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ABSTRACT

The South East Coast National Parks Inventory and Monitoring Division has designated landbird

presence as a vital sign for measuring ecosystem health. Technicians analyze audio recording device out-

put to determine landbird species presence. This thesis proposes a machine-learning-based process for

segmenting and classifying bird vocalizations from an internal South East Coast National Parks Landbird

Audio dataset. We �rst generate a binary vocalization problem-set using a modi�ed Democratic-Co-

Learning approach to construct a missing binary element. We then form a multiclass bird species dataset.

Using these problem-sets, we train various machine learning classi�ers and use a DWT-MFCC feature

extraction approach that outperforms both DWT andMFCC. The thesis results in a thorough process

that is adaptable to other signal datasets.
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CHAPTER 1

INTRODUCTION

§ 1.1 Introduction

The South East Coast United States National Parks Inventory and Monitoring Division (SECN-NPS-

I&M) collects and analyzes landbird audio vocalizations to determine species presence and populations

throughout the southeast region. These statistics help to assess each park’s ecosystem health and inform

NPS decisions. Creating a machine learning pipeline for audio signal analysis can lead to the rapid assess-

ment of landbird populations and improve NPS’s ability to treat these ecosystems.

The uno�cial internal landbird audio dataset produced by the SECNWildlife Team is an example

of a large dataset that is not immediately ready for machine learning use. There are various obstacles to

overcome, such as the occurrences of landbird vocalizations are labeled, while non-vocalization data is

not marked. To produce a binary classi�er, we must label negative data through unsupervised learning

or manual classi�cation. Co learning combines the bene�ts of human-in-the-loop methodology with

unsupervised classi�cation, one such variant of co-learning being democratic co-learning. �

The Landbird dataset’s complex label space re�ects the high species diversity in the southeast region

and re�ects an imbalance in population sizes across bird species. One method for solving this data imbal-

ance is through dataset balancing techniques and reusing data where possible.

In cutting-edge Arti�cial Intelligence, signal processing relies on neural network-based approaches

performeddirectly on a signal, visual analysis of signal imagery, or feature extraction of signal data. Discrete

wavelet transform is a modern solution for resolving signal data to its corresponding time-frequency

domain; DWT is often preferred to its predecessor, Fourier Transform, due to its superior time resolution.
�Each vocalization occurrence is also labeled with a bird species.
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The discrete wavelet transform uses the products of a signal and a prede�ned wavelet to produce DWT

features which include an approximation coe�cient and detail coe�cients.

DWT output is structurally similar to a signal because each coe�cient has a frequency value for each

time sample. As a result of DWT output structure, individual decompositions can be input for feature

extractions typically performed directly on a signal, such as generatingMel-frequency cepstral coe�cients.

Alternatively, summarizing features such as mean or median can mine valuable information from each

decomposition.

After creating a machine learning-ready dataset of feature-label pairings, various classi�ers can learn

relations in this type of data, including Random Forest, Support Vectors, Neural Networks, or additional

ensemble classi�ers. Random Forest is one popular choice that uses an ensemble of decision tree classi�ers

to make a uni�ed prediction. This lightweight classi�er is ideal for rapid data labeling, given a su�cient

feature space.

This thesis’s �rst objective is to provide a feature space comparison for audio signal data that per-

forms well when applied to landbird vocalization data. The �rst step will be to compare discrete wavelet

transform (DWT) output withMFC output for the same signal input. Additionally, the combination of

these two feature extraction methods, DWT-MFCC, is tested to see if it provides an improvement over

its components. Next, these large feature spaces are reduces using feature reduction methods.

This paper’s second overall objective is to propose a machine learning process aligned with the NPS

SECN landbird collection procedure. This paper describes and justi�es methods for the following: data

processing, large audio �le segmentation, short audio clip classi�cation, and co-learning methods for

labeling unknown data e�ciently.

In addition to supporting theNational Parks in their data collection e�orts, this paper aims to expand

on existing processes for rapidly labeling and mining useful information from existing data sources. The

case of a partially labeled dataset is not a unique one, and modern AI bene�ts heavily from large labeled

datasets. This paper gives one solution for e�ciently producing labels for unknown data while relying

on data already known. The level of expert knowledge required to utilize the practices described will vary

signi�cantly across problem spaces. The presence of bird sounds, for example, is easily detectable to the
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layman’s ear. A more complicated problem that would require expert knowledge would be to classify the

exact species of a bird. �

�This introduction loosely follows the methodology section to show the necessity of splitting the dataset into a segmenta-
tion portion and a separate classi�cation dataset.
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CHAPTER 2

RELATEDWORK

§ 2.1 National Parks Wildlife Team Background

The National Parks South East Coast Network (NPS-SECN) Inventory Monitoring Group (I&M) in-

cludes a wildlife division that monitors wildlife species populations. The wildlife team primarily utilizes

automated recording devices (ARDs) for their monitoring e�orts. The team’s process is formalized in

MW et al., ����. The wildlife team’s objective is to monitor and study land-bird populations in the south-

east United States; this objective has led to creating an internal audio dataset of audio recordings and

landbird species labels. The SECN has designated landbirds as a ’vital sign’ of the region’s ecosystems,

meaning population data can provide valuable insight into that ecosystem’s health. According to MW

et al., ���� Landbirds are a vital sign due to the high correlation between land bird populations and the

health of their associated ecosystem.

The SECNWildlife Team passively records audio in pre-planned locations and then transcribes the

collected audio sound with landbird species labels. Improvements in bird tracking technology can help

scientists spend less time onmanual processing of bird audio and re-focus on understanding themigratory

and ecological implications of this audio. One key component of leveraging in-�eld audio recording

devices is to separate bird sounds from background noises such as running water, tra�c, other animal

noises, and static of any sort.

Technicians deploy Audio Recording Devices (ARD) to monitor land birds. The ecologists respon-

sible for data gathering will pre-determine site locations ARD site locations. These locations are chosen

semi-randomly and cover as much of a park as possible. Further analysis of audio recordings helps de-

termine the success of a site location, and proper labeling of the ARD output data is a predecessor for
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this analysis. These ARDs can also pick up numerous other sounds. Some examples are car noises, rain,

streams, and other tra�c.

The South East CoastNational Parks I&Mdivision does propose an automated analysis of audio data.

Still, the current operation could bene�t from an improved classi�cation method and a classi�cation

system speci�cally built for the southeast bird species.

Much of the audio processing methodology is performed by human listeners, although some of the

data is unclassi�able. This thesis project will handle unclassi�able data as non-vocalizations (or ’negative’

for our purposes). This project intends to develop a process that pairs well with the ecologist’s process

and improved accuracy on a speci�cally tailored dataset to the SECN ongoing project.

This paper presents a work�ow for leveraging the NPS SECN bird audio dataset’s current state. The

dataset is currently closed to the general public to prevent unintended consequences of species location

knowledge. The dataset contains information about where in audio bird songs are occurring and the bird

species vocalizing. Transcriptions of the audio data can be obtained at irma.nps.gov.

§ 2.2 Literature Review

§ 2.2.1 Dataset Preparation

Current signal processing methods include analyzing images derived from signals and extracting features

directly from signal data. Convolutional Neural networks excel at the direct processing of image data, and

this image data is often spectrogram imagery of an audio signal. Alternatively, feature extraction can be

performed on signal data directly and be used to train various classi�ers ranging from decision trees to

neural networks. The correct choice of a classi�cation method for signal processing continues to be an

open question under investigation.

In ���� the �th annual MLSP competition tasked participants with classifying bird species in noisy

environments Briggs et al., ���� which demonstrates the openness of this problem space and the wide

variety of processes available.

During this competition, the �rst step of representing the bird audio data primarily involved feature

extraction fromwave data, but teams also used spectrogram image representation of audio signals. Teams
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often used spectrogram image representations of audio signals and then applied FFT to the image frames

to produce time-frequency domain features. Some teams found success using spectrum-summarizing

features. For example, MFC could divide the spectrogram into bands, and the amplitudes of these bands

are classi�er features. Other summarizing features are used, too, such as band mean, median, min. The

competition also demonstrated success that a focus on feature engineering with relatively simple classi-

�ers, such as decision trees, was su�cient for performing well in the competition. Notably, some teams

placed well using Convolutional Neural Networks that ignore the decision tree classi�er methods’ feature

engineering requirements but lack the transparency of such a method. The neural network solution can

be challenging to adapt and replicate, especially in this thesis which intends to construct a transparent

classi�cation pipeline.

The competition initially uses a segmentation form of the dataset where spectrogram data is high-

lighted as red or blue depending on if there is a presence of bird sound or not. This thesis will not rely

on spectrogram-based methodology. The presence of a vocalization could also be judged by time, but the

spectrogram gives more information on frequency ranges and bird sound power. Additionally, DWTpro-

vides better time resolution according to Yadav et al., ����, so this tradeo� could result in higher accuracy.

Some of the teams used a classi�er that could automatically segment spectrogram images; however, others

found success using features that did not require image segmentation or did not require segmentation at

all. Spectrogram-based segmentation would allow for greater visibility and understanding for technicians

involved but requires pre-labeling that is not a part of the SECN landbird dataset. Ultimately, to identify

vocalization segments, classi�ers will need both positive and negative classi�ed segments of audio data.

The featured dataset had �� bird classes, which is signi�cantly less than the SECN’s datasets of ��

classes. This paper also does not include the complexity of learning permanent data and ensuring its

quality for future use in a situation where data must be validated signi�cantly, as is the case with the

SECN data veri�cation methodology in MW et al., ����. It is reassuring that these competition methods

would likely perform well on a subset of the NPS �� bird labels.
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§ 2.2.2 Segementation of Audio Data

In the paper, L. Lu et al., ����, authors �rst segment audio into speech and non-speech data and then, con-

verse to the NPS procedure, apply a label to each non-speech data segment. The authors use a K-Nearest-

Neighbor-based method of segmentation. This method simpli�es labeling to four classes and classi�es

the remaining non-speech sounds into three classes. The authors �nd that this two-step segmentation-

classi�cation process is very successful when used with their feature extraction methods.

§ 2.2.3 Classi�cation

Semi-supervised training techniques have been employed to handle datasets where some data is labeled

and other data is not. A paper that demonstrates the successful use of co-training to training classi�ers on

a limited set of annotated audio data is Xu et al., ����. This paper applies an ensemble of classi�ers with

various sets of feature data on a small dataset of music audio signal data. The author uses a summarized

multi-view feature data from performing STFT, DWT, and MFCC to the signal data. The method

involves labeling the entire unlabeled dataset and then only moving the two most likely classi�cations for

each class to the labeled dataset. The resulting accuracy of the ensemble methodology presented is higher

than any single classi�er accuracy.

Co-learning is another semi-supervised learning method for utilizing classi�ers to label unseen data.

The paper Zhou and Goldman, ���� presents one method of co-learning called democratic co-learning.

Democratic co-learning is the process of training an ensemble of classi�ers on unknown data and using

their vote to label unknown data. Democratic co-learning relies on various classi�ers rather than a singular

classi�er to minimize any single classi�er’s in�uence. Each classi�er votes and the majority group’s label

is applied to the datapoint. One caveat is that for the label to be applied, the majority group’s average

con�dence must exceed the average con�dence of the minority group prediction.

Co-learning can potentially produce incorrect labelings and propagate these mislabeled data points

into the training dataset, especially the training dataset is small. Human-in-the-loopmethods can improve

Co-learning classi�cation by expanding the amount of known data.
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In addition to labeling unknown data, the SECN landbird dataset has an issuewith imbalanced classes.

One option for resolving data imbalances in a multi-class dataset is to strategically sample data points for a

more balanced dataset. The paper Yap et al., ���� compares some of the most popular sampling methods

in data mining in the context of a cardiac surgery dataset. These sampling methods include oversampling,

undersampling, bagging, andboosting. The authors found that oversampling causes over�tting because of

the duplication of data inminority classes. Oversampling also allows allmajority samples to bemaintained,

preventing any loss of training data. The authors found oversampling and undersampling performed

equally or better than boosting and bagging. The paper acknowledges that there are hybridmethodologies

that are more complex, but they are often not yet implemented in software applications and not accessible

to beginners. It seems that such complex methods are not conducive to building a �exible segmentation

and classi�cation process. This paper’s insights are somewhat limited in their reach because of their basis

in a binary dataset and do not necessarily extrapolate to a multi-class situation.

The problems of a multi-class large dataset with imbalanced class data are addressed further in Bhagat

and Patil, ����. The authors use random forest with "One-Vs-All" (OVA) classi�cation and Synthetic

Minority Oversampling Technique (SMOTE) to improve a variety of testing performance metrics. The

paper states three primary methods of handling large and imbalanced datasets: Data Level Approach,

Algorithm Level Approach, and Cost-sensitive Approach. Cost-sensitive approaches are essentially a

combination of data level and algorithm level approaches. The authors’ process involves converting their

dataset labels into a series of One-vs-all labels (OVA) where labels are encoded as binary vectors rather

than categorical variables (integers). The authors compared OVA classi�cation via Random Forest with

OVA + SMOTE with Random Forest and found that SMOTE +OVA had an excellent performance on

various imbalanced UCI datasets.

The authors of Drummond and Holte, ���� used cost curves to quanti�ably compare over-sampling

to undersampling results. The authors found that oversampling was ine�ective and led to a poorer dataset.

The experiment also found that undersampling provided accurate results, but undersampling injected

randomness into an otherwise deterministic process.
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Two examples of algorithm-level approaches to handling imbalanced class data are clusteringmethods

(K-Means, hierarchy decomposition) and using classi�ers speci�cally capable of handling this type of data

( Ensemble classi�ers, SVM).

One popular classi�er for understanding the relations betweenMFC coe�cients and a label is Naive

Bayes. Bhakre and Bang, ���� shows that Naive Bayes performs well withMFC-based feature sets, espe-

cially when the dataset is small. The conditionality and relations of an MFC feature vector are suitable

for Naive Bayes classi�ers. Unfortunately, Naive Bayes performs poorly at generating con�dence scores,

according to Pedregosa et al., ����.

Support Vector Machines (SVM), an alternative to Naive Bayes, could perform well on a linearly

separable dataset. Ahmad et al., ���� shows that SVM outperforms Naive Bayes on gender identi�cation

when using MFC features on an audio dataset. SVMmight perform better as long as there are not too

few features, which Pedregosa et al., ���� acknowledges could be a drawback to their library.

§ 2.2.4 Feature Extraction

There are four primary feature domain choices for signal data. These options are described in Sharma et al.,

���� as time-domain features, frequency domain features, time-frequency domain features, and deep-

features. Time-domain features typically use a sliding window over audio data with feature extractors

such as Zero-Crossing Rate described in Bachu et al., ����. Alternatively, a signal can be converted to its

frequency space using Fourier Transform (FT), which solves the problem of abrupt changes caused by

windowing the data for time-domain data. One frequency-domain feature process is the extraction ofLPC

Coe�cients in O’Shaughnessy, ���� for compression of a signal into corresponding linear coe�cients.

LPC performs very well in speech but might not translate well to environmental sounds because it relies

on encoding portions of sound that human vocal tracts are known for making rather than based on bird

vocal tracts.

Another feature extraction method that relies on Fourier Transform is Mel-frequency Cepstrum

(MFC) and is presented in Davis andMermelstein, ����. MFC generates a set of coe�cients (MFCCs)

used commonly as feature information in signal processing. MFC transforms signals into aMel-Scale space
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that separates signals into a range roughly matching the same spacing between frequencies that humans

perceive. This set of equally spaced frequency bands represents the power spectrum of a signal—the

similarity to a human’s perception has made it a popular feature extraction choice for syllable detection.

One method for converting signal data to the time-frequency domain is the Short-time Fourier trans-

form (STFT) described in Bergland, ����. This algorithm works by �rst converting a signal into time

segments and then performing a Fourier Transform on each of these equal time segments. STFT su�ers

from a tradeo� between frequency and time resolution, which led to the advent of wavelet transforms.

Discrete Wavelet Transform (DWT) and ContinuousWavelet Transform (CWT) are wavelet-based

methods that map a signal to the time-frequency domain. This transformation produces consistently

high time resolution and lacks the tradeo� of frequency resolution reduction that SFTF has.

Discrete Wavelet Transform produces an approximation and detail coe�cient at each decomposition

level. Yadav et al., ���� describes the speci�cs of this process in depth. The algorithm produces a detail co-

e�cient that results from amotherwavelet convolution over a signal input and subsequent downsampling

of the output; this is a high pass �lter. DWT also produces an approximation coe�cient by averaging

and then downsampling the original signal. The detail and approximation coe�cients both resemble the

typical structure of a signal, as they have time and frequency components. Both components also have

half the time and frequency space of the original signal input. Multiple wavelet decomposition levels are

produced by repeatedly transforming the approximation coe�cients of each wavelet transform.

Many feature extraction techniques in the time-frequency domain are adaptable to work with wavelet

transform. The substitution of MFC’s Discrete Cosine Transform for DWT is known as Mel-Frequency

DiscreteWavelet Coe�cients (MFDWC) and is described in Tufekci andGowdy, ����. In this algorithm,

a signal input is framed and then translated by STFT. The output is thenMel-Scaled. Instead of MFC’s

discrete cosine transform,DWT is used and treats theMel-Scaled output as a signal. This process produces

wavelet transformed mel-scaled log �lterbank energies of a speech frame. MFDWC demonstrates the

application of DWT toMFC, but does not make up for STFT’s low time resolution.

The paper Abdalla and Ali, ���� shows an alternative to MFDWC where the output of DWT is

input for the typical MFC algorithm. The algorithm uses STFT, but STFT acts on each approxima-
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tion/detail coe�cient rather than the original signal. Essentially, each coe�cient is treated as separate

signal input. TheDWT-MFC coe�cients are obtained from theMel-scaled log �lterbank energies of each

approximation/detail-framed signal. This process does not eliminate the drawbacks of STFT but instead

limits its in�uence by relying on DWT.

Neural networks are also widely used as a method for extracting features from signal data. A neural

network’s hierarchy extraction results are called ’deep-features.’ Deep features have seen a rise in popularity

and success due to recent advances in computing technology and access to large datasets. Examples include

the autoencoder presented in X. Lu et al., ���� or the Convolutional Neural Network in Piczak, ����,

both of which automatically reduce a signal to a feature vector through a learned mapping. These deep-

feature mappings are learned via gradient descent and not designed to be human-readable. This lack of

transparency makes it di�cult to understand the meaning of any deep feature space.

Another example of deep feature representation of signal data is the paper Narasimhan et al., ����,

which segments and classi�es simultaneously. The paper uses a CNN-based autoencoder capable of

learning a mapping between a spectrogram image to a segmented version of that same signal. The neural

network �rst encodes the spectrogram to a small number of digits representing the original signal, then

decodes the image to its segmented version of itself. The encoded version of the signal is used as a feature

vector because it represents the original signal. Still, it is unclear what any singular value in this feature

vector means concerning the original signal.

Neural networks do tend to su�er from transparency and reproducibility issues, especially when

trained on small datasets. Random forest, given a robust feature extraction method, performs well even

on small datasets.

Mother Wavelets

The paper Wai Keng et al., ���� discusses various approaches for selecting mother wavelets, both quan-

titative and qualitative in nature. Many of the methods presented were based on the similarity between

the mother wavelet and signal data. The author acknowledges that more research is needed on the topic,

especially around the accuracy of �nal results that a mother wavelet can produce.
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The authors of Wai Keng et al., ���� assess mother wavelet selection in the context of gear fault detec-

tion. The authors use passive recordings of electrical signals to detect faults. The authors note thatMorelet

is one of the most common mother wavelet choices across the �eld of machine condition monitoring

and showed consistency across multiple signals. The authors also note that the basis for wavelet selection

is often a function of minimizing the di�erence between the signal and the mother wavelet. Still, this

method does not necessarily work in all situations. Lastly, theDaubechies wavelet shows near symmetrical

properties at high orders (ex db��) but is otherwise asymmetrical.

Noise Reduction

Multiple thresholding techniques for signal data in the Time-frequency domain are proposed byDonoho

in his paper Donoho, ����. Two thresholding methods that Donoho proposes are hard thresholding and

soft thresholding. Hard thresholding sets all data below some value to�. Soft thresholding removes all data

below a threshold and scales all other signal data towards � by that same threshold. The thresholding value

for each algorithm is heavily in�uential. Donoho’s universal threshold Donoho, ���� and modi�cations

of it in Aggarwal et al., ���� have been found to reduce background noise.
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CHAPTER 3

METHODOLOGY

This section presents a process for training a set of classi�ers on the SECN Landbird audio dataset; each

classi�er aims to segment or classify unseen audio data. The methodology requires constructing two

distinct datasets. The �rst dataset is a binary-labeled dataset of audio snippets classi�ed as vocalizations

and non-vocalizations. The second dataset is categorical and labeled with a vocalization’s related bird

species. There will be overlap in the two datasets, but the classi�ers trained on each problem type will

remain distinct.

§ 3.1 Data Preprocessing

The SECN Landbird dataset required preprocessing for use with both segmentation and classi�cation.

As described in section �, the initial dataset was not ready for training use without some preprocessing. It

also is not bene�cial to know the existence of a binary indication of bird sounds in a multi-minute �le. It

is muchmore helpful to know the exact time that a bird vocalization happens and then count the number

of occurrences in the larger audio �le.

One-second samples were taken from the dataset and parsed into discrete vectors. The standardization

of one-second audio clips allows us to extract features consistently regardless of the parent audio �le size.

Decoded audio signal data is in the form of a vector of numeric values, where each value in the vector is a

single sample of audio data. The audio frame rate is ����� frames per second, faster than the human ear

perceives, yet a discrete sampling of a physical wave’s speed.

The sample size of one second provides the convenience of having audio that is quick to listen to,

minimal in data storage, and minimizes the resulting feature-space. One second empirically seems to be

enough audio data to determine the binary presence of a bird vocalization. This one-second clip would
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not necessarily be enough for a human to determine bird speciesmaking noise. However, a simple solution

is to add a bu�er of time before and after a bird noise is found in a longer audio data piece and present that

expanded time segment to a listener. A classi�er could also predict a species for each one-second segment

of an audio clip, and then the average prediction could be used as the �nal label.

For the segmentation audio dataset preparation, segments were labeled as ’Positive’ if there was a

knownbird vocalization in the time segment; no labelwas applied to the dataset otherwise. Time segments

of bird species classi�cations are not exact, but the time selected by researchers was assumed to be the start

of a call. Many of the audio clips contained repetitive bird vocalizations that continued for many seconds

after the time of record.

For each positive classi�cation, processing produced three segments: one audio slice from the begin-

ning of the vocalization for a total of one second and two more audio segments o�set from the original

clip by +- ���milliseconds. This method of re-use creates more data while reducing manual classi�cation.

In addition to the positively classi�ed data, some negative (non-bird vocalization) data is necessary

for machine learning classi�ers to learn. The sheer amount of already classi�ed vocalization data meant

that the algorithm would not need any more (positive/species) vocalization data. The solution to zero

initial negative data points was to classify data manually. As a starting point, I manually classi�ed ���

seconds of non-vocalization data that primarily consisted of background noise with no bird vocalizations

present. The subsection "Democratic Human In the Loop Co-Learning" further describes how algo-

rithms continued this process of labeling negative vocalization data. This methodology is malleable to

various co-learning situations regardless of dataset balancing. Notably, the segmentation (binary) data

sampling from the overall dataset is non-deterministic throughout themultiple iterations of data gathered

in the experiments. The positively labeled data heavily outweighs the non-vocalization data, so random

undersampling corrects this and thereby adds randomness to the sampling process. In contrast, the exact

dataset sampling used across the creation of the classi�cation dataset is separate from the segmentation

labeling. It is straightforward as the SECN dataset is already labeled to a high enough degree to be usable

for bird label classi�cation. Additionally, a bird species label requires expert knowledge, while a novice
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Figure �.�: Bird count by bird species. Unlabeled to anaonymize dataset.

can determine and classify bird vocalizations even in a noisy environment. After processing, there appears

to be a signi�cant imbalance in class labels.

Figure �.� shows that the classi�cation dataset is imbalanced in its labeling. The dataset re�ects the

monitored ecosystems, causing the dataset bird species classes to be imbalanced.
� Further information on this label imbalance issue is in the segmentation and classi�cation portion

of this methodology.

Signal Noise Reduction

As described in the background section, the impact of external noises could lead to reduced accuracies in

classi�cation. I apply soft thresholding with Donoho’s Universal Coe�cient. I intend to reduce noise in

the audio data, improve accuracy, and improve scientists’ manual classi�cation ability without distorting

the actual audio data.
�I removed all bird labels from �.� to preserve the anonymity of the dataset. Readers can �nd further information on

published dataset �ndings at irma.nps.gov.
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The Soft Thresholding function �rst performs a Discrete Wavelet Transform on audio data points

and then soft-thresholds each detail coe�cient and the approximation coe�cient. The thresholding is

applied to each level of wavelet decomposition with the Daubechies wavelet with eight decomposition

levels.

Generally, soft thresholdingworks by replacing all valueswithan absolute value less than a set threshold

with some substitute. The equation for soft thresholding is:

soft_threshold(X) =

8
><

>:

X/|X| ⇤ (|X|� thresh), if |X| - thresh > 0

0, othwerwise

9
>=

>;

The value X corresponds to some input signal data, such as wavelet decomposed coe�cients which

follow the same structure as their parent signal. ’THRESH’ corresponds to a thresholding coe�cient.

Donoho presents an option for ’THRESH’ called the ’Universal Threshold Coe�cient.’ In the context

of this smoothing problem, Donoho’s universal threshold coe�cient presented in Donoho, ���� roughy

equates to the following:

threshold = �n
p
2 log(N) (�.�)

N is the length of the soft thresholding input, and � is the standard deviation of the noise at scale

j. The noise present in this dataset is not necessarily Gaussian as Donoho, ���� expects; the universal

threshold could therefore have little impact.

§ 3.2 Feature Selection

I used three primary feature extraction methods for each audio data segment: DWT,MFCC, and DWT-

MFCC. Lastly, K-Best attribute selection was performed based upon the ANOVA F-value of the selected

samples to reduce the number of features. Feature extraction of audio data converts signal data from a

waveform to a set of feature values for classi�ers.

DWT is used for the �rst portion of the feature set and applied to the signal data. For each level of

decomposition, there are multiple statistics generated from the feature data. The following is the set of
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operations performedon each signal’swavelet decomposition coe�cients: mean, standarddeviation, skew,

variance, maximum value, median value, and minimum value. This process reduces each �-second audio

clip (����� samples) to a total of ��� features. The primary wavelet used for the DWT operation is ’db�’

with varying wavelets compared based on their accuracies. Themaximum level of decomposition is always

selected. The second feature extraction process is MFC. This method uses a �lterbank computed from a

signal, and then the log-absolute value of the produced feature set is computed. The �nal coe�cients are

a discrete cosine transform of the log-absolute values. TheMFCC �lter bank comprises �� �lters for every

datapoint with the �rst �� cepstral �lters selected. Twomore portions of theMFC feature set are delta and

delta-delta. Delta is a measurement of change in the MFC feature values over the previous four frames,

while the delta-delta is a measure of the rate of change in delta over four frames. DWT andMFCC both

serve as control variables against the DWT-MFCC extraction method.

The third feature-set is DWT-MFCCwhich uses DWT coe�cients as input to theMFCC algorithm.

First, DWT decomposes an original signal input into multiple DWT decomposition levels. This process

results in multiple detail coe�cients and a singular approximation coe�cient; each coe�cient resembles a

signal’s structure. Each coe�cient is a single input to theMFCC algorithm. LikeMFC feature extraction,

the delta and delta-delta features are appended for each of the MFC coe�cient vectors. The complete

process for DWT-MFCC is in �gure �.�.

§ 3.2.1 Feature Reduction

TheDWT-MFCCextractionwith aDaubechies scale eightmotherwavelet produces a total of ���� features

per one-second audio clip. To reduce the number of features K-best selection is used with an f-score used

for valuing each feature. This mapping can then be used later during testing or production without

recomputing the feature selection list.

Feature Scaling

In addition to thresholding, a scaling function is used on sampled groups to prevent outliers further and

improve training speeds. After all feature extraction and reduction are completed for a dataset, Scitkit-
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Learn’s Standard Scaler, described in Pedregosa et al., ����, is used on the entire dataset, which centers

each feature to a zero mean and unit variance across the training set.

§ 3.2.2 Mother Wavelet

For convenience, the same mother wavelet is used for all DWT operations, including Soft Thresholding,

DWT-MFCC computation, and DWT feature output. The primary choices of discrete mother wavelets

are Haar, Daubechies, Biorthogonal, Coi�ets, Symetrics, Morlet, Mexican Hat, andMeyer according to

Lyons et al., ����.

The land bird audio data abruptly cuts out in many audio clips due to the slicing from a parent audio

clip and high background noise level. Tufekci andGowdy, ���� reports that antisymmetric wavelets tend

to decrease discontinuities at the signal borders. The Debauchies wavelet will perform well on this type

of problem because it is antisymmetric according to Vonesch et al., ����.

The mother wavelet selected for this entire process is the Daubechies wavelet. This wavelet is also

compatible with the Python Speech Features package presented in Lyons et al., ����. The Debauchies

wavelet with level � scaling, pictured in �gure �.�, is the mother wavelet choice in all methods that use a

wavelet transform.

§ 3.3 Segmentation and Classi�cation

RandomForest Classi�ers were selected for both segmentation and classi�cation. Additionally, a Support

Vector Classi�er and Ada-Boost Ensemble Classi�er are used for the segmentation methodology to create

a three classi�er ensemble with a human-in-the-loop extension. Multi-class classi�cation follows a more

simplistic approach by solely using Random Forest Classi�cation and relying on the dataset balancing

section.

§ 3.3.1 Segmentation

The three classi�cation networks for segmentation are Random Forest, Support Vector Machines, and

Ada-Boost. Each classi�cation algorithm provides its unique approach to classi�cation and training while

also being capable of running in a quick computational time. Each classi�er predicts the class ( � or �) for
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Figure �.�: Daubechies mother wavelet with level � scaling.

each feature extracted training data. All three algorithms and their con�dence scores are implemented via

SciKit-Learn described in Pedregosa et al., ����.

Random Sampling was used to select a subset of the positive classes, and the EditedNearest Neighbor

algorithm described inWilson, ���� undersampled the majority class further. SMOTE oversampled the

minority class for the training data only. Both SMOTE and Edited Nearest Neighbor are accessible by

Urbanowicz et al., ����.

Democratic Human In the Loop Co-Learning

The Landbird audio dataset does not have audio labeled as a non-vocalization. It is not safe to assume that

a lack of a vocalization labelmeans there is no vocalization. There is nothing for a classi�er to trainwithout

a ’negative’ label based on its assumptions about a’ positive’ label. One method of solving this problem is

to label audio snippets as ’negative’ when there are no vocalizations present. To limit the amount of time

it takes, we employed a human in the loop method towards data labeling.
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A human in the loop methodology intends to make e�cient use of a human’s classi�cation abilities.

If machines can classify some of the data or determine a portion of a dataset that needs to be classi�ed, less

human work is required. Also, as we construct the dataset through co-learning, classi�er scores should

improve, and less human work will be required. The classi�er employed avoid labeling data that it is

uncertain about but can label data that it predicts with a high degree of certainty.

This paper’s methodology uses a modi�ed version of democratic co-learning presented in Zhou and

Goldman, ����. The modi�ed process is presented in �gure �.�.�. The classi�er ensemble will learn from

data that the ensemble is con�dent of or has been pre-classi�ed and mark all other data for human-in-the-

loop classi�cation. �

The classi�er ensemble initially trains on the pre-labeled vocalization presence binary dataset. Next,

each classi�er votes by providing a label for each presented data point. If all labels were the same, then the

label was assumed to be accurate and was applied to the data. This data goes into the training dataset for

future use. If there was any disagreement in the label, then each classi�er’s con�dence score was computed

and used to settle the disagreement.

If the minority group’s average con�dence is higher than the average con�dence of the majority vote

group, then the datapoint is marked to be labeled by a human. I refer to this option as ’discarding.’ This

option forces the classi�ers to discard data points that will have the highest impact on the classi�ers while

also minimizing the error introduced into the training dataset. �

Random Forest Classi�er

TheRandom Forest Classi�ers use ��� trees per forest, a Gini criterion of classi�cation, and nomaximum

depth restriction.

Random Forest classi�er is a decision-tree-based ensemble classi�er. It is capable of handling the

classi�cation of both binary and categorical data. The random forest classi�er is �rst proposed in Tin

KamHo, ���� and has amassed popularity due to its e�ciency and accuracy, especially on small datasets.
�We initially labeled and marked ��� seconds worth of audio data that did not have any bird vocalization in it so that the

co-learning ensemble would have a basis for training.
�Since the positive (presence of bird vocalization) portion of the dataset already exists, it does not make sense to increase

the size of this portion of the dataset and is discarded.
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The Random Forest ensemble trains individual decision trees that ’vote’ on a �nal classi�cation for

some input. ’Gini Impurity’ is used to determine when a split should occur.

The con�dence prediction of a decision tree is the number of trees in the Random Forest to predict

that label. This algorithm is implemented by Pedregosa et al., ����.

Nu-Support Vector Classi�er

The NuSVC is an algorithm in Pedregosa et al., ���� accessed through Fan et al., ����. It is an extension

of Support Vector Classi�ers where the number of support vectors is manipulable via a ’nu’ parameter.

Unlike the ensemble classi�ers, NuSVC in Pedregosa et al., ���� uses cross-validation to compute an

input’s con�dence score.

The Support Vector Classi�er uses a radial basis function kernel (RBF) to separate the support vector

decision space into a non-linear plane.

The nu value used is �.�, and the tolerance to stopping training is �.����.

Ada Boost Ensemble Classi�er

The AdaBoost-SAMME algorithm proposed in Hastie et al., ���� and implemented by Pedregosa et al.,

���� �ts a classi�er and copies of the classi�er to a training set with a weighted focus on challenging data

points.

Pedregosa et al., ���� implements the AdaBoost classi�er con�dence score by computing the weighted

mean predicted class probabilities of the ensemble classi�ers.

The AdaBoost base estmiator is the Decision Tree and a total of ��� estimators were used in the

ensemble.

§ 3.3.2 Classi�cation

In the heavily imbalanced classi�cation dataset, some rebalancing is done for comparison purposes. As a

control point, I chose to oversample classes with less than a set number of data points and undersample

the remaining categories to get to that same data count. This sampling method could lead to over�tting

to speci�c bird sounds rather than learning the range of a species’s vocalizations.
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The �nal process of this thesis used SMOTE to oversample minority classes and did not perform

undersampling. This approach reweights minority labels without destroying potentially helpful training

data.

§ 3.4 Complete Pipeline

The simpli�ed yet complete process is demonstrated in �gure �.�.

Although the democratic classi�er ensemble was re-trained on the co-learned dataset, all AI-labeled

data was kept separate and not mixed with the pre-classi�ed dataset. This is to ensure that the dataset

can be veri�ed later on and improve visibility into the process. Additionally, each labeling round’s AI

classi�cations were kept separate from earlier rounds to determine the cause of any introduced training

error.
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CHAPTER 4

RESULTS

§ 4.1 Dataset Processing

There are a total of ��,��� seconds of audio data classi�ed as bird vocalizations present (positive). Un-

classi�ed data cannot be assumed to be background noise (or other non-vocalization data) and was there-

fore manually classi�ed. The manually classi�ed (non-bird-vocalization) data (with a negative label) ac-

counts for ��� seconds.

Manual classi�cation was accomplished by using the co-learning methods described in this thesis’s

methodology section and manually veri�ed to ensure the dataset’s quality.

A total of forty-nine attributes were computed from the discrete wavelet transform summarizing

features and ���� features fromDWT-MFCC.

The classi�cation dataset contains a total of ��,��� seconds of audio data spread across �� labels. The

median number of audio data seconds per class is ���.� seconds, the mean is ���.�� seconds, and the

standard deviation is ����.�� seconds.

Figure �.� is an example of a spectrogram representation of a bird vocalization. This signals corre-

sponding Discrete Wavelet Decomposition is in �gure �.�.

§ 4.2 Mother Wavelet Selection

The accuracy comparison for the antisymmetric mother wavelet con�gurations using random forest is as

follows:

From the above information, there is not a clear mother wavelet that outperforms the others. We

select Daubechies with a scale of � for future processing.
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Table �.�: Multi-level Daubechies wavelet and Haar wavelet accuracy comparison.
db� db� db� db�� Haar

Accuracy ��.��% ��.��% ��.��% ��.��% ��.��%

§ 4.3 Smoothing

We used audio visualizations and a novice’s opinion of the sound transformation to ensure that Soft

thresholding and Donoho’s universal coe�cient were applied correctly. Thresholding does not seem to

alter the vocalization portion of a signal. Thresholding does visually and auditorily reduce noise.

The audio visualization in �gure �.� includes a one-second bird vocalization that is detectable in the

original unprocessed audio.

There does appear to be a visual di�erence in smoothing that is muchmore prominent in the compar-

ison of the two zoomed-in images in �.�. This comparison involves soft thresholding of an original signal

with Donoho’s Universal Coe�cient as the thresholding value.

There is also a clear auditory di�erence between the original sound and the thresholded audio. The

bird vocalization can be heard both before and after the thresholding is applied. The audio appears to be

quieter in the thresholded audio. There is no conclusive subjective view onwhich audio clip sounds better

and is easier to understand based on the smoothing visuals and audio alone. Soft thresholding reduces a

signal closer to the mean according to Donoho, ���� and will a�ect the bird vocalization pitch rather than

just reducing noise.

§ 4.4 Results of Democratic Co-Learning

The results of training all three classi�ers and computing their composite democratic score at various

training levels are Figure �.�.

The democratic co-learning ensemble consistently outperforms Random Forest classi�ers, SVM, and

Ada-Boost. Support vector machines consistently perform slightly worse than Ada-Boost.
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(a) Original signal zoomed in (b) Thresholded signal zoomed in

(c) Original signal (d) Thresholded signal

Figure �.�: Thresholding Comparison

Figure �.�: Thresholded spectrogram signal data.
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Figure �.�: Multi-Level DWT
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Figure �.�: DWT-MFCC Feature Extraction accuracy with no feature reduction based on varied training
data sets with ��-�� training splits.

While random forest performs poorly on a small amount of training data, the democratic co-learning

boosts the overall accuracy signi�cantly. Figure �.� does not show the amount of classi�ed data and only

o�ers the predicted data’s accuracy.

We sampled a separate ��% training-��% testing set from the segmentation and output the confusion

matrix results in Table �.�. The results show that �.��% of the testing set was selected to be ’discarded,’

which would require manual human classi�cation in this experiment’s methodology. False negatives

account for ��.��% of the algorithm’s error, while the testing set’s proportion of negative data is ��.��%

of the testing dataset and ��% of the sample overall.

§ 4.5 Feature Engineering

Two feature reduction methods are compared in �gure �.�. The �rst selection method is relief attribute

selection introduced in Kononenko et al., ���� and implemented in the python library Skrebate at Ur-

banowicz et al., ����.
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Table �.�: Democratic co-learning with classi�ers trained on an ��/�� split of the dataset on the DWT-
MFCC Problem set with no feature reduction nor smoothing. And a �.��% discard rate.
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Figure �.�: Performance comparison of feature reduction methods.

The second feature selection method is the univariate K-best selection with f-score as the metric for

computing the attribute score computation and implemented in the Python Library Sci-Kit Learn at

Pedregosa et al., ����. The f-classi�cation algorithm is formulated by Lowry in Lowry, ����. K-best

feature selection ranks each attribute according to its f-score. F-score is a measurement of the certainty

that the two classes’ means will di�er signi�cantly for a given attribute.

There is little di�erence in accuracy scores. However, k-best runs signi�cantly faster, so the k-best

selection method is the feature selection method for all following method portions.
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Table �.�: Segmentation accuracy comparison across each feature set, with feature reduction performed
by K-Best Selection (F-Score metric).
Feature
Count

DWT MFCC DWT-MFCC
normal smoothed normal smoothed normal smoothed

�� features �.���� �.����� �.���� �.����� �.���� �.������
��� features X X �.����� �.����� �.����� �.�����
��� features X X �.����� �.����� �.����� �.���
NoReduction ( �� / ���� / ����) �.����� �.������ �.����� �.����� �.������ �.�����

Table �.� shows a comparison of the three feature sets at varying feature reduction levels. Each feature

type is from a sampling of a single ��-�� dataset split where positive data accounts for ����.� data points

(��.�% of the sample), and negative data total ��� data points (��.��% of the samples).

The feature reductionmethod employed in Table �.� is K-Best Selection with F-score as the metric for

determining each feature’s value. Each feature extraction method produces a unique number of features.

The "NoReduction" row corresponds to each extractionmethod’s complete feature set, where the feature

amounts are enclosed in parentheses and follow the ordering of the feature extraction header list. This

k-best selection with an f-score metric (ANOVA) is of each feature reduction is formulated in Lowry,

����.

The DWT-MFCC set of features with no feature reduction outperforms all other feature sets, with

the MFC feature set performing similarly.

The poorest performing feature set is MFCC, with soft-thresholding and no feature reduction.

Table �.� shows that few thresholding cases improve accuracy from their parallel non-smoothed ver-

sion.

§ 4.6 Class Distribution

A Random Forest Classi�er trained on ��-�� splits of the complete classi�cation dataset at various class

selection levels and various under/oversampling methods. The results are shown in �gure �.�. The �rst

three listed methods in �.� are subsets of the overall segmentation dataset. For example, the �rst listed
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Table �.�: A Random Forest comparison of class selection and prediction accuracy. The dataset used is
DWT-MFCCwith no feature reduction.

Class Selection Accuracy
over ���� datapoints (� classes) �.�����
over ���� datapoints (�� classes) �.������
over ��� datapoints (�� classes) �.�������
all classes (�� classes) �.������
all class (�� classes with random oversampling/undersampling to ��� datapoints) �.������
all classes (with SMOTE) �.�����

subset only includes classeswithover �,��� seconds of data associatedwith a label (totaling four labels/bird

species).

The highest performing class subset is "all classes with over �,��� data points," which amounts to

four classes, and ��,��� seconds of audio data. The worst performing class selection is all �� classes with

oversampling and undersampling to reach ��� seconds of audio per class type. (No other class selection

method involved random oversampling.)

Of the three class-selection methods that only consider overall class sizes, the best performing group

uses only four classes. This group (over ���� data points) performs about �% better than the full �� class

selection option.

The training group created with Synthetic Minority Over-sampling Technique (SMOTE) does lead

to slight improvements over the entire �� class dataset with no balancing techniques.

§ 4.7 Multi-Class Species Classi�cation

Next, I tested the various feature selection options on the species classi�cation dataset, where an f-score

metric determines feature reduction subsets. This experiment’s results are shown in table �.�.

Table �.� follow the same structure as table �.�.

The top-performing classi�cation con�guration appears to be DWT-MFCCwith soft-thresholding

and no feature reduction. The worst performing selection is MFCC, with thresholding and a feature

space reduced to �� features. Soft thresholding consistently improves the accuracy of the DWT-MFCC

feature space but has little e�ect otherwise.
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Table �.�: Categorical classi�cation accuracies with feature reduction performed by K-Best Selection
(F-Score metric).
Feature
Count

DWT MFCC DWT-MFCC
normal smoothed normal smoothed normal smoothed

�� features �.����� �.����� �.����� �.������ �.������ �.�������
�� features X X �.����� �.������ �.������ �.������
��� features X X �.����� �.����� �.�������� �.������
NoReduction ( �� / ���� / ����) �.����� �.������ �.����� �.����� �.����� �.������
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CHAPTER 5

DISCUSSIONANDCONCLUSION

§ 5.1 Discussion

The explored feature sets allow for separating bird vocalizations from non-vocalization data, especially

whenused as input for aRandomForest classi�er. Theproposed algorithmdemonstrates high accuracy on

the SECNLandbirdDataset but is not a replacement for the wildlife team’s standard operating procedure

described in the background section.

There is evidence that the accuracy of binary classi�cation improves with more binary data. The

addition of more negatively classi�ed segmentation data points would improve accuracy and lead to more

minor manual classi�cation being necessary. These segmentation results indicate that the Democratic

ensemble can label unseen data points with minimal human input.

The democratic classi�er causes a small amount of mislabeling error, shown in �gure �.�. This data’s

ideal labeling would be unknown in a production environment, so it would likely end in the training

dataset. Outlier detection methods could scan the training dataset later for outliers, but this does come

with the fault of having some misclassi�ed data in the dataset.

Democratic co-learning does seem to improve audio data segmentation both in accuracy and its ability

to ’set aside’ data for manual user classi�cation. The classi�er ensemble’s accuracy is seemingly enhanced

by the variety of classi�ers, as the testing accuracy is consistently above the top classi�er (usually ran-

dom forest). The second bene�t of democratic co-learning is highlighting problematic data, which could

alternatively be done using the probability estimate of any classi�ers independently. However, the com-

bination of probability estimates helps to identify further data that can be successfully classi�ed while

minimizing both error and the amount of ’discarded’ data.
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Themachine learningpipeline described in this paperdidnotneed thebene�ts ofdemocratic ensemble

classi�cation for the second portion of the text (classi�cation) because Random Forest, an ensemble

technique, performed accurately without additional classi�cation votes. Also, co-learning was not needed

since the dataset is extensive and the cost of labeling more audio data was too high for this current project.

Across the Democratic ensemble, random forest consistently performs the best on this segmentation

training set, while SVC performs the worst. The SVC’s ’RBF’ kernel should have handled the dataset’s

non-linearity. However, the inconsistencies causedby vocalizations occurring at varying time frames could

have led to a need for relations between features. One option for moving forward would be to generate

linearly separable features or use a di�erent classi�er.

The K-best selection feature reduction method outperforms Relief Attribute selection but reduces

the segmentation classi�ers and categorical classi�er’s accuracy. The K-best selection method with f-score

as the attribute valuation method likely performs well on all three feature sets because each feature set

comprises independent variables, a requirement of F-Score use. Each feature set relies on summarizing

features rather than coe�cient values themselves, allowing for variables’ independence. Accuracy scores

reduce with feature selection, which is explainable by a reduction of valuable features. K-best selection

seemingly removes features that improve understanding of the problem space, and further investigation

could result in an ideal feature selection count, but this would also cause the time complexity of the overall

process to increase.

Results indicate that smoothing leads to better performance in multi-class vocalization classi�cation

while not improving the segmentation problem. Donoho’s coe�cient likely requires more �ne-tuning

and could bene�t from expert knowledge on the range of bird songs and the expected range of background

noise. Further investigation into the settings that the ARDs record in could also indicate what modi�-

cations could naturally reduce noise. It is also possible that too much information is removed from the

signal data within the range of bird vocalizations. The bird vocalizations could be overpowered by other

noises, such as car horns, and the bird vocalization could be overly reduced.
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§ 5.1.1 Research Application

The process proposed helps create a tool that can section out bird noise data from other noise sources and

could be used in an application by training a single classi�er with high accuracy and iteratively ’scanning’

data. Because the application only parses one second of noise data at a time, there is a limitation in

algorithm applicability. We could overcome this by converting all signal data to DWT-MFCC feature

space at once and immediately using the learned feature selection space. All preset and pre-learned, so the

computation time for reuse is drastically lower than the original time costs. The process would then parse

the feature set into set intervals corresponding to a single segment and classi�ed from this �nal state.

An example user interface that would pair well with the created classi�ers is shown in �gure �.�. This

application would begin by framing a singular audio �le into second-long segments. Next, the binary

classi�er assigns a score to eachof these second long segments andpredictswhether a vocalization is present.

Lastly, the application assigns a species prediction to each of the discrete vocalizations.

A general overview of how this research could �t into the NPS SECNWildlife process is shown in

�gure �.�. This process would allow for automatic data collection and gradual improvements in algo-

rithm accuracies. The classi�ers other than random forest seem to perform worse consistently, so once

the random forest begins to consistently produce high accuracy, we could remove the other democratic

classi�ers.

§ 5.1.2 Future Research

Further research would be to work on a smoothing method that is adaptive in the same way that the

feature extraction methods are. A more adaptive smoothing method could improve over time and could

use some meta value that determines howmuch smoothing to apply.

One signi�cant improvement for future research would be to better use the entirety of the unlabeled

portions of the dataset. Much of this unlabeled data is simply background noise, but even this data could

lead to an improved segmentation algorithm. Currently, somemanual classi�cation is required, but other

unsupervised methods of learning from this unlabeled data could be used to make better use of it.
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Figure �.�: The intended �nal product wireframe that is not yet implemented, but could be based on this
project’s produced classi�ers.
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Record audio data via ARDs
(see Wildlife SOP)

Proccess ARD audio through
project’s intended UI

Manually verify the automated
audio classi�cations

Project UI automatically
uploads veri�ed data for
future ML training

Export classi�caion data
(CSV) for further analysis and
NPS records (see Wil�ide SOP)

Figure �.�: An integrated work�ow adoptable by the NPS SECNWil�ide team.
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Lastly, Democratic co-learning could increase the sample size of imbalanced bird classes and identify

speci�c bird species from the larger audio dataset. This process requires expert knowledge to ensure that

a selected audio clip �ts a particular label but could lead to the rapid acquisition of potential data points

for a given label.
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