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Abstract

IntraVascular UltraSound (IVUS) image segmentation is still an open problem as no ap-

propriate solution has been discovered yet. The segmentation of IVUS images involves

extracting the vessel (outer) and lumen (inner) boundaries from the cross-sectional images.

This project applies two widely used image processing techniques separately for the vessel

and lumen boundary detection, gradient extraction and adaptive k-means clustering, re-

spectively and then employs a well-known contour representation, parametric deformable

model to extract both the contours. The contours thus extracted are reconstructed into a

3D data model to assist in visualizing the coronary arteries as a tube-like structure. This

helps physicians to visualize and measure the deposition of plaque for appropriate calcium

score diagnosis.
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Chapter 1

Introduction

Coronary Artery Disease (CAD) is currently the leading cause of death in the United States.

Effective means of treating CAD are available, but the main problem lies with the detection

and identification of the disease. One of the risk factors associated with the disease is the

cholesterol or calcium deposition in the coronary arteries. These deposits, also known as

plaque, block the flow of blood through the arteries, therefore increasing the risk of potential

cardiac arrest or stroke. Hence early detection of arterial plaque and determination of the

degree of plaque deposition is very useful to determine the appropriate treatment. This

project aims to provide a visualization of the interior coronary arterial walls to enable a

view of the inner lumen and obtain the volume of plaque deposition.

1.1 IVUS Imaging

IntraVascular UltraSound (IVUS) is a very recent ’in vivo’ medical imaging technology. ’In

vivo’ means that it is performed on a living organism. A special catheter with an ultrasound

probe at one end is inserted into the blood vessels. The other end of the catheter is connected

to an ultrasound detector. The catheter is then pulled out slowly and images of the inner
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Figure 1.1: Regions in an IVUS image
Source: http://www.incor.usp.br/spdweb/projetos eng/ivus.htm

wall of the artery are taken at regular intervals, generally at every diastole. IVUS imaging

thus enables us to visualize the inner wall of the blood vessels.

IVUS imaging is carried out in the coronary vessels or arteries in order to be able to detect

the build up of plaque, which can result in stenosis (narrowing) of the vessels. Narrow-

ing of the arteries can in turn lead to a stroke or cardiac arrest, since blood cannot flow

freely through these vessels. Since the progressive accumulation of plaque can be poten-

tially lethal, it is advisable to detect the plaque deposits as early as possible. IVUS images

can be studied to determine the extent or degree of stenosis in the arteries and appropri-

ate measures can be taken to prevent further deposits or to reduce the current accumulation.

A sample IVUS image is shown in Figure 1. IVUS images are comprised of three main

regions - lumen, plaque and adventitia. The lumen and vessel boundaries separate these

three regions. The outer vessel boundary separates the adventitia and the plaque regions.

2
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Plaque forms inside the vessel of the arteries and the inner contour of the plaque deposits

defines the lumen boundary. The inner lumen boundary separates the plaque and the lumen

regions. The lumen region is the area which is left free for the blood to flow through the

coronary arteries.

1.2 Segmentation

Image segmentation is a process of clustering pixels into prominent image regions. In other

words, image segmentation aims at finding individual objects in an image. This helps in

distinguishing image objects from its background. Image segmentation could be used for a

variety of applications including object recognition, occlusion boundary estimation, image

compression, image editing, and image database look-up.

The basic principle of image segmentation lies in partitioning the image into clusters of

”similar” pixels. This can lead to creating a histogram of the pixel values, on which a cer-

tain threshold can be used to differentiate objects in the image from the background. Figure

1.2 gives an simple example of image segmentation on a gray-scale image. As seen in the

figure, the objects are clearly distinguished from the background as well as from one another.

Figure 1.2: Example of Image Segmentation
Source: http://www.cs.toronto.edu/ jepson/csc2503/segmentation.pdf
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1.3 Active Contours

Active contours, or snakes, are used to detect object boundaries in an image and to describe

their shape. These active contours are curves that change shape based on the internal forces

of the object and the external forces of the image. These forces are defined in such a way that

the snake moves towards the object boundary due to the effect of these forces and eventually

conforms to the boundary of that object. Snakes are widely used in many applications

including edge detection, shape modeling, segmentation, and motion tracking. There are

two types of active contours: parametric active contours and geometric active contours.

1.3.1 Parametric Active Contours

Parametric active contours [7], generate curves within an image that are represented using

a parametric form. These curves move towards the edges in the image due to the effect

of forces in the image. Image forces are of two types: internal forces and external forces.

External forces are comprised of potential forces and pressure forces, which push the curve

towards a feature in the image. Potential forces can be represented as the negative gradient

of a potential function.

Internal forces comprise of elasticity forces, which are designed to keep a curve from breaking

under pressure and bending forces, which keep a curve rigid and prevent it from bending too

much. Internal forces act within a curve itself and ensure to keep it smooth during deforma-

tion. External forces are obtained from the image data and are designed to move the curves

towards the edges in the image. The work in this thesis is based on the implementation of

the parametric active contour model. A standard parametric snake model is described in

detail in Section 1.4.
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Internal forces are responsible for imposing a smoothness constraint on the snake contour,

whereas external forces are responsible for getting the snake contour close to the desired

features of the image that the snake contour is supposed to conform to, typically edges.

Internal forces make the snake contour to act like an elastic membrane which changes shape

in a particular direction but remains smooth and does not break under the pressure of the

pulling forces. The pulling forces are the external forces present in the images which act

upon the snake contour and enable it to move in a particular direction, where the energy is

minimized.

1.3.2 Geometric Active Contours

Geometric active contours [8], are based on the theory of curve evolution and geometric

flow. Geometric active contours represent curves and surfaces implicitly as a level set of an

evolving scalar function. Since curves evolve only through geometric measures, the evolution

is not dependent on the parametrization of the curve and this in turn rids the dependence on

changes in topology. Geometric active contours share certain similarities with a sub-family of

parametric models [18], but these similarities have been established only for active contours

derived from the energy minimization framework and to contours using elastic forces. Other

classes of parametric contour models do not have equivalent geometric contour models.

1.3.3 Parametric Vs. Geometric Active Contours

Although parametric and geometric active contours have equivalences, they are quite dif-

ferent in many aspects. Some of the differences between parametric and geometric active

contours are listed below.

• Parametric active contours have an implicit representation of the energy model, whereas

geometric active contours have an explicit representation.
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• Parametric active contours are iteratively evolved and are parameterized after every

iteration. This facilitates a direct interaction between the user and the contour itself.

However, since geometric active contours are parameterized only after the contour

evolution, direct interaction is not possible.

• Since parametric active contours are dependent on both the internal and external forces

in the energy framework, they are easily controllable in terms of rigidity and elasticity.

Geometric active contours however, do not work well in the existence of weak image

edges [10], because geometric active contour models require the edges in the image to

be continuous. If the edges are weak or broken, geometric active contour models may

result in contour leaking.

• Since geometric active contours can handle topological changes effectively, it is only

intuitive that they are better suited in cases where topology plays an important role,

such as cases where the contour evolution can exploit the object topology for better

optimization.

• It is a well known fact that parametric active contours are dependent on the initial-

ization of the snake contour. However, geometric active contours are initialization

independent, because they are topologically independent. Hence, geometric active

contours can be initialized even on the image border and that would not affect the

final result. However, they are more sensitive to noisy artifacts in the images when

compared to parametric contours.

• Parametric active contours are computationally less complex than geometric active

contours. This is due to the fact that geometric active contours perform global defor-

mation, which can be more time consuming and computationally more complex and

hence, in turn, less efficient than their parametric counterparts.
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On account of the reasons stated above which show that the parametric active contours are

easily controllable, facilitate direct interaction with the user, are less sensitive to noise in the

images, are more efficient in terms of time complexity and are computationally less complex

than geometric active contours, the work in this thesis is biased towards using parametric

active contours.

1.4 Standard Parametric Model

A traditional snake contour or active contour is defined by x(s) = [x(s), y(s)], s ∈ [0, 1], that

moves through an image towards a feature where the energy functional described below is

minimal.

E =
∫ 1

0

1
2
[α|x′(s)|2 + β|x′′(s)|2] + Eext(x(s))ds (1)

where α and β are weights related to the tension and rigidity of the snake contour re-

spectively and x′(s) and x′′(s) represent the first and second derivatives of x(s) with respect

to s. Eext is the external energy force derived from the image, such that it attains a minimum

at the image features, mainly edges. Possible external energy functions for a gray-scale im-

age I(x, y) are given by equations (2) or (3), whereas possible external energies for a binary

image (black object on white background) are given by equations (4) or (5):

Eext(x, y) = −| 5 I(x, y)|2 (2)

Eext(x, y) = −| 5 [Gσ(x, y) ∗ I(x, y)]|2 (3)

Eext(x, y) = I(x, y) (4)

Eext(x, y) = Gσ(x, y) ∗ I(x, y) (5)
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where Gσ(x, y) is a two-dimensional Gaussian function with a standard deviation σ, and

5 is the gradient operator.

A snake contour that minimizes the energy functional should also satisfy the Euler equation.

αx′′(s)− βx′′′′(s)−5Eext = 0 (6)

This can be converted into a force balance equation as follows:

Fint + Fext = 0 (7)

where Fint = αx′′(s) − βx′′′′(s) and Fext = − 5 Eext. The internal force Fint prevents

the contour from bending while the external force Fext pulls or pushes the snake contour

towards image features.

The variable x can be represented as a function of time, t as well as s, x(s, t). This makes

the snake contour dynamic and helps us to obtain a solution for equation (6). The partial

derivative of x with respect to t is set to the left hand side of equation (6) as shown in equa-

tion (8). Thus, when x(s, t) stabilizes, equation (6) is solved because xt(s, t) no longer exists.

xt(s, t) = αx′′(s)− βx′′′′(s)−5Eext (8)

A numerical solution to equation (8) can be obtained by solving a discretized equation

iteratively [7].
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Figure 1.3: Movement of a snake towards the object boundary

1.5 Behavior of Traditional Snake Contours

Snakes basically try to match a specified deformable contour by solving an energy minimiza-

tion equation. The forces defined in the energy minimization equation are computed from

image features and properties and are such that they push or pull the snake towards features

in the image. If a snake contour finds a low-energy feature in its neighborhood or vicinity, it

moves towards that feature using lead gradient descent search. The snake contour therefore

relies on appropriate initialization. Figure 1.3 shows the deformation of a snake contour

towards the nearest boundary in the image.

The vicinity or neighborhood of the boundaries is defined as the capture range of the exter-

nal boundary force. Beyond this neighborhood area, the image regions are homogenous, i.e.,

the gradient in the image is zero. Figure 1.4 shows the capture range generated by potential

forces and the gradient vector field. The arrows seen in the figure represent the forces in the

image. It can be seen in the images that the forces are directed towards the boundary of

the object. The snake contour gets pulled in the direction of the forces towards the edge of

interest.
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Figure 1.4: Capture range created by potential forces and the gradient vector field
Source: http://www.iacl.ece.jhu.edu/ chenyang/research/pubs/p084j.pdf

For standard parametric snake contours, the initial contour needs to be defined near the

edge of interest if it has to deform appropriately or get pulled towards the appropriate

boundary, because the capture range of the forces is very small. The initial contour needs to

be initialized within the capture range of the forces, if the forces have to act on the contour.

This limits the application or program to rely on user input to define initial snake contours.

The user also needs to have prior knowledge of the image to be able to appropriately initial-

ize the contour. Other limitations of the standard parametric model are listed in Section 3.1.

Figure 1.5 shows a snake contour being pulled away from the edge of the object. When

the force pulling the contour is lifted i.e., the contour is released, the snake gradually moves

back towards the edge of interest. The force governing this movement is the internal energy

of the contour. The snake moves toward the minimized energy feature on the image to which

it is already attached i.e., if a part of the snake is already attached to a desired image feature,

10
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Figure 1.5: Example of a snake contour being pulled towards the boundary of an object
Source: http://www.cs.ucla.edu/ dt/papers/ijcv88/ijcv88.pdf

the rest of the snake also gets conformed to the same feature. So, it is actually enough even if

a part of the snake is inside the capture range of the external force governing the movement

of the snake.

11
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1.6 The k-means Clustering Algorithm

The k-means Clustering algorithm is a least-square partitioning method which partitions an

image into k clusters such that the pixels in the image belong to the cluster with the nearest

mean. The basic concept of the clustering technique is to identify k initial pixels in the

image, which represent the initial cluster means. The remaining pixels in the image are then

assigned to these means to create k initial clusters, such that each pixel is assigned to the

mean which is closest to it. The means are recalculated and the image pixels are reclustered

with respect to the new means. This process is continued until the means do not change.

The step-by-step algorithm for k-means clustering is as below:

1. Place k points at random positions in the 2D space represented by the image whose

pixels are being clustered. These points represent the initial cluster means.

2. Assign each pixel in the image to the cluster with the closest cluster mean.

3. When all pixels have been assigned, recalculate the positions of the k mean points.

4. Repeat steps 2 and 3 until the mean points no longer change. This produces a separa-

tion of the image into k objects.

1.7 Adaptive k-means Clustering Algorithm

The k-means clustering algorithm requires a user to specify the number of clusters into

which the image pixels can be clustered. This leads to the fact that the resultant clusters

are dependent on the initialization. An adaptive k-means clustering technique eliminates

this requirement. The simplest form of adaptive k-means algorithm adapts to the image and

12



a different number of clusters are obtained for different images based on the image properties.

The adaptive k-means algorithm is as follows:

1. Consider k = 1.

2. Perform basic k-means clustering, as described in Section 1.6.

3. Check if resultant clustering is satisfactory based on a certain preset condition.

4. If the result is satisfactory, go to Step 6.

5. If the result is not satisfactory, increment the value of k by 1 and go to Step 2.

6. Save the segmented image. Stop.

The above algorithm generates a segmented image with k clusters, the value of k being

different for every image. The preset condition for Step 3 in the case of adaptive k-means

clustering technique is generally user-defined. For this project, the satisfaction criteria is

that the correlation coefficient between the original image and the segmented image has to

be greater than 0.99. The correlation coefficient r, used for this project is as given below:

r =

∑
m

∑
n

(OImn −OI)(SImn − SI)√√√√(∑
m

∑
n

(OImn −OI)2
)(∑

m

∑
n

(SImn − SI)2
)

where OI is the original image matrix, SI is the segmented image matrix, OI is the mean

of the matrix OI and SI is the mean of the matrix SI

1.8 Gradient Vector Flow field

Gradient Vector Flow (GVF) field is an external potential force field obtained from the gra-

dient of an image. This is a dense vector fields obtained by the diffusion of the gradient

13



vectors of an edge map of the image. GVF Snakes are the active contours which use GVF

as the external force in the force balance equation as follows:

xt(s, t) = αx′′(s)− βx′′′′(s) + v (9)

where − 5 Eext in (8) is replaced by v, which is the GVF field. The snake contour that

satisfies and solves this equation is called a GVF snake.

Initially, an edge map f(x, y) is created from the image I(x, y). An edge map is charac-

terized by a large magnitude near the edges. Any of the external energy forces defined in

equations (2), (3), (4) or (5) can be used to generate an edge map, depending on the type of

image that is being worked on. The GVF field is then defined as v(x, y) = [u(x, y), v(x, y)]

and the energy framework is defined as follows:

ε =
∫ ∫

µ(u2x + u2y + v2x + v2y) + | 5 f |2|v −5f |2 dx dy (10)

From the above equation, we can see that if |5f | is small, then the sums of the squares of the

partial derivatives of the GVF field dominate the second term in the energy framework, thus

creating a slowly changing gradient field. On the other hand when |5 f | is large, the second

term is dominant in the energy framework. This can be minimized by setting v = 5f . This

ensures that the gradient is equal to the edge map when it has a large magnitude, whereas

it leads to a gradually diffusing force field in homogenous regions.

Here, µ is a user-defined parameter used to regulate the tradeoff between the two terms

in the energy functional. It is initialized to a value directly proportional to the amount of

noise in the image, i.e., it is initialized to a high value if the amount of noise in the image

14



is high and it is initialized to a low value if the amount of noise in the image is less. The

calculus of variations [19], shows that the GVF field can be obtained by solving the following

Euler equations (11) and (12).

µ52 u− (u− fx)(f 2
x + f 2

y ) = 0 (11)

µ52 v − (v − fy)(f 2
x + f 2

y ) = 0 (12)

where 52 is the Laplacian operator, fx and fy are the gradients in the x and y directions

respectively. Within the homogenous regions, u and v are determined only by Laplace’s

equation since the gradient within these regions is zero. The GVF field in such regions is

diffused from the edge gradient, with larger magnitude vectors along the edge and the value

of the GVF field gradually reducing as it moves further away from the edges. This is the

reason why the GVF field has vectors pointing into boundary concavities. This feature of

the GVF field is very important in relation to this project because it facilitates the active

contour to conform with the plaque or vessel boundary with high accuracy.

As seen earlier in the standard parametric model, u and v in the equations (11) and (12)

can be solved by representing them as functions of time t as shown in equations (13) and (14).

ut(x, y, t) = µ52 u(x, y, t)− [u(x, y, t)− fx(x, y)]

.[fx(x, y)2 + fy(x, y)2] (13)

vt(x, y, t) = µ52 v(x, y, t)− [v(x, y, t)− fy(x, y)]

.[fx(x, y)2 + fy(x, y)2] (14)

When equations (13) and (14) stabilize, a solution to the equations (11) and (12) is reached.
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1.9 Project Overview

The work in this thesis focuses on the implementation of extensively used image processing

techniques such as gradient extraction and adaptive k-means clustering for the segmentation

of IVUS images to detect the inner lumen and outer vessel boundaries. The IVUS process

generates a video of the inner wall of the arteries of the patient. This video is processed to

obtain image frames. Each of the images is subjected to gradient computation and adaptive

k-means clustering.

The gradient computation generates an edge map of the image, which helps in the de-

tection of the outer vessel boundary. Adaptive k-means clustering separates the inner lumen

from the other regions in the image. The clustering results in several boundary contours -

separating the image regions - the innermost of which is typically the inner lumen boundary.

An active snake contour is initialized in each of the resulting images from edge map compu-

tation and adaptive k-means clustering. The contour is then deformed using the GVF snake

model equations, which results in the generation or extraction of both the inner lumen and

the outer vessel boundaries. These boundary contours are then stacked at regular intervals

and interpolating contours are generated using a linear interpolation technique between the

contours. An isosurface of the resulting 3D structure is extracted for volumetric visualization

of the coronary arteries.
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Chapter 2

Literature Review

IVUS image segmentation is a crucial step in the diagnosis of coronary diseases through IVUS

images. Typically, manual segmentation is applied to trace the vessel and lumen boundaries

in the IVUS images. Manual segmentation however is very error prone and is also known to

be very time-consuming. Hence, automated image processing based approaches have been

employed over the years to make this process easier, faster and also more accurate.

Image processing approaches over the years have tried to accelerate the process of IVUS

image segmentation by exploiting features and properties from the images to overcome the

problems posed by noisy artifacts, shadows caused by plaque deposits and dark patches

caused by the existence of branches in the arteries. Most of the previous works in IVUS

image segmentation are based on exploiting pixel information. These include, but are not

limited to multi-agent image segmentation [25], region growing techniques [26], Sobel-like

edge detection [27], and graph searching algorithms [28].

Multi-agent image segmentation employs a modular approach by generating a separate

agent for each image object and trying to classify the objects from the image of interest
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into different agent categories based on a pre-defined set of rules. However, like any typical

classification system, this type of segmentation is subject to conflicts in classification and

may require conflict-resolution methods, which can add to the computational complexity of

the rule-based system, which in itself is a very complex system.

Edge detection algorithms are known to fail in cases where the boundary has very low

contrast as compared to the background, especially for the luminal boundary in the IVUS

images. Graph-searching algorithms have the traditional problem of getting stuck in local

minima and not reaching the optimal solution without the required expert guidance or hu-

man intervention. Hence, the idea of snakes or active contours was developed to automate

the process and to overcome the above mentioned problems.

Snakes, or active contours, were first defined by Kass, Witkin and Terzopoulos [7] as splines

or curves which are affected by external forces within an image domain and can move under

the influence of these forces towards salient features in the images such as edges. They

developed an energy minimization framework to represent the movement of these contours.

Snakes are widely used in many applications, including edge detection, shape modeling, seg-

mentation, and motion tracking.

Snake models are broadly classified into two types: parametric active contours [1, 2, 3, 5, 7]

and geometric active contours [8, 9, 17, 18]. Different force fields used in the energy min-

imization equation lead to the formulation of various parametric snake models. However,

the snakes defined with conventional force fields have a problem that the initialization of the

contour requires human intervention. Since the force fields have a limited capture range, the

active contour gets pulled towards undesired features in case of improper initialization.
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Pressure or balloon forces [21] were defined to address the problem of vicinity or capture

range, but these forces worked only in one direction. They could either inflate or deflate a

contour towards the edges, i.e., the contour could not deform in all directions. The pressure

or balloon forces need to be initialized either inside or outside the boundary, which again

requires special human intervention in order to properly initialize the contour to enable it

to travel in the desired direction.

Xu and Prince [1, 2] discovered a new force field, which they called the Gradient Vector

Flow (GVF) field. Even though the gradient of an image is strong only near the edges and

nearly zero in homogenous regions, they discovered a way to diffuse this gradient and extend

the force field into the homogenous regions in the image in order to increase its capture

range. GVF snakes are one of the most widely used deformable models in image segmen-

tation currently. This model also solved most of the problems existing with previous snake

models without giving rise to new problems as described in the following section.
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Chapter 3

Motivations for Current Work

3.1 Limitations of Active Contours

Traditional Parametric Active Contours have several limitations as described below.

1. Initialization of the snake contour should be close to the true object boundary, other-

wise, it may converge to an incorrect result, because the force fields have a very small

capture range as seen in Figure 3.1 (b). Pressure forces and distance potentials have

been proposed to address this problem.

2. Active contours have difficulties progressing into object concavities [2] as seen in Figure

3.1 (a). This is due to the fact that the force vectors in the image do not point into the

concavity, but only point horizontally in opposite directions as seen in Figure 3.1 (c).

Hence, the contour gets pulled in opposite directions near the mouth of the concavity,

but does not move into it.

Related work in this area has solved the problem, but at the cost of creating new problems.

Pressure forces or balloon forces [21], for example can deform an active contour into object

concavities, but it has been shown that strong pressure forces can override weak object edges
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[20]. Careful selection is hence necessary so that the pressure force is slightly smaller than

the Gaussian potential forces at the desired edges, but larger than the Gaussian potential

forces at spurious edges, since the model is inflated or deflated until it reaches the Gaussian

potential forces at the desired edges.

Figure 3.1: (a) Convergence of a snake using (b) potential forces, and (c) shown close-up
within the boundary concavity.

Source: http://www.iacl.ece.jhu.edu/ chenyang/research/pubs/p084j.pdf

Figure 3.2: (a) Convergence of a snake using (b) GVF external forces, and (c) shown close-up
within the boundary concavity.

Source: http://www.iacl.ece.jhu.edu/ chenyang/research/pubs/p084j.pdf
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3.2 Advantages of GVF Snakes

GVF Snakes have three major advantages over the traditional active contours.

Firstly, GVF has a large capture range as seen in Figure 3.2 (b) and hence, the initial

GVF snake contours can be initialized far away from the object boundary, without affecting

the final convergence. Secondly, GVF Snakes can progress into boundary concavities [2], as

seen in Figure 3.2 (a) without creating new difficulties, which is a major plus point. This is

due to the fact that the GVF vectors at the mouth of the concavity point into the concavity

and since they also have a large capture range, the snake contour easily gets pulled into the

concavity.

Lastly, GVF Snakes can be initialized across boundaries too [1, 2], unlike pressure forces

which need to be carefully initialized on one side of the desired edge and not across the

boundaries. This is because the energy functional used with pressure forces can either in-

flate or deflate the model, depending on whether the snake contour is initialized inside or

outside the desired object by the user [21] and hence can deform only in one direction.

3.3 Limitations of the k-means Clustering Algorithm

The k-means clustering technique is subject to several limitations as described below:

1. The k-means clustering algorithm is slow and scales poorly on time.

2. The k-means clustering algorithm requires that the user specify the number of clusters

for the value of k beforehand, which is unreasonable in cases where the image objects

are not clearly distinguishable from the background. Also, the value of k does not

remain the same for every image, which would require human intervention to specify
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a different k value every time.

3. The k-means clustering algorithm can get stuck in local optima.

4. Performance of the k-means clustering algorithm largely depends on the initialization

of the cluster means.

3.4 Advantages of Adaptive k-means Clustering Algo-

rithm

Adaptive k-means clustering technique overcomes some of the limitations of the k-means

clustering technique as listed below:

1. Adaptive k-means clustering does not require that the user initialize the number of

means. Adaptive k-means clustering adapts to the image being processed and results

in a different value of k for every image.

2. The performance of an adaptive k-means clustering process is not dependent on the

initial cluster means.
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Chapter 4

Implementation of IVUS Image

Segmentation and Visualization

4.1 Hardware and Software Specifications

The software for the IVUS Image Segmentation and Visualization system, except for the

isosurface generation was implemented on a Macintosh computer with OS X version 10.6.5,

a 2.4 GHz Intel Core 2 Duo processor, and a 2GB RAM. The isosurface generation was

performed on a Linux cluster (rcluster.rcc.uga.edu), comprising 331 compute nodes where

each node is a dual-core AMD Opteron(tm) Processor clocked at 2.19 GHz. The programs for

running the experiments were written and executed in MATLAB, version 7.8.0.347 (R2009a)

32-bit software. ParaView, version 3.6.1 [31], was used for the volumetric visualization of

the 3D reconstruction of the inner walls of the coronary arteries.
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Figure 4.1: Project Implementation Overview
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4.2 Implementation Overview

The implementation of the IVUS Image Segmentation and Visualization system mainly com-

prises three phases as shown by the implementation overview flowchart in Figure 4.1:

• Pre-Processing (Detection of the Outer Vessel Boundary and Detection of the Inner

Lumen Boundary)

• Gradient Vector Flow Field and Snake Deformation

• 3D Reconstruction and Volume Visualization of the blood vessels

The patient information is obtained in the form of a video comprising several image frames

where the images are obtained at regular intervals. The first step in the project is to extract

the IVUS images from the video using any video-to-images converter. This process gener-

ates several continuous IVUS images. Each of these images is subjected to pre-processing

techniques and the GVF process. The resultant processed images are then combined into a

single 3D structure and are viewed as a 3D volume using a visualization tool, Paraview, to

view the final result.

Initially each of the IVUS images are subjected to a set of pre-processing techniques, which

generate appropriate segmented images or edge maps for the detection of lumen (inner) and

vessel (outer) boundaries respectively. The GVF process is then applied separately on these

two resultant images to obtain the lumen and vessel boundary contours. The boundary con-

tours are then reconstructed to generate a 3D model. Interpolating contours are generated

between each pair of such contours, to obtain a smooth 3D model or a tube like structure

which can graphically represent a coronary artery for volumetric visualization of the plaque

deposits.
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Figure 4.2: Pre-Processing Techniques
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4.3 Pre-processing

In order to detect boundaries in the IVUS images, there is a need to pre-process them to

enhance the edge information. However the lumen and vessel boundaries are not easily de-

tected by the same technique, because of the difference in the intensity of the gradient as

compared with the image background. The outer vessel boundary is more easily detectable

as compared to the inner lumen boundary for reasons explained below. Hence it is necessary

to apply two different image processing techniques separately to detect the two boundaries

in the image.

Computation of the image intensity gradient easily enhances the vessel boundary in the

IVUS images, since it has a high contrast. However, since the lumen boundary has a very

low contrast relative to its background, it is necessary to use a more sophisticated technique

to segment the lumen region from the rest of the image. Hence an adaptive k-means clus-

tering method is employed to extract the lumen region.

The adaptive k-means clustering technique cannot however be applied for the detection

of the vessel boundary, mainly because there are several other regions detected in the image,

inner to the vessel region and ending with the innermost region being the lumen region.

These region boundaries along with the lumen boundary generate their respective gradient

vector fields which will cause the snake contour to move or deform towards the undesired

edges. This is not a desired effect and since the vessel boundary can be detected already by

a simpler technique, it is not necessary to apply a complicated procedure to detect it.

A flowchart showing the two techniques used for the boundary detection is shown in Figure

4.2. More details on the pre-processing techniques are presented in Sections 4.3.2 and 4.3.3.
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4.3.1 Properties of an Edge Map

An edge map for an image is derived from the image itself and is characterized by high image

intensity gradient values near the edges (intensity discontinuities).

The following properties of edge maps are exploited in this work.

• Image intensity gradient vectors are oriented perpendicular to the local edge orienta-

tion.

• Image intensity gradient vectors have large magnitudes only in the immediate vicinity

of the edges or intensity discontinuities.

• In homogenous regions, the magnitude of the image intensity gradient is nearly zero.

4.3.2 Detection of the Vessel Boundary

The magnitude of the image intensity gradient between the vessel boundary and its back-

ground is typically large and is easily computed using standard edge detection techniques.

There are several edge map generation equations according to image processing literature.

Equations (2) or (3) are appropriate for gray-scale images and equations (4) or (5) are more

suited for binary images. Since, this project operates on gray-scale images, equation (3) was

used as re-stated in equation (15) to generate an edge map image. A simple equation for

the external force, Eext was used to generate the edge map as described in (15).

Eext(x, y) = −| 5 [Gσ(x, y) ∗ I(x, y)]|2 (15)

where,

Eext(x, y) is the external force equivalent
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I(x, y) is the input image

Gσ(x, y) is a two-dimensional Gaussian function with standard deviation σ and

5 is the gradient operator

A Gaussian filter is generated using a σ value of 1.5. The image is smoothed using this

Gaussian filter and the gradient of the image is calculated using a simple gradient operator.

The square of the thus obtained gradient magnitude generates the edge map of the image.

4.3.3 Detection of the Lumen boundary

Unlike the vessel boundary, the lumen boundary has a very small contrast with respect to its

background and hence cannot be extracted using a simple image gradient intensity compu-

tation procedure as described above. Hence an adaptive k-means clustering algorithm was

used to detect the lumen boundary.

The images were initially subjected to Gaussian smoothing using the same Gaussian filter

used in the detection of the outer vessel boundary and then the adaptive k-means technique

was applied on the images. The smoothed image pixel intensity values define the feature

vector for k-means clustering. The feature vector for k-means clustering is the data on which

the k-means clustering technique is applied. So, essentially, the Gaussian smoothed pixel

intensity values are the values being clustered into multiple clusters in the image.

The basic k-means algorithm is described in Section 1.6 and the adaptive k-means algo-

rithm is described in Section 1.7. The histogram of the pixel intensities is generated which is

then partitioned into k clusters. The initial cluster centroids are generated at equal intervals

along the range of the histogram intensities. The adaptive k-means algorithm is carried out

until the correlation coefficient between the original and the segmented images is greater
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than 0.99. The high correlation coefficient value signifies that the segmented image is an

appropriate fit on the original image.

The value of k is not pre-set, and hence there is no need for human intervention. The

algorithm itself obtains an appropriate value for k, suited for the image in question. Since

the value of k adapts according to the image, it is different for every image and hence the

name ’adaptive k-means clustering’.

4.4 GVF Field and Snake Deformation

The GVF process is shown in Figure 4.3 and is explained in detail in the following sections.

The generation of the GVF field and the GVF snake deformation process are carried out

on both the edge map image and the adaptive k-means segmented image obtained in the

pre-processing step to generate the vessel and lumen contours respectively. Although GVF

is a potential external force, it cannot be represented as the negative gradient of a potential

function like the other potential forces [1, 2]. The result is that GVF cannot be represented

by the standard energy minimization framework and instead is represented by a force bal-

ance equation as shown in (6), (7), and (8).

The GVF field is diffused from the edge information into the homogenous regions of the

image to create a capture range for the active snake contour to work on. An initial contour

is then initialized in the image, which is then deformed towards the edges, because of the

effect of the capture range and the external forces. When the deformation stops, typically

when the contour reaches the edges, the final contour is obtained, which represents the

appropriate boundary.
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Figure 4.3: GVF Process
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4.4.1 Gradient Vector Flow Diffusion

The objective of the GVF diffusion process is to retain the property of the edge map that

the gradient is large near the edges, and to extend this gradient further away from the edges

and into the homogenous regions thus creating a large capture range. A computational dif-

fusion process was used for the diffusion of the gradient information into the homogenous

regions. An added benefit of the GVF diffusion process is that the diffused vectors point

into boundary concavities. This is important for this project because this causes the GVF

snake to deform into plaque boundary concavities, hence generating an appropriate fit for

the inner lumen boundary.

GVF fields are dense vector fields derived from images by minimizing a certain energy

functional in a variational framework. The minimization is achieved by solving the pair

of decoupled linear partial differential equations, (11) and (12). Solving these equations us-

ing equations (13), (14) enables the diffusion of the gradient vectors at the object boundaries

into the surrounding homogenous regions, thus creating an appropriate capture range for the

snake contour.

4.4.2 Snake Initialization

Deciding the initial snake contour for the GVF deformation process is a complicated task.

Hence, to keep things simple, a circular contour with a small radius at the center of the

image as shown in Figure 4.4 was used to initialize the snake contour for GVF deforma-

tion. The figure shows the circular initial contour which is then deformed for the generation

of the final outer vessel boundary. Similarly, another circular contour with only a slightly

smaller radius was created and deformed for the generation of the final inner lumen boundary.
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Figure 4.4: Initial circular contour, in red, superimposed upon the original images

4.4.3 Snake Deformation and Convergence

The deformation of the snake follows a standard snake deformable model. The initial contour

goes through a series of iterations and deforms when it gets pulled by the gradient vector

forces towards the boundaries. Since the capture range of the GVF field is very large, the

initial position of the snake does not affect the final deformed position as long as there are

no large artifacts in the center of the image, which can possibly block the snake deformation

or movement of the snake towards the required boundary.

Since, as earlier seen, the GVF field has pulling properties into the boundary concavities,

the GVF snake easily deforms even into sharp concavities in the edges of the images. The

GVF field obtained from the diffusion process conducted previously replaces v in equation

(9). Throughout this project, for all the snake contours, α = 0.6 and β = 0. The iterative

solution to equation (9) results in the generation of the final snake contour.
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4.5 3D Reconstruction and Volume Visualization

The 3D volumization process is shown in detail in Figure 4.5. A set of contours is obtained

for every image from the GVF deformation process, the outer vessel contour and the in-

ner lumen contour. For 3D visualization, these contours need to be stacked on top of each

other at regular intervals i.e., with equal spacing between two contour sets. This is done to

replicate the fact that IVUS images are generated at regular intervals using the ultrasound

catheter.

However, to replicate a coronary artery, there is a need to regenerate several contours in

between each set of these contours. This is necessary to create a 3D tubular structure which

graphically re presents the arterial outer and inner boundaries. A simple linear interpolation

technique was used to generate the interpolating contours. The number of interpolating con-

tours between each set of images is kept constant throughout the experiment and is currently

set to 100 intermediate sets of contours. This value can however be set to a user-defined

parameter n.

The linear interpolation method is as follows:

1. Consider two contours c1 and c2.

2. For every point (x1, y1) on the contour c1, find the nearest neighboring point (x2, y2)

on the next contour, c2.

3. Let i = 1. For every i = 1 to n, generate n interpolating points (xi, yi) using a simple

linear interpolation formula.

xi =
(n− i)x1

n
+
ix2
n

and yi =
(n− i)y1

n
+
iy2
n
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4. Generate n interpolating points for every point on the contours, c1 and c2.

5. Repeat steps 1 to 4 for every set of contours. This process will create n interpolating

contours between each set of contours.

The outer vessel and inner lumen contours obtained from the GVF snake deformation and

the linear interpolation are then plotted and saved as binary images showing the lumen

contours inside the vessel contours. The area between the lumen and the vessel contours is

filled in black. This area represents the plaque volume in that image. These sets of contours

are then stacked consecutively to obtain a 3D volume data. An isosurface of the 3D volume

data is then generated with an isovalue of 0.5.

An isosurface is a surface reconstruction, which connects all points in the 3D data with

a specific isovalue. More specifically, an isosurface retains all the pixels in the data volume

where there is a transition around the given isovalue. Since, the set of images being used in

this project are binary images, isosurface retains points which have a transition from 0 to 1

and vice versa. Hence an isovalue of 0.1, 0.2 upto 0.9 would all generate the same isosurface

in this case. The rest of the points in the images which do not have a transition are ignored.

Hence we obtain a 3D tube like structure with inner and outer tubes, which represent the

inner lumen and outer vessel boundaries respectively.

The isosurface function from the MATLAB library [30] is used for this purpose. The isosur-

face function returns the faces and vertices of the 3D volume data, which is written into a

MATLAB ’obj’ file. The 3D data model written into a MATLAB ’obj’ file is then converted

into a VTK (Visualization Tool Kit) formatted file for enabling volumetric visualization.

ParaView (Parallel Visualization Application) [31], is then used to read this VTK formatted

file, which in turn reconstructs the model for easy 3D visualization.
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Figure 4.5: Volumization Process
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Chapter 5

Experimental Results

Figure 5.1: Original Images

Figure 5.1 shows the original cross-sectional IVUS images in grayscale. As seen from the

above images, the outer vessel boundary is clearly visible, but the inner lumen boundary

does not have a good contrast with its background.
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5.1 Pre-Processing

Figure 5.2: Edge Maps derived via image intensity gradient computation

Figure 5.2 shows the edge maps derived from the cross-sectional IVUS images by com-

puting the image intensity gradient function using equation (15). The resultant edge maps

show that the outer vessel boundary is easily detectable with a gradient operator, but the

inner lumen boundary requires a specialized technique for boundary detection.
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Figure 5.3: Segmented images obtained through adaptive k-means clustering (showing
boundaries around different segmented regions)

Figure 5.3 shows the adaptive k-means clustered images obtained by performing an adap-

tive k-means clustering on two of the cross-sectional IVUS images. The resultant image shows

a series of segmented regions in the image each separated by edges. The innermost region

is the lumen region and the edge surrounding it is the lumen boundary. The edges are

generated using a canny edge detector.
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Figure 5.4: Segmented images obtained through adaptive k-means clustering (showing dif-
ferent regions in different colors)

Figure 5.4 shows the segmented images obtained from the adaptive k-means clustering

on two IVUS images. The segmented images show each region in the segmented image in

a different color. Similar to Figure 5.3, the innermost region represents the lumen area.

Adaptive k-means clustering generates a different number of segmented regions for different

images.
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5.2 Snake Initialization

Figure 5.5: Initial contours, in red, superimposed on simple gradient edge map images

Figure 5.6: Initial contours, in red, superimposed on adaptive k-means clustered images

Figures 5.5 and 5.6 show the initial circular snake contours, as described in Section 4.4.2

superimposed on the pre-processed images obtained from the pre-processing step. As seen

from the images, in some cases, the initial contours are overlapping over the desired edges,

but can still deform to a correct final result as seen in later results.
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5.3 GVF Field Diffusion

Figure 5.7: Diffused Gradient Vector Field (left) and its close-up view (right)

Figure 5.7 shows the GVF field diffused into the homogenous regions and the close-up

view of one of the concavities in the image (the red box in the image on the left), which

shows the GVF vectors pointing into the concavity (image on the right).
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5.4 GVF Snake Convergence

Figure 5.8: Lumen (left) and Vessel (right) contours, in red, superimposed upon original
images

Figure 5.9: Lumen and Vessel contours, in red, superimposed upon original images

Figures 5.8 and 5.9 show several of the final GVF snake contours (in red) of both the

inner lumen boundary and the outer vessel boundary, generated from the deformation of the

initial contours and superimposed upon the respective original cross-sectional IVUS images.
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5.5 Final Contour Plotting and Reconstruction

Figure 5.10: Contours extracted and plotted in black

Figure 5.10 shows the final GVF contours plotted separately as black contours on a white

background. These contours have further been used for 3D reconstruction of the coronary

arteries and their volumetric visualization as described in Section 4.5.
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Figure 5.11: Contours extracted and plotted and filled to show the plaque area

Figure 5.11 shows the final GVF contours plotted separately as black contours on a white

background. The area between the two contours is filled with black to represent the plaque

deposits. These images and then used in the 3D reconstruction of the tubular volume for

appropriate visualization.
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5.6 3D Reconstruction and Volume Visualization

Figure 5.12: Different Views of the same reconstructed 3D isosurface volume

Figure 5.12 shows two different views of the regenerated 3D isosurface volume with the

outer vessel and inner lumen boundaries. We can see that there is an area in between the

two contours, which is empty. This area represents the plaque deposits.
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Figure 5.13: Transverse section of regenerated 3D volume

Figure 5.13 shows a transverse section of the 3D regenerated volume. The transverse

section shows the outer vessel (in dark blue) and inner lumen (in red) boundaries. The filled

grey area represents the plaque deposits.
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Chapter 6

Conclusions and Future Work

The work in this project has been performed on cross-sectional IVUS images to enable

the 3D reconstruction of the coronary arteries, mainly the outer vessel and inner lumen

boundaries to enable physicians to easily study the inner arterial walls for plaque deposits

and to recommend appropriate treatment. To summarize the work in this project:

1. Cross-sectional IVUS images were pre-processed to obtain edge maps and segmented

images suitable for the detection of the vessel and lumen boundaries respectively.

2. GVF field in the images was generated by the diffusion of the gradient in the pre-

processed images resulting from the gradient computation and adaptive k-means clus-

tering techniques.

3. Initial snake contours were deformed using the GVF field which resulted in the final

vessel and lumen boundaries upon suitable convergence.

4. Final contours obtained from snake deformation were reconstructed as a 3D model

and were visualized as a 3D tubular structure using an appropriate 3D visualization

software.
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The experimental results obtained are almost the same as the manual boundary detection

carried out by experts in the field. The results from the automated process are more ac-

curate than the contour detection by experts because, the GVF snake contour moves into

boundary concavities more accurately than can be traced by the experts. This makes the

GVF snake-based detection process automated as well as efficient since it does not require

human intervention and it also gives a better quality result.

The salient features the GVF active contours are as follows:

• External forces and distance potential forces do not point into boundary concavities.

The GVF technique has a major advantage over them, because it progresses into

concavities, allowing the active contour to model the boundary concavity.

• GVF field has a large capture range and does not distort the boundary.

• Pressure force contours need to be initialized either inside or outside the boundary be-

cause they can push the contour only in one direction. GVF, however can be initialized

across boundaries as well.

• GVF is robust against image noise because it can smooth out weak gradients and retain

stronger ones.

However, there are also problems associated with this technique. Extensive experiments

carried out in the duration of this project show that, if there are large noisy artifacts blocking

the movement of the contour, then the snake contour stops deforming and gets conformed

to the boundary of these artifacts.
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6.1 Future Work

From the experiments carried out in this project, it can be seen that GVF is a robust tech-

nique and gives excellent results for all images, even with the same initial contour being used

in every single one of the cross-sectional images. Hence, GVF snakes do not require human

intervention for defining the position of the initial contour. However, the only problem dis-

covered with GVF is that it cannot progress to the desired edges if there are noisy artifacts

like shadows from the plaque blocking its way. Hence, a robust pre-processing technique

is necessary to remove noise from the images. Again, this should be a totally independent

technique and hence, we propose a learning-based technique which can detect noisy artifacts

in the images and eliminate them.

For purposes of simplification, a generalized linear interpolation technique was used to gen-

erate the intermediate contours during 3D reconstruction. Also, the number of intermediate

contours has been assumed to be a user-defined parameter, which might not be the case

with actual coronary arteries. This can however be remedied by learning the exact distance

between two consecutive images for a more realistic feel to the visualization and the in-

terpolation technique can be adapted accordingly. Also a more sophisticated interpolation

technique might result in a volumetric visualization which is aesthetically appealing to the

eye.

51



Bibliography

[1] C. Xu and J.L. Prince, Gradient Vector Flow: A New External Force for Snakes, Proc.

IEEE Conf. on Comp. Vis. Patt. Recog. (CVPR), Los Alamitos: Comp. Soc. Press, pp.

66-71, June 1997

[2] C. Xu and J. L. Prince, Snakes, Shapes, and Gradient Vector Flow, IEEE Transactions

on Image Processing, 7(3), pp. 359-369, March 1998.

[3] C. Xu and J. L. Prince, Generalized Gradient Vector Flow External Forces for Active

Contours, Signal Processing — An International Journal, 71(2), pp. 131-139, December

1998.

[4] C. Xu, D. L. Pham, and J. L. Prince, Medical Image Segmentation Using Deformable

Models, SPIE Handbook on Medical Imaging – Volume III: Medical Image Analysis,

edited by J.M. Fitzpatrick and M. Sonka, May 2000.

[5] C. Xu and J. L. Prince, Gradient Vector Flow Deformable Models, Handbook of Medical

Imaging, edited by Isaac Bankman, Academic Press, September, 2000.

[6] P. Radeva, On the Role of Computer Vision in Intravascular Ultrasound Image Analysis,

Chapter in Angiography and Plaque Imaging: Advanced Segmentation Techniques,

Editorial: CRC, Boca Raton, FL, USA, 2003, ISBN: 0849317401, pp.397-450.

52



[7] M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models Int. J. Comput.

Vis., vol. 1, pp. 321331, 1987

[8] V. Caselles, F. Catte, T. Coll, et al., A Geometric Model for Active Contours in Image

Processing, Numerische Mathematik, 66(1): 1-31 October 1993.

[9] K. Djamel, W. Puech and B. Rossetto, Geometric Active contour model using level set

methods for objects tracking in images sequence, Int. Conf. Setit, Tunisie, 2004.

[10] C. Xu, A. Yezzi, Jr., and J. L. Prince, On the Relationship between Parametric and

Geometric Active Contours, in Proc. of 34th Asilomar Conference on Signals, Systems,

and Computers, pp. 483 -489, October 2000.

[11] C. Xu and J. L. Prince, Global Optimality of Gradient Vector Flow, Proc. of 34th An-

nual Conference on Information Sciences and Systems (CISS’00), Princeton University,

March 2000

[12] C. Xu, Deformable Models with Application to Human Cerebral Cortex Reconstruc-

tion from Magnetic Resonance Images, PhD Dissertation, Department of Electrical and

Computer Engineering, Johns Hopkins University, Baltiomre, MD, 21218, USA.

[13] W. F. Ames, Numerical Methods for Partial Differential Equations, Boston: Academic

Press, 3rd ed., 1992.

[14] C. Xu, A. Yezzi, Jr., and J. L. Prince, A Summary of Geometric Level-Set Analogues

for a General Class of Parametric Active Contour and Surface Models, in Proc. of 2001

IEEE Workshop on Variational and Level Set Methods in Computer Vision (VLSM

2001), pp. 104-111, July 2001.

[15] D. Terzopoulos and K. Fleischer, Deformable models, The Visual Computer, 4:306331,

1988.

53



[16] T. McInerney and D. Terzopoulos, Deformable models in medical image analysis: a

survey, Med. Imag. Anal., 1(2):91108, 1996.

[17] T. McInerney and D. Terzopoulos, Topologically adaptable snakes, In Proc. Intl Conf.

Comp. Vis., pages 840845, 1995.

[18] V. Caselles, R. Kimmel, and G. Sapiro, Geodesic active contours, Intl J. Comp. Vis.,

22:6179, 1997.

[19] R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 1. New York: Inter-

science, 1953.

[20] H. Tek, B.B. Kimia, Image segmentation by reaction-diffusion bubbles, pp.156-162, Fifth

International Conference on Computer Vision (ICCV’95), 1995.

[21] L. D. Cohen and I. Cohen, On active contour models and balloons, CVGIP: Image

Understanding, 53(2): 211-218, March 1991.

[22] M. Butenuth, Topology-preserving network snakes, International Archives of Pho-

togrammetry, Remote Sensing and Spatial Information Sciences, Beijing, XXXVII (Part

B3a), 2008, pp. 229234.

[23] A. K. Mishra, P. W. Fieguth, and D. A. Clausi, Decoupled Active Contour (DAC) for

Boundary Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence

99.

[24] N. Ray, S. T. Acton, T. Alten and E. E. de Lange, MRI ventilation analysis by merging

parametric active contours, Proceedings of IEEE ICIP 2001, pp.861-864, Thessaloniki,

Greece, October 2001.

54



[25] Bovenkamp, E.G.P., Dijkstra, J., Bosch, J.G., Reiber, J.H.C, Multiagent IVUS image

interpretation, SPIE Proceedings: Medical Imaging 2003: Image Processing, San-Diego,

California, USA, vol 5032, 2003, pages 619630.

[26] Brathwaite, P.A., Chandran, K.B., McPherson, D.D., Dove, E.L, Lumen Detection in

Human IVUS Images Using Region-Growing, IEEE Computers in Cardiology, pages

3740, 1996.

[27] Sonka, M., Zhang, X., Siebes, M., Bissing, M.S., DeJong, S.C., Collins, S.M., McKay,

C.R, Segmentation of Intravascular Ultrasound Images: A KnowledgeBased Approach,

IEEE T Med Imaging, vol. 14 (4), pages 719732, 1995.

[28] A. Martelli, An application of heuristic search methods to edge and contour detection,

CACM, vol. 19, p.73, 1976.

[29] http://www.mathworks.com/products/matlab/

[30] http://www.mathworks.com/help/techdoc/ref/isosurface.html

[31] http://www.paraview.org

55


	Introduction
	IVUS Imaging
	Segmentation
	Active Contours
	Parametric Active Contours
	Geometric Active Contours
	Parametric Vs. Geometric Active Contours

	Standard Parametric Model
	Behavior of Traditional Snake Contours
	The k-means Clustering Algorithm
	Adaptive k-means Clustering Algorithm
	Gradient Vector Flow field
	Project Overview

	Literature Review
	Motivations for Current Work
	Limitations of Active Contours
	Advantages of GVF Snakes
	Limitations of the k-means Clustering Algorithm
	Advantages of Adaptive k-means Clustering Algorithm

	Implementation of IVUS Image Segmentation and Visualization
	Hardware and Software Specifications
	Implementation Overview
	Pre-processing
	Properties of an Edge Map
	Detection of the Vessel Boundary
	Detection of the Lumen boundary

	GVF Field and Snake Deformation
	Gradient Vector Flow Diffusion
	Snake Initialization
	Snake Deformation and Convergence

	3D Reconstruction and Volume Visualization

	Experimental Results
	Pre-Processing
	Snake Initialization
	GVF Field Diffusion
	GVF Snake Convergence
	Final Contour Plotting and Reconstruction
	3D Reconstruction and Volume Visualization

	Conclusions and Future Work
	Future Work


