

[10]. According to the scaladoc of org.apache.spark.rdd.RDD: A Resilient Distributed Dataset

(RDD), the basic abstraction in Spark, represents an immutable, partitioned collection of

elements that can be operated on in parallel. RDDs are immutable objects. They read only

abstraction and cannot be changed once created. One RDD can be transformed into another

RDD using transformations like join, map, filter, etc. The immutable nature of RDDs helps to

make them consistent. RDDs are distributed, which means that they are present on multiple

nodes in a cluster.

Apache Spark supports two types of operations:

1. Transformations

Spark Transformation is a function that produces new RDD from the existing RDDs.

It takes RDD as input and produces one or more RDD as output.

2. Actions

Actions are Spark RDD operations that give non-RDD values. The values of action

are stored to drivers or to the external storage system. It brings laziness of RDD into

motion.

Spark makes use of lazy evaluation for computing RDDs. The data inside an RDD

will not be transformed unless an action triggers the execution of the transformation. Spark

maintains the record of which operation is being called through DAGs. Since transformations

are lazy in nature, any operation can be executed at any time by calling an action on the

RDD. RDDs are also cacheable i.e. they can hold the data in the desired persistent storage.

RDDs in Spark process data in parallel. Spark RDDs have various types RDD [int], RDD

[long], RDD [string].
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2.1.3 Directed Acyclic Graphs [DAGs]

(Directed Acyclic Graph) DAG in Apache Spark is a set of Vertices and Edges, where

vertices represent the RDDs and the edges represent the Operation to be applied on RDD.

It contains a sequence of vertices such that every edge is directed from earlier to later in

the sequence. On calling of Action, the created DAG is submitted to DAG Scheduler which

further splits the graph into the stages of the task.

DAG in Apache Spark is an alternative to the MapReduce. It is a programming style

used in distributed systems. In MapReduce, we just have two functions (map and reduce),

while DAG has multiple levels that form a tree structure. Hence, DAG execution is faster

than MapReduce because intermediate results are not written to disk.

2.2 Other parallel distributed programming models

Apache Hadoop is a software framework that supports data-intensive distributed appli-

cation and was inspired by Googles MapReduce and Google File System (GFS). Hadoop

MapReduce is a software framework for easily writing applications which process vast

amounts of data in-parallel on large clusters in a fault-tolerant manner. One of the main

limitations of MapReduce is that it persists the full dataset to HDFS after running each

job. This is very expensive, because it incurs both three times (for replication) the size of

the dataset in disk I/O and a similar amount of network I/O. Spark takes a more holistic

view of a pipeline of operations. When the output of an operation needs to be fed into

another operation, Spark passes the data directly without writing to persistent storage. The

main innovation of Spark was to introduce an in-memory caching abstraction. This makes

Spark ideal for workloads where multiple operations access the same input data. Users can

instruct Spark to cache input data sets in memory, so they don’t need to be read from

disk for each operation. The primary advantage Spark has is that it can launch tasks much

faster. MapReduce starts a new JVM for each task, which can take seconds with loading

JARs, JITing, parsing configuration XML, etc. Spark keeps an executor JVM running on
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each node, so launching a task simply takes in the single digits of milliseconds. Also, Hadoop

provides batch processing, whereas Spark is a good fit for both batch processing and stream

processing. Spark speeds up batch processing via in-memory computation and processing

optimization. Spark is also easier to use than Hadoop as it comes with user friendly APIs

for Scala, Java, Python and Spark SQL.

Message Passing Interface (MPI) [11] is an Application Programming Interface spec-

ification that allows processes to communicate with each other by sending and receiving

messages. It is a standard for parallel programs running on computer clusters and super-

computers, where the cost of accessing the non-local memory is high. In order for parallel

computing to work, the various computers need to be able to communicate with each other

to pass messages back and forth. MPI Message Passing Interface was created to facilitate

this communication. MPI needs to be implemented by the hardware vendor, and any hard-

ware that has an MPI implementation built into can be accessed by connected systems via

the MPI protocol.

OpenMP (Open Multi-Processing) [12] is an API that supports multi-platform shared

memory multiprocessing programming. Therefore, programming module entails that all

threads have access to the same globally shared memory. Data can be shared or private.

However, this model only runs efficiently in shared-memory multiprocessor platforms and

its scalability is limited by memory architecture [12].

2.3 Overview of clustering algorithms

Clustering is an unsupervised learning problem which deals with finding a structure

from a collection of unlabeled data. Data clustering algorithms can be hierarchical or parti-

tional. In the following sections, we introduce some important classes.

2.3.1 Hierarchical algorithms
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Hierarchical algorithms [13] find successive clusters using previously established clus-

ters. Hierarchical algorithms can be agglomerative (bottom-up) or divisive (top-down).

Agglomerative algorithms begin with each data point as a separate cluster and merge them

in successively larger clusters. Divisive algorithms begin with the whole set in the same

cluster and proceed to divide it into successively smaller clusters. Hierarchical clustering

procedures have the advantages of an easily interpreted graphical representation and are

robust to poor algorithm initialization and getting stuck in local minima [14]. However, they

only consider local neighbors when merging/splitting clusters and cannot incorporate a priori

knowledge about the global shape or size of clusters [14]. The complexity of agglomerative

clustering is O(n2log(n)) [15], which makes it too slow for clustering large data sets. Divisive

clustering with an exhaustive search is O(2n) which is even worse [15].

2.3.2 Partitional algorithms

Partitional algorithms generally determine all cluster at once, and can also be used

as divisive algorithms in the hierarchical clustering. Partitional clustering procedures do

incorporate global characteristic knowledge through appropriate distance measures in the

objective function. Another advantage of partitional clustering methods is that they are

dynamic in the sense that pixels can be assigned different clusters to reduce the objective

function [14].

2.3.3 K-means Clustering Algorithm

K-means [16] follows a simple and easy way to classify a given data set into a certain

number of clusters (assume k clusters fixed a priori). This algorithm aims at minimizing an

objective function, in this case a squared error function. The objective function is:

k∑
j=1

N∑
i=1

||x(j)i − cj||2 (2.1)

where ||x(j)i − cj||2 is a chosen distance measure between a data point x
(j)
i and the cluster

center cj. The K-means algorithm is composed of the following steps:
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1. Place k points into the space represented by the objects that are being clustered. These

points represent initial group centroids.

2. Assign each point to the group that has the closest centroid.

3. Recalculate the positions of the k centroids when all the points have been assigned.

4. Repeat step 2 and 3 until the centroids no longer move. This produces a separation

of the points into groups from which the objective function to be minimized can be

calculated.

K-Means algorithm suffers from many weaknesses as follows:

1. The number of clusters, k, must be determined before hand.

2. Initial seeds may have a strong impact on final results. Different initial condition may

produce different result of cluster. The algorithm may be trapped in local optima.

For every different run of the algorithm on the same dataset, if different set of initial

centers are chosen, it may lead to different partitions or clustering results on different

runs of the algorithm. Therefore, it is very hard to get consistent and reliable clustering

results.

3. K-Means does not work well with non globular clusters as K-Means will tend to pick

spherical clusters.

2.3.4 Spectral Clustering Algorithm

This section explains the spectral clustering algorithm and describes the resource bot-

tlenecks inherent in this approach. We consider the most commonly used normalized spectral

clustering [17].

Spectral clustering algorithm constructs a pairwise similarity matrix S by using a sim-

ilarity function, computes the Laplacian matrix L and then computes the eigenvectors of L.

It is shown that the second eigenvector of the normalized graph Laplacian is a relaxation of
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a binary vector solution that minimizes the normalized cut on a graph [17]. An example of

the similarity function is the Gaussian kernel:

Sij = exp− ||xi − xj||
2

2σ2
(2.2)

where σ is the scaling parameter.

Given a set of points in {Xi}Ni=1 and d is the dimensionality, the Spectral clustering

algorithm is composed of the following steps:

1. Form the similarity matrix, S ∈ RNxN defined by S = exp− ||xi−xj ||
2

2σ2 if i 6= j and

Sij = 0.

2. Define D to be the diagonal matrix whose (i, i)-element is the sum of S’s i-th row, and

construct the matrix L = D−1/2AD−1/2.

3. Find V1, V2, ..., Vk the top k eigenvectors of L, and form the matrix X = [V1, V2, ..., Vk] ∈

RNxk by stacking the eigenvectors in columns.

4. Form the matrix Y from by renormalizing each of X’s rows to have unit length, Yij =

Xij√∑
j X

2
ij

.

5. Treat each row in Y as a point as a point in Rk and cluster them into clusters using

K-means [16].

6. Assign the original point Xi to cluster j if and only if row i of the matrix Y is assigned

to cluster j.

The scaling parameter σ2 controls how rapidly the affinity Sij decreases with the dis-

tance between Xi and Xj. Let A be an NxN matrix. If λ is an eigenvalue of A then a cor-

responding nonzero vector v is called an eigenvector of A corresponding to λ if (AI)v = 0.

The advantages of Spectral Clustering can be summarized as follows:s

1. Spectral clustering is a mathematically well-formed clustering algorithm and performs

well for non-Gaussian clusters [17].
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2. As opposed to K-means clustering, Spectral clustering does not make assumptions on

the form of the cluster. This property comes from the mapping of the original space to

eigenspace.

3. Spectral clustering does not intrinsically suffer from the problem of local optima [17].

It performs significantly better than the linkage algorithm [18] even when the clusters

are not well separated.

2.4 Performance Metrics for Clustering

An important task after computing clusters for a given dataset is to measure the quality

of the clusters obtained. An evaluation measure is needed to compare how well different data

clustering algorithms perform on a set of data. To measure the quality of clustering results

there are two types of validity scores, external indices and internal indices [19]. An external

index is a measure of agreement between two partitions where the first partition is the a

priori known clustering structure, and the second results from the clustering procedure [20].

Internal indices are used to measure the goodness of a clustering structure without external

information [21]. For external indices, we evaluate the results of a clustering algorithm based

on a known cluster structure of a data set (or cluster labels). For internal indices, we evaluate

the results using quantities and features inherent in the data set. The optimal number of

clusters is usually determined based on an internal validity index. For external indices, we

need to have the ground truth for a given data set, i.e., we need to have the set of correct

labels to the given dataset. Rand Index score is one example of an external validity score.

Silhouette Score is an example of an internal validity score. These two metrics have been

explained in detail below.

2.4.1 Silhouette Score

The silhouette score is a measure of how similar a point is to its own cluster (cohesion)

compared to other clusters (separation) [22]. The silhouette score ranges from -1 to +1

where a high value indicates that the object is well matched to its own cluster and poorly
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matched to neighboring clusters [22]]. If most objects have a high value, then the clustering

configuration is appropriate and if many points have a low or negative value, then the

clustering configuration may have too many or too few clusters [22]. The silhouette score can

be calculated as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(2.3)

where s(i) is the silhouette score for each data i, a(i) be the average dissimilarity of i with all

other data within the same cluster. b(i) is the lowest average dissimilarity of i to any other

cluster, of which i is not a member. The average s(i) of a cluster will give us a measure of

how tightly coupled all the data in the cluster are.

2.4.2 Rand Index score

The Rand Index or Rand measure [23] is a measure of accuracy between two data

clustering results. Given a set of n elements S = {o1, o2, ..., on} and two partitions of S to

compare, X = {X1, X2, ..., Xr}, a partition of X into r subsets, and Y = {Y1, Y2, ..., Ys}, a

partition of Y into s subsets, define the following [23],

• a, number of pairs of elements in S, that are in the same subset in X and in the same

subset in Y .

• b, number of pairs of elements in S, that are in different subsets in X and in different

subsets in Y .

• c, number of pairs of elements in S, that are in the same subset in X and in different

subsets in Y .

• d, number of pairs of elements in S, that are in different subsets in X and in the same

subset in Y .

The Rand Index, R, is given as [23],

R =
a+ b

a+ b+ c+ d
(2.4)
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The Rand Index has a value between 0 and 1, with 0 indicating that the two data

clusterings do not agree on any pair of points and 1 indicating that the data clusterings are

exactly the same [23].

2.5 Challenges in Clustering large datasets

There are some fundamental issues when using spectral clustering algorithm on large

datasets. We identify the following stages at which the spectral clustering algorithm experi-

ences crucial bottlenecks.

1. Similarity Matrix Computation: The full similarity matrix having N2 dimensions

cannot be stored in main memory. Therefore, techniques which reduce the storage

capacity will be very helpful. Instead of computing the full affinity matrix, we com-

pute a sparse affinity matrix using ANNOY [8], a library for finding approximate

nearest neighbors, which uses random projections to split the search space and finds

the approximate nearest neighbors. A sparse representation effectively handles the

memory bottleneck.

2. The Singular Value Decomposition step: This step is computationally expensive and is

cubic to the number of points in the dataset. To tackle this issue, we use the distributed

implementation of Singular Value Decomposition provided by Apache Spark.

3. Clustering step: K-Means is also expensive which adds to being another bottleneck in

the process. We make use of the distributed implementation of the K-Means clustering

algorithm provided by the Apache Spark framework.

In this work, we try to address each of these bottlenecks in order to improve the

performance of Spectral clustering and enable it to work on large-scale multidimensional

datasets.
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2.6 Related Work

Clustering large scale data is an actively researched area [24][25][26]. In [26], Kulis

and Grauman generalize locality-sensitive hashing to accommodate kernel functions and use

this method for large-scale scalable image search. BIRCH [24] is also another example, in

which the method pre-clusters large datasets by incrementally grouping the data as tightly

as possible based on the similarity of the attributes of the data points. It constructs as

many representatives of the data as the available memory can contain. In [17] they develop

a distributed spectral clustering algorithm for large scale datasets using the MapReduce

framework of Apache Hadoop. However, Hadoop MapReduce does not leverage the memory

of the Hadoop cluster to the maximum whereas Apache Spark executes jobs 10 to 100 times

faster than the Hadoop MapReduce. Also, they have not made their code openly available,

so their results cannot be reproduced easily.

Apache Mahout also has an open source implementation of spectral clustering; however,

they assume that the user will provide the affinity matrix of the data points as an input,

which greatly reduces the computational complexity of the affinity matrix construction step.

Several methods are available for sparsifying the affinity matrix [3].

Another popular approach to speed up spectral clustering is rank reduction which

refers to a large class of methods in numerical algebra in which a matrix is replaced with

a low rank approximation. The affinity matrix of spectral clustering is a natural target

for rank reduction. Nystrom approximation has been used by [7], which samples columns

of the affinity matrix and approximates the full matrix by using correlations between the

sampled columns and remaining columns. A variety of sampling procedures can be used. A

drawback of these methods is they do not incorporate any information of the affinity matrix

while choosing the columns to sample and they do not provide performance guarantees. [27]

proposes a method that does not use eigenvectors, but they assume the availability of the

similarity matrix.
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In this work, we aim at developing a distributed spectral clustering package which

provides users an open source environment to apply spectral clustering on large-scale mul-

tidimensional datasets. We achieve this by approximation of the dense similarity matrix by

using ANNOY, a library for approximate nearest neighbors.



CHAPTER 3

PROBLEM STATEMENT & THESIS CONTRIBUTIONS

Our goal is to present a distributed open source framework for spectral clustering to

provide the user the freedom to provide the required input parameters and be able to spin

up clusters in order to use spectral clustering on large scale and high dimensional data.

3.1 Problem Statement

As discussed in [28] and in Section 2.5 of Chapter 2, the computational resources

required by Spectral Clustering in processing large scale data are often prohibitively high.

The computation of the similarity matrix takes time and space to compute and store. If faced

with large datasets, this algorithm will simply fail to run, either due to memory insufficiency

or unacceptable long processing time. We propose to use an approximated similarity matrix

instead of the dense similarity matrix construction to reduce the computational complexity

of this algorithm. Furthermore, we provide a distributed implementation of the Spectral

Clustering algorithm with the help of the opensource Apache Spark framework.

3.2 Thesis Contributions

Our contributions can be summarized as follows:

1. We present a novel, distributed, open source for the Spectral Clustering algorithm.

2. The design of the algorithm reduces the computational time complexity and space

complexity of the algorithm by approximating the similarity matrix construction and

also by using the Apache Spark framework.

15
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3. The experimental results show that the proposed method also maintains the clustering

accuracy.



CHAPTER 4

PROPOSED OPEN SOURCE DISTRIBUTED SPECTRAL CLUSTERING

ALGORITHM

It is essential to conduct spectral clustering in a distributed environment to alleviate

both memory and computational bottlenecks. In this section, we discuss these challenges

and then propose our distributed algorithm. In the following section, we will first review

the concept of random projections for finding nearest neighbors in a given dataset. Then we

will present the ANNOY library used in our framework. We will then describe our proposed

framework and implementation details.

4.1 Nearest Neighbors using Random Projections

Nearest neighbor search is an important part of many machine learning algorithms.

Nearest Neighbors is a type of instance-based learning, it does not construct a general model,

but simply stores instances of the training data. For every new point, the class with a majority

vote of the nearest neighbors is assigned to the new point. For example, for a given query

point, if neighborhood is set to k = 5 data points, then the label of the query point is

the majority label of the nearest 5 points. The optimal choice of k is highly data dependent.

Under some circumstances, a variation of nearest neighbors called weighted nearest neighbors

is used, where nearest neighbors are weighted by how far away from the query point they

are.

It is obvious that it is computationally expensive to find the k nearest neighbors when

the dataset is very large. Also, the performance depends on the number of dimensions of the

data.
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Random projections [29] is a dimension reduction technique and is used to approxi-

mate the cosine distances between the vectors. Random projections are used to construct

compressed versions of high dimensional data by computing linear combinations of dimen-

sions weighted by random coefficients. The idea is to choose a random hyperplane at the

outset and use the hyperplane to hash input vectors. The reason random projections work is

because the dimensions and distribution of random projection matrices are controlled so as

to preserve the pairwise distances between any two samples of the dataset. Also, the direc-

tions of the projections are independent of the data. Thus random projection is a suitable

approximation technique for distance based method [30].

Given two vectors x and y, the cosine of the angle between them is the dot product x.y

divided by the L2 norm of x and y, for instance, the Euclidean distances from the origin.

Given and input vector v and a hyperplane defined by, r, we let, h(v) = sng(v.r) = ±1.

Each possible choice of r defines a single function. Let H be the set of all such functions and

D be the uniform distribution. For two vectors u and v we have:

Pr[h(u) = 1− θ(u, v)/π] (4.1)

Where θ(u, v) is the angle between u and v. Given functions in this family, there will be bits

in the result for every input data point. These bits are concatenated and serve as a unique

signature for the input vector. Points having a large portion of corresponding bits identical

are considered to be close to each other.

4.2 ANNOY (Approximate Nearest Neighbors, Oh Yeah)

ANNOY library was built by Erik Bernhardsson during his work at Spotify to find

music recommendations. Annoy is a C++ library with Python bindings, and also has a

Spark Data Frame version, to search for points in space that are close to a given query

point. Annoy uses random projections to split up the search space by building up a tree, and

find approximate nearest neighbors.
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At every intermediate node in the tree, a random hyperplane is chosen, which divides

the space into two subspaces. This hyperplane is chosen by sampling two points from the

subset and taking the hyperplane equidistant from them. We do this times so that we get a

forest of trees. has to be tuned to your need, by looking at what trade-off you have between

precision and performance.

4.3 Open Source Distributed Spectral Clustering(OSDSC) Algorithm and Imple-

mentation

The proposed algorithm in the distributed environment approximates the similarity

matrix using the ANNOY library and speeds up the spectral clustering algorithm. Because

of the distributed setting, the memory footprint is also reduced. We present the design of the

proposed OSDSC algorithm by implementing it on the open source, distributed computing

environment, Apache Spark.

The algorithm implementation on Apache Spark is explained in the following steps.

Each step has a pseudo code explaining each step of the algorithm in detail.

The user inputs the dataset in the form of an RDD of datapoints. As already seen, an

RDD, the fundamental data structure of Spark, will store the data by partitioning it. The

partitioned collection of points can be operated on in parallel.

1. Building the similarity matrix.

For each data point, we compute k nearest neighbors using the ANNOY library.

ANNOY library returns k neighbors for each point in the dataset. We only compute the

similarity between the given point and the k neighbors returned. This step will give us

an RDD which holds the similarity of n points with k other points. Each point is stored

by Apache Spark as an insance of IndexedRow. The IndexedRow in Spark will be able

to hold a collection of SparseVectors. In Spark, ”Row” is a generic row object with

an ordered collection of fields that can be accessed by an index, in which case it will
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be an IndexedRow. An IndexedRowMatrix can be created from an RDD[IndexedRow]

instance. The base class of local vectors is Vector, and Spark provides two implemen-

tations: DenseVector and SparseVector. Since, the affinities computed will be sparse,

each point with just k other points, we use the SparseVector in order to store the

affinities computed. A SparseVector will only store the values, and the locations in the

vector at which the value is present, eliminating the zeros in the vector. This greatly

reduces the storage requirements of the affinity matrix for large datasets.

The similarity function used is:

Sij = exp− ||xi − xj||
2

2σ2
(4.2)

where σ is a scaling parameter to control how rapidly the similarity Sij reduces with

the distance between Xi and Xj. Table 4.1 shows the pseudo code for this step.

Table. 4.1: Pseudocode for computing the similarity matrix.

Pseudocode 1: Computing the similarity/affinity matrix, A, using ANNOY library
/*Input: RDD of data points,number of dimensions of data points, d, number

of neighbors, k.
Output: RDD of points with affinities computed with each of the k neighbors

of the point. */
1 For the given input, train an ANNOY model and fit the given dataset.

The result will be a trained annoyModel.
2 Pass the parameter for the number of neighbors required to this

trained annoyModel and obtain k neighbors for each point in the data
set.

3 Compute the affinities of each point with its neighbors by using the
equation in (3.1).

4 The affinities computed in step 3, are stored using a sparse Vector,
the final results a distributed sparse affinity matrix in Apache Spark.

2. Broadcasting the diagonal matrix.

The diagonal matrix is computed using the affinity matrix computed in step 1. The

diagonal matrix is actually an RDD consisting of one value for each point in the affinity

matrix. Each value in this RDD will be calculated by performing a transformation on
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the RDD of the affinity matrix. The diagonal matrix value for each point is merely

the sum of the affinity matrix columns. In order to optimize the implementation of the

Laplacian matrix, we also precompute the inverse square root value of the diagonal

matrix, which will be useful in Step 3. Since we are working on RDDs, this task will

be done in parallel on all worker nodes and a new RDD for the diagonal matrix will

be computed.

affinity.map(v => 1/Math.sqrt(v.vector.toArray.sum) (4.3)

The result of the above operation will result in a single value for each point in the

affinity matrix. This resulting RDD obtained, the diagonal matrix, will be of size equal

to the number of datapoints. It will be broadcasted to all the nodes in the cluster. This

is termed as broadcasting. Each node in the cluster will need access to this diagonal

matrix for computing the Laplacian matrix step 3. When broadcasted, the master of

the cluster, will collect all the partitions of the RDD, and then distribute it as a Vector

to each node in the cluster. It should be noted that if we have a million points, then

assuming we are using float point precision, we will need only 4MB storage space on

each node to store the distributed matrix. It is safe to assume that the diagonal matrix

will fit on each machine. Table 4.2 shows the pseudo code for this step.

Table. 4.2: Pseudocode for broadcasting the diagonal matrix.

Pseudocode 2: Computing the Diagonal matrix: D
/*Input: Affinity matrix, A, computed in Step 1.

Output: Inverse square root of Diagonal Matrix, D
−1/2
i */

1 For each row in the affinity matrix,
a. Compute the sum.
b. Take the square root of this sum value.
c. Invert the value.

2 For each point value obtained in (1) is broadcasted (distributed) to
each node in the cluster.

3. Building the Laplacian Matrix
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The Laplacian matrix will be computed using the Affinity and Diagonal matrices com-

puted in step 2 and step 3 respectively. As seen in step 1 and step 2, the Affinity

Matrix is of the instance RDD[IndexedRow], whereas the Diagonal Matrix is a broad-

casted Vector. The computation of the Laplacian matrix will be triggered with a map

transformation on the RDD of the Affinity Matrix. The laplacian is computed as:

L = D−1/2AD−1/2 (4.4)

The broadcasted D−1/2 is collected at every node in the cluster as an array. For each

IndexedRow in affinity matrix, which consists of an index, values and the locations at

which the values are present, the values are multiplied (a simple dot product) with the

respective diagonal element present at the location given by the SparseVector. In this

way we skip the computation of the zero entries. Table 4.3 shows the pseudo code for

this step.

Table. 4.3: Pseudocode for computing the Laplacian matrix.

Pseudocode 3: Computing the Laplacian matrix: W
/*Input: Affinity matrix A, computed in step 1, Diagonal matrix D, computed

in step 2
Output: Laplacian matrix W. */
1 Using the affinity matrix and diagonal matrix, compute the Laplacian

matrix using the equation: L = D−1/2AD−1/2.
2 The Laplacian matrix is stored using an IndexedRowMatrix in Apache

Spark. This is basically a row distributed data structure, which means
the different rows of the computed matrix, will be stored on different
nodes in the cluster.

4. Eigen-decomposition

In this step, we compute the eigen vectors of the Laplacian matrix. We use the dis-

tributed computeSVD implementation from the MLLib package of Apache Spark. Table

4.4 shows the pseudo code for this step.

5. K-Means clustering
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Table. 4.4: Pseudocode for computing the SVD.

Pseudocode 4: Computing the SVD of the input matrix.
/*Input: Laplacian Matrix W, computed in step 3, Number of eigenvectors to

compute: k
Output: Eigen vectors, U, of matrix W */
1 We use the computeSVD function available on distributed indexed

row matrices in Apache Spark, to obtain the matrix U, which consists
of the eigenvectors of W.

2 Find V1, V2, ..., Vk, the first Ki eigenvectors of Li and form the matrix
Xi = [V1, V2, ..., Vk] ∈ RNixKi by stacking the eigen vectors in columns.

3 Form the matrix Y by renormalizing each of Xs rows to have unit
length, Yij =

Xij√∑
j X

2
ij

We use the points obtained in matrix Y, from step 4. We use the distributed K-Means

implementation from the MLLib package of Apache Spark. Table 4.5 shows the pseudo

code for this step.

Table. 4.5: Pseudocode for clustering the matrix Y using K-Means clustering.

Pseudocode 5: Cluster the points in matrix Y , using K-Means.
/*Input: Matrix Y, computed in step 4, Number of clusters to compute, k
Output: cluster label: C for each point in the dataset. */
1 Treat each row in Y as a point in Rk, cluster them into Ki clusters

using the K-Means clustering algorithm.
2 Train the input data (Y ).
3 This will create a K-Means Model, upon calling the fit() method, we

will receive the output as an RDD in the form of (point, class), which
will basically mean for each point, we will get the associated cluster,
class, the point belongs to.

4.4 Time Complexity Analysis of OSDSC

Let us consider each step of the algorithm described in section 3.3 and analyze the

complexity at each step. Let us suppose we are clustering N points:

1. Computing the similarity matrix for all N points will be O(N2) . However, we only

compute the similarity for every point and its k approximate nearest neighbors. This
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reduces the complexity of this step to O(kN) where k is the number of approximate

neighbors specified by the user.

2. For computing the inverse square root of the diagonal matrix D is O(N) and the

complexity of multiplying an NxN diagonal matrix with a NxN matrix is O(N2).

However, if the similarity matrix is sparse, the actual running time can be greatly

reduced, as we can skip the computation of zero entries in the similarity matrix. For a

similarity matrix that contains U non-zero entries, the complexity of this step is O(U).

3. The complexity of computing the Laplacian matrix, is the same as explained in Step

2, and will be O(U).

4. The SVD step on Spark requires O(Nkn), where ,k is the number of nearest neighbors

and n is the number of eigen vectors needed.

5. Complexity of the K-Means step, for clustering points into K clusters is O(Ndc) per

iteration, where computing the distance is O(d) and c is the number of clusters.

Therefore, the total complexity of the proposed algorithm is:

TimeComplexity = O(kn) + 2O(U) +O(Nkn) +O(Ndc) (4.5)

4.5 Performance Metrics in Spark for OSDC

The distributed algorithm was implemented on the open source Apache Spark frame-

work. Spark.mllib provides a suite of metrics for the purpose of evaluating the performance

of these machine learning models. However, machine learning algorithms fall under broader

types of machine learning applications like classification, regression, clustering, etc.

Currently there are no evaluation metrics available for clustering machine learning

models on spark.mllib. This required us to implement our own evaluation metrics on Apache

Spark. We provide these metrics as a part of the OSDC framework, but they are generic

enough to be called by any clustering algorithm provided under spark.mllib.
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For evaluating cluster results, we implemented two evaluation techniques namely, sil-

houette score [22] and rand index [23]. These techniques have been explained in detail in

Section 2.4 of Chapter 2.



CHAPTER 5

EXPERIMENTS

In this chapter, we evaluate the proposed algorithm on a cluster. We explain the evalu-

ation metrics, then discuss the setup of the experiments. After that we present the evaluation

of the results.

5.1 Experimental Setup

This section discusses the experimental setup done and the dataset used for running

the algorithm.

5.1.1 Cluster Setup

The experiments were conducted on a cluster using the Amazon Web Service (AWS)

Elastic MapReduce (EMR). Each of the machine is equipped with high frequency Intel Xeon

E5-2670 v2 (Ivy Bridge) processors and 8 vCPU, 15 GiB memory and 80 SSD GB storage.

One machine in the cluster serves as the master (job tracker) and the others are slaves (task

trackers). The cluster sizes are varied starting from 1 master-4 slaves up to 1 master-8 nodes.

The software stack on each machine of the cluster and the property of the dataset are given

in Table 4.1.

5.1.2 Dataset

The dataset used in the experiment is 64-dimensional randomly generated data, each

dimension takes a real value chosen from the period [0-1]. We use the range [0-1] because

dataset normalization is a standard preprocessing step in data mining applications [1]. The

size of the dataset ranges from 1024 to a million data points.
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For real world dataset, the CIFAR10 dataset [31] was used. This dataset comprises of

50000 32x32 color images in 10 classes, with 5000 images per class. This dataset consists of

each point (an image) with 3072 dimensions, each channel will comprise of 1024 values for

a 32x32 image, and there are three channels namely, red, green and blue channels for each

image.

We also used the MNSIT dataset [32]. The original black and white (bilevel) images

from NIST were size normalized to fit in a 20x20 pixel box while preserving their aspect

ratio. The resulting images contain grey levels as a result of the anti-aliasing technique used

by the normalization algorithm. The images were centered in a 28x28 image by computing

the center of mass of the pixels, and translating the image so as to position this point at

the center of the 28x28 field. This gives us a dataset which consists of each point (an image)

with 784 dimensions. The MNIST training set is comprised of 60000 training points too.

For both the above datasets we have the ground truth labels available and could there-

fore use the Rand Index score [23] in order to evaluate the clustering accuracy.

Table. 5.1: OSDSC experiment setup.

OS Ubuntu Linux
Spark Version 1.6.2
Java Version 1.7.0 111 (Oracle Corporation)
Scala Version 2.10.5

We implement the proposed method OSDSC and compare the method against three

other methods. One is the basic distributed Spectral Clustering (SC) [33] which is the existing

implementation in Mahout, Distributed Approximate Spectral Clustering (DASC) [33], and

the Parallel Spectral Clustering (PSC) in [34]. PSC is implemented by Chen [34] in C++

using PARPACK library [35] as underlying eigen value decomposition package and F2C to

compile fortran code. The parallelization is based on MPI. All the experimental runs were

done three times for each set up, and the final values of results given are an average of the

three runs.
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5.2 Results and Analysis for Synthetic Datasets

5.2.1 Scalability

Processing time is the running time of the program. Table 4.2 shows the processing

time of our proposed algorithm OSDSC compared with DASC [33], PSC [34] and SC [33].

It can be observed that OSDSC considerably improves the running time. It should be noted

that for PSC, one big drawback is that, in order to find out a group of nearest neighbors

for a data point, it still needs to do a pair-wise computation. Figure 5.1 shows the clear

improvement in the processing time that OSDC has over the other algorithms.

Table. 5.2: Processing time comparison from 1024 to 16384 points (in seconds).

OSDSC DASC SC PSC
1024 points 78 90.1 79.2 12.1
2048 points 86 187.5 256.3 42.2
4096 points 92 346.1 826.9 160.5
8192 points 104 703.8 3041.2 610.2
16384 points 120 1562.6 12328.8 2318.8
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Figure. 5.1: Processing time comparison from 1024 to 16384 points (in seconds) for OSDSC,
DASC [27], PSC [28] and SC [27]. It can be seen that OSDSC algorithm does consistently
better than the other algorithms.

Figure 5.2 shows the processing time in seconds for points ranging from 1024 to 16384.

We can see a linear growth in time. This shows that the distributed implementation of the

OSDSC algorithm greatly improves the performance and can be used for clustering large

scale datasets.
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Figure. 5.2: Processing time for datasets ranging from 1024 to 1048576 points (in seconds).
All the experiments were conducted on a cluster of 5 nodes on the AWS EMR framework.

Figure 5.3 shows the memory consumption of the OSDSC algorithm for points ranging from

1024 to 1048576 points in MB-sec. It can be seen that when the dataset grows, the memory

consumption increases rapidly.
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Figure. 5.3: Memory consumption of the OSDSC algorithm for points ranging from 1024 to
1048576 points in MB-sec.

Figure 5.4 shows the effect of changing the number of dimensions of the datasets on the

processing time of the algorithm. The graph shows that the algorithm can scale well for

increasing number of dimensions.
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Figure. 5.4: Processing time (in seconds) for varying dimensions of the datasets.

Figure 5.5 shows the processing time in seconds for different dimensions of the dataset. In

this case we used a dataset of 65536 points and with dimensions ranging from 16 to 4096.
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Figure. 5.5: Processing time (in seconds) for dimensions ranging from 24 to 212. The number
of datapoints in all cases was a constant of 65536. This experiment was conducted on a
cluster of 5 workers and 1 master. The number of nearest neighbors for the affinity matrix
construction was 10.

Figure 5.6 shows the processing time (in seconds) for various cluster configurations. In order

to understand if the algorithm scales well, the processing time should decrease with increase

in the number of workers i.e. increase in the cluster size. However, we also need to take into

account the overhead of a distributed network architecture, and this overhead can be seen

in Figure 4.6. After the number of workers are increased beyond 6, there is a slight increase

in the processing time.
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Figure. 5.6: Processing time (in seconds) for different cluster configurations. The number of
datapoints in all cases was a constant of 65536. This experiment was conducted on clusters
with workers ranging from 4 up to 8. The number of nearest neighbors for the affinity matrix
construction was 10.

5.2.2 Accuracy

To show accuracy of the clustering results we created two datasets. The first dataset consisted

of 5000 points with 100 dimensions and 5 classes. The second dataset consisted of 10000

points with 1000 dimensions and 10 classes. For the first dataset we chose number of neighbors

7, and for the second dataset we chose number of neighbors to be 10. We also generated the

labels for these datasets. We then used our Rand Index score to measure the quality of our

clustering results. Table 4.3 shows the Rand Index scores for each of these datasets.

Table. 5.3: Processing time comparison from 1024 to 16384 points (in seconds).

Points RandIndex Neighbors Clusters Dimensions
5000 0.86262 7 5 100
10000 0.941916 10 10 1000
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5.3 Results and Analysis for Real World Datasets

5.3.1 Scalability

In order to check if our algorithm scales well on real world datasets we observe the processing

time on the real-world datasets. The details of this experiment can be seen in Table 4.4.

Table. 5.4: Processing time comparison from 1024 to 16384 points (in seconds).

Number of CIFAR10 images Time in seconds
5000 114
8000 132
50000 1500

5.3.2 Accuracy

Since we have the ground truth files for both the CIFAR10 and MNIST datasets, we used

the Rand Index score [23] in order to compute the accuracy of our results. For this, we

implemented the Rand Index score in Apache Spark and provide it along with the OSDSC

Framework as a clustering utility. The rand index scores for both CIFAR10 and MNIST can

be seen in Table 4.5.

Table. 5.5: Processing time comparison from 1024 to 16384 points (in seconds).

Dataset Rand Index Score
CIFAR10 0.8088
MNIST 0.8126

Figures 5.7 and 5.8 show a visualization of the clustering results. We have used the T-SNE

algorithm [36] in order to visualize the high dimensional data.
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Figure. 5.7: Visualization of the clustering results for the MNIST dataset. This dataset has
10 classes for 0-9 digits. The algorithm was conducted using a cluster having 5 nodes. The
number of neighbors selected for the sparse affinity matrix construction is 10.
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Figure. 5.8: Visualization of the clustering results for the CIFAR10 dataset. This dataset
has 10 classes. The algorithm was conducted using a cluster having 5 nodes. The number of
neighbors selected for the sparse affinity matrix construction is 10.

5.4 Summary

In this section, we evaluated the proposed OSDSC algorithm using synthetic and real world

datasets and compared it against three closest algorithms in literature: SC [33], PSC [34] [33]

and DASC [33]. The experimental results show that OSDSC can successfully retain clustering

accuracy, greatly reduce computing time and significantly reduce the memory footprint too.
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CONCLUSION

6.1 Conclusion

We have proposed a novel framework for clustering large scale datasets using a dis-

tributed implementation of Spectral Clustering and evaluated its scalability. The proposed

algorithm uses the approximate nearest neighbors library, ANNOY, to reduce the number of

pairwise computations. This helps to speed up the the construction of the similarity matrix

to facilitate the computation for large datasets.

The proposed framework can be used to significantly reduce the time and memory

consumption, while at the same time retaining the clustering accuracy. We implemented the

proposed algorithm using the open source Apache Spark framework, conducted extensive

experiments on a cluster using the Amazon Elastic MapReduce cloud system. The evaluation

study confirms the significant potential performance gain. It shows that the proposed method

can handle large-scale datasets with good clustering accuracy. The framework is generic and

can be used for any type of dataset.

6.2 Future Work

The work in this thesis can be extended in multiple directions. As this is a framework

developed to help users run Spectral Clustering on large scale datasets, more options can

be provided to the user to make it more flexible in catering to the different needs of the

user. For example, options can be provided for the types of kernel used, in the way SVD

is computed, having a user defined gamma value and providing various library options to

the user instead of ANNOY for finding approximate nearest neighbors. Instead of random
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projections, we can use other methods to find the approximate nearest neighbors in order

to construct the sparse affinity matrix. Locality-Sensitive Hashing (LSH) [37] and Spilltree

[38] have been efficient in finding approximate nearest neighbors.

As finding the first eigenvectors of Laplacian matrix is computationally expensive, [27]

propose a clustering approach without eigenvalue decomposition .Their method is related

to but different from the standard spectral clustering. We can use random sampling as

Nystrm method with an adaptive selection of samples. Several papers (e.g. [39], [40]) have

developed advanced sampling techniques which can achieve comparable clustering results

via a smaller subset of samples. The parallelization of these adaptive sampling approaches

is also an interesting and challenging research issue.
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