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Abstract

This thesis compares different methods used in developing and using dynamic
reduced models for design optimization. Several methods have been used for forming
functional approximation models with which the GA search is performed more effi-
ciently. The informed operators approach for search speedup is discussed. Another
hypothesis-instantiation approach in using reduced models has been tested and
compared with the informed operator approach. Chapter one first gives some
background knowledge. Chapter two describes three different methods for forming
reduced models to speed up genetic-algorithm-based design optimization. Chapter
three describes two methods for using reduced models to speed up genetic-algorithm-
based design optimization. Chapter four gives the experimental results and discus-
sion. Finally, chapter five serves as a summary of the whole thesis.
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Chapter 1

Introduction

1.1 The Engineering Design Optimization Problem

Optimization is a process of finding and comparing feasible solutions until an optimal

solution is identified. In the real world, the engineering design optimization problem

is to use some optimization method, coupled with a simulator or some engineering

analysis code, to find the best design according to some measure of merit and subject

to some constraints.

Basically there are two kinds of design problems: structural and parametric

design. In this thesis, we just focus on continuous parametric design, especially the

realistic problem of aircraft design. This means the main goal is to optimize the key

parameters of an aircraft, such as wing area, length and so on. The detailed design

process is very complicated, and we need to reduce this to a general constrained

nonlinear programming problem with a reasonable number of variables, in which

the measure of merit (objective) and constraints serve as the evaluation of a certain

design. This is the conceptual design stage.

In a general form, the design optimization problem is represented as follows:

minimize f(x)

subject to:

gi(x) ≤ 0 i = 1, ..., l

hj(x) = 0 j = 1, ..., m

1
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x(L) ≤ x ≤ x(U) j = 1, ..., m

where

• x represents the vector consisting of real number parameters of the object that

is being designed. x(L) and x(U) correspond to the lower and upper bound of

the parametric vector respectively.

• f(x) is the objective function, which is to be optimized.

• gi(x) and hj(x) are inequality constraints and the equality constraints respec-

tively.

Once the mathematical model of the design problem has been built, one can use

a variety of optimization methods to find an optimal solution.

1.2 GADO: Genetic Algorithm for Design Optimization

The classical numerical optimization methods are mostly gradient based. These

methods turn out to be inadequate to deal with the real-world design problems

because of the difficult features of engineering design domains. Most of these methods

are prone to get stuck in local optima and fail to reach the global optimum.

Since the mid eighties of the last century, Evolutionary Algorithms have been

studied in depth and applied in difficult design problems. Compared with the con-

ventional techniques, Evolutionary Algorithms can find multiple optimal solutions

in one single optimization run due to their population-approach. During the last

decade, Genetic Algorithms have been significantly improved and adapted to var-

ious engineering domains and became powerful and broadly applicable stochastic

search and optimization techniques.

This thesis concerns the application of Genetic Algorithms (GAs) in realistic

engineering design domains. In such domains a design is represented by a number
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of continuous design parameters, so that potential solutions are vectors (points) in

a multidimensional vector space. Determining the quality (“fitness”) of each point

usually involves the use of a simulator or some analysis code that computes relevant

physical properties of the artifact represented by the vector, and summarizes them

into a single measure of merit and, often, information about the status of constraints.

For example, the problem may be to design a supersonic aircraft capable of carrying

70 passengers from Chicago to Paris in 3 hours. The goal may be to minimize the

takeoff mass of the aircraft. The constraints may include something like “the wings

must be strong enough to hold the plane in all expected flight conditions”.

We conducted our investigations in the context of GADO [11, 14], a GA that was

designed with the goal of being suitable for use in engineering design. It uses new

operators and search control strategies suitable for the domains that typically arise

in such applications. GADO has been applied in a variety of optimization tasks that

span many fields. It demonstrated a great deal of robustness and efficiency relative

to competing methods.

In GADO, each individual in the GA population represents a parametric descrip-

tion of an artifact, such as an aircraft or a missile. All parameters take on values

in known continuous ranges. The fitness of each individual is based on the sum of

a proper measure of merit computed by a simulator or some analysis code (such

as the takeoff mass of an aircraft), and a penalty function if relevant (such as to

impose limits on the permissible size of an aircraft). The penalty function consists of

an adaptive penalty coefficient multiplied by the sum of all constraint violations if

any. A steady state GA model is used, in which operators are applied to two parents

selected from the elements of the population via a rank based selection scheme, one

offspring point is produced, then an existing point in the population is replaced by

the newly generated point via a crowding replacement strategy. Floating point repre-

sentation is used. Several crossover and mutation operators are used, most of which
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were designed specifically for the target domain type. GADO also uses a search-

control method [14] that saves time by avoiding the evaluation of points that are

unlikely to correspond to good designs.

1.3 Dynamic Reduced Models

1.3.1 General Description

Although GAs have been successfully applied to many engineering design domains,

one of the major problems is the heavy-duty fitness computation by the simulator.

It is often the case that the simulator will take a non-negligible amount of time to

evaluate a point. A GA search may need a large number of iterations before it arrives

at the global optimum, which has significantly influenced the feasibility of GAs for

these design problems.

Specifically, some of the problems faced in the application of GAs (or any opti-

mization technique for that matter) to such problems are:

• Not all points in the space are legitimate designs — some points in the search

space (“unevaluable points”) cause the simulator to crash, and others (“infea-

sible points”), although evaluable by the simulator, do not correspond to phys-

ically realizable designs.

• The simulator will often take a non-negligible amount of time to evaluate a

point. The simulation time ranges from a fraction of a second to, in some cases,

many days.

• The fitness function may be highly non-linear. It may also have all sorts of

numerical pathologies such as discontinuities in function and derivatives, mul-

tiple local optima, ..etc.
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Fortunately, in many of these domains so-called ”reduced models”, which provide

less-accurate but more efficient estimates of the merit of an artifact, are either readily

available or can be learned online (i.e. in the course of the optimization) or off-

line (i.e. by sampling and building a response surface before optimization). This

thesis compares methods for the modification of GAs specifically intended to improve

performance in realistic engineering design domains in which no reduced models are

available a priori. These methods form approximations of the fitnesses of the points

encountered during the course of the GA optimization. The approximations are then

used to speed up the GA by making its operators more informed.

The use of reduced models to save time in evolutionary optimization dates all

the way back to the sixties. Dunham et al. [2] worked with a two level problem in

which they used an approximate model most of the time and only used the accu-

rate/expensive model in the final stages of refinement. Numerous research efforts

compute a response surface approximation and use it instead of the very expen-

sive evaluation function with no looking back [18]. Other approaches rely on special

relations between the approximate and accurate model to develop interesting multi-

level search strategies. A notable class of such methods [3] focus on building variants

of injection island genetic algorithms (iiGAs) for problems involving finite element

analysis models. The approach was to have many islands using low accuracy/cheap

evaluation models with small numbers of finite elements that progressively propa-

gate individuals to fewer islands using more accurate/expensive evaluations. A recent

approach [4] uses a functional approximation method to form reduced models. To the

best of our knowledge, none of these approaches addressed the problem of unevalu-

able points.
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1.3.2 Current approach to form reduced models

We conducted our investigation in the context of the framework described in detail in

[13]. Our method is based on maintaining a large sample of the points encountered in

the course of the optimization. Ideally, the sample should include all the points, but

if the simulator is relatively fast or the optimization takes a relatively high number

of iterations we maintain a smaller sample in order to keep the overhead of reduced

model formation and use reasonable.

Least squares approximations of the measure of merit and constraints are formed

periodically, for both the global set and each large cluster. We used the normal

equations implementation from Numercial Recipes in C [10] to form quadratic least

squares approximations.

1.3.3 The Artificial Neural Networks approach

Besides the least squares method, we decided to further investigate other ways for

forming reduced models, hoping to get more accurate and effective approximation.

The Artificial Neural Networks (ANNs) simulate the networks of neurons in human

brain. A three-layer backpropagation ANN with sufficient hidden nodes is supposed

to be able to learn a function of arbitrary complexity or non-linearity. As one of

powerful approximation tools, the ANN works well by generalizing from a given

patterns to make very precise predictions.

Our work is to replace the least squares method with an Artificial Neural Network

model, based on which we build the reduced model. We used the points that we have

encountered in the optimization process as ANN input patterns. The networks are

periodically updated and the structural features are saved in some data structures

for future prediction use.
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Two kinds of ANN structures have been used in our work, one is Quickprop

algorithm [8], and the other is Radial basis function network (RBFN). Quickprop

algorithm [5] is essentially a variant of the standard backpropagation neural net-

work, which makes use of the second order derivative information to learn faster. On

the other hand, the radial basis function networks are class of single hidden layer

feed forward networks where the activation functions for hidden units are radially

symmetric basis functions such as Gaussian function. The RBFN part was done

by Swaroop Vattam. The details about ANN-based reduced model are described in

chapter two.

1.4 Using the Dynamic Reduced Models

We tested two kinds of approaches to use reduced models, the informed operators

approach and the genetic engineering approach. Our purpose is to speed up the

design optimization with the help of reduced models.

With the dynamic reduced model, we can make the genetic operators more

informed, as well as significantly reduce the computation workload of using the

simulators. The idea of informed genetic operators is to generate several candidates

instead of only one, and rank them using reduced models. Then we only pick the

potentially best point and let it go to the next stage. If the computational complexity

of maintaining and using the reduced model is negligible compared to the time of

running the real simulator, this scheme may significantly speed up the GA search.

On the other hand, another method for using the reduced model has been investi-

gated and compared to the existing way. We use the genetic engineering operator to

create some new individuals instead of the traditional Darwinian genetic operators.

The basic idea is to use some functional minimization methods to find the minimal

point, and this point will be treated the same way as those newborns generated by
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Darwinian genetic operators. The reduced model serves as the functional evaluator.

Chapter three describes the comparison of these two methods.



Chapter 2

Methods of Developing Dynamic Reduced Models

2.1 General Framework

We conducted our investigation in the context of the framework described in detail

in [13]. We provide only a brief description here. Our method is based on maintaining

a large sample of the points encountered in the course of the optimization. Ideally,

the sample should include all the points, but if the simulator is relatively fast or

the optimization takes a relatively high number of iterations we maintain a smaller

sample in order to keep the overhead of reduced model formation and use reasonable.

• Incremental approximate clustering We keep the sample divided into clus-

ters. Starting with one cluster, we introduce one more cluster every specific

number of iterations. The reason we introduce the clusters incrementally rather

than from the beginning is that this way results in more uniform sized clusters.

Every new point entering the sample, either becomes a new cluster (if it is time

to introduce a cluster) or joins one of the existing clusters. A point belongs

to the cluster whose center is closest in Euclidean distance to the point at the

time in which the point joined the sample.

• Approximate evaluation of new points The first step in evaluating the

approximate fitness of a new point is to find to which cluster it belongs. If

the point belongs to a cluster with cluster approximation functions, these are

to be used, otherwise the global approximation functions are to be used. The

9
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evaluation method depends on the stage of the optimization. In the first half

of the optimization the fitness is formed by using the approximate measure

of merit and the approximate sum of constraints (which is forced to zero if

negative). No attempt is made to guess at whether the point will be feasible,

infeasible or unevaluable. In the second half of the optimization we use a two

phase approach. First we use the nearest neighbors of the new point to guess

whether the point is likely to be feasible, infeasible-evaluable or unevaluable.

Based on this guess, and the point’s cluster, we then use the proper approx-

imation functions (for example, no approximation functions are used if the

point is guessed to be unevaluable).

2.2 Quadratic Least Squares Approximations

The first approach we used for forming the approximations was Quadratic Least

Squares (LS). We distinguish between the approximation functions for the measure

of merit and those for the sum of constraints.1 The reason is that the constraints

are only defined for infeasible designs. For feasible designs we have to put all the

constraints at zero level as the simulators only return that they are satisfied. We

form two types of approximations for measure of merit and for the sum of constraint

violations:

• Global approximation functions

We maintain two global approximation functions which are based on all the

evaluable points in the sample.

We use quadratic approximation functions of the form:

F̂ (X̄) = a0 +
n∑

i=1

aixi +
n,n∑

i=1,j=i

aijxixj

1Since GADO only deals with the sum of all constraint violations rather than the
individual constraints, we only form approximations for the sum of all constraint violations.
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where n is the dimension of the search space.

We use a least square fitting routine from [10]. It works by using the normal

equations method.

• Cluster approximation functions

We use the same techniques for forming cluster approximation functions,

except that we only form them for clusters which have a sufficient number of

evaluable points.

2.3 Radial Basis Function Neural Networks

We employ two Gaussian radial basis function (RBF) neural networks, one to com-

pute the approximation for the measure of merit and the other to compute the

constraint violations for each large cluster as well as the whole sample. The struc-

ture of each of the RBF networks is as reported in some parts of the work by Howell

and Buxton [7]. It consists of an input layer, a hidden layer with nonlinear activation

functions, and an output layer with linear activation function. The size of the RBF

network is determined by 1) the dimension of the domain, 2) the number of training

examples, which gives the number of hidden units, and 3) one output neuron for

estimating the values of measure of merit or the constraint violations.

The basic version of the RBF network had to be modified in order to integrate it

into GADO. Learning rate, a variable parameter of the RBF network had to be tuned

according to the domain in order to achieve optimal performance. To overcome this,

we made the learning rate adaptive. In every domain, we start with a fixed value

for the learning rate, and modify it in the positive or the negative direction in small

increments, testing for the mean square error of the training and the testing set at

regular intervals. This process ensures that the learning rate used, eventually, will
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produce the best results for that domain. We also added a mechanism to avoid over-

training the network based on using an automated training-testing routine in which

the network training is halted periodically at predetermined intervals (calibration),

and the network is then run in recall mode on the test set to evaluate the network’s

performance on MSE (mean squared error). Specifically, the MSE of the training

set should decrease, and so should the test set MSE, otherwise, we stop training the

networks. The best saved network configurations - up to this point - are then used for

further prediction. With these changes in place, the RBF networks were integrated

into GADO and the results obtained are compared with the other approaches in the

subsequent sections. For further information regarding the implementation aspects

of the RBF networks, please refer to [7].

2.4 Quickprop Neural Networks

Quickprop is a modification of the back-propagation learning algorithm (Backprop)

that uses a second-order weight-update function, based on measurement of the error

gradient at two successive points, to accelerate the convergence over simple first-

order gradient descent [5]. It is loosely based on Newton’s method, but with less

computational complexity. It computes estimates of the error minimum using the

information of the last weight change, the last slope and the current slope. The

following equation describes the calculation of a weight change, with respect to the

derivatives and the last weight change.

∆wt =
st

st − st−1
∆wt−1

where

• ∆wt is the current weight change

• ∆wt−1 is the last weight change
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• st is the current slope (derivative)

• st−1 is the last slope (derivative)

Quickprop learns much faster than the standard back-propagation but also

has more parameters that have to be fine-tuned[5]. In this work, we used the

C version of Quickprop, translated by Terry Regier from Fahlman’s original

Lisp version. The implementation is described in www.cs.ncl.ac.uk/modules/1998-

99/csc325/projects/quickprop/.

There are two measures to be approximated, the measure of merit and the con-

straint violations, and therefore, the network structure could be either one-network-

two-output, or two-network-one-output. We used the one-network-two-output struc-

ture for the consideration of memory cost and computational complexity, because

two-network-one-output structure will almost double the space and time complexity.

The number of hidden nodes was set to 26, which is about twice the biggest dimension

of our test domains. While this is a relatively large number, we relied on the overfit-

ting detection mechanism and the results are reasonable. The maximum number of

training epochs was 800. We have used the maximum growth factor of 1.75, as was

recommended in Fahlman’s empirical report [5]. The weight decay is set to -0.0001,

as used in [5]. After trial and error experiments, we found that a learning rate of

0.01 is good.

As with the RBF network, we introduced a mechanism for avoiding over-training

in this network. The whole pattern set (either the global sample set or one of the large

enough cluster sets) are partitioned into two smaller sets: 80% goes to the training

set and the other 20% forms the test set. We monitor the MSE (Mean Squared

Errors) of both the training and test sets periodically (every 50 iterations, we call

it a calibration). First we make sure the MSE of the training set decreases since the

last calibration, and then we compare the MSE of the test set with the value we get
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in the last calibration. If the test set MSE goes up, it indicates that the network is

over-trained and thus we halt the training. With overfitting control, we stop training

the neural networks before the overfitting occurs. After testing this mechanism, we

found there is overfitting that takes place before the maximum number of training

epochs is reached.

We employed a scaling and normalizing data pre-processing procedure before we

trained the neural networks. The real pattern output values must be scaled to the

range of the logistic function, because otherwise we will not get the correct error

measure. A linear-scaling method is used to scale both the inputs and outputs. We

also used Z-score normalization to normalize the inputs. We have found the data

pre-processing procedure necessary and helpful for the neural network training. On

the other hand, we should scale the output values back to the real range, when we

use the reduced models to approximate the cheap fitnesses.

The Quickprop algorithm was implemented and integrated into GADO so as to

use both the global and the cluster approximation models. We form the approxima-

tions for measure of merit and constraint violations by maintaining both a global

ANN and an ANN for each big enough cluster (i.e., cluster with a sufficient number of

evaluable points) in a manner similar to that used for LS and RBF approximations.

2.5 Comparison of Reduced Models Formation Methods

To compare the performance of the different approximation methods, we used

reduced models that are acquired on-line to create informed genetic operators.

These operators are described in detail in [15] where their use was demonstrated

with pre-existing reduced models as well as on-line approximation models. The

main idea is to make the genetic operators such as mutation and crossover more

informed using reduced models. In every place where a random choice is made, for
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example when a point is mutated, instead of generating just one random mutation

we generate several, rank them using our reduced model, then take the best to be

the result of the mutation. We experimented with informed mutation, crossover and

initial population formation.



Chapter 3

Methods for using Reduced Models to Speed Up Design Optimization

We compare two methods for improving the GA’s performance. One is the idea

of informed operators presented in [15] and the other is a variation of the genetic

engineering idea presented in [1]. The remainder of this chapter describes these two

approaches in more detail.

3.1 Informed operators

The main idea of Informed Operators (IO) is to replace pure randomness with deci-

sions that are guided by the reduced model. We replace the conventional GA oper-

ators such as initialization, mutation and crossover with four types of informed

operators:

• Informed initialization: For generating an individual in the initial popula-

tion we generate a number of uniformly random individuals in the design space

and take the best according to the reduced model. The number of random indi-

viduals is a parameter of the method with a default value of 20.

• Informed mutation: To do mutation several random mutations are gener-

ated of the base point. Each random mutation is generated according to the

regular method used in GADO [11] by randomly choosing from among several

different mutation operators and then randomly selecting the proper param-

eters for the mutation method. The mutation that appears best according to

16
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the reduced model is returned as the result of the mutation. The number of

random mutations is a parameter of the method with a default value of five.

• Informed crossover: To do crossover two parents are selected at random

according to the usual selection strategy in GADO. These two parents will not

change in the course of the informed crossover operation. Several crossovers

are conducted by randomly selecting a crossover method, randomly selecting

its internal parameters and applying it to the two parents to generate a poten-

tial child. The internal parameters depend on the crossover method selected.

For example to do point crossover the cut-and-paste point has to be selected.

Informed mutation is applied to every potential child, and the best among

the best mutations is the outcome of the informed crossover. The number of

random crossovers is a parameter of the method with a default value of four.

Thus each crossover-mutation combination uses 20 reduced model evaluations.

• Informed guided crossover: Guided crossover [12] is a novel operator used

in GADO to replace some of the regular crossover-mutation operations to

improve convergence towards the end of the optimization. Guided crossover

does not involve mutation so we treat it differently. The way informed guided

crossover works is a follows:

– Several candidates are selected at random using the usual selection

strategy of GADO to be the first parent for guided crossover. The

number of such candidates is a parameter of the method with a default

value of four.

– For each potential first parent the second parent is selected in a fashion

documented elsewhere [12]. Then several random points are generated

from the guided crossover of the two parents and ranked using the reduced
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model. The number of such random points is a parameter of the method

with a default value of five.

– The best of the best of the random points generated is taken to be the

result of the guided crossover.

Thus the default total number of reduced model calls per informed guided

crossover is 20.

3.2 Genetic Engineering

Our approach to Genetic Engineering (GE) attempts to improve the efficiency of

the GA optimization by replacing some of the regular Darwinian iterations, which

generate new individuals using crossover and/or mutation, with iteration in which

individuals are generated by running a mini-optimization using the approximations

and returning the best point found therein.

In our implementation of the GE approach, the non-gradient based Downhill-

Simplex method is used - on a periodic basis - to generate new individuals instead

of the traditional genetic operators. The Downhill-Simplex technique [10], is used

because of its lesser dependence on the accuracy of the approximation function in

comparison to the various gradient-based techniques. This method requires only

function evaluations, not derivatives. Once in every four GA iterations we use the

Genetic Engineering approach to create a new individual instead of the Darwinian

genetic operators. Specifically, assuming the dimension of the parameter space is

ndim, we select ndim+1 individuals from the current population using the reg-

ular selection strategy of GADO. We then use the cheap fitness function to get

the approximate fitness values of these ndim+1 individuals. These ndim+1 indi-

viduals and their fitnesses serve as input to the Downhill-Simplex function. Based

on the approximated fitnesses, new hypothesized minimum can be found by calling
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the Downhill-Simplex function. This minimum serves as the new born individual.

Therefore, new individuals are created and evaluated by the true fitness function, so

that the overall GA search proceeds.

It was hard to set the number of calls to the cheap fitness function with the GE

as each mini-optimization could take a different number of iterations. We set the

maximum number of calls during each mini-optimization to 500. However, we found

that the GE approach ended up calling the cheap fitness function more than an order

of magnitude more times than the IO approach. We did not repeat the experiments

because the final conclusion was in favor the IO approach anyway.



Chapter 4

Experimental Results and Discussion

In this chapter, we give experimental results of the method comparisons in developing

and using dynamic reduced models. We plotted the fitness value against iteration

number to get a curve, which indicates the merit of the corresponding method (the

lower the better, as all problems are minimizations).

4.1 Domain Description

We did experiments in one realistic domain–the aircraft design domain, and several

other benchmark engineering design domains, which were first introduced in Eric

Sandgren’s Ph.D. thesis [17].

4.1.1 Supersonic transport aircraft design domain

Our first domain concerns the conceptual design of supersonic transport aircraft.

We summarize it briefly here; it is described in more detail in [6]. Figure 4.1 shows

a diagram of a typical airplane automatically designed by our software system. The

GA attempts to find a good design for a particular mission by varying twelve of

the aircraft conceptual design parameters over a continuous range of values. An

optimizer evaluates candidate designs using a multidisciplinary simulator. In our

current implementation, the optimizer’s goal is to minimize the takeoff mass of the

aircraft, a measure of merit commonly used in the aircraft industry at the conceptual

design stage.

20
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Figure 4.1: Supersonic transport aircraft designed by our system

As shown in Table 4.1, the problem has 12 parameters and 37 inequality con-

straints. However, only 0.6% of the search space is evaluable.

4.1.2 Benchmark engineering design domains

In order to further compare the different model generation and speedup methods,

we compared their performance in several benchmark engineering design domains.

These domains were introduced by Eric Sandgren in his Ph.D. thesis [17] in which he
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Table 4.1: Aircraft Parameters to Optimize

No. Parameter
1 Exhaust nozzle convergent length (lc)
2 Exhaust nozzle divergent length (ld)
3 Exhaust nozzle external length (le)
4 Exhaust nozzle radius (r7)
5 Engine size
6 Wing area
7 Wing aspect ratio
8 Fuselage taper length
9 Effective structural t/c
10 Wing sweep over design match angle
11 Wing taper ration
12 Fuel annulus width

applied 35 nonlinear optimization algorithms to 30 engineering design optimization

problems and compared their performance. Those problems have become used in

engineering design optimization domains as benchmarks [9].

Table 4.2 summarizes some properties of the 7 benchmark domains used in our

experiments. The second column of the table shows the domain number appearing in

Sandgren’s thesis. The third column shows the problem dimensions, and the fourth

and fifth columns gives the number of inequality and equality constraints respec-

tively. The sixth column shows the best optimization results so far.

4.2 Experimental Results of Comparison of Reduced Models Forma-

tion Methods

To compare the performance of the different approximation methods we compare

GADO with reduced-model-based informed operators based on each approximation
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Table 4.2: Results of Optimization in Benchmark Domains

Domain Sandgren Inequality Equality
No. No. Dim. Constraints Constraints Best
1 13 5 4 0 26.78
2 2 3 2 0 -3.3
3 3 5 6 0 -3.06
4 6 6 0 4 8.92
5 8 3 2 0 -5.68
6 21 13 13 0 97.5
7 22 16 19 0 174.7

method with each other. We also compare all of these to GADO without reduced-

model-based informed operators altogether. We compared the four systems in several

domains: the aircraft design domain and benchmarks described above.

4.2.1 Experiments and results in the aircraft design domain

Figure 4.2 shows the performance comparison in domain 1 (aircraft design). Each

curve in the figure shows the average of 15 runs of GADO starting from random

initial populations. The experiments were done once for each approximation method

(LS, QP and RBF) in addition to once without the reduced-model-based informed

operators altogether, with all other parameters kept the same. Figure 4.2 demon-

strates the performance with each of the three approximation methods as well as

performance with no approximation at all (the solid line) in domain 1 . The figure

plots the average (over the 15 runs) of the best measure of merit found so far in the

optimization as a function of the number of iterations. (From now on we use the

term “iteration” to denote an actual evaluation of the objective function, which is

usually a call to a simulator or an analysis code. This is consistent with our goal of
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Figure 4.2: Comparison of reduced model formation methods in domain 1 (aircraft
design)

understanding how the reduced-model-based informed operators affect the number

of calls to the objective function in problems where the informed operators overhead

is minuscule compared to the runtime of each objective function evaluation, as was

the case here. This also helps us avoid the pitfalls of basing evaluations on run times,

which can vary widely — for example across platforms and even across runs due to

variations in memory available and hence caching effects.) The figure shows that the

LS approximation method gave the best performance in all stages of the search in

this domain.
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4.2.2 Experiments and results in benchmark engineering

design domains

For each problem GADO was run 15 times using different random starting popula-

tions. The experiments were done once for each approximation method (LS, QP and

RBF) in addition to once without the reduced-model-based informed operators alto-

gether, with all other parameters kept the same. Figure 4.3 through Figure 4.9 show

the performance with each of the three approximation methods as well as perfor-

mance with no approximation at all (the solid lines) in the benchmark domains. Each

figure shows the average of 15 runs of GADO with each of the three approximation

methods and once without the informed operators. We found that in the first four

benchmarks, which represent relatively easy optimization tasks, the performance
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differences were small and it did not make much difference which approximation

method was used. The figures also show that the RBF method gave the best final

performance in domain 5 while the LS method did much better than the other two

in domains 6 and 7 – the two most challenging of all these benchmarks. In fact, the

results with RBF and QP approximations in benchmark 7 were worse than with no

approximations at all.

4.3 Experimental Results of Comparison of Reduced-model-based

Speedup Methods

To compare the performance of the different speedup methods we compared GADO

with reduced-model-based informed operators to GADO with genetic engineering.

We did the comparisons in the context of LS as well as QP based approximation

methods. We also compare all of these to GADO without speedup altogether. We

compared the five systems in several domains: the aircraft design domain and bench-

marks described earlier.

4.3.1 Experiments and results in the aircraft design domain

Figure 4.10 shows the performance comparison in domain 1 (aircraft design). Each

curve in the figure shows the average of 15 runs of GADO starting from random

initial populations. The experiments were done once for each speedup method-

approximation method combination (i.e. IO with LS,GE with LS, IO with QP and

GE with QP) in addition to once without any speedup or approximation methods,

with all other parameters kept the same. Figure 4.10 demonstrates the performance

with each of the four combinations as well as the performance with no approximation

or speedup at all (the solid line) in domain 1 . The figure plots the average (over the

15 runs) of the best measure of merit found so far in the optimization as a function
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Figure 4.10: Comparison of methods for using reduced models in domain 1 (aircraft
design)

of the number of iterations. The figure shows that the informed operators method

improved the performance more than the genetic engineering method in most stages

of the search regardless of which approximation method was used for forming the

reduced models.

4.3.2 Experiments and results in benchmark engineering

design domains

For each problem GADO was run 15 times using different random starting popula-

tions. As with the aircraft domain, the experiments were done once for each speedup

method and approximation method combination, in addition to once without any

speedup, with all other parameters kept the same. Figure 4.11 through Figure 4.17
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Figure 4.17: Comparison of methods for using reduced models in benchmark domain
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show the performance with each of the four combinations as well as performance with

no approximation or speedup at all (the solid lines) in the benchmark domains. Each

curve in each figure shows the average of 15 runs of GADO with different random

seeds. We found that in the first four benchmarks, which represent relatively easy

optimization tasks, the performance differences were small. The figures show that the

IO based approach did better than the GE approach using the same approximation

technique (LS or QP) in most stages of most domains. The figures also show that

the IO method gave the best final performance in all domains. In fact, the results

with the GE approach in benchmark 6 were worse than with no speedup at all. In

benchmark 3, IO with QP was the winner while in all other benchmarks the IO with

LS was the winner suggesting that LS was better than QP as an approximation
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method. We should also point out that in benchmark 7, in which GE appears to be

doing better than IO for a segment of the optimization, we found that one of the

runs did not find any feasible points but was slightly infeasible till the end. Thus,

the GE performance in this domain is worse than the curve suggests.

4.4 Discussion

In this thesis, we first compare different methods for forming dynamic reduced

models to speed up the search in GA-based engineering design optimization. Experi-

ments were conducted in the domain of aircraft design optimization as well as several

benchmark engineering design domains. The experiments show that the quadratic

least squares approach did consistently well and was the best in the more difficult

problems such as aircraft design and benchmarks 6 and 7. Another factor in favor of

the least squares approach is that forming the approximations with this method is

more than an order of magnitude faster than with the other methods and does not

require any tuning of parameters like them. Yet another advantage of least squares

methods is that the approximation is in a mathematical form (polynomial or oth-

erwise) which could be algebraically analyzed and manipulated as opposed to the

black-box results that neural networks give.

On the other hand, we did a comparison between two methods for using reduced

models to speed up the search in GA-based engineering design optimization. The

experiments show that the informed operators approach did consistently well and

was better than the genetic engineering approach in all domains. Moreover, the

genetic engineering approach called the approximate fitness function an order of

magnitude more times than the informed operators approach. We believe that the

reason for this result is that the reduced models used were not accurate enough

for the genetic engineering approach to yield good results. The informed operators
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approach on the other hand makes a much weaker assumption about the accuracy

of the reduced model (all it needs to speed up the optimization is that the reduced

model be a better than random predictor of the actual model). The experiments also

showed that using least squares approximations with any speedup approach usually

yields better results than using the neural network approximations.



Chapter 5

Summary

This thesis concerns building and using dynamic reduced models to accelerate

genetic-algorithm-based design optimization. Least squares approximation, one of

the traditional numerical functional approximation methods, was previously used

to achieve the speed-up purpose. ANN is a powerful statistical technique to fulfill

functional approximations. Theoretically, it should work as well as the least squares

technique in the reduced model context. With this in mind, we integrated ANN

based reduced model into GADO and tested it against the least squares based

GADO. The figures in chapter four have demonstrated the comparison of three

different methods. Empirical results show that the quadratic least squares method

based GADO does consistently better in the aircraft design domain and most of the

benchmark engineering design domains.

In essence, we make use of neural networks and quadratic least squares methods

to perform function approximation. ANN can be viewed as a black box, and with the

proper configuration of network structure, it can serve as a universal approximator.

ANN was hoped to give more accurate predictions so that a more precise reduced

model is built. However, the drawback of this technique should also be taken into

consideration. As one of the statistical techniques, neural networks require a large

sample set to learn the underlying relationship between inputs and outputs. The

configuration of the neural network is another concern. As is known, neural networks

work in a trial and error manner, which means we can only evaluate the ANN

37
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performance by experiments and error analysis. In our work, ANN is embedded in

the GADO system, which makes it more difficult to monitor the training process.

It may probably be difficult for the ANN to adapt to different environments, if we

keep the network structure unchanged. Our experimental results in chapter four

have shown the feasibility of the ANN based reduced model. Although unable to

outperform the previous least squares method based reduced model, ANN based

reduce model work better than the original uninformed (without the reduced model)

GADO.

Our next concern is how to use reduced models to speed up optimization. Besides

informed operators, we want to try other ways to use reduced models. Genetic Engi-

neering is another approach to take advantage of existing numerical methods, based

on the knowledge provided by reduced models. Downhill-Simplex has been selected,

because it is not a gradient-based technique. The results in chapter four show that

the informed operator approach outperforms the Genetic Engineering approach in

most test domains. The reason may be our reduced models are not accurate enough

for the Genetic Engineering method to work well. The informed operators approach

is based on a much weaker assumption of the accuracy of the reduced models.

The future work includes repeating the comparison of speedup approaches under

different neural network models for approximation, such as radial-bases-function

neural networks and multi-layer perceptrons. Another possible direction is to make

the neural networks more adaptable to the environmental changes. We hope that the

neural networks can be tuned in a more automatic, domain independent fashion. We

may also explore ways of combining the informed-operator approach and the genetic

engineering approach to achieve better performance than using any single approach.

We would like to study the conditions under which each method is better. We also

hope to be able to repeat the comparison in situations in which the reduced models

are physical, pre-existent or somehow more accurate. Finally we may explore other
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speedup approaches such as methods based on the formation and instantiation of

statistical models.
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