

ROULETTE WHEEL

PARTICLE SWARM OPTIMIZATION

by

JARED SMYTHE

(Under the Direction of Walter D. Potter)

ABSTRACT

In this paper a new probability-based multi-valued Particle Swarm Optimization

algorithm is developed for problems with nominal variables. The algorithm more explicitly

contextualizes probability updates in terms of roulette wheel probabilities. It is first applied to

three forest planning problems, and its performance is compared to the performance of a forest

planning algorithm, as well as to results from other algorithms in other papers. The new

algorithm outperforms the others except in a single case, where a customized forest planning

algorithm obtains superior results. Finally, the new algorithm is compared to three other

probability-based Particle Swarm Optimization algorithms via analysis of their probability

updates. Three intuitive but fully justified requirements for generally effective probability

updates are presented, and through single iteration and balance convergence tests it is determined

that the new algorithm violates these requirements the least.

INDEX WORDS: Multi-valued particle swarm optimization, Discrete particle swarm

optimization, Forest planning, Raindrop optimization, Nominal variables,

Combinatorial optimization, Probability optimization

ROULETTE WHEEL

PARTICLE SWARM OPTIMIZATION

By

JARED SMYTHE

B.A., Georgia Southern University, 2006

B.S., Georgia Southern University, 2008

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2012

© 2012

Jared Smythe

All Rights Reserved

ROULETTE WHEEL

PARTICLE SWARM OPTIMIZATION

by

JARED SMYTHE

Major Professor: Walter D. Potter

Committee: Pete Bettinger

Michael A. Covington

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2012

iv

Dedication

 I dedicate this thesis to my wife, Donicia Fuller, for her encouragement and support and

to my son, whose playfulness keeps me sane.

v

Acknowledgements

 I would like to acknowledge Dr Potter for getting me started on this research. I would

also like to thank him and Dr Bettinger for guiding my work, providing encouragement, and

wading through the many revisions with helpful comments and advice. This thesis would not

have been remotely possible without their help and guidance.

I would also like to thank two of my friends, Zane Everett and Philipp Schuster, for

reading through drafts and providing helpful critiques. Their endurance for my long rambling on

this subject never ceases to amaze me.

 Finally, I would like to thank my parents and siblings for their unrelenting faith in me,

without which my faith in myself would have surely failed.

vi

Table of Contents

Page

Acknowledgements…………………………………………………………………………...…...v

Table of Contents…………………………………………………………………………..……..vi

Chapter

 1 Introduction and Literature Review…………………………………………...…..1

 2 Application of a New Multi-Valued Particle Swarm Optimization to Forest

Harvest Schedule Optimization……………………….…………………..3

 3 Probability Update Analysis for Probability-Based Discrete Particle Swarm

Optimization…………………………………………….……………….18

 4 Summary and Conclusions………………………………………………………42

References…………………………………………………………………….…………………43

1

Chapter 1

Introduction and Literature Review

 Originally created for continuous variable problems, Particle Swarm Optimization (PSO)

is a stochastic population-based optimization algorithm modeled after the motion of swarms. In

PSO, the population is called the swarm, and each member of the swarm is called a particle.

Each particle has a current location, a velocity, and a memory of the best location (local best) it

ever found. In addition, each particle has knowledge of the best location (global best) out of all

the current particle locations in the swarm. The algorithm uses the three pieces of knowledge

(current location, local best, global best) in addition to its current velocity to update its velocity

and position (Eberhart, 1995) (Kennedy,1995).

 In recent years, various discrete PSOs have been proposed for interval variable problems

(Laskari, 2002) and for nominal variable problems (Kennedy, 1997) (Salman, 2002) (Pugh,

2005) (Liao, 2007) (Chen, 2011). In interval variable problems, the conversion from continuous

to discrete variables is relatively straightforward, because there is still order to the discrete

values, so that ―direction‖ and ―velocity‖ still have meaning. However, in problems with

nominal variables, there is no order to the discrete values, and thus ―direction‖ and ―velocity‖ do

not retain their real-world interpretation. Instead, for nominal problems, PSO has usually been

adapted to travel in a probability space, rather than the value space of the problem variables. This

paper focuses on a new probability-based discrete PSO algorithm for nominal variable problems.

 Chapter 2 consists of a paper submitted to the Genetic and Evolutionary Methods 2012

conference to be held in Las Vegas as a track of the 2012 World Congress in Computer Science,

Computer Engineering, and Applied Computing. In that Chapter a new algorithm Roulette

2

Wheel Particle Swarm Optimization (RWPSO) is introduced and applied to three forest planning

problems from Bettinger (2006). Its performance is compared to several other algorithms‘

performances via tests and references to other papers.

Chapter 3 consists of a paper submitted to the journal Applied Intelligence. In that chapter

RWPSO and three other probability-based discrete PSO algorithms are compared via

experiments formulated to test the single iteration probability update behavior of the algorithms,

as well as their convergence behavior. Performance is evaluated by referencing three proposed

requirements that need to be satisfied in order for such algorithms to perform well in general on

problems with nominal variables.

Finally, Chapter 4 concludes the paper. It discusses a few final observations and future

research.

.

3

Chapter 2

Application of a New Multi-Valued Particle Swarm Optimization to

Forest Harvest Schedule Optimization
1

1
 Jared Smythe, Walter D. Potter, and Pete Bettinger. Submitted to GEM‘12 – The 2012

International Conference on Genetic and Evolutionary Methods, 02/20/2012.

4

Abstract

Discrete Particle Swarm Optimization has been noted to perform poorly on a forest harvest

planning combinatorial optimization problem marked by harvest period-stand adjacency

constraints. Attempts have been made to improve the performance of discrete Particle Swarm

Optimization on this type problem. However, these results do not unquestionably outperform

Raindrop Optimization, an algorithm developed specifically for this problem. In order to address

this issue, this paper proposes a new Roulette Wheel Particle Swarm Optimization algorithm,

which markedly outperforms Raindrop Optimization on two of three planning problems.

1 Introduction

 In [7], the authors evaluated the performance of four nature-inspired optimization

algorithms on four quite different optimization problems in the domain of diagnosis,

configuration, planning, and path-finding. The algorithms considered were the Genetic

Algorithm (GA) [6], Discrete Particle Swarm Optimization (DPSO) [5], Raindrop Optimization

(RO) [1], and Extremal Optimization (EO). On the 73-stand forest planning optimization

problem, DPSO performed much worse than the other three algorithms, despite thorough testing

of parameter combinations, as shown in the following table. Note that the forest planning

problem is a minimization problem, so lower objective values represent better quality solutions.

Table 1: Results obtained in [7]

 GA DPSO RO EO

Diagnosis 87% 98% 12% 100%

Configuration 99.6% 99.85% 72% 100%

Planning 6,506,676 35M 5,500,391 10M

Path-finding 95 95 65 74

In [2], the authors address this shortcoming of DPSO by introducing a continuous PSO

with a priority representation, an algorithm which they call PPSO. This yielded significant

5

improvement over DPSO, as shown in the following table, where they included results for

various values of inertia () and swarm size.

Table 2: Results from [2]

 PPSO DPSO

 Pop. Size Best Avg Best Avg

1.0 100 7,346,998 9,593,846 118M 135M

1.0 500 6,481,785 9,475,042 133M 139M

1.0 1000 5,821,866 10M 69M 110M

0.8 100 8,536,160 13M 47M 70M

0.8 500 5,500,330 8,831,332 61M 72M

0.8 1000 6,999,509 10M 46M 59M

Although the results from [2] are an improvement over the DPSO, PPSO does not have a

resounding victory over RO. In [1], the average objective value on the 73-stand forest was

9,019,837 after only 100,000 iterations, compared to the roughly 1,250,000 fitness evaluations

used to obtain the best solution with an average of 8,831,332 by the PPSO. Obviously, the

comparison is difficult to make, not only because of the closeness in value of the two averages,

but also because the termination criteria are not of the same metric.

In this paper we experiment with RO to generate relatable statistics, and we formulate a

new multi-value discrete PSO that is more capable of dealing with multi-valued nominal variable

problems such as this one. Additionally, we develop two new fitness functions to guide the

search of the PSO and detail their effects. Finally, we experiment with a further modification to

the new algorithm to examine its impact on solution quality. The optimization problems

addressed are not only the 73-stand forest planning problem [1][2][7], but also the 40- and 625-

stand forest problems described in [1].

2 Forest Planning Problem

In [1], a forest planning problem is described, in which the goal is to develop a forest

harvest schedule that would maximize the even-flow of harvest timber, subject to the constraint

6

that no adjacent forest partitions (called stands) may be harvested during the same period. The

goal of maximizing the even-flow of harvest volume was translated into minimizing the sum of

squared errors of the harvest totals from a target harvest volume during each time period. This

objective function f1 can be defined as:

where z is the number of time periods, T is the target harvest volume during each time period,

an is the number of acres in stand n, hn,k is the volume harvested per acre in stand n at the harvest

time k, and d is the number of stands. A stand may be harvested only during a single harvest

period or not at all, so anhn,k will be either the volume from harvesting an entire stand n at time k

or zero, if that stand is not scheduled for harvest at time k.

 Three different forests are considered in this paper, namely a 40-stand northern forest [1]

(shown in Figure 1), the 73-stand Daniel Pickett Forest used in [1][2][7] (shown in Figure 2), and

a much larger 625-stand southern forest [1] (not shown). The relevant stand acreage, adjacency,

centroids, and time period harvest volumes are located under ―Northern US example forest,‖

―Western US example forest,‖ and ―Southern US example forest‖ at

http://www.warnell.forestry.uga.edu/Warnell/Bettinger/planning/index.htm. Three time periods

and a no-cut option are given for the problem. For the 40-stand forest the target harvest is

9,134.6 m
3
, for the 73-stand forest the target harvest is 34,467 MBF (thousand board feet), and

for the 625-stand forest the target harvest is 2,972,462 tons.

 In summary, a harvest schedule is defined as an array of length equal to the number of

stands in the problem and whose elements are composed of integers on the range zero to three

inclusively, where 0 specifies the no-cut option, and 1 through 3 specify harvest periods. Thus,

http://www.warnell.forestry.uga.edu/Warnell/Bettinger/planning/index.htm

7

solutions to the 40-, 73-, and 625-stand forest planning problems should be 40-, 73-, and 625-

length integer arrays. A valid schedule is a schedule with no adjacency violations, and an

optimal schedule is a valid schedule that minimizes f1.

 Figure 1: 40-Stand Forest Figure 2: 73-Stand Forest

Many algorithms have been applied towards this problem. In [1] Raindrop Optimization,

Threshold Accepting, and Tabu Search were used on the 40-, 73-, and 625-stand forest planning

problems. In [7], a Genetic Algorithm, integer Particle Swarm Optimization, Discrete Particle

Swarm Optimization, Raindrop Optimization, and Extremal Optimization were applied to the 73-

stand forest planning problem. In [2], a Priority Particle Swarm Optimization algorithm was

applied to the 73-stand forest problem.

 In this paper, tests will be run with Raindrop Optimization and a new proposed algorithm,

Roulette Wheel Particle Swarm Optimization. Comparisons will be made between these test

results and the test results from [1], [2], and [7].

8

3 Raindrop Optimization

 Described in [1], Raindrop Optimization (RO) is a stochastic point-based search

algorithm developed for the forest planning problem and was inspired by the ripples in a pond

generated from a falling raindrop. It starts with an initial valid schedule, perturbing the harvest

period at a random stand and repairing the resulting period adjacency violations in an ever-

expanding ripple from the original perturbation, based on the centroids of the stands. The

perturbation repeats, and the best solution is reverted to after a certain interval. This perturbation

and repair process repeats until the termination criteria are met. The number of intervals until

reversion is called the reversion rate. Note that there is no set ratio between the number of

iterations and the number of fitness evaluations.

4 Particle Swarm Optimization

Particle swarm optimization (PSO) [3][4] is a stochastic population-based search

algorithm, where each member (called a particle) of the population (called a swarm) has a

dynamic velocity v and a location x, which is a point in the search space. The particle ―flies‖

through the search space using its velocity to update its location. The particle ―remembers‖ its

(local) best location p so far and is aware of the (global) best current location g for any particle in

the swarm. The attraction to the former is called the cognitive influence c1, and the attraction to

the latter is called the social influence c2. Each iteration of the PSO involves evaluating each

particle‘s location according to a fitness function, updating the local and global bests, updating

each particle‘s velocity, and updating each particle‘s location. The formula to update the velocity

and location of a particle in the i
th

 dimension at time t is specified by the following:

9

where is the inertia, r1 and r2 are all random numbers between 0 and 1, and t is the new

iteration step.

4.1 The Proposed PSO

In the proposed multi-valued algorithm Roulette Wheel PSO (RWPSO), a particle‘s

location in each dimension is generated by a roulette wheel process over that particle‘s roulette

wheel probabilities (here called its velocities) in that dimension; in a given dimension, the

particle has a velocity for every permissible location in that dimension. The algorithm

deterministically updates the velocity of each permissible location k in each dimension i for each

particle using the following formulas:

where

and m is the maximum step size, s is the social emphasis, and (1-s) is the cognitive emphasis.

The velocity vi,k is limited to the range [0,1], but is initially set to the reciprocal of the number of

permissible values in dimension i for two reasons: (1) the velocities represent roulette

probabilities and so together should sum to 1, and (2) with no domain knowledge of the

likelihood of each location k in the optimal solution, there is no reason to favor one location over

another. As previously mentioned, the particle‘s location in dimension i is determined by a

roulette wheel process, where the probability of choosing location k in dimension i is given by:

RWPSO parameters include the swarm size, the stopping criterion, the maximum step

size, and the social emphasis. The maximum step size controls the maximum rate at which the

RWPSO velocities will change and thus determines how sensitive the RWPSO is to the local and

10

global fitness bests. The social emphasis parameter determines what fraction of the maximum

step size is portioned to attraction to swarm global best versus how much is portioned to

attraction to the local best.

5 RWPSO Guide Functions

 Since RWPSO will generate schedules that are not necessarily valid, the original

objective function f1 cannot be used to guide the RWPSO, because f1 does not penalize such

schedules. Thus, two fitness functions are derived that provide penalized values for invalid

schedules and also provide values for valid schedules which are identical to those produced by f1.

5.1 RWPSO Guide Function f2

The fitness function f2 is defined as:

where

 and

where s is the harvest schedule, and sn is the scheduled harvest time of stand n.

Essentially, this function penalizes infeasible solutions by harvesting only those stands

that do not share a common scheduled harvest period with an adjacent stand; this is effectively a

temporary repair on the schedule to bring it into feasible space for fitness evaluation by omitting

all scheduled stand harvests that are part of an adjacency violation. As with f1, anhn,k will be

either the volume from harvesting an entire stand n at time k or zero, if that stand is not

scheduled for harvest at time k.

11

5.2 Alternate RWPSO Guide Function f3

The final fitness function f3 uses a copy of the harvest schedule s, denoted s , and

modifies it throughout the fitness evaluation. It is the harmonic mean of f2 and f3 defined as:

where

Fitness function f3 combines the strict penalizing fitness function f2 with the more lenient

function f3 . The function f3 creates a copy of the schedule s and modifies this copy s during the

fitness evaluation. The function iteratively considers each stand in a schedule, and whenever an

adjacency violation is reached, the harvest volume of the currently considered stand is compared

to the total harvest sum of the adjacent stands having the same harvest period. If the former is

greater, then the stands adjacent to the current stand that violate the adjacency constraint are set

to no-cut in s . Otherwise, the current stand‘s harvest schedule is set to no-cut in s . As with f1,

anhn,k will be either the volume from harvesting an entire stand n at time k or zero, if that stand is

not scheduled for harvest at time k.

 Note that for every feasible schedule, if the schedule is given to all three fitness

functions, each will yield identical fitness values, because the difference between them is in how

12

each one temporarily repairs an infeasible schedule in order to give it a fitness value; f1 does no

repair, f2 does a harsh repair, and f3 combines f2 with a milder repair f3 .

6 Tests

Having a comparable measure of process time poses a problem in determining the

statistics of RO, because unlike RWPSO, the number of fitness evaluations is not the same as the

number of candidate solutions. In fact, RO may use many fitness evaluations in the process of

mitigating infeasibilities before offering a single candidate solution. Thus, two sets of statistics

will be offered for RO, where ROc specifies the case of limiting the number of candidate

solutions to 1,000,000, and ROf specifies the case of limiting to 1,000,000 the number of fitness

evaluations over 10 trials on the 40- and 73-stand forests. Each RWPSO parameter combination

was allowed to run for 10 trials of 1,000,000 fitness evaluations on the 40- and 73-stand forests.

In order to allow the algorithms more time on a more difficult problem, both algorithms were run

for 5 trials of 5,000,000 fitness evaluations on the 625-stand forest.

To find good parameter combinations, RO was run for 10 trials with reversion rates from

1 to 10 in steps of 1 on the 73-stand forest. RWPSO was run for 10 trials with f2 on the 73-stand

forest with all combinations of the following parameters:

Swarm Size: {20, 40, 80, 160, 320, 640, 1280, 2560, 5120}

Max Step Size: {0.01, 0.05, 0.09, 0.13}

Social emphasis: {0.0, 0.25, 0.50, 0.75}

Even though RWPSO was tested over roughly 15 times the number of parameter

combinations of RO, run-time to complete all combinations was roughly the same between RO

and RWPSO. Note also that both algorithms were rather forgiving in terms of performance over

parameter combination variations. The best parameter combinations from this were used on the

13

remainder of the tests. Tests where RWPSO used f2 are denoted RWPSOf2. Similarly, tests

where RWPSO used f3 are denoted RWPSOf3.

One final variation on the configuration used for RWPSO is denoted RWPSOf3-pb. This

configuration involves biasing the initial velocities of the RWPSO using some expectation of the

likelihood of the no-cut option being included in the optimal schedule. It is expected that an

optimal schedule will have few no-cuts in its schedule. However, there is no expectation of the

other harvest period likelihoods. Therefore, the initial probabilities were tested for the following

cases:

7 Results

As with [1], the best reversion rate found for RO was 4 iterations. Similarly, the best

parameter combination found for RWPSO was swarm size 640, max step size 0.05, and a social

emphasis of 0.25. Of the initial no-cut probabilities tried, 0.04 gave the best objective values.

Table 3 shows the results of running each algorithm configuration on the 73-stand forest.

Clearly, the choice of how RO is limited—either by candidate solutions produced or by the

number of objective function evaluations—will substantially affect the solution quality. In fact,

if the number of objective function evaluations is considered as the termination criterion for both

algorithms, then every configuration of RWPSO outperforms RO on the 73-stand forest.

However, the use of f3 improves the performance of RWPSO over RO, regardless of the

termination criterion used for RO. Also, note that although the use of biased initial no-cut

probability makes RWPSOf3-pb outperform RWPSOf3, the largest gains by RWPSO in terms of

14

average objective values come from using f3 instead of f2. Additionally, changing the function

that guides RWPSO drastically decreases the standard deviation of the solution quality.

Table 3: 73-Stand Forest Results

 Best Solution Average Solution Standard Deviation

ROc 5,500,330 6,729,995 1,472,126

ROf 5,741,971 8,589,280 2,458,152

RWPSOf2 5,500,330 7,492,459 1,920,752

RWPSOf3 5,500,330 5,844,508 450,614

RWPSOf3-pb 5,500,330 5,786,583 437,916

The results for the 40-stand forest in Table 4 are similar to those in Table 3, except that

every configuration of RWPSO outperforms RO, regardless of the termination criterion used.

Additionally, RWPSO‘s greatest increase in performance came through using f3 instead of f2.

Table 4: 40-Stand Forest Results

 Best Solution Average Solution Standard Deviation

ROc 90,490 160,698 46,879

ROf 98,437 190,567 63,314

RWPSOf2 90,490 151,940 46,431

RWPSOf3 90,490 123,422 30,187

RWPSOf3-pb 90,490 113,624 23,475

The results from Table 5 illustrate that the 625-stand forest is much more difficult for

RWPSO than either of the other forests. RO with both termination criteria outperformed every

configuration of RWPSO. It can be noted that, just like for the other forests, the use of f3

improved RWPSO‘s performance over f2, and the use of biased initial no-cut probability further

improved the quality of the RWPSO solutions.

Table 5: 625-Stand Forest Results

 Best Solution Average Solution Standard Deviation

ROc 61,913,898,152 66,142,041,314 2,895,384,577

ROf 66,223,010,632 72,552,142,872 3,732,367,645

RWPSOf2 118,239,623,212 150,819,800,640 14,487,010,747

RWPSOf3 91,224,899,372 100,862,133,880 6,894,894,714

RWPSOf3-pb 87,444,889,432 95,872,673,094 6,808,823,161

15

8 Discussion

Some comparisons to the studies in Section 1 may be made, limited by the fact that they

limited the runtimes or iterations differently. Additionally, most of those studies deal only with

the 73-stand forest.

In [1], comparisons are difficult to make, because the number of fitness evaluations was

not recorded. In that paper, the best performance on the 73-stand forest was a best fitness of

5,556,343 and an average of 9,019,837 via RO. On the 40-stand forest, it was a best of 102,653

and an average of 217,470, and on the 625-stand forest via RO, it was a best of 69B and an

average of 78B via RO. In [7], the DPSO was allowed to run on the 73-stand forest up to 2,500

iterations with swarm sizes in excess of 1000, which translates to a maximum of 2.5M fitness

evaluations for a 1000 particle swarm. With DPSO, they obtained a best fitness in the range of

35M. In that paper, the best fitness value found was 5,500,391 via RO. In [2], the best

performance from their PPSO on the 73-stand forest was with 2,500 iterations of a size 500

swarm, which translates to 1,250,000 fitness evaluations. They achieved a best fitness of

5,500,330 and an average fitness of 8,831,332.

In comparison, the best results from this paper on the 73-stand forest are a best of

5,500,330 and an average of 5,786,583 after 1M fitness evaluations. RWPSO obtained the best

results of all the studies discussed for the 73-stand forest. Similarly, it outperformed on the 40-

stand forest with a best objective value of 90,490 and an average of 113,624. However, on the

625-stand forest, RO outperforms RWPSO, regardless of the termination criterion used.

16

9 Conclusion and Future Directions

 The functions f2 and f3 promote Lamarckian learning by assigning fitnesses to infeasible

schedules based on nearby feasible schedules. The use of Lamarckian learning may be

beneficial in general on similar problems, and additional research would be required to test this.

RWPSO was formulated specifically for multi-valued nominal variable problems, and it

treats velocity more explicitly as a roulette probability than do other probability based PSOs.

Additionally, by expressing parameters of the algorithm in terms of their effects on the roulette

wheel, parameter selection is more intuitive. Future work needs to be done to determine if this

explicit roulette wheel formulation yields any benefit in general to RWPSO‘s performance over

other discrete PSOs.

17

References

 [1] P. Bettinger, J. Zhu. (2006) A new heuristic for solving spatially constrained forest

planning problems based on mitigation of infeasibilities radiating outward from a forced

choice. Silva Fennica. Vol. 40(2): p315-33.

[2] P. W. Brooks, and W. D. Potter. (2011) ―Forest Planning Using Particle Swarm

Optimization with a Priority Representation‖, in Modern Approaches in Applied

Intelligence, edited by Kishan Mehrotra, Springer, Lecture Notes in Computer Science.

Vol. 6704: p312-8.

[3] R. Eberhart, and J. Kennedy. (1995) A new optimizer using particle swarm theory.

Proceedings 6th International Symposium Micro Machine and Human Science, Nagoya,

Japan. p39-43.

[4] J. Kennedy, and R. Eberhart. (1995) Particle Swarm Optimization. Proceedings IEEE

International Conference Neural Network, Perth, WA, Australia. Vol. 4: p1942-8.

[5] J. Kennedy, and R. Eberhart. (1997) A Discrete Binary Version of the Particle Swarm

Algorithm. IEEE Conference on Systems, Man, and Cybernetics, Orlando, FL. Vol. 5:

p4104-9.

[6] J.H. Holland. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor, MI: The

University of Michigan Press.

[7] W.D. Potter, E. Drucker, P. Bettinger, F. Maier, D. Luper, M. Martin, M. Watkinson, G.

Handy, and C. Hayes. (2009) ―Diagnosis, Configuration, Planning, and Pathfinding:

Experiments in Nature-Inspired Optimization‖, in Natural Intelligence for Scheduling,

Planning and Packing Problems, edited by Raymond Chong, Springer-Verlag,Studies in

Computational Intelligence. Vol. 250: p267-94.

18

Chapter 3

Probability Update Analysis for Probability-Based

Discrete Particle Swarm Optimization Algorithms
2

2
 Jared Smythe, Walter D. Potter, and Pete Bettinger. Submitted to Applied Intelligence: The

International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving

Technologies, 04/03/2012.

19

Abstract: Discrete Particle Swarm Optimization algorithms have been applied to a variety of

problems with nominal variables. These algorithms explicitly or implicitly make use of a

roulette wheel process to generate values for these variables. The core of each algorithm is then

interpreted as a roulette probability update process that it uses to guide the roulette wheel

process. A set of intuitive requirements concerning this update process is offered, and tests are

formulated and used to determine how well each algorithm meets the roulette probability update

requirements. Roulette Wheel Particle Swarm Optimization (RWPSO) outperforms the others in

all of the tests.

1 Introduction

 Some combinatorial optimization problems have discrete variables that are nominal,

meaning that there is no explicit ordering to the values that a variable may take. To illustrate the

difference between ordinal and nominal discrete variables, consider the discrete ordinal variable

 where x represents the number of transport vehicles required for a given

shipment. There is an order to these numbers such that some values of x may be ―too small‖ and

some values may be ―too large‖. Additionally, the ordering defines a ―between‖ relation, such

that 3 is ―between‖ 2 and 4. In contrast, consider the discrete variable , where

 is an encoding of the nominal values {up, down, left, right, forward, background}.

Clearly, no values of y may be considered ―too small‖ or ―too large‖, and no value of y is

―between‖ two other values.

 Discrete Particle Swarm algorithms exist that have been applied to problems with

nominal variables. Shortly after the creation of Particle Swarm Optimization (PSO) [2][3], a

binary Discrete PSO was formulated [4] and used on nominal variable problems by transforming

the problem variables into binary, such that a variable with 8 permissible values becomes 3

20

binary variables. In [5] and [8], the continuous PSO‘s locations were limited and rounded to a

set of integers, although this still yields a discrete ordinal search. In [1] and [6], a discrete multi-

valued PSO was formulated for job shop scheduling. In [7] a different discrete multi-valued

PSO was developed by Pugh.

 Except for in [5] and [8], an approach common to all the algorithms is a process where

for each location variable in each particle, the PSO: (1) generates a set of n real numbers having

some correspondence to the probabilities of the n permissible values of that variable and (2)

applies a roulette wheel process on those probabilities to choose one of those permissible values

as the value of that variable. Because this process chooses the value for a single variable in a

particle in the swarm, it differs from the roulette wheel selection used by some algorithms to pick

parents for procreation. The roulette probabilities are determined by:

where y is the variable, k is a possible value of y, zk is the number generated by the PSO to

express some degree of likelihood of choosing k, and n is the number of permissible values for y.

In [4], this process is not explicitly presented, but the final step in the algorithm may be

interpreted this way—this will be covered in more detail. The algorithms differ in how they

generate each zk, and thus the manner in which they update the roulette probabilities differs in

arguably important ways that may affect their general performance.

This paper presents some roulette probability update requirements that PSOs should

intuitively satisfy in order to perform well in general on discrete nominal variable problems. The

behavior of each of these discrete PSOs is explored through problem-independent tests

formulated around the roulette probability update requirements.

21

2 Motivations and Metrics

Some intuitive requirements about the roulette probability updates can be assumed a

priori. These requirements will be used to measure the relative quality of each PSO‘s probability

update performance. These requirements are that changes to roulette probabilities should be:

(a) Unbiased (symmetric) with respect to encoding. By this it is meant that the updates

should not behave differently if the nominal variables are encoded in a set of integers

differently. This requirement essentially ensures that the un-ordered nature of the

variables is preserved, regardless of the encoding.

 (b) Based on the PSO‘s knowledge. The only knowledge a PSO has at any given

moment is its current location and the locations of the global and local bests. It

should not act on ignorance. Thus, it should not alter the roulette probability for a

value that is not the current location, the global best, or the local best. Otherwise,

false positives and false negatives may mislead the PSO.

(c) Intuitively related to the PSO parameters. The parameters should have intuitive and

linear effects on the probability updates. This requirement makes finding good

parameter sets faster and more efficient, as well as making it easier to fine tune the

parameters.

Requirement (a) is important because it ensures that the encoding of the variable values

treats all the encoded values equally. Otherwise, the PSO will tend towards variable values

based on artifacts of the encoding and not based on their fitness. For example, if a variable‘s

values {L,R,U,D} (Left, Right, Up, Down) were encoded in the problem space as {0,1,2,3} with

a certain PSO tending towards 0 (the encoding of ‗L‘), and when encoded as {1,2,0,3}, the PSO

still tended towards 0 (now the encoding of ‗U‘), then the PSO behavior differs solely because

22

{L,R,U,D} was encoded differently. Thus, (a) is really the requirement that the encoding should

be transparent to the PSO. This also means that the PSO should be unbiased with respect to

different instances of the same configuration—this will be discussed in more detail.

Another way to phrase (b) is that PSOs should tend to update along gradients determined

by the PSO‘s knowledge; since the values of the variable are nominal and thus orthogonal, if the

PSO does not have any knowledge of a value (e.g. the value is not a global or local best and is

not the current location
3
), no gradient is evident. For instance, consider the values {L,R,U,D}, if

‗L‘ is both the global and local best value, and ‗U‘ is the current value, then it is known that ‗L‘

has higher fitness than ‗U‘, and thus there is a gradient between them with increasing fitness

towards ‗L‘. Note that this PSO wouldn‘t have any knowledge about how the fitnesses of ‗R‘

and ‗D‘ compare with ‗L‘ or ‗U‘, and thus no gradient involving ‗R‘ or ‗D‘ is evident. Thus, the

PSO should not update the probabilities of ‗R‘ and ‗D‘. Also, note in general that altering

roulette probabilities without knowing if they are part of good or bad solutions may lead to false

positives (a high probability for an unknown permissible value) or false negatives (a low

probability for a known permissible value) that may severely hamper exploitation and

exploration, respectively, because this effect is independent of the fitness values related to them.

Requirement (c) ensures that parameter values have a linear relationship with algorithm

behavior, which yields more intuitive parameter search. For instance, for a given parameter a

value of 0.25 intuitively (and generally naively) should result in behavior exactly halfway

between the behavior of having value 0 and the behavior of having value 0.5. This is helpful

because generally the novice PSO user will tend to experiment with parameter values in a linear

manner—i.e. balancing opposing parameters with a ratio of 0, then 0.25, then 0.5, then 0.75, and

3
 Such permissible values that are not the global best, local best, or current location will be

termed unknown, because they are not part of the PSO‘s knowledge.

23

then 1.0, because it is assumed that the parameter values have a linear relationship with the

algorithm behaviors.

Lacking any domain knowledge or prior tests, the manner in which the roulette

probabilities are updated may provide insight about the PSO‘s search behavior. This knowledge

can be obtained in a problem-independent manner by studying how the probabilities are updated

in a single dimension given a current location, local best, and global best for that dimension.

3 Particle Swarm Optimization

Particle swarm optimization (PSO) [2][3] is a stochastic population-based search

algorithm, where each member (called a particle) of the population (called a swarm) has a

dynamic velocity v and a location x, which is a point in the search space. The particle ―flies‖

through the search space using its velocity to update its location. The particle ―remembers‖ its

(local) best location p so far and is aware of the (global) best current location g for any particle in

the swarm. The attraction to the former is called the cognitive influence c1, and the attraction to

the latter is called the social influence c2. Every iteration of the PSO involves evaluating each

particle‘s location according to a fitness function, updating the local and global bests, updating

each particle‘s velocity, and updating each particle‘s location. The formula to update the velocity

and location of a particle in the i
th

 dimension at time t is specified by the following:

where is the inertia, r1 and r2 are random numbers between 0 and 1, and t is the new iteration

step.

24

3.1 Binary Discrete PSO

An early discrete PSO variant DPSO allows for a real valued velocity but uses a binary

location representation [4]. The velocity and location updates for the i
th

 bit of a particle in a

DPSO are computed as follows:

where r1, r2, and r3 are random numbers between 0 and 1. The update for xi can be interpreted as

a roulette wheel process where:

where

 and

In cases where the nominal variable x is split into two binary variables x’i,0 and x’i,1 with

velocities v’i,0 and v’i,1 , the roulette wheel process becomes:

where

 , , and

This process can be extended to more than two binary variables, if necessary, by a similar

process.

3.2 Chen’s PSO

 This PSO [1], which we will call CPSO, builds upon the original binary DPSO described

by [4] and a multi-valued PSO scheme described in [6]. Its original use was in flow-shop

25

scheduling. It uses a continuous PSO dimension for every discrete value of a single dimension

in the problem space. Thus, the PSO space is a vector of real numbers, where s is the

number of dimensions in the problem space and t is the number of permissible values in each

dimension. It updates the velocity somewhat differently than do the previous discrete PSOs, but

like the binary DPSO it takes the sigmoid of the velocities and uses a roulette wheel process to

determine the roulette probabilities.

First, a function to convert from the discrete location to a binary number for each

permissible location, indicating if the PSO is at that permissible value or not, must be defined

using the following:

Accordingly, the velocity of permissible location k in dimension i is updated using the following

functions:

where

The roulette probabilities are then generated from the sigmoid of the velocities by a roulette

wheel process. The roulette probabilities are generated by:

 Here the purpose of the sigmoid is not to generate probabilities from the velocities as

with DPSO; instead, the roulette wheel process explicitly performs this function.

26

3.3 Pugh’s MVPSO

 Like CPSO, this algorithm described in [7] uses a continuous PSO dimension for every

permissible value of every dimension in the problem space. Thus, the PSO‘s space is a

vector of real numbers, where s is the number of problem space dimensions and t is the number

of permissible values in each dimension. As with CPSO, MVPSO uses the standard continuous

PSO update rules, but during the fitness evaluation phase, it takes the sigmoid of the n locations

and uses those values to generate the schedule by a roulette wheel scheme. Thus, the following

are the update functions:

where c is chosen each iteration such that

 . Pugh calls c the value that

―centers‖ the particles. Unfortunately, the value c cannot be found analytically, so it must be

found by numerical approximation.

3.4 RWPSO

Described in [9], Roulette Wheel PSO (RWPSO) is a multi-valued PSO with an explicit

relation to a roulette wheel. In RWPSO, a particle‘s location in each dimension is generated by a

roulette wheel process over that particle‘s velocities (often the same as its roulette wheel

probabilities) in that dimension; in a given dimension, the particle has a velocity for every

permissible location in that dimension. The algorithm deterministically updates the velocity of

each permissible location k in each dimension i for each particle using the following formulas:

27

where

and m is the maximum step size, s is the social emphasis, and (1-s) is the cognitive emphasis.

The velocity vi,k is limited to the range [0,1], but is initially set to the reciprocal of the number of

permissible values in dimension i for two reasons: (1) the velocities closely represent roulette

probabilities and so together should sum to 1, and (2) with no domain knowledge of the

likelihood of each location k in the optimal solution, there is no reason to favor one location over

another. As previously mentioned, the particle‘s location in dimension i is determined by a

roulette wheel process, where the probability of choosing location k in dimension i is given by:

Note that unless the sum of the velocities deviates from 1, .

RWPSO parameters include the swarm size, the stopping criterion, the maximum step

size, and the social emphasis. The maximum step size controls the maximum rate at which the

RWPSO velocities will change and thus determines how sensitive the RWPSO is to the local and

global fitness bests. The social emphasis parameter determines what fraction of the maximum

step size is portioned to attraction to the swarm global best versus how much is portioned to

attraction to the local best.

4 Tests

For simplicity, the problem space will be chosen as having a single dimension.

Additionally, since PSO knowledge only contains information about the locations of the local

best, the global best, and the current position, four permissible values will be chosen. This is the

smallest space that allows for the local best, global best, current position, and unknown position

28

to be at different locations in the search space without any overlap. The permissible values are

encoded as {0, 1, 2, 3}.

Unless otherwise stated, the algorithm settings are as follows:

Algorithm Parameter Settings

DPSO cognitive influence: 1

social influence: 3

inertia: 1.2

Vmax: 4

MVPSO cognitive influence: 1

social influence: 3

inertia: 1.2

Vmax: 4

CPSO cognitive influence: 1

social influence: 3

inertia: 1.2

Vmax: 4

RWPSO Max step size: 0.05

Social emphasis: 0.25

Table 1: The algorithm parameter settings

The following sections experiment with multiple discrete PSOs under various

circumstances in the aforementioned test space to study how each PSO updates its roulette

probabilities. Based on the results and how they relate to requirements (a)-(c), certain

conclusions about PSO performance can be made.

4.1 Single Iteration Probability Updates

The purpose of this test is to analyze the average roulette probability update behavior of

the PSO by examining the probabilities before and after the PSO updates looking for violations

of requirements (a) and (b). Here, violations of (a) will only appear as inconsistencies in the

updates of unknown values‘ probabilities since they should be treated identically. Violations of

(b) will appear as changes in the average probabilities of the unknown values.

29

There are only five possible configurations of the relative locations of the current

location, the global best, and the local best with respect to each other in a non-ordered space.

They are:

(1) The global best, local best, and current locations are the same.

(2) The global best and current locations are the same, but the local best location is

different.

(3) The local best and current locations are the same, but the global best location is

different.

(4) The local best and global best locations are the same, but the current location is

different.

(5) The local best, global best, and current locations are all different.

 Figure 10 shows ideal average probability updates expected for this test corresponding to

each of these configurations, where the size of the slice on the roulette wheel represents the

roulette probability. It is ideal because the unknown values‘ probabilities are treated identically,

satisfying (a), and those same probabilities remain unchanged after the update, satisfying (b).

Figure 1: The ideal probability updates

Because we assume that restriction (a) must hold, we can choose a particular encoding

(or instance) for each configuration without loss of generality. For our tests, where the

30

permissible values have been assumed to be from the set {0, 1, 2, 3}, the test instance of each

configuration is as follows:

Configuration Instance

Current Global best Local best

1 0 0 0

2 0 0 1

3 0 1 0

4 0 1 1

5 0 1 2

Table 2: The permissible values at the current, local best, and global best locations

Thus, the instances in Table 2 would encode the roulette wheel in Figure 1 thusly: the upper left

quadrant as 0, the upper right quadrant as 1, the lower left quadrant as 2, and the lower right

quadrant as 3.

In order to simulate the behavior of the PSO for any iteration during its run, the

probabilities or velocities were randomized before performing this test. The test consists of the

following steps:

1) Initialize the algorithm, setting the current value, the global best, and the local best

appropriate to the instance being considered and randomizing the velocities.

2) Let the PSO update the velocities and probabilities.

3) Let the PSO generate the new current location.

4) Record the new current location.

5) Repeat steps 1-4 for 100,000,000 trials.

6) Determine the portion of the trials that generated each location.

7) Repeat steps 1-6 for the five instances.

Because the PSOs are set to have random probabilities initially, the probability of generating

each location is 25% before the update is applied. This was verified by 100,000,000 trials of

having the PSOs generate a new current location without having updated the probabilities.

31

 The results are shown in Table 3, where P(x) is the portion of the trials for which the

current location generated was x.

32

 Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5

Name P(0) P(1) P(2) P(3) P(0) P(1) P(2) P(3) P(0) P(1) P(2) P(3) P(0) P(1) P(2) P(3) P(0) P(1) P(2) P(3)

DPSO 25% 25% 25% 25% 21% 29% 21% 29% 15% 35% 15% 35% 12% 38% 12% 38% 12% 30% 17% 41%

MVPSO 25% 25% 25% 25% 17% 35% 24% 24% 7% 52% 21% 21% 4% 59% 18% 18% 4% 49% 27% 19%

CPSO 25% 25% 25% 25% 20% 29% 25% 25% 13% 35% 26% 26% 9% 37% 27% 27% 9% 35% 30% 26%

RWPSO 25% 25% 25% 25% 21% 29% 25% 25% 24% 26% 25% 25% 20% 30% 25% 25% 20% 26% 29% 25%

Table 3: The resulting roulette probabilities after each algorithm’s update

33

In Table 3, the shaded regions correspond to locations for which the PSO has no

knowledge—in other words, the location is not the current location, the local best, or the global

best. Thus, DPSO violates requirement (a) in configurations 2, 3, and 4 by not treating the

shaded regions identically. Because of requirement (b), these shaded roulette probabilities

should not on average be altered from 25% by the PSO. Both DPSO and MVPSO violate (b) by

altering these probabilities in configurations 2, 3, 4, and 5, and CPSO violates (b) in

configurations 3, 4, and 5, although by not as much. The only PSO which does not violate (a) or

(b) here is RWPSO.

4.2 Probability Update Convergence Behavior

 The purpose of this test is to analyze the long term behavior of the PSO, if the local best

and global best are set at different locations and the balance between the social and cognitive

parameters is set differently per run, specifically to test for violations of requirements (c). This

test can also inform us how well the PSO mixes components from the local and global bests to

form the new current location, as well as how linearly the PSO parameters affect the mixing

process. Additionally, the analysis can also show how consistently the PSO mixes these

components. Violations of (c) will appear as nonlinear effects resulting from varying algorithm

parameters linearly.

In order to make these observations, we need a single parameter for all the algorithms in

the range [0,1] that determines the mixing of the social and cognitive influence parameters. For

RWPSO, the parameter s fulfills this need. However, for the other algorithms, we must construct

a parameter to parameterize the social and cognitive influences of the algorithms. A

parameterization is created for the other algorithms using:

34

where s is the social emphasis, i.e. the fraction of attraction directed towards the global best.

Using the conventional wisdom that the social and cognitive influences sum to 4, this is

rearranged so that we get the social and cognitive influences thusly:

 and

Using this parameterization, we now can test how setting the balance between the social

attraction and cognitive attraction parameters in each algorithm affects the roulette probability

updates.

This test follows the following steps:

1) Set the current location randomly, set 0 as the global best, and set 1 as the local best.

2) Initialize the particle to its starting state, as defined by each algorithm.

3) Update the PSO velocities or probabilities to generate the new current location.

4) Repeat step 3 for 1000 iterations.

5) Record the last iteration‘s encoded probability for choosing each of the four locations.

6) Repeat steps 1-5 for 100,000 trials.

7) Compute the average of each location‘s probability generated at the end of each trial,

and compute the standard deviation of the probability for the first location.

8) Repeat steps 1-7 for each value of s.

The reader might assume some balance in attraction to the global best and local best

corresponding to the balance between the social and cognitive influences (determined by s).

However, Figure 2 shows how RWPSO is the only algorithm whose social emphasis parameter s

acts linearly on the probability of choosing the global best location, indicating that the balance in

attraction to the global best and local best corresponds linearly to the balance parameter

35

established by s. Thus, it satisfies requirement (c), whereas the others do not, because the

relationship between s and the balance between the global best and local best is linear.

Figure 2: The effect of s on the average probability of location 0

Figure 3 shows the standard deviation of the roulette probability of choosing the global

best given various values of s. Again, RWPSO comes out as having the most consistent behavior

over the parameter s. This shows that the mixing of the global best and local best is not

consistent for the other algorithms when the mix is supposed to be nearly evenly distributed

(s=0.5). More importantly, the s does not have a linear relationship with the standard deviation

of the probability of choosing the global best permissible value. Thus, this is a violation of the

parameter linearity requirement (c) for all the algorithms, although RWPSO has the flattest curve

closest to being linear.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 P
ro

b
ab

ili
ty

 o
f

Lo
ca

ti
o

n
 0

s

RWPSO

DPSO

MVPSO

ChenPSO

36

Figure 3: The effect of s on the standard deviation of the probability of location 0

Figure 4 shows the sum of probabilities of the non-best locations. Only DPSO and

RWPSO have a linear effect on this sum and thus satisfy the parameter linearity requirement (c).

Additionally, MVPSO and CPSO violate (b)—which requires that updates only affect current

values and best values—because the only way such high sums could be generated is if the PSO

increased the probability of the non-bests without having them as a current location, because

current location probabilities do not increase on average for those PSOs, as shown in Table 3.

Figure 4: The effect of s on the sum of the average probabilities of the non-best values

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

St
an

d
ar

d
 d

e
vi

at
io

n
 o

f
th

e
 p

ro
b

ab
ili

ty
 o

f
Lo

ca
ti

o
n

 0

s (for RWPSO) or c1/(c1+c2)

RWPSO

DPSO

MVPSO

ChenPSO

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Su
m

 o
f

av
e

ra
ge

 p
ro

b
ab

ili
ti

e
s

fo
r

n
o

n
-

b
e

st
 lo

ca
ti

o
n

s

s (for RWPSO) or c1/(c1+c2)

RWPSO

DPSO

MVPSO

ChenPSO

37

4.3 Discussion

 In Table 3, on average Pugh‘s MVPSO penalizes every permissible value where

knowledge is lacking (where the permissible value was not the local best location, global best

location, or current location). This inhibits exploration because if the unknown values‘ roulette

probabilities are decreased, then those permissible values are less likely to be chosen in the

location update. This means they will likely continue to be in the unknown, which means that

MVPSO will continue to decrease their probabilities. However, this is inconsistent because it

does not occur in configuration 1. As discussed when introducing requirement (a), there is no

gradient justification for this.

 The behavior of DPSO in Table 3 is not unexpected due to the way that the roulette

probabilities are generated from the binary encoding of the four permissible values. Consider

Figure 5, where social influence has been set higher than cognitive influence and where x, l, and

g are the current location, local best location, and global best location, respectively. It shows two

different update cases where the roulette probability of the current location has been penalized.

Case 1 is an update resulting in an increase in the roulette probability of the unknown

permissible value and Case 2 is an update resulting in a smaller roulette probability of the

unknown permissible value. This is an artifact of the encoding of the four permissible values

into two binary DPSO location variables.
4

4
 An additional artifact of the encoding is that for permissible values A and B encoded as binary

strings a and b with Hamming distance , it is not possible that both

 and

 , violating requirement (a).

38

Figure 5: Probability update for DPSO

This is additional evidence that DPSO violates requirement (a), because in the two different

instances of configuration (5) it updates the roulette probabilities of the unknown permissible

values differently.

CPSO updates in Table 3 increased some of the roulette probabilities of the permissible

values where knowledge was lacking; however, these increases were by a very small amount and

thus were a small violation of requirement (b). RWPSO did not modify the roulette probabilities

of those values at all.

In Figure 2, DPSO and MVPSO showed an almost sigmoidal relationship between the

cognitive-social balance and the average updated probability of the global best position. CPSO

exhibited a much more bizarre curve. The most important thing to note about the effect of their

curves is that parameter testing DPSO, MVPSO, and CPSO will be much less intuitive since

varying s only seems to noticeably effect the roulette probabilities when s varies on the range 0.3

to 0.7, which translates to typical c1 and c2 values in the range 1.2 to 2.8. This also explains the

popularity of choosing social and cognitive influence parameter values close to 2. In contrast,

RWPSO exhibits a linear relationship between s and the roulette probability of the global best

permissible value. This means that changes to s exhibit predictable changes to the roulette

probability of the global best permissible value.

On the small s range of 0.3 to 0.7, there is also a large standard deviation of the average

roulette probabilities for DPSO, MVPSO, and CPSO shown in Figure 2. This means that in use,

39

the probabilities themselves may be more random and thus less capable of directing the search.

The RWPSO standard deviation curve over s is both more evenly distributed and lower,

indicating more consistency and greater ability to direct the search.

As shown in Figure 4, both MVPSO and CPSO have a tendency to retain high

probabilities for non-best locations even after 1,000 iterations. This may inhibit exploitation of

good results, since the PSOs are forced to continue incorporating permissible values that are not

part of known good solutions, with a rather high probability. In other words, on average, with a

typical s value of 0.5 (where c1=c2=2) almost 40% of the problem space variables will be at

neither the local nor global best even after 1,000 iterations when using CPSO. Similarly, when s

is on the range 0.3 to 0.7, over 12.5% of the problem space variables will be at neither the local

nor global best even after 1,000 iterations when using MVPSO. Additionally, this effect is not

linear and thus not predictable when varying the parameter values.

Of the PSOs considered, the RWPSO violated requirements (a)-(c) the least. Although

the constraints were intuitive and determined a priori, violating (a)-(c) will put a PSO at a

distinct disadvantage at being a general-purpose algorithm for nominal variable problems.

4.4 Conclusion and Future Work

 The goal of this paper was to discuss general requirements for a general-purpose multi-

value PSO for problems with nominal variables and to observe the performance of four PSO

algorithms on problem-independent tests with respect to satisfying those general requirements.

The results showed that DPSO‘s performance depends on how its permissible values are

encoded per problem, because it violated requirement (a). The results also showed that DPSO,

MVPSO, and CPSO all inconsistently applied the heuristic of updating probabilities according to

gradients, because they violated requirement (b). Finally, the results showed that because DPSO,

40

MVPSO, and CPSO all have nonlinear parameter effects (violating (c)), algorithm behavior is

unpredictable and counterintuitive with respect to parameter values, which has led to a

―conventional wisdom‖ of choosing cognitive and social values close to 2 without understanding

why this is desirable, regardless of the fitness landscape of the problem.

In contrast, RWPSO satisfies (a) and so is not sensitive to the manner of encoding, and

thus no prior domain knowledge is necessary to optimize the encoding of the problem variables‘

permissible values. Secondly, RWPSO satisfies (b) and so consistently applies the heuristic of

updating the probabilities along the known fitness gradients, which keeps the algorithm from

working against itself. Finally, RWPSO satisfies (c) by having linear parameter effects with no

―sweet spot‖, allowing parameter variations to have exactly the effect intuitively ascribed to

them—a weighted sum of two parameter‘s values yields a similarly weighted sum of their

probability update behaviors.

Additional work is necessary to empirically verify the performance predictions

concerning these algorithms on various problems with nominal variables. These tests will have

to be varied and large in number in order to test general performance. Further tests also need to

be formulated to test the effect of the magnitude of the roulette probability updates on the

convergence behavior of each algorithm.

41

References

[1] R. Chen. (2011) ―Application of Discrete Particle Swarm Optimization for Grid Task

Scheduling Problem‖, in Advances in Grid Computing, edited by Zoran Constantinescu,

Intech. pp. 3-18.

[2] R. Eberhart and J. Kennedy. (1995) A New Optimizer Using Particle Swarm Theory.

Proceedings 6th International Symposium Micro Machine and Human Science, Nagoya,

Japan. pp. 39-43.

[3] J. Kennedy and R. Eberhart. (1995) Particle Swarm Optimization. Proceedings IEEE

International Conference Neural Network, Perth, WA, Australia. 4: 1942-1948.

[4] J. Kennedy and R. Eberhart. (1997) A Discrete Binary Version of the Particle Swarm

Algorithm. IEEE Conference on Systems, Man, and Cybernetics, Orlando, FL. 5: 4104-

4109.

 [5] E. C. Laskari, K. E. Parsopoulos, and M. N. Vrahatis. (2002) Particle Swarm

Optimization for Integer Programming. Proceedings IEEE Congress on Evolutionary

Computation, CEC‘02, Honolulu, HI, USA. pp. 1582–1587.

[6] C. J Liao, C.T. Tseng, and P. Luarn. (2007) A Discrete Version of Particle Swarm

Optimization for Flowshop Scheduling Problems. Computers and Operations Research.

34(10): 3099-111.

[7] J. Pugh and A. Martinoli. (2005) Discrete Multi-Valued Particle Swarm Optimization.

Proceedings IEEE Swarm Intelligence Symposium, SIS 2005. pp. 92-99.

[8] A. Salman, I. Ahmad, and S. Al-Madani. (2002) Particle Swarm Optimization for Task

Assignment Problem. Microprocessors and Microsystems. 26(8): 363–371.

[9] J. Smythe, W. D. Potter, and P. Bettinger (under review) Application of a New Multi-

Valued Particle Swarm Optimization to Forest Harvest Schedule Optimization, submitted

Feb 2012.

42

Chapter 4

Summary and Conclusion

In Chapter 2 RWPSO and Raindrop Optimization were applied to three forest planning

problems. It was shown that RWPSO strongly outperformed every other published result using a

PSO variant. Furthermore, RWPSO outperformed every other algorithm discussed on each of the

three forest planning problems, except for Raindrop Optimization, which produced superior

results on the 625-stand forest. Further research will determine how other algorithms fare on the

625-stand problem, as well.

In Chapter 3 the goal was to propose general constraints for probability-based PSOs for

nominal variable problems. These constraints require consistency of performance across nominal

value encodings, probability updates only according to PSO knowledge, and linear update

changes in relation to parameter variation. It is argued that a probability-based PSO must satisfy

these constraints in order to be a more effective general-purpose solver for nominal variable

problems. Finally, four PSO variants are tests with experiments formulated to assess satisfaction

of the three constraints, and RWPSO is found to violate them the least. This is claimed to have

important ramifications on its general behavior. Firstly, the order of encoding of the nominal

variables is inconsequential. Secondly, the heuristic of updating probabilities with respect only to

the PSOs knowledge is maintained. Finally, obtaining good parameters is easier, especially for

novice users, because update changes correspond linearly to parameter changes.

43

References

P. Bettinger, J. Zhu. (2006) A new heuristic for solving spatially constrained forest planning

problems based on mitigation of infeasibilities radiating outward from a forced choice.

Silva Fennica. Vol. 40(2): p315-33.

P. W. Brooks, and W. D. Potter. (2011) ―Forest Planning Using Particle Swarm Optimization

with a Priority Representation‖, in Modern Approaches in Applied Intelligence, edited by

Kishan Mehrotra, Springer, Lecture Notes in Computer Science. Vol. 6704: p312-8.

R. Chen. (2011) ―Application of Discrete Particle Swarm Optimization for Grid Task Scheduling

Problem‖, in Advances in Grid Computing, edited by Zoran Constantinescu, Intech. pp.

3-18.

R. Eberhart and J. Kennedy. (1995) A New Optimizer Using Particle Swarm Theory.

Proceedings 6th International Symposium Micro Machine and Human Science, Nagoya,

Japan. pp. 39-43.

J.H. Holland. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor, MI: The

University of Michigan Press.

J. Kennedy and R. Eberhart. (1995) Particle Swarm Optimization. Proceedings IEEE

International Conference Neural Network, Perth, WA, Australia. 4: 1942-1948.

J. Kennedy and R. Eberhart. (1997) A Discrete Binary Version of the Particle Swarm Algorithm.

IEEE Conference on Systems, Man, and Cybernetics, Orlando, FL. 5: 4104-4109.

E. C. Laskari, K. E. Parsopoulos, and M. N. Vrahatis. (2002) Particle Swarm Optimization for

Integer Programming. Proceedings IEEE Congress on Evolutionary Computation,

CEC‘02, Honolulu, HI, USA. pp. 1582–1587.

C. J Liao, C.T. Tseng, and P. Luarn. (2007) A Discrete Version of Particle Swarm Optimization

for Flowshop Scheduling Problems. Computers and Operations Research. 34(10): 3099-

111.

W.D. Potter, E. Drucker, P. Bettinger, F. Maier, D. Luper, M. Martin, M. Watkinson, G. Handy,

and C. Hayes. (2009) ―Diagnosis, Configuration, Planning, and Pathfinding:

Experiments in Nature-Inspired Optimization‖, in Natural Intelligence for Scheduling,

Planning and Packing Problems, edited by Raymond Chong, Springer-Verlag,Studies in

Computational Intelligence. Vol. 250: p267-94.

J. Pugh and A. Martinoli. (2005) Discrete Multi-Valued Particle Swarm Optimization.

Proceedings IEEE Swarm Intelligence Symposium, SIS 2005. pp. 92-99.

44

A. Salman, I. Ahmad, and S. Al-Madani. (2002) Particle Swarm Optimization for Task

Assignment Problem. Microprocessors and Microsystems. 26(8): 363–371.

