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Abstract

A three-stage hierarchical classifier, using Random Forests, was constructed to classify 23

different physical activities of various types. This classifier was built using triaxial accelerom-

eter data from 77 subjects collected during trials in Phoenix, Arizona. The activities were

hierarchically divided and five Random Forest classifiers were trained for each level. The

classifier performed well compared to similar classification studies in this domain, achieving

94% for activity groups and 87% at the individual activity level.

Furthermore, the effect of sampling rate and window size on activity recognition was also

analyzed. Window size and sampling rate were varied, and a two-way weighted least squares

analysis of variance was carried out. This analysis was carried out across a variety of activity

types and demographic features. It was found that data collected at 50Hz, using 10 second

windows performed statistically better than other data. There is, however, some statistical

margin to allow for lower sampling rates and window sizes to be used without a significant

reduction in classifier performance.
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Chapter 1

Introduction and Literature Review

This thesis describes a hierarchical classifier using hip-worn accelerometer data to identify

physical activities (e.g. jogging, walking upstairs) and analyzes the effects of sampling rate

and window size on classification accuracy. Chapter 2 discusses the hierarchical classifier,

constructed using Random Forest algorithms, and its performance on the data. Chapter 3

relates a statistical analysis of the effects of window size and sampling rate on the classifica-

tion of accelerometer data. The remainder of this chapter presents basic concepts related to

human activity recognition, machine learning classification and its analysis. These concepts

are needed to understand the later sections of the thesis.

1.1 Human Activity Recognition

Human Activity Recognition (HAR) is the field of study pertaining to the classification

and prediction of physical activity [11]. With the advent of compact, commercially available

sensor devices, this area has recently received a lot of interest. HAR has various practical

applications — personal activity tracking [5, 14, 16, 24], public health monitoring [12, 20, 22],

security analyses [2, 13, 18] and patient risk detection [9, 15, 26] to name a few. HAR can

be used to perform immediate classification while data is being collected (online learning)

or processed post-collection (offline learning) depending on requirements and resources. It

must also be decided whether the model being obtained is to be universally applied to all

users (between-subjects) or personalizable for individuals (within-subjects). The methods of

collecting and analyzing data in this domain also vary according to objectives of research.

We shall discuss some important aspects of this process.

1
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1.1.1 Data Collection

In HAR studies, data is first collected for experiments, most commonly in controlled condi-

tions. This data can be obtained through external or wearable sensors [11]. The decision of

which type of sensor to use depends upon the objectives of the experiment, domain require-

ments as well as possible limitations. For example, if the purpose is security monitoring

at a restricted facility, external sensors can be used for access monitoring (at doors and

entryways), motion/presence detection (tactile door pads, camera image processing, GPS

tracking) [2], and usage detection (machine access logging, time-based locks). However, if

the objective is, for instance, health monitoring of elderly patients, worn sensors to monitor

heart rate and detect falls might be needed [26].

Our research concerns physical activity recognition for public health purposes. We utilize

wearable accelerometers for our work, in particular, a single hip-worn device, the Actigraph

GT3X+ [1]. Other commonly used sensors in this domain are wrist-worn accelerometers,

smartphones and heart-rate monitors. Wrist-worn accelerometers, however, are not efficient

in detecting lower body movement which limits their practicality for studies like ours, which

feature many locomotive activities, such as walking and running. [11]. Smartphones, while

easily available, are not dedicated instruments of motion detection, require fixed placement

for proper monitoring, have to share processing power with other applications and lack the

resolution and reliability of accelerometers used for scientific purposes. Heart rate monitors

have been shown to be of limited use for physically demanding activities as heart rates can

remain high long after an activity has been performed [23].

A crucial step in accelerometer selection is the sampling rate at which data is collected. The

range for this can vary from 100Hz to lower [16]. While high sampling rates are better for

certain high energy activities, they can be noisy in less active scenarios, take up more data

storage and are a drain on power. Conversely, low sampling rates consume less power and

storage but do not provide sufficient information to recognize some activities. Ultimately, a

trade-off between power and accuracy would be made according to the needs of the study.
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Most HAR studies use supervised learning [11], which means that the training data used in

the machine learning algorithms consists of observations whose classes are known. Labeling

the data in a format suitable for use in an ML algorithm is itself a difficult problem. One

method is to record activity durations and start/stop times using an independent observer.

Another would be to fix the order and duration of activities performed. Both methods are

susceptible to human error, though it can be argued that by having minor amounts “noisy”

data, the classifier is in less danger of overfitting the training data and more robust for use

in test environments.

1.1.2 Preprocessing Data

“Raw” data from accelerometers consist only of axial values at every timestamp. However,

the raw data is not necessarily usable in a classification algorithm. A typical pre-processing

step is to divide the raw data into temporal windows. Windows can be long or short and

can be sliding (overlap exists between windows) or disjoint (no overlap exists). Windows

that are too short might be insufficient to contain enough information for an activity while

windows that are too long might contain more than one activity. Overlapping may possibly

be helpful in handling transitional data but, more often than not, are shown to be redundant.

Past research has advocated all of these forms of windowing for different purposes [11], so

an informed decision can be made using the literature and domain-specific requirements.

The raw data in each window is used to extract features. These are typically time-based

or frequency-based features. Common examples of time-based features are the means, stan-

dard deviations, percentiles of accelerometer readings, as well as median crossings. Common

frequency-based features are the dominant frequency and its magnitude and wavelet coeffi-

cients. There is, however, a law of diminishing returns on the efficiency of the learning method

using features, and, by Occam’s Razor, a feature set having a balance of high performance

and low number of features should be selected to save power consumption and processing

time.
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1.1.3 Learning and Evaluation

A wide variety of machine learning algorithms have been applied in HAR research [19, 11].

Section 2.2 of the next chapter provides a review of some methods that have been utilized

while section 1.2 below discusses the learning method most pertinent to this study, Random

Forests.

Regardless of the specific algorithm used, one of the most commonly used methods in dealing

with classification is to divide the data into training, validation and testing sets. The learner

trains over the training set, while the validation set is used to keep the performance of the

learner in check. The test set is used as unseen data to provide an estimate of how the

classifier would perform on independent data. A better way to get this estimate is through

k-fold cross-validation, [10]. The dataset is divided into k number of folds. Then the classifier

is trained on k-1 folds and tested on the remaining fold. This is repeated k times and the

performance results for each fold are averaged.

Some typical performance measures used in machine learning for HAR are accuracy, preci-

sion, recall and F-Measures. See equations 2.1, 2.2, 2.3 and 2.4 in Chapter 2.

1.2 Random Forests

Random forests are ensemble learners which utilize multiple decision trees and classify using

the mode of all the trees [8, 4]. These are used in the hierarchical classifier described in

Chapter 2. Decision trees classify data by splitting “leaves” (nodes) of a tree according to a

function such as the information gain ratio [17]. As one traverses from the “root” of the tree

to the “leaf”, the classes to which a given instance can belong get smaller. While decision

trees are used widely in classification, they are susceptible to overfitting, that is to say they

tend to favor the training set to the point where the trained learner performs poorly on test

sets and independent data. Random Forests seek to rectify this by using multiple trees with

a random selection of features [25].
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A brief summary of the random forest learning method is as follows :

1. Randomly sample, with replacement, n observations from the training

set.

2. Use these samples to construct a decision tree using a random set

of features. For each node in the tree:

(a) Randomly select m features from the feature set.

(b) Select the feature that maximizes the information gain ratio (or

other function).

3. Repeat steps 1 and 2 for k number of trees. Typical random forests

have a hundred trees or more.

4. Average the results or calculate the mode target value from the forest.

Sampling with replacement from the training and feature sets (also known as bagging

or bootstrap aggregating [3]) decreases sensitivity of the learner to noise. This means that

the variance of the model has been decreased. However, by choosing the feature from the

random feature set using a function, such as information gain ratio, the correlation between

the trees can be further reduced, thus resulting in a strong ensemble learning technique.

In initial test, Random Forests performed well compared to other classifiers and was

subsequently used as the primary classifier throughout this study. For more information

about the selection of classifiers, see Chapter 2.

1.3 Two-Way ANOVA

Analysis of variance (ANOVA) is the name of a collection of statistical models, most useful

in analyzing the whether the means of multiple groups are equal [7]. While the t-test is a

common method for testing statistical significance, it is limited to application on two groups.

ANOVA extends this analysis across multiple groups and results in less type-I errors (false

positives) than t-tests. Two-way ANOVA is an extension of the standard one-way ANOVA

in which two independent variables influence one dependent variable. It looks at the effect
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each of the independent variables have on the dependent variable as well the effects of the

interactions of both variables. ANOVA has been recommended for use in classifier analysis

previously [21, 28] but has rarely been used in ML research [6]. The specific variety of ANOVA

used in the present study is elaborated on in Chapter 3.
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Abstract

This paper proposes a multi-level meta-classifier for identifying human activi-

ties based on accelerometer data. The training data consists of 77 subjects per-

forming a combination of 23 different activities and monitored using a single hip-

worn triaxial accelerometer. Time and frequency based features were extracted

from two-second windows of raw accelerometer data and a subset of the features,

together with demographic information, was selected for classification. The activ-

ities were divided into five activity groups: non-ambulatory activities, walking,

running, climbing upstairs, and climbing downstairs. Multiple classification tech-

niques were tested for each classifier level and groups. Random forests were found

to perform comparatively better at each level.

Based upon those tests, a 3-level hierarchical classifier, consisting of 5 random

forest classifiers, was built. At the first level, the non-ambulatory activities are

separated from the rest. At the second, the ambulatory activities are divided into

four activity groups. At the final level, the activities are classified individually.

Accuracy on test sets was found to be approximately 87% overall for individual

activities and 94% at the activity group level. These results compare favorably to

contemporary results in classifying human activity.
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2.1 Introduction

Interest in human activity recognition has seen growth in recent years. Both the commercial

market and the research sector have seen an increase in demand for efficient techniques in the

classification of activities. The public health sector, in particular, is in need of such models.

The target of this work is the development of a classification model for triaxial accelerometer

data gathered from a demographically diverse group of subjects which could be used for test

subjects under free-living conditions. Such a classification could be used to better estimate

energy expenditure for individuals and determine the necessary steps for the individual to

take towards a healthy lifestyle.

Activity recognition remains a difficult classification problem, mainly due to the sheer

variance in how subjects perform the same activities and the relative difficulty in effectively

monitoring subjects. Additional hardware (e.g., multiple body-worn accelerometers, heart-

rate monitors, etc.) can improve classification, but this is typically not practical under free-

living conditions. Using fewer measuring instruments is better from a subject’s point of view,

though it tends to be insufficient from a research perspective. A highly accurate classifier

based on data from a single unobtrusive set of sensors would be ideal.

There are many ways to approach activity recognition. An important distinction to be

made is between within-subject and between-subject recognition. For within-subject classifi-

cation, individual models are produced for each subject. As is shown in Section 2, this can

lead to very accurate results. However, by its very nature, the model development involves

extensive training and calibration on each subject, which is difficult to achieve outside of

controlled conditions.

In the case of between-subject classification, a universal model for all subjects is created.

This model would (ideally) be trained only once and be applicable to all future subjects.

Arguably, this is a more practical approach, as little calibration would be needed post-

training. However, the generalized nature of the single model typically results in lower overall

accuracy compared to individualized models.
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For our research, the data used consists of triaxial data obtained from 77 subjects, quite

fairly spread demographically, for 23 activities in studies performed at Arizona State Univer-

sity in 2013 and 2014. The activities performed are various types of non-ambulatory (sitting,

standing, etc.) and ambulatory (walking, running, etc.) activities. This is a fairly large data

set compared to similar research in the field.

The ultimate objective of this research is the development of models to be used in free-

living conditions by subjects for the purpose of health monitoring and energy expenditure

calculation. This would eliminate the need for self-reporting as is customary in free-living

studies which tends to be inaccurate due to the nature of human error. It should be noted

that the data was collected in a controlled environment, though the subjects had significant

choice in the selection and order of the activities they performed.

The classifier we have built uses data extracted from a single triaxial accelerometer, an

ActiGraph GT3X+, along with demographic information from the subjects. Our approach

was for between-subject classification and grouping similar activities into distinct groups.

The final 3-level classifier was built using random forests to cater to each group of activities

as well as the individual activities that they contain.

Section 2.2 provide an analysis of prior research done in this domain. Section 2.3 explains

how the data was collected and prepared for training. Section 2.4 goes on to describe how the

classifier was trained and the results obtained in testing. Finally, Section 2.5 considers poten-

tial areas for future research and the methods by which results could be further improved.

2.2 Related Work

Data mining and machine learning techniques have been applied extensively to physical

activity classification. Commonly, classification is based on body-worn accelerometer data.

One of the initial problems in data mining is determining, for a given domain, the most

suitable classifier type as well as the optimal features to use for classification. Preece et al.

[12] provide a good overview of the tools that prove useful in activity classification as well the
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features that are frequently used. They present a comparison of different studies consisting of

multiple routines, features, accelerometer placement locations and classification techniques.

Some of the techniques analyzed include artificial neural networks, decision trees, k-nearest

neighbor and support vector machines.

Bao & Intille [2] use five biaxial accelerometers for experiments, trained on 20 subjects

and 20 activities in semi-natural settings. Decision trees gave them their best result of 84%.

Additional experiments were carried out using only two accelerometers; it was found that a

thigh- and hip-worn device combination provided the least decrease in accuracy.

In Ravi et al. [13], feature selection was used to identify that the mean, standard devia-

tion, energy, and correlation are the best features for activity recognition. This study used

data collected from two subjects wearing waist-mounted triaxial accelerometers. 8 activities

were performed over the course of several days. Accuracy levels of 99% were obtained using

Plurality Voting from a number of base classifiers trained by K-Nearest-Neighbors, Deci-

sion Trees, Naive Bayes, and Support Vector Machines. Though obtaining very high results,

the study was only carried out on 2 subjects, which would not translate well to a general

population.

Lester et al. [9] describe a personal activity recognition system using a custom-made

module worn on the shoulder, consisting of an accelerometer, microphones and barometers

(a combination of 7 devices). They combined multiple static classifiers using a Hidden Markov

Model (HMM) and claim an accuracy of 90% (though their test accuracy reaches a high point

of 84%). They tested their model on 12 subjects with 8 activities and indicate that accuracy

drops to around 65% if only the accelerometer is used.

Yang et al. [17] use neural classifiers to classify eight domestic activities with data gath-

ered from 7 subjects by wrist-worn accelerometers. They achieved a within-subject average

accuracy of 95.24% by initially separating dynamic activities (running and walking) from

static activities (standing and sitting) before using separate feature subsets for both types

of activities.
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Staudenmayer et al. [14] used artificial neural networks to classify groups of activi-

ties. They gather multiple activities into five groups (low level/non-ambulatory, locomotion,

household activities, and vigorous sports). They had 48 subjects equally divided across gen-

ders and used triaxial accelerometers mounted at the waist. The accuracy of this system was

88.8% at the activity group level. The activities were not classified at the individual level.

Khan et al. [6] classifies a group of 15 activities consisting of 3 static (non-ambulatory)

activities and 3 dynamic (ambulatory) activities with the rest being transitional activities

that do not relate to this study. The data was collected from an accelerometer set at 20Hz

worn on the chest by 6 subjects performing a specific sequence of activities each day for a

month. They used a somewhat hierarchical approach to initially distinguish between static

and dynamic activities followed by utilizing artificial neural networks and an augmented-

feature vector to achieve accuracies averaging 97.9%. The data was collected on relatively

few subjects for few activities with much attention given to transitional activities which are

not the focus of our study. Additionally, the data was collected in specific activity sequences

rather than the freer method applied by the subjects in our dataset. However, the paper

displays the improvement in accuracy achieved by a hierarchical approach by comparing

results obtained at a single-level classification (71.6%).

Kwapisz, Weiss & Moore [8] use the data mining software WEKA on a data set of 29

subjects performing 6 activities. The data collected came from a pocketed Android phone

application. The activities performed would be regarded as high-level (grouped) activities in

our work. They achieved an average accuracy of 91.7% using a multilayer perceptron.

Weiss et al. [15] developed a smartphone-based system using random forests on 5 grouped

activities walking, jogging, climbing stairs, Standing, and sitting/lying down. They use

both personalized (within-subject) and universal (between-subject) models. They extracted

43 features from triaxial accelerometer data. The universal model shows an accuracy of 76%

with similar results on new subjects [10]. The personalized data is said to have accuracies

generally higher than 95% for new subjects who train on themselves.
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Phan [11] uses a pruned decision tree to classify 5 (grouped) activities performed by 20

subjects. The data was gathered using a Samsung mobile phone at 32 Hz. They achieved

an accuracy of 96.8% by pruning off and discarding data after training with a C4.5 decision

tree.

Deng et al [3] uses various KELMs (kernel extreme learning machines) on a dataset of 30

subjects performing 6 activities collected at 50Hz on a waist-worn smartphone accelerometer.

They achieved accuracies of 99% using this approach.

Zheng [18] features a hierarchical approach similar to ours in classifying HAR. The dataset

consists of hip-worn accelerometer data collected at 100Hz from 14 subjects on 10 self-paced

activities. The study divides the activities into 4 “states”. Using multi-layered Least Squares

Support Vector Machines (LS-SVM) and Naive Bayes (NB) classifiers, they obtained an

average accuracy of 95.6% across individual activities.

Our study, compared to those just discussed, consists of a significantly larger dataset with

23 activities categorized at a more sophisticated level than most datasets implemented by

other studies. The primary reason for this is that this study is aimed at recognizing activities

for public health purposes rather than general classification. While this certainly provides

a bigger challenge at achieving high accuracies on this dataset, we intend to show that

a hierarchical approach significantly improves our results over a single-layer classification

and compares favorably to other studies despite the higher level of discrepancy involved in

activity separation and the use of a single accelerometer.

2.3 Data Collection, Preprocessing and Experiments

Our data was trained on 77 subjects performing 4 grouped and 23 individual activities. This

section details the collection and preprocessing of this data.
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Table 2.1: Description of Activities Performed
# Activity Duration or Distance # of

sub-
jects

1 Treadmill at 27 mmin-1 (1mph) @ 0% grade 3 min 29
2 Treadmill at 54 mmin-1 (2mph) @ 0% grade 3 min 21
3 Treadmill at 80 mmin-1 (3mph) @ 0% grade 3 min 28
4 Treadmill at 80 mmin-1 (3mph) @ 5% grade (as tolerated) 3 min 29
5 Treadmill at 134 mmin-1 (5mph) @ 0% grade (as tolerated) 3 min 21
6 Treadmill at 170 mmin-1 (6mph) @ 0% grade (as tolerated) 3 min 34
7 Treadmill at 170 mmin-1 (6mph) @ 5% grade (as tolerated) 3 min 26
8 Seated, folding/stacking laundry 3 min 74
9 Standing/Fidgeting with hands while talking. 3 min 77
10 1 minute brushing teeth + 1 minute brushing hair 2 min 77
11 Driving a car - 21
12 Hard surface walking w/sneakers 400m 76
13 Hard surface walking w/sneakers hand in front pocket 100m 33
14 Hard surface walking w/sneakers while carry 8 lb. object 100m 30
15 Hard surface walking w/sneakers holding cell phone 100m 24
16 Hard surface walking w/sneakers holding filled coffee cup 100m 26
17 Carpet w High heels or dress shoes 100m 70
18 Grass barefoot 134m 20
19 Uneven dirt w/sneakers 107m 23
20 Up hill 5% grade w high heels or dress shoes 58.5m x 2 times 27
21 Down hill 5% grade w high heels or dress shoes 58.5m x 2 times 26
22 Walking up stairs (5 floors) 5 floors x 2 times 77
23 Walking down stairs (5 floors) 5 floors×2 times 77

2.3.1 Participants and procedures

Participants were recruited from the Phoenix, AZ and surrounding areas through community

sources, email distribution lists, and social media outlets. Participants were 18-64 years of age

and free of any contraindications for exercise. Participants were fitted with the accelerometer

and completed a series of activities for 3 min in duration (see Table 2.1). Virtually all

participants completed the following activities: standing, fidgeting with hands while talking;

1 min of brushing teeth and 1 min brushing hair; some form of hard surface or carpet walking;
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and walking up and down stairs. An additional three treadmill activities and three other

activities were randomly assigned. Timestamps for the beginning and end of activities were

captured using a custom-built Android application which was synced to the same computer

as the activity monitor.

2.3.2 Activity monitoring

Participants were fitted with the ActiGraph GT3X+ (ActiGraph LLC, Pensacola, FL)

activity monitor positioned along the anterior axillary line of the non-dominant hip. The

monitor was fixed using an elastic belt. The ActiGraph GT3X+ is a lightweight monitor

(4.6cm x 3.3cm x 1.5 cm, 19g) that measures triaxial acceleration ranging from -6g to +6g.

Devices were initialized to sample at a rate of 100hz. Accelerometer data were download to

and extracted using Actilife 5.0 software (ActiGraph, LLC, Pensacola, FL) [1].

310 subjects participated in the study. From them, data from 77 subjects, 53 females and

24 males, were used to train our classifiers. Table 2.2 provides demographic information on

the subjects.

Table 2.2: Subject Demographics
Mean Standard Deviation Range

Age (Years) 33.2 9.7 18.2 - 63.2
Height (cm) 167.9 7.9 152.6 -188.9
Weight (kg) 72.1 12.1 48.3 - 105.5
BMI 25.6 3.9 17.7 - 35.4

2.3.3 Feature Extraction

A total of 246 features were initially extracted from the raw data. A summary of the features

is as follows:

• Features in the time domain: features extracted from the axes and their first

differentials and the vector magnitude. These include the mean, maximum, minimum

values, standard deviations, median crossings and the 10th, 25th, 50th, 75th, 90th
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percentiles. Also included are the correlations between the each axes as well as the

correlations between their first differentials.

• Features in the frequency domain: these include the dominant frequency and its

magnitude for the axes, their first differentials and the vector magnitude.

• Features of wavelet analysis: features extracted from the 1st level to the 5th level

of wavelet decomposition coefficients for each accelerometer signal (x,y and z). These

include the mean, maximum, minimum, standard deviations, median crossings and the

10th, 25th, 50th, 75th, 90th percentiles.

• Demographic features: these include the age, height, weight, gender and BMI of the

subject.

2.3.4 Feature Selection

The initial 246 features, while helpful for initially gauging the data, increase complexity.

Generating the features requires extra work and significantly increases the time needed to

train and run a classifier. Feature selection was carried out to whittle down the features to

a smaller but more significant subset.

Initially, correlation-based [4] and relief-based [7] feature selection methods were used.

Additionally, a 42-feature subset was selected using domain knowledge and an eye to stan-

dardize the preprocessing step. This feature set performed comparably well to the others in

preliminary testing and was subsequently the feature set used in creating the final classifier.

Figure 2.1 shows the classifiers performance on the feature subsets compared to the entire

feature set.

Random Forests (100 trees) trained on the self-selected subset outperformed the other

subsets across the classifiers. While other subsets also performed substantially well with

Random Forests, the self-selected was also a robust performer with other classifiers, signifying

its strength as a subset.
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Figure 2.1: Accuracy performance for feature subsets across four classifiers. DT = Decision
Trees; NB = Naive Bayes; 5NN = 5 Nearest Neighbor; RF = Random Forests,100 trees

2.3.5 Activity Groups

The 23 activities were separated into 5 activity groups, each group containing similar types of

activities. Grouping permits layered classification—a higher level classifier learns to efficiently

distinguish between groups of activities, while lower level classifiers specialize in classifying

in-group activities. A possible disadvantage of this arrangement is that misclassification of

instances at higher levels can propagate errors to lower levels. Because of this, it is imperative

that the higher-level classifiers be much more accurate.

The activities were grouped as shown in Table 2.3. Activities which involved minimal

physical activity were classified as non-ambulatory. Ambulatory activities were further

divided into 4 subgroups; walking (all locomotive & treadmill activities less than 4 mph),

running (treadmill activities more than 4 mph), climbing upstairs, and climbing downstairs.
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Table 2.3: Division of activities in the clusters
Non-Ambulatory Activities

8,9,10,11

Ambulatory Activities
Walking 1,2,3,4,12,13,14,15,

16,17,18,19,20,21
Running 5,6,7
Upstairs 22
Downstairs 23

2.4 Experimental Results

WEKA [16], a data mining software application, was used for classifier development. WEKA

provides extensive libraries of machine learning techniques and an easily manageable GUI

to carry out training experiments.

Though random forests was indicated as a preferable base classifier during the feature

selection, other preliminary tests were carried out. A 16 subject subset was used to train

many different classifiers with 10-fold cross-validation (as shown in Figure 2.2). In these initial

tests, a 100 tree Random Forest outperformed all other classifiers, including meta-classifiers

such as bagged decision trees and stacked classifiers.

Random Forests [5] work by generating many decision trees and classifying according to

the modal class of the “forest”. Subsequent experiments at the activity group level repeatedly

indicated that random forests were a reasonable choice for at all levels of the meta-classifier.

Our data set contained 87,943 records. 90% of the data was used as training data and

the remaining 10% was reserved as the test set, the data separated by stratification. Due

to high number of activities in the walking group, the training set was weight-balanced to

avoid a bias.
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Figure 2.2: Performance of classification techniques on the 16 subject training set with 10-
fold cross validation. RF10 = Random Forest, 10 trees; RF100 = Random Forest 100 trees;
5NN = 5 Nearest Neighbor; NB = Naive Bayes; MLP = Multilayer perceptron; SVM =
Support Vector Machine

Five random forest classifiers were obtained for level 1, 2 and 3 for the walking, running

and non-ambulatory groups. The trained classifiers were then set up in a Java program. The

test set was run through this Java program which resulted in confusion matrices for each

level. The accuracy, precision and recall for each level and activity were extracted from the

confusion matrices using standard equations.

Precision =
tp

tp + fp
(2.1)

Recall =
tp

tp + fn
(2.2)

Accuracy =
tp + tn

tp + tn + fp + fn
(2.3)

F −measure = 2
precision× recall

precision + recall
(2.4)

tp=true positive, fp=false positive, fp=true negative, fn=true negative.
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2.4.1 LEVEL ONE

At level one, the activities are divided into ambulatory and non-ambulatory activities. The

accuracy at this level is 97.899%. The misclassified instances will contribute to some trickle-

down errors in the levels below. However, the accuracy is low enough for overfitting not to

be an issue. As the data set does not account for transitional activities (e.g., transitioning

from standing to running), these discrepancies are welcome. The performance of level one is

shown in table 2.4.

Table 2.4: Performance analysis for Level 1
LEVEL 1 Precision Recall F-Measure
Non-Ambulatory 0.987 0.944 0.965
Ambulatory 0.978 0.995 0.986
Accuracy: 98.03%

2.4.2 LEVEL TWO

At level two, the activities are divided into groups shown in Table 2.3. Note that the non-

ambulatory activities were separated at level one. Therefore, the errors shown for that group

are a result of the trickle-down effect of level one. The accuracy at level 2 is almost 94%,

which we believe compares favorably to other research, e.g., the 88% of Staudenmayer, et

al. [14] and the 91.7% of Kwapisz, Weiss & Moore [8]. Phan [11], Ravi et al. [13], Khan

et al [6] and [18] all achieve higher accuracies on their datasets, but these studies involve

fewer subjects and overall less data. Given these discrepancies, we believe our results to be

competitive.

The results in Table 2.5 can also be compared to results based on models using multiple

sensors. E.g., Lester et al. [9] achieved 84% with 7 sensors. Bao & Intille [2] achieved 84% as

well with 5 sensors.
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Table 2.5: Performance analysis for Level 2
LEVEL 2 Precision Recall F-Measure
Non-Ambulatory 0.944 0.987 0.965
Walking 0.915 0.978 0.945
Running 0.993 0.847 0.914
Upstairs 0.958 0.813 0.880
Downstairs 0.969 0.755 0.849
Accuracy: 93.673%

2.4.3 LEVEL THREE

At this level, activities are classified individually inside their respective groups.By doing this,

we can train classifiers specifically for a group of activities which would otherwise be difficult

to separate. The results for the non-ambulatory, running and walking groups are shown in

Tables 2.6, 2.7 and 2.8 respectively.

Table 2.6: Performance on non-ambulatory activities
Non-Ambulatory Activities Precision Recall F-Measure
Seated, folding/stacking laundry 0.924 0.951 0.937
Standing/Fidgeting while talking 0.933 0.958 0.945
brushing, 1min teeth + 1min hair 0.934 0.851 0.891
Driving a car 0.990 0.997 0.993
Overall Accuracy: 93.739%

Table 2.7: Performance on running activities
Running Activities Precision Recall F-Measure
Treadmill 5mph @ 0% grade 0.963 0.991 0.977
Treadmill 6mph @ 0% grade 0.976 0.965 0.970
Treadmill 6mph @ 5% grade 0.979 0.971 0.975
Overall Accuracy: 97.368%

Non-Ambulatory Activities: Non-ambulatory activities are those that require little

to no locomotion. The hierarchical approach allows the individual classifier to discern the

minute differences between activities with a relatively low number of distinguishing features,
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Table 2.8: Performance on walking activities
Walking Activities Precision Recall F-Measure
Treadmill 1mph @ 0% 0.900 0.997 0.946
Treadmill 2mph @ 0% 0.904 0.943 0.923
Treadmill 3mph @ 0% 0.917 0.871 0.893
Treadmill 3mph @ 5% 0.932 0.927 0.929
Hard surface 0.842 0.967 0.900
Hard surface, hand in pocket 0.956 0.752 0.842
Hard surface, carrying 8 lbs. 0.913 0.652 0.761
Hard surface, cell phone 0.921 0.648 0.761
Hard surface, coffee 0.852 0.730 0.786
Carpet, heels/dress shoes 0.869 0.816 0.842
Grass barefoot 0.944 0.878 0.910
Uneven dirt w/sneakers 0.957 0.611 0.746
Uphill 5%, heels/dress shoes 0.948 0.895 0.921
Downhill 5%, heels/dress shoes 0.946 0.859 0.900
Overall Accuracy: 88.722%

achieving an accuracy of 94%. Table 2.6 shows the performance of non-ambulatory activity

classification.

Running Activities: Treadmill activities at 5-6 mph were regarded as running activities.

The classifier achieved an very high accuracy of 97%, shown in table 2.7.

Walking Activities: The overall accuracy for classification of walking activities is

88.7%. Table 2.8 shows the comparatively low recall rates of the “Hard surface” activities,

indicating that these activities are much more difficult to separate. The difference between

these activities is arm position (holding cell phone, coffee cup, etc.) a feature that would

probably be better detected by a wrist-worn accelerometer than a hip-worn one.

Note that as the “upstairs” and “downstairs” groups are single-activity groups, table

results for them are not shown. The “upstairs” activity group had an accuracy of 81.33%

and the “downstairs” activity group had an accuracy 75.5%. The downstairs activity has

significantly lower recall. One possible explanation could be the varied approaches subjects
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would have to climbing downstairs, demographically. For example, older and/or weightier

subjects would descend stairs much more slowly than younger and/or lighter subjects.

Overall, the accuracy obtained was 86.63% at level 3. We believe our results here compare

favorably with the few studies that have done activity classification at this minute level.

Bao & Intille [2], for example, achieved 84% accuracy with 20 activities using data from 4

accelerometers.

2.5 Conclusion and Future Work

The hierarchical meta-classifier achieved an accuracy of 93.7% at the activity group level,

which compares favorably to other group-level studies. Furthermore, the meta-classifier was

able to distinguish between intra-group activities with an accuracy of 86.6% as compared to

84% at a single-level as seen in Figure 2.2.

This work was done in view of domain requirements for public health research in physical

activities, specifically tracking the activities of free-living subjects without relying on self-

reporting. By classifying activities in Table 2.1 at an individual level rather than a group

level, physical activity researchers can obtain specific energy expenditure information for

their subjects. Future work includes testing the model on free-living data which can lead to

calibrations to improve the model. Eventually, creating a streamlined process of collecting,

preprocessing and classifying data would be extremely useful for public health research.

Other work that will be done on the data include investigations can be carried out to

analyze the effect of sampling rates and window sizes on classification accuracy, a comparative

study which dives into a demographic and classifier based analysis, and classification of the

data set using deep neural networks.
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Abstract

Accelerometers are the most common device for data collection in the field of

Human Activity Recognition (HAR). This data is recorded at the sampling rate

of the accelerometer and then usually separated into time windows before clas-

sification takes place. Though the sampling rate and window size can have a

significant impact on the accuracy of the trained classifier, there has been rela-

tively little research on their role in activity recognition. This paper presents a

statistical analysis on the effect the sampling rate and window sizes on HAR data

classification.

The raw data used in the analysis was collected at 100Hz from 77 subjects per-

forming 23 different activities. It was then re-sampled and divided into windows

of varying sizes and trained using a single data classifier. A weighted least squares

linear regression model was developed and two-way factorial ANOVA was used to

analyze the effects of sampling rate and window size for different activity types

and demographic categories. Based upon this analysis, we find that 10-second

windows recorded at 50Hz perform statistically better than other combinations

of window size and sampling rate.
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3.1 Introduction

The field of Human Activity Recognition (HAR) is dependent on a variety of instruments for

data collection — heart rate monitors, GPS, light sensors, etc. — of which wearable triaxial

accelerometers are the most commonly utilized [5, 9]. Accelerometers are commercially avail-

able in many formats, from modern smartphones and consumer-grade activity-monitoring

products to high-grade research-oriented devices, the consequences of which are wide degrees

of quality in data collection for HAR. When preparing for data collection in a HAR study,

two aspects of the accelerometer to use should be strongly considered: the placement of the

device and the sampling rate at which it gathers data.

The placement of the device depends greatly on the context of the study. Many studies

focusing on ambulation activities (walking, running etc.) prefer hip-worn or wrist-worn

devices [5], both of which have advantages and disadvantages. Wrist-worn devices have

trouble distinguishing lower-body activities (for instance, walking and stair climbing), while

hip-worn devices can be problematic when recognizing upper-body activities (for instance,

eating and brushing teeth). The impact of sampling rate is discussed in later sections.

Once data has been collected — at a certain sampling rate — it is prepared for classifi-

cation by extracting relevant features such as means and standard deviations and diving the

accelerometer readings into windows. Often, windows of fixed length are used.

Both the sampling rate and window size of data are crucial decisions in HAR which

directly affect the accuracy of developed classifiers. Though a literature review revealed

some relevant analyses (Section 3.2), there appears to be a relative dearth of work directly

addressing sampling rate and window size in HAR. This study is an attempt to remedy

what we perceive as a gap in the research. We have attempted to statistically identify the

window size and sampling rate combination which best suits activity recognition across

demographical and activity divisions.

The data used in this study was obtained from 77 demographically diverse subjects for

23 activities in studies performed at Arizona State University in 2013 and 2014. Data was
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collected from a single hip-worn triaxial accelerometer, an ActiGraph GT3X+, at a sampling

rate of 100Hz. By artificially downsampling the data and creating differently sized windows,

we have obtained datasets at a cross section of 6 window sizes and 5 sampling rates. We

used a single classifier to train these datasets with 10-fold cross-validation and statistically

observed the trends using repeated measures two-way ANOVA. We then further divided these

datasets to observe how these effects change due to activity type or demographic features of

the subject.

It should be noted that this study, by necessity, takes into account only certain aspects

of HAR classification process. For example, we are utilizing data from a single hip-worn

accelerometer, as opposed to other or multiple placements. Similarly, we use only time- and

frequency-based features with a single classifier (Random Forests) to further standardize our

tests. While feature sets and classifier selection certainly play a role in the outcomes of HAR

classification research [9], to account for all of them would lead to an unworkable level of

complexity.

Section 3.2 details the literature available in this domain. Section 3.3 describes the data

collection and preprocessing done to the data to obtain our data sets. Section 3.4 gives the

results of our classification and statistical analysis of these results. Finally, Section 3.5 states

what we conclude from this work and how these conclusions can be implemented in HAR

data classification.

3.2 Related Work

While a considerable amount of research has been done in HAR using accelerometers, there

has been a lack of consensus on the methodology of collecting and preprocessing data and

thus have largely remained unanalyzed [9]. Lara & Labrador [5] note that sampling rates in

HAR studies vary from 10Hz to 100Hz while window sizes range from less than 1 second to

30 seconds. While there are some domain-related justifications for such decisions, there is a

lack of standardization which likely impacts replicability.
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Lau & David [6] attempted a study similar to ours, in the sense that multiple data sets of

differing window sizes (0.5, 1, 2 and 4 seconds) and sampling rates (5,10,20 and 40 Hz) were

generated from raw accelerometer data (gathered from a pocketed smart phone) and the

effects studied. While they claim that these lower values are sufficient for good performance,

their setup consisted of a single test subject performing 5 activities. Maurer et al. [8], using

6 subjects, state that recognition accuracy does not significantly increase at sampling rates

above 15-20Hz when their biaxial accelerometer is used in conjunction with 3 other sensors

(light, temperature and microphone). Bieber et al. [3] calculate that 32Hz should be the

minimum sampling rate given human reaction time. Tapia et al. [11] varied window length

from 0.5 to 17 seconds and tested the data sets with C4.5 decision tree classifier, concluding

that 4.2 seconds was the optimum window size for their needs. Banos et al. [2] created data

sets with window sizes ranging from 0.25 to 7 seconds at interval jumps of 0.25. They found

that 1-2 seconds is the best trade-off speed and accuracy for online training. Larger windows

were only needed if the feature set was small.

Statistical analysis of classifier performance appears rarely performed. Most studies, such

as the ones cited above, simply state a performance measure (often accuracies and f-measures)

but do not present any statistical evaluation. Demsar [4] comments on the lack of statistical

analysis of classifier performance and suggests non-parametric tests for comparing classifiers

and data sets.

3.3 Data Collection, Preprocessing and Methodology

3.3.1 Collecting Data

The data used in the present study was collected in Phoenix, AZ from volunteers recruited

through Arizona State University. Participants were fitted with an ActiGraph GT3X+

activity monitor positioned along the anterior axillary line of the non-dominant hip. The

monitor was fixed using an elastic belt. The ActiGraph GT3X+ [1] is a lightweight monitor

(4.6cm x 3.3cm x 1.5 cm, 19g) that measures triaxial acceleration ranging from -6g to +6g.
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Devices were initialized to sample at a rate of 100hz. Accelerometer data was downloaded

and extracted using Actilife 5.0 software (ActiGraph, LLC, Pensacola, FL). The subjects

performed a number of activities which can be observed in Table 2.1.

Table 3.1: Number of Records in the Datasets
Window Size (s) No. of Records

1 175284
2 88557
3 59666
5 36533
10 19186

310 subjects participated in the study. From them, data from 77 subjects, 53 females and

24 males, was used to train the classifiers. Table 2.1 describes the activities performed while

Table 2.2 provides demographic information on the subjects.

3.3.2 Generating Datasets

The data obtained was collected at 100Hz. From this, 30 data sets with varying window

sizes (of 1, 2, 3, 5 and 10 seconds) with sampling rates (5, 10, 20, 25, 50 and 100Hz) were

created. To create data sets for sampling rates < 100Hz, we downsampled from the original

data sets, e.g., 50Hz is generated by using every 2nd accelerometer record (100/50), 25Hz

using every 4th record (100/25), etc. The number of records in a window then depends on

the sampling rate as well as the window size. E.g., A 1-second window at 100 Hz contains

100 records (100x1), a 3-second window at 25Hz contains 75 records (3x25), and so on. As

summarized in Table 3.1, the window size effects the number of records in the data set, a

fact that will become significant during analysis.

It should also be noted that, in some situations, partial windows are formed, where there

is not enough data for a complete window. Such partial windows were discarded for the sake

of consistency.
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3.3.3 Feature Extraction and Selection

246 features were extracted using the raw accelerometer data which were then reduced to a

32 feature data set with time- and frequency-based features, which are listed below. More

information about the feature extraction and selection can be found in Chapter 2.

• Features in the time domain: These features include the mean, standard deviation

and 50th percentile of each axis (x, y and z) and their vector magnitude as well as the

correlation values between the axes.

• Features in the frequency domain: These features include the dominant frequency

and its magnitude for each axis (x, y and z) as well as their vector magnitude.

3.3.4 Methodology

Random forest classifiers perform very well with this data set as seen in Chapter 2 and so this

was chosen as our standard classifier. Each data set was divided and evaluated in 10 folds.

Further divisions were carried out for certain activity groups (see Table 2.3) or demographic

groups. The accuracy on the test fold was recorded. WEKA software packages [12] were used

in conjunction with Java for training and testing the data sets.

RStudio [10] was used to evaluate results. A two-way factorial ANOVA was carried out

with weighted least squares to calculate the expected average value (EV) for every combi-

nation. It was found that window size and sampling rate as well as their interaction were

statistically significant. By determining the maximum expected accuracy (the maximum

EV), we discovered the accuracy remained significant at the 95% confidence level. The next

section details the analysis and results of our experiments.



37

3.4 Statistical Analysis of Results

3.4.1 Weighting

From Table 3.1, it is clear that window size directly affects the number of records in the

data set. Table 3.2 shows that the variance increases as window size increases, and so the

weighting function should be inversely proportional to the variance. We use 1/WindowSize

as a good approximation.2 Although sampling rate can also be seen to have a small effect on

the variance, it appears negligible. All experiments use this weighting function to normalize

the distributions.

Table 3.2: Standard Deviations
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.0035 0.0034 0.0032 0.0029 0.0027 0.0021
2 0.0051 0.0031 0.0048 0.0032 0.0057 0.0032
3 0.0049 0.0071 0.0076 0.0066 0.0040 0.0054
5 0.0045 0.0057 0.0092 0.0108 0.0107 0.0071
10 0.0091 0.0129 0.0074 0.0082 0.0098 0.0096

Subsection 3.4.2 describes in detail the statistical process followed by all the experiments.

3.4.2 All Activities and Demographics

Our first test evaluated all the data available, i.e., for 23 activities as performed by 77

subjects. The objective was to find the maximum average expected value (EV ) and use this

to determine if other values can be considered statistically significant. A two-way analysis

of variance (ANOVA) on a Weighted Least Squares (WLS) linear regression model shows

that both window size and sampling rate have a significant effect on accuracy with 99%

confidence (p<0.001), which has been found true for all our experiments. The linear model

is then used to obtain EV s for all window size/sampling rate combinations. These values

are show in Table 3.3.

2The weighting scheme was chosen after a consultation with the University of Georgia Statistics
Consulting Center.
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Table 3.3: All Activities/Demographics
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.5858 0.6868 0.7893 0.8050 0.8251 0.8292
2 0.6324 0.7355 0.8219 0.8334 0.8456 0.8435
3 0.6544 0.7551 0.8269 0.8385 0.8488 0.8411
5 0.6848 0.7752 0.8322 0.8379 0.8473 0.8282
10 0.7316 0.8050 0.8474 0.8529 0.8583 0.8126

The 10s/50Hz data set has the highest expected value (EVmax) for accuracy (in

bold underline in Table 3.3) in this experiment. Next we determine if other accuracy

EVs are significantly different than the maximum EVmax. As the alternate hypothesis is

that other combinations will have lower EV s, we use a 1-sided interval with a 95% confidence

interval.

¯Xmax − X̄k = t290,0.95 ∗
√
MSE ∗

√
WSmax

nmax

+
WSk

nk

(3.1)

Equation 3.1 is used to find the critical distance when the sample sizes are unequal but

the variance is assumed equal. As each EV represents 10 folds, we have 290 degrees of

freedom. The value of t290,0.95 is found as 1.651 using a t-table. The MSE value is obtained

from ANOVA. WS represents window size of EVmax while WSk and n is the number of

observations which in our case is always 10. Having found the critical distance, we can

observe which EV values fall inside the margin.

In this experiment, the 10s/25Hz value (in bold in Table 3.3) is less than the critical distance

away from EVmax. Hence, it can be concluded that it is statistically as good as EVmax with

95% confidence.

The procedure elaborated in this section is replicated for all of the following experiments.
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Table 3.4: Ambulatory vs. Non-Ambulatory Activites
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.6408 0.7295 0.8228 0.8369 0.8559 0.8590
2 0.6812 0.7735 0.8521 0.8634 0.8754 0.8730
3 0.7016 0.7957 0.8605 0.8688 0.8791 0.8725
5 0.7319 0.8127 0.8656 0.8727 0.8796 0.8634
10 0.7792 0.8419 0.8805 0.8876 0.8913 0.8537

Table 3.5: Ambulatory Activity Groups
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.8345 0.8720 0.9065 0.9106 0.9165 0.9170
2 0.8345 0.8872 0.9155 0.9177 0.9219 0.9195
3 0.8609 0.8951 0.9181 0.9211 0.9254 0.9200
5 0.8754 0.9045 0.9237 0.9267 0.9293 0.9180
10 0.9022 0.9264 0.9412 0.9411 0.9440 0.9169

3.4.3 Activity Groups

In Table 3.4, ambulatory activities were separated from non-ambulatory activities while in

Table 3.5 they were classified as walking, running or stairclimbing activities. Both experi-

ments represent a macro-classification and as such exhibit similar patterns to Table 3.3 —

the 10s/50Hz has EVmax.

Tables 3.7-3.12 show the results of experiments on different activity group classifications.

These groups were divided as shown in Table 3.5.

However, classifications at a micro-level, within these activity groups, exhibit different

results. Classifying between ascending and descending stairs (Table 3.6) achieves EVmax of

97% at 2s/50Hz but has a wide spread of equally significant values. Interestingly data at

lower sampling rates are also deemed significant for larger window sizes. Statistical values
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Table 3.6: Stairs: Ascent vs. Descent
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.9555 0.9640 0.9675 0.9682 0.9690 0.9694
2 0.9599 0.9652 0.9681 0.9686 0.9697 0.9690
3 0.9611 0.9651 0.9670 0.9675 0.9690 0.9673
5 0.9618 0.9655 0.9668 0.9672 0.9670 0.9647
10 0.9650 0.9676 0.9676 0.9690 0.9687 0.9624

for non-ambulatory activities (Table 3.7) show similar patterns. For walking and running

activities, the spread is smaller and concentrated towards higher sampling rates, though

there is a lot of variance in window size. Running in particular prefers smaller windows.

This is in agreement with the claim by Bieber, et al. [3] that the sampling rate should be

more than 32Hz for ambulatory activities.

Table 3.7: Non-Ambulatory Activites
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.7854 0.8298 0.8609 0.8647 0.8711 0.8723
2 0.8086 0.8471 0.8726 0.8783 0.8795 0.8775
3 0.8161 0.8476 0.8734 0.8732 0.8780 0.8746
5 0.8246 0.8525 0.8682 0.8730 0.8726 0.8594
10 0.8406 0.8571 0.8713 0.8716 0.8716 0.8514

Table 3.8: Walking Activites
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.5556 0.6656 0.7916 0.8105 0.8329 0.8385
2 0.5976 0.7162 0.8274 0.8407 0.8581 0.8574
3 0.6189 0.7415 0.8344 0.8460 0.8598 0.8543
5 0.6474 0.7594 0.8374 0.8408 0.8527 0.8353
10 0.6875 0.7746 0.8387 0.8491 0.8557 0.8159
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Table 3.9: Running Activites
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.7081 0.7795 0.8522 0.8688 0.9070 0.9140
2 0.7349 0.8191 0.8793 0.8961 0.9185 0.9210
3 0.7418 0.8321 0.8891 0.8968 0.9176 0.9177
5 0.7584 0.8266 0.8703 0.8863 0.8953 0.8972
10 0.7728 0.8333 0.8639 0.8714 0.8759 0.8553

3.4.4 Demographics

Table 3.10: Gender: Female Subjects
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.6037 0.7132 0.8128 0.8227 0.8405 0.8430
2 0.6509 0.7606 0.8388 0.8490 0.8599 0.8554
3 0.6762 0.7762 0.8433 0.8529 0.8598 0.8498
5 0.7052 0.7937 0.8441 0.8490 0.8539 0.8351
10 0.7521 0.8164 0.8586 0.8595 0.8667 0.8169

Table 3.11: Gender: Male Subjects
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.6439 0.7248 0.8139 0.8265 0.8474 0.8508
2 0.6857 0.7633 0.8412 0.8506 0.8653 0.8624
3 0.7017 0.7815 0.8478 0.8569 0.8675 0.8597
5 0.7226 0.7984 0.8484 0.8547 0.8641 0.8408
10 0.7759 0.8183 0.8636 0.8678 0.8736 0.8253

For the next round of experiments, data was separated into demographic groups to

observe any significant effects. The data sets were then used to classify all 23 activities.

Division by gender, female (53 subjects) and male (24 subjects) (Tables 3.10 and 3.11 respec-

tively) display similar results. EVmax is at 10s/50Hz for both experiments and there are very

similar spreads in significant results. This indicates that there is an insignificant difference

in HAR for genders and activity classification should be generalized for both cases.
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Table 3.12: Age: 18-26 Years
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.6207 0.7174 0.8094 0.8236 0.8432 0.8457
2 0.6662 0.7620 0.8362 0.8488 0.8588 0.8553
3 0.6857 0.7824 0.8443 0.8559 0.8629 0.8551
5 0.7196 0.8024 0.8484 0.8542 0.8623 0.8424
10 0.7633 0.8292 0.8627 0.8717 0.8753 0.8250

Table 3.13: Age: 27-33 Years
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.6614 0.7513 0.8343 0.8428 0.8590 0.8618
2 0.7043 0.7891 0.8564 0.8676 0.8746 0.8731
3 0.7198 0.8051 0.8623 0.8678 0.8779 0.8677
5 0.7390 0.8117 0.8573 0.8643 0.8679 0.8488
10 0.7784 0.8292 0.8658 0.8695 0.8720 0.8250

Table 3.14: Age: 34-44 Years
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.6651 0.7660 0.8442 0.8547 0.8689 0.8722
2 0.7085 0.8038 0.8654 0.8730 0.8849 0.8805
3 0.7271 0.8193 0.8651 0.8730 0.8807 0.8696
5 0.7482 0.8226 0.8596 0.8624 0.8721 0.8533
10 0.7833 0.8424 0.8733 0.8792 0.8822 0.8375

Data was then divided into 4 age groups; 18 − 25 (24 subjects), 26 − 32 (24 subjects),

33− 44 (21 subjects) and 49− 63 (8 subjects). The results of these experiments are recorded

in Tables 3.15-3.18, respectively. There is a visible trend of decreasing window size with

increasing age. The spread of significant values gets larger as well.

Similar patterns are noted when the data is divided according to Body Mass Index (BMI)

categories; Normal (40 subjects), Overweight (28 subjects) and Obese (9 subjects) (Tables

3.19-3.21). As BMI increases, the significance of the EVmax decreases along with the window

size. Subjects with lower BMIs fare better with larger windows than those with higher BMIs.
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Table 3.15: Age: 49-63 Years
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.7593 0.8382 0.8892 0.8981 0.9065 0.9063
2 0.7856 0.8581 0.9043 0.9084 0.9135 0.9146
3 0.8046 0.8689 0.9040 0.9067 0.9101 0.9030
5 0.8201 0.8730 0.9031 0.9017 0.9084 0.8855
10 0.8503 0.8986 0.9114 0.9114 0.9119 0.8725
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Figure 3.1: Distribution of BMI groups over age groups

This can suggest a correlation between age and BMI - elderly people are less likely to be

active than young people and are thus more likely to have high BMIs. This hypothesis is

supported in Figure 3.1 which shows that the proportion of normal weighted people decreases

with age in the dataset.
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Table 3.16: BMI: Normal
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.6031 0.7074 0.8056 0.8188 0.8363 0.8393
2 0.6531 0.7525 0.8320 0.8437 0.8531 0.8503
3 0.6776 0.7753 0.8395 0.8493 0.8553 0.8478
5 0.7138 0.7946 0.8446 0.8482 0.8549 0.8376
10 0.7617 0.8204 0.8614 0.8615 0.8678 0.8149

Table 3.17: BMI: Overweight
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.6419 0.7381 0.8256 0.8391 0.8564 0.8597
2 0.6831 0.7762 0.8520 0.8609 0.8714 0.8689
3 0.7002 0.7940 0.8523 0.8612 0.8701 0.8637
5 0.7225 0.8064 0.8549 0.8619 0.8696 0.8494
10 0.7612 0.8287 0.8607 0.8674 0.8732 0.8252

Table 3.18: BMI: Obese
Sampling Rate (Hz)

5 10 20 25 50 100

Window
Size (s)

1 0.7423 0.8279 0.8803 0.8900 0.8998 0.9015
2 0.7817 0.8532 0.9008 0.9039 0.9164 0.9115
3 0.7968 0.8648 0.9010 0.9098 0.9167 0.9098
5 0.8164 0.8663 0.8943 0.9001 0.9070 0.8878
10 0.8368 0.8774 0.8994 0.9125 0.9091 0.8648
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3.4.5 Summary of Analysis

Viewing all experiments together suggests that 10s/50Hz is the optimal combination of

window size and sampling rate, especially if the subjects of the study are young, able-bodied

and physically active. Most high significant EV are spread around high sampling rates and

window sizes, although there is enough evidence to suggest there is not a very significant

loss in accuracy if the sampling rate is decreased to 25Hz or window size is decreased to 2s.

3.5 Conclusion

This study provides some basis for the selection of sampling rates and window sizes for

human activity recognition. The analysis indicates that 10s/50Hz is statistically the best

combination for data collected with a hip-worn Actigraph GT3X+. Most of the experiments

carried out preferred larger windows and high sampling rates though some low intensity

activities and demographics can perform better with smaller windows. Our analysis further

suggests that window size can vary between 2-10 seconds and sampling rate 25-100Hz for

different situations without a significant loss in performance. While our study has shown

that larger windows are preferable, smaller windows can still provide significant results if

power consumption is an issue. Additionally, lower values are preferable for studies involving

the less dynamic activities or subjects who are more liable to be less active.

Future work in this field should be done to understand aspects of Human Activity Recog-

nition better. A different set of sensors could be used in a similar study. Feature set and

classifier optimality can also be tested.
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Chapter 4

Conclusions and Future Research

This study presented a novel method of data classification in the field of Human Activity

Recognition. By splitting our classification problem into multiple levels, we can obtain clas-

sifiers that train to particular activity types. This allows us to cater to more specificity in

activity recognition, e.g., effectively differentiating similar modes of walking.

This hierarchical model can certainly be improved upon. Heavy machine learning techniques

such as neural networks and genetic algorithms can be tested for potentially better results.

Testing can be carried out on actual free-living data to observe how applicable the model is

in the real world. Additionally, in line of the purpose of HAR for free-living data, a stream-

lined process application of data processing and classification would prove to be very useful

for public health research.

This study also described a statistical analysis of the window size and sampling rate of the

data and how it has significant effects on the results of HAR, both for the types of activities

and for multiple demographics. It could provide a basis of informed literature for selecting

window sizes and sampling rates in future studies according to domain requirements and

limitations.

We note again that this study used only a single type of classifier (Random Forests), and

other restrictions or assumptions were made. As such, while this analysis might be a step

in the right direction, there is considerable room left for additional study. E.g., the effects

of using other machine learning algorithms and feature sets could be examined, and studies

similar to this one could be carried out using wristworn accelerometers, pocket smartphones

and other devices.
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