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ABSTRACT 

To understand the relationships among ambient temperature (AT), relative 

humidity (RH) and broiler deep body temperature (DBT), controlled experiments were 

conducted for different RH (50 and 80%) and AT (31, 34 and 37oC) combinations.  The 

DBT measurements were collected by a radio biotelemetry system.  Three types of 

Artificial Neural Network (ANN) models have been developed to predict broiler’s DBT.  

Type I models predict DBT responses of birds not used in training to AT×RH 

combinations used in training.  Type II models predict DBT responses of birds used in 

training to AT×RH combinations not used in training.  Type III models predict DBT 

response of birds not used in training to AT×RH combinations not used in training.  

These models capture the complex relationship among DBT, AT and RH very well.  

They could be applied in the future in the development of environmental control system 

for poultry housing. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

Chickens are homeothermic animals.  They are able to maintain constant deep 

body temperature (DBT) within a thermoneutral zone through various mechanisms.  The 

thermoneutral zone is a range of ambient temperatures (AT) within which birds can 

maintain a near constant DBT with minimum energy expenditure (Ernst, 1995).  Van 

Kampen et al. (1979) defined this range as 32.2-37.7oC in the light and 27.5-37.7oC in the 

dark, whereas other researchers identified 24oC as being thermoneutral (Teeter et al., 

1992; Fulton et al., 1993; Smith, 1993).  The DBT of unstressed chickens normally varies 

between 41.0 and 41.5oC (Lacey, 1999).  Usually, chickens are able to maintain this 

temperature through a complex combination of physiological and behavioral responses.  

Under higher temperature above the thermoneural zone (namely thermal stress 

environments), chickens try to regulate their DBT by other physiological and behavioral 

mechanisms, such as evaporative cooling and reduction of feeding.  However, these 

regulation mechanisms are often ineffective, and frequently result in thermal imbalance 

and DBT increase.  Such thermal imbalance and DBT increase are undesirable in poultry 

performance and production.   

There have been numerous studies in understanding the physiological responses 

of poultry to thermal stress environments, and sometimes the findings are not consistent.  

Considering the complexity of the relevant biological system, such inconsistency seems 
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to be understandable.  As pointed out by Etches et al. (1995), the physiological responses 

to high temperature is affected complicatedly by many factors including relative humidity 

(RH), strain, age of bird, feed energy level, light intensity, previous exposure to high AT, 

and so on.  

In the poultry industry, great efforts have been focused on increasing growth 

efficiency through the improvement of environmental control.  However, the challenging 

fact is that many environmental factors, including ambient temperature (AT), relative 

humidity (RH), velocity of moving air, light intensity, temperature of water supply and so 

on, could affect poultry growth performance simultaneously (Etches, et. al, 1995; Yahav, 

et. al., 1995; Lott, et al., 1998; Furlan, et al., 2000).  Physiological feedback such as 

respiration rate, heart rate, heat production or body temperature could provide good 

indication for the immediate condition and growth performance of housing animals, 

accounting for a complex interaction among different environmental factors (Lacey et al., 

2000 a, b; Hamrita et al., 1997 a, b; Aerts et al., 1996, 1998; Moberg, 1985).  The 

potential use of physiological feedback data to improve environmental control and 

management of animal housing is getting more and more research interest (Lacey et al., 

2000 a, b; Hamrita et al., 1997 a,b; Aerts et al., 1998; Goedseels et al., 1992; Barnett and 

Hemsworth, 1990).   

Deep Body Temperature (DBT) has been documented to be a useful indicator of 

stress in poultry (Mitchell, 1981; Hamrita et al., 1997b; Kettlewell et al., 1997; Lacey et 

al., 2000 a, 2000 b).  Van Kampen (1979) found that the body temperature of domestic 

fowl is practically constant up to an AT of 27oC, but rises with AT above this.  Mitchell 

(1981) used a radio telemetry system to understand the effects of handling and 
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temperature stress on heart rate of broiler, electrocardiogram and DBT.  It was found that 

DBT was very sensitive to handling and a good candidate for a stress indicator.  

Kettlewell et al. (1997) also used a radio telemetry system to study chicken DBT and 

heart rate, and proved that chicken DBT vary measurably with stressful conditions 

(Ketlewell et al., 1997).  Lacey (1999) reported that even small increases in AT, at a non-

stressful level, resulted in a detectable response in DBT of broilers.  Lacey et al. (2000 b) 

conducted 6-week experiments based on six pairs of broilers equipped with DBT sensing 

transmitters.  The broilers were exposed to combinations of three ATs (31, 34 and 37oC) 

and two RHs (50 and 80%).  Based on the analysis of variance on DBT data, the authors 

found that DBT responses were consistent among all birds, and the changes of AT and 

RH significantly contributed to DBT changes in broilers.  Definitely, DBT is an ideal 

physiological variable of chicken for us to study the physiological responses to 

environmental stress. 

Many current efforts are aimed at developing models of predicting dynamic 

responses of physiological variables to environmental conditions (Aerts et al., 1996, 

1998; Lacey 1999; Lacey et al., 2000b).  Robust models for predicting these physical 

variables are indispensable for establishing dynamic and precise control systems for the 

poultry house environment in the future.  Some research efforts in the literature have 

been focused on the study of predictability of physiological responses of poultry to 

environmental stress (Mitchell, 1981; Yahav et al., 1995; Aerts et al., 1996; Hamrita, 

1997; Aerts et al., 1998; Lacey, 1999; Lacey et al., 2000b).  Aerts et al. (1996) developed 

recursive regression models that predicted dynamic responses of broiler heat production 

to variations in ambient temperature and light-dark alternations.  The recursive regression 
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models had a relative prediction error of 3.4% for 1 step-ahead (4.5 min) prediction and 

4.3% for 3 step-ahead predictions.  Aerts et al. (1998) also developed a recursive 

regression model to predict heart rate responses of broilers to changes in ambient 

temperature and light-dark alternations with a 15 minute-ahead relative prediction error 

of 4.0%.  Also, DBT responses to environmental variables seemed to be consistent 

enough to be modeled and predicted.  Lacey (1999) developed ANNs using ambient 

temperature and on-line measurements of broiler DBT to predict future DBT under 

changing ambient temperature.  The author concluded that longer-term (e.g. 50 min 

ahead) and short-term (e.g. 2 min ahead) predictions are possible with decreasing 

accuracy as the prediction distance increases.  Short-term and longer-term predictions are 

considered in this research.  DBT response predictions ranging from one step (10 minute) 

to 6 steps (60 minutes) ahead were performed. These predictions could ultimately be used 

to improve environmental control in poultry housing control systems in the future (Lacey, 

1999).  The short-term prediction model could be used as part of a model-based 

controller that continuously adjusts environmental conditions based on physiological 

responses of the birds.  The longer-term predictions could be used as part of online expert 

systems that makes management decisions such as deciding an on set point for the 

environmental controller.  Moreover, in another 5-day experiment to determine the 

response of broiler DBT to step changes in AT, Lacey et al. (2000 a) exposed three birds 

implanted with DBT sensing transmitter to five sequential schedules of AT steps 

spanning 13 hours a day.  In this study, three different ANN models had been developed: 

the first one predicted DBT responses of a bird not used in training to AT schedules used 

in training, the second one predicted DBT responses of a bird used in training to AT 
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schedules that were not used in training, and the third one predicted DBT responses of 

birds not used in training to AT schedules not used in training.  All three models had used 

10-minute prior DBT, AT and RH as input variables.  Authors found that the first and 

second model displayed good prediction accuracy whereas the third model showed poor 

performance.  They concluded that predicting DBT responses to step changes of AT 

using ANNs is a promising approach. 

Artificial Neural Networks (ANNs) provide a computational intelligence technique 

for modeling that has become more and more popular in the study of biological systems.  

Artificial Neutral Networks are ideal for processing data in which the relationships 

between variables are not clear and nonlinear (Chester, 1993).  The main objective of this 

research is to develop new ANN models that could capture the complex relationship 

among DBT, AT, RH and TIME and provide good predictions for real-time DBT.  The 

specific goals of the research reported in this thesis are:  (1) capture and quantify the 

relationships between DBT and combinations of multiple  environmental factors (i.e., 

AT, RH and Time) using ANNs, and determine how well ANN models perform, (2) 

examine the generalization capability of the ANN models over longer experiment 

durations and for larger datasets and (3) determine how far ahead DBT could be predicted 

using prior DBT, AT or RH, and understand what is the model performance if none of 

any prior DBT, AT or RH was used in the ANN model at all. 
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PREDICTION OF POULTRY DEEP BODY TEMPERATURES USING ARTIFICIAL 

NEURAL NETWORKS 1 
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    1 L. Liu, T. K. Hamrita and B. Lacey.  Submitted to Computers and Electronics in 

Agriculture, 2002/11/25. 
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2.1.  Introduction  

 
In the poultry industry, great efforts have been focused on increasing growth 

efficiency through the improvement of environmental control.  However, the challenging 

fact is that many environmental factors, including ambient temperature (AT), relative 

humidity (RH), velocity of moving air, light intensity, temperature of water supply and so 

on, could affect poultry growth performance simultaneously (Yahav, et. al., 1995; Lott, et 

al., 1998; Furlan, et al., 2000).  Physiological feedback such as respiration rate, heart rate, 

heat production or body temperature could provide good indication for the immediate 

condition and growth performance of housing animal, accounting for a complex 

interaction among different environmental factors (Lacey et al., 2000 a, b; Hamrita et al., 

1997 a, b; Aerts et al., 1996, 1998; Moberg, 1985).  The potential use of physiological 

feedback data to improve environmental control and management of animal housing is 

getting more and more research interests (Lacey et al., 2000 a, b; Hamrita et al., 1997 a,b; 

Aerts et al., 1998; Goedseels et al., 1992; Barnett and Hemsworth, 1990).  Particularly, 

many current efforts are aimed at developing models of predicting dynamic responses of 

physiological variables to environmental conditions (Aerts et al., 1996, 1998; Lacey 

1999; Lacey et al., 2000b).  Robust models of predicting these physical variables are 

indispensable for establishing dynamic and precise control systems of the poultry house 

environment in the future.  

Deep Body Temperature (DBT) has been documented to be a useful indicator of 

stress in poultry (Mitchell, 1981; Hamrita et al., 1997b; Kettlewell et al., 1997; Lacey et 

al., 2000 a, 2000 b).  Poultry DBT has been proved to vary measurably with stressful 

conditions (Ketlewell et al., 1997).  Lacey (1999) reported that even small increases in 

 7



 

AT, at a non-stressful level, resulted in a detectable response in DBT of broilers.  

Moreover, DBT responses to environmental variables seemed to be consistent enough to 

be modeled and predicted.  In a 5-day experiment to determine the response of broiler 

DBT to step changes in AT, Lacey et al. (2000 a) exposed three birds implanted with 

DBT sensing transmitter to five sequential schedules of AT steps spanning 13 hours a 

day.  In this study, three different ANN models had been developed: the first one 

predicted DBT responses of a bird not used in training to AT schedules used in training, 

the second one predicted DBT responses of a bird used in training to AT schedules that 

were not used in training, and the third one predicted DBT responses of birds not used in 

training to AT schedules not used in training.  All three models had used 10-minute prior 

DBT, AT and RH as input variables.  Authors found that the first and second model 

displayed good prediction accuracy whereas the third model showed poor performance.  

They concluded that predicting DBT responses to step changes of AT using ANNs is a 

promising approach. 

In another independent experiment, Lacey et al. (2000 b) conducted 6-week 

experiments based on six pairs of broilers equipped with DBT sensing transmitters.  The 

broilers were exposed to combinations of three ATs (31, 34 and 37oC) and two RHs (50 

and 80%).  Based on the analysis of variance on DBT data, the authors found that DBT 

responses were consistent among all birds, and the changes of AT and RH significantly 

contributed to DBT changes in broilers.  Using the same data set, we are developing 

ANNs model to predict broiler DBT responses as a function of changing AT and RH 

regimes.  The specific goals of the research reported in this article are:  
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1. Capture and quantify the relationships between DBT and combinations of 

multiple   environmental factors (i.e., AT, RH and Time) using ANNs, and 

determine how well ANN models perform.  

2. Examine the generalization capability of the ANN models over longer experiment 

durations and for larger datasets, by (a) predicting DBT responses of birds not 

used in training to AT×RH combinations used in training, (b) predicting DBT 

responses of birds used in training to AT×RH combinations not used in training, 

and (c) predicting DBT responses of birds not used in training to AT×RH 

combinations not used in training.    

3. Determine how far ahead DBT could be predicted using prior DBT, AT or RH, 

and understand what is the model performance if none of any prior DBT, AT or 

RH was used in ANN model at all. 

 

2.2. Methodolody 

 

2.2.1. Artificial Neutral Networks 

 

Artificial Neutral Networks are ideal for processing data in which the 

relationships between variables are not clear and nonlinear (Chester, 1993).  In our study, 

the relationship between bird physiological responses such as DBT and environmental 

variables such as AT and RH could be very complex, non-linear and time varying.  For 

example, the same AT×RH combination could affect a broiler’s DBT differently 

depending on the age of the bird and prior exposure to environmental stress (Lacey, 
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1999).  Therefore, the characteristics of ANN could help us capture and quantify such 

complex interrelationship among these multiple variables accurately and efficiently.  

Currently, the most general-purpose and widely used neural network architecture 

is the backpropagation network (BPN).  The BPN uses the gradient-descent training 

algorithm to achieve its generality.  The standard BPN usually consists of one input layer, 

one to many hidden layer(s), and one output layer.  In this study, the standard BPN was 

used as one of ANN architectures for predicting broiler’s DBT.  

The second ANN architecture used in this study is the Elman-Jordan network.  

Essentially, the Elman-Jordan ANN is a recurrent backpropagation network in which 

predictions made for a pattern are fed back to the network’s input layer and used to make 

subsequent predictions.  Such distinguishing characteristics of this architecture made it 

ideal for processing time series data (Smith, 1996).  Considering the time sequence nature 

of broiler physiological responses, we selected the Elman-Jordan network as one of the 

ANN architectures in our model development. 

NeuroShellTM software package (Ward Systems Group, Inc., Frederic, Maryland) 

was used to develop the ANN models.  As the recommended architecture by the software 

package, Ward Networks were also used as one of the ANN architectures in this study.  

As shown in Figures 2.1A and 2.1B, the distinguishing characteristic of the Ward 

Networks is that they consist of two or three hidden layers, each of which adopts a 

different activation function (e.g. Gaussian, Gaussian complement and hyperbolic 

tangent).   Such characteristic could help to improve model performance by detecting 

different features hidden in the data patterns using different activation functions.  For 

example, one hidden layer with Gaussian function can be used to detect features in the 
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mid-range of the data whereas another hidden layer can use Gaussian complement to 

detect features from the upper and lower extremes of the data.  The cooperation among 

different activation functions could enhance the model performance. 

 

2.2.2. Experimental design and data collection 

 

The experimental design was a 6×6 Latin square design for 3 AT × 2 RH.  The 

three AT settings were 31, 34 and 37oC while the two RH settings were 50 and 80% (see 

Table 2.1).  Because only one climate control chamber was available for experimentation, 

each of the 3AT × 2RH combinations was scheduled in one day of each experimental 

week in terms of the Latin square design requirement. The total experimental duration 

was 6 weeks and within each week, six days (except Sundays) were used for 

experimentation.  In each day, two commercial broilers were used as two replicates for 

each AT×RH combination.  For each week, a different pair of broilers in the same age 

had been used for experimentation.  The detailed description of the experimental design 

and procedure can be found in Lacey et al. (2000 a).  

Both broiler physiological data (DBT) and environmental data (AT and RH) were 

collected simultaneously at a time interval of 10 minutes for 4 to 10 hours a day.  As 

shown in Table 2.2, there were a total of 2916 experimentally observed data points and 

these data were distributed unevenly among different AT×RH combinations over 

different days and weeks.  The lack of consistency in the data was due to occasional 

malfunction of the DBT transmitters.  In the experimentally observed dataset, each data 

pattern includes the following 4 variables: TIME (0.00 – 24.00), AT (o C), DBT (o C) and 
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RH (%).  In addition, we include 18 variables for each pattern.  These variables are AT, 

DBT and RH recorded at 10, 20, 30, 40, 50 and 60 min prior.  These variables are named 

by adding a prefix like “PREV10_” (e.g. PREV10_AT, PREV10_DBT and 

PREV10_RH), where the number indicates how many minutes ahead the value of a 

variable was recorded.  When we adopted these variables, there were some data patterns 

that have missing values.  Because missing values will cause bias in ANN model 

development and evaluation, we decided to remove these patterns from the dataset.  

Correspondingly, there are a total of 2484 data patterns used in ANN model, which are 

432 patterns less than the experimentally observed dataset.  

 

2.2.3. Model Development and Evaluation 

 
Some research efforts in the literature have been focused on the study of 

predictability of physiological responses of poultry to environmental stress (Mitchell, 

1981; Yahav et al., 1995; Aerts et al., 1996; Hamrita, 1997; Aerts et al., 1998; Lacey, 

1999; Lacey et al., 2000b). Aerts et al. (1996) developed recursive regression models that 

predicted dynamic responses of broiler heat production to variations in ambient 

temperature and light-dark alternations.  The recursive regression models had a relative 

prediction error of 3.4% for 1 step-ahead (4.5 min) prediction and 4.3% for 3 step-ahead 

predictions.  Aerts et al. (1998) also developed a recursive regression model to predict 

heart rate responses of broilers to changes in ambient temperature and light-dark 

alternations with a 15 minute-ahead relative prediction error of 4.0%.  Lacey (1999) 

developed ANNs using ambient temperature and on-line measurements of broiler’s DBT 

to predict future DBT under changing ambient temperature.  The author concluded that 
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longer-term (e.g. 50 min ahead) and short-term (e.g. 2 min ahead) predictions are 

possible with decreasing accuracy as the prediction distance increases. 

Short-term and longer-term predictions are considered in this research.  DBT 

response predictions ranging from one step (10 minute) to 6 steps (60 minutes) ahead 

were performed. These predictions could ultimately be used to improve environmental 

control in poultry housing control systems in the future (Vranken et al., 1998; Lacey, 

1999).  The short-term prediction model could be used as part of a model-based 

controller that continuously adjusts environmental conditions based on physiological 

responses of the birds.  The longer-term predictions could be used as part of online expert 

systems that makes management decisions such as deciding an on set point for the 

environmental controller.  

Three types of ANN models (i.e. Model Type I, II and III) were developed in this 

study for both the short-term and the longer-term prediction.  Type I models predicted 

DBT responses of birds not used in training to AT×RH combinations used in training.  

Type II models predicted DBT responses of birds used in training to AT×RH 

combinations not used in training.  Type III models predicted DBT responses of birds not 

used in training to AT×RH combinations not used in training.  For all three types of 

model, the output variable is the DBT response whereas the input variables were varied 

depending on the different model types.  Moreover, a great deal of effort had been 

focused on determining the best ANN architecture (BPN, Elman-Jordan or Ward 

networks) and its optimal parameter setting.  For each ANN architecture, different data 

partitioning strategies, hidden node number, learning rate and momentum were used and 

compared to obtain the best model parameter settings.   
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When an ANN model is developed, data patterns are partitioned into training, 

testing and production sets.  The training set is used to adjust the weights of the ANN 

model.  The testing set is used to evaluate the model accuracy during training in order to 

determine when to stop training.  During the ANN training, the weights of the model that 

performed best on the testing set are saved automatically. When the training is stopped, 

the production set is used to evaluate the saved network. 

The partition strategy for obtaining the production set for our ANN models 

depended on the different types of models.  For Type I models, the production set 

consisted of data patterns for birds not used in training.  We selected one bird from week 

4 and one bird from week 6, because the DBT differences between two replicate birds are 

intermediate among all 6 weeks.  Within the dataset, there are 370 data patterns in the 

production set and 2114 in the training and testing sets.  For Type II models, the 

production set consists of the data patterns present in one AT×RH combination not used 

in training.  Among all 6 kinds of AT×RH combinations (A, B, C, D, E and F), we select 

F (AT=34oC and RH=80%) as the production set because its ambient temperature is an 

intermediate value in comparison with 31 and 37 oC.   Also because only two RH regimes 

(i.e. 50% and 80%) have been used in the experimental design, we just pick 80% RH and 

therefore we pick F as production set.  Within the dataset, there are 430 data patterns in 

the production set and 2054 in training and testing sets.  Type III models predicted DBT 

responses of birds not used in training to AT×RH combinations not used in training.  We 

select all data patterns present in F from one replicate for all six weeks as the production 

set, whereas all data patterns of A, B, C, D and E from the other replicate for all six 

weeks consist of the training and testing data.  Within the dataset, there are 215 data 
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patterns in the production set and 1027 in training and testing sets whereas 1242 data 

patterns are not in used. 

The partition strategies for separating training and testing sets are common for all 

three types of models.  For both BPN and Ward networks, different random data 

partitioning strategies (i.e. 85% vs. 15%, 80% vs. 20%, 75% vs. 25%, 70% vs. 30%, 65% 

vs. 35% and 60% vs. 40%) have been adopted for separating the training and testing sets.  

Because the Elman-Jordan network needs the data represented in a time sequence, we 

adopted a nonrandom strategy for partitioning training and testing sets when we 

developed the DBT prediction model using the Elman-Jordan network architecture.   

In addition to considering different ANN architectures (BPN, Elman-Jordan and 

Ward networks) and different data partition strategies, we also treated hidden node 

number, learning rate and momentum as model parameters that might improve model 

performance.  To get the best setting for these model parameters, we used various hidden 

node numbers ranging from 1 to 60 nodes, and different values of  (0.05, 0.1, 0.3, 0.6 and 

0.9) for both learning rate and momentum.  In order to understand the effect of a specific 

model parameter such as learning rate, models were developed using different values for 

that parameter while all other model parameters were unchanged.  The accuracy of our 

ANN model is evaluated using the mean absolute error (MAE) and r2 value of DBT.  The 

higher the r2 value and the lower the MAE value, the better the model performance.     
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2.3.  Results and discussion 

 

Table 2.3 shows model performance of the best ANN models developed for the 

three model types.  It is clear that model accuracy decreases as the prediction interval 

increases.  As shown in Table 2.3, for all three types of models, the r2 values decreases 

linearly with the increase of the prediction intervals, while MAE values increases linearly 

with the increase of the prediction intervals.  Particularly, all models using previous 

variables shows good prediction:  r2 values are greater than 0.79.  The performance of 

these models seem to be much better than those reported by Lacey (1999).  However, our 

best ANN models without using any previous variables displayed poor performance in 

DBT prediction (r2 of 0.3818, 0.4085 and 0.3450 for Type I, II and III respectively).  

Considering the fact that there were only two replicates in each AT×RH combination and 

the differences between replicates were noticeably great in some cases, our model 

performance might have been degraded due to smaller sample population and larger data 

noises.   

In order to get the best models displayed in Table 2.3, we have conducted 

extensive experimentation in determining the best ANN architecture and its relevant 

parameter settings, including data partition strategy, hidden node number, learning rate, 

momentum and input variables (i.e. different previous variables).  Models shown in the 

Table 2.3 have some differences either in ANN architecture or in its parameter settings.  

For example, the best type II model using measurements from 60 minutes prior was a 

Ward (1B) ANN architecture, with hidden nodes of 22 in each hidden layer, random data 

partition strategy of 20/80 for test and training sets, and input variables of TIME, AT, 
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RH, deep body temperature measured 60 minutes prior (PREV60_DBT), ambient 

temperature measured 60 minutes prior (PREV60_AT) and relative humidity measured 

60 minutes prior (REV60_RH).  In contrast, the best type I model using “PREV60_” 

variables was a Ward (1A) ANN architecture, with hidden node of 20 in each hidden 

layers, random data partition strategy of 20/80 for test and training sets, and input 

variables of TIME, AT, RH, PREV60_DBT, PREV60_AT, PREV60_RH.   

  In all cases Ward networks had much better prediction accuracy than both 

Elman-Jordan and standard BPN.  Comparing with standard BPN, different activation 

functions (e.g. Gaussian and Gaussian complement) could be used simultaneously to 

detect different features in the data patterns in Ward networks.  Comparing with Elman-

Jordan, random data pattern strategy in Ward networks could bring network more 

representative data in training and test sets, especially in the case where only two 

replicates in each AT×RH combination are available.  These reasons might provide an 

explanation why Ward networks performed better than both standard BPN and Elman-

Jordan for all three types of models in this study.   

Different data partition strategies have proved to dramatically influence ANN 

model performance, even for the same ANN architecture.  As shown in the table 2.4, for 

type II model using “PREV60_” variables, random data partition strategy of 20/80 for 

test and training sets appear to have contributed the best model performance (r2 of 

0.8049, MAE of 0.202 and correlation coefficient r of 0.8972).  However, this data 

partition strategy may not be the best one for other types of models.   

Table 2.5 shows the effect of different hidden node numbers for Ward (1B) 

networks using “PREV60_” variables (Type II model).  Clearly, model performance 
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varied with the hidden node number in a non-linear way.  We found that the hidden node 

number of 22 gave the best performance, with r2 of 0.8049, correlation coefficient r of 

0.8972 and MAE of 0.202.  Similarly, different learning rates, momentum and initial 

weights were tested to develop the best models.  After extensive experimentation with 

different values for learning rate and momentum, it was determined that the default 

values of 0.1 seemed to contribute to the best results in most cases.    

Prediction accuracy of ANN networks is highly dependent on the quality of 

training data.  Also there are only two replicates in each AT×RH combination and 

sometimes the data noises seem to be big, model performance revealed in this study 

seems to be very good in most cases.  As shown in Figures 2.2A, 2.2B, 2.3A and 2.3B, 

the type I model using “PREV10_” variables displayed higher prediction accuracy than 

that using “PREV60_” variables.  This can be further confirmed when we compared the 

relevant figures 2.11 and 2.12.  For the type I model using “PREV10_” variables data 

points are gathering along the diagonal line (Figure 2.11) whereas for the type I model 

using “PREV60_” variables data points are much scattered (Figure 2.12).  The diagonal 

line in each of these charts shows what would be produced by perfect predictions.  

Similarly, we had found the same trend for the type II model in Figures 2.5, 2.6, 2.14 and 

2.15 and for the type III model in Figures 2.8, 2.9, 2.17 and 2.18.  Obviously, it further 

confirms that ANN network is a very promising method for us to develop broiler DBT 

prediction model.   

However in our study, all three types of models without using any previous 

variables displayed poor prediction accuracy as shown in Figures 2.4A, 2.4B, 2.7, 2.10, 

2.13, 2.16 and 2.19.  It seems that the prediction error mainly comes from the replicate 
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differences within the AT×RH combination.  For example as shown in Figure 2.4A and 

2.4B, the week 4 seemed to have much better DBT prediction than the week 6 for type I 

model without using any previous variables.  This is due to the fact that two replicates in 

week 4 displayed much less differences in DBT than the two replicates in week 6 (Figure 

2.20 and 2.21).  However, our study still suggests that it is possible to predict the broiler 

DBT only based on current AT and RH values, rather than using previously recorded 

values, if there were more replicates represented in each AT×RH combination.  In our 

opinion, similar to the above-mentioned short-term and longer-term models, the models 

without using any information of previously measured variables will also have great 

potential in its application to the development of environmental control systems for 

poultry housing.  
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Table 2.1. Six AT×RH combinations 

_________________________________________________________ 

                  Ambient 
                  Temperature  31oC  34 oC  37 oC 
 _______________________________________________ 

                Relative            50 % A  C  E        
                Humidity      80 % D  F  B 

_________________________________________________________ 
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                            Table 2.2. Latin square design and data distribution 

________________________________________________________________________ 

             Day  Mon          Tues           Wed            Thur            Fri   Sat  
 _______________________________________________________________________ 

 Week 1 F(51)         C(51)     D(24) A(43)        B(46)  E(44)    
 
 Week 2 A(45)         B(62)     E(52) F(45)        C(52)  D(49)  
 
 Week 3 E(28)         F(42)     A(34) C(35)        D(42)  B(39)  
 
 Week 4 C(35)         A(33)     B(43) D(35)        E(34)  F(33) 
 
 Week 5 B(42)         D(33)     C(37) E(40)        F(37)  A(43) 
 
 Week 6 D(35)         E(40)     F(43) B(38)        A(35)  C(38) 
________________________________________________________________________ 

*          Each AT×RH combination had two birds as replicates, and the number in 

parenthesis indicates the number of data points available for each of the two 

replicates. 

** Each week, a different pair of birds of the same age had been used for 6 days 
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Table 2.3. Artificial Neural Network (ANN) model performance for 

predicting broiler DBT 

 
 

          Type I Model           Type II Model                 Type III Model 
                     __________________     __________________     __________________ 

                      
                 r2        MAE        r             r2        MAE        r             r2         MAE        r 

               _____   _____   _____     _____   _____   _____     _____   _____   _____ 
     

1 step ahead    0.9783   0.085  0.9891     0.9708   0.086   0.9853    0.9760    0.080   0.9879 
 

2 steps ahead 0.9534   0.126  0.9764    0.9421   0.140   0.9706    0.9472    0.110   0.9732 
 

3 steps ahead   0.9255   0.164  0.9620    0.9109   0.157   0.9544    0.9008    0.143   0.9562 
 

4 steps ahead   0.8941   0.198  0.9456    0.8775   0.172   0.9368    0.8747    0.170   0.9352 
 

5 steps ahead   0.8568   0.228  0.9256    0.8395   0.191   0.9163    0.8307    0.199   0.9114 
  

6 steps ahead 0.8263   0.239  0.9090    0.8049   0.202   0.8972    0.7898    0.216   0.8887 
 

No previous    0.3818   0.692  0.6179    0.4085   0.269   0.6392    0.3450    0.322   0.5874 
  variable 

 
 

Note: 1 step ahead equals to 10 minutes in advance and correspondingly 6 steps ahead    

means 60 minutes in advance. 
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Table 2.4. Effect of different data partition strategies for Ward (B) networks 

of DBT prediction using “PREV60_” variables (Type II model) 

 

 

           Partition Strategy                  r2                 MAE         r 

           ------------------------------------------------------------------------------------ 

            10/90                                       0.7834             0.229               0.8851 

15/85                  0.7917             0.209               0.8898   

20/80                  0.8049             0.202               0.8972                      

25/75                 0.7221             0.253               0.8498  

30/70                  0.7497             0.247               0.8658                                

35/65    0.7425             0.242               0.8617 

40/60    0.6986             0.260               0.8359 

 

 

Notation: the default parameter settings are following: Hidden Node Number=22, 

Learning Rate=0.1, Momentum=0.1, Initial Weights=0.3, Input variables=TIME, AT, 

RH, PREV60_AT, RREV60_RH, PREV60_DBT.  
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Table 2.5. Effect of different hidden node number for Ward (B) networks 

of DBT prediction using “PREV60_” variables (Type II model) 

 

 

         Hidden Node Number               r2           MAE      r 

           ------------------------------------------------------------------------------------ 

12    0.8046             0.220               0.8970 

14    0.7636             0.249               0.8738 

16    0.7952             0.222               0.8917 

18    0.8006             0.217               0.8948 

20    0.8023             0.211               0.8957 

22                                            0.8049             0.202               0.8972 

24    0.8053             0.211               0.8974 

26    0.7719             0.236               0.8786 

28    0.8020             0.217               0.8956 

30    0.7310             0.266               0.8550 

32                                            0.7896             0.235               0.8886 

 

Notation: the other default parameter settings are following: Data Partition Strategy 

(20/80 for test/training), Learning Rate=0.1, Momentum=0.1, Initial Weights=0.3, 

Input variables=TIME, AT, RH, PREV60_AT, RREV60_RH, PREV60_DBT.  
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Figure 2.1 A.  The Ward Network with one input layer, three hidden layers 

and one output layer 
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Figure 2.1 B.  The Ward Network with one input layer, two hidden layers 

and one output layer 
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Figure 2.2 A. Comparison between actual data (Week 4) and one-step ahead network 

prediction of Type I model (Ward network A) (step size=10 minutes) 
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Figure 2.2 B. Comparison between actual data (Week 6) and one-step ahead network 

prediction of Type I model (Ward network A) (step size=10 minutes) 
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Figure 2.3 A. Comparison between actual data (Week 4) and six-step ahead network 

prediction of Type I model (Ward network A) (step size=10 minutes) 
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Figure 2.3 B. Comparison between actual data (Week 6) and six-step ahead network 

prediction of Type I model (Ward network A) (step size=10 minutes) 
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Figure 2.4 A. Comparison between actual data (Week 4) and network prediction 

of Type I model without using any previous variables (Ward network A) 
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Figure 2.4 B. Comparison between actual data (Week 6) and network prediction 

of Type I model without using any previous variables (Ward network A) 
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Figure 2.5. Comparison between actual data (all F) and one-step ahead network 

prediction of Type II model (Ward network A) (step size=10 minutes) 
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Figure 2.6.  Comparison between actual data (all F) and six-step ahead network 

                   prediction of Type II model (Ward network B) (step size=10 minutes) 
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Figure 2.7. Comparison between actual data (all F) and network prediction of 

Type II model without using any previous variables (Ward network B) 
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Figure 2.8. Comparison between actual data (all F) and one-step ahead network 

prediction of Type III model (Ward network A) (step size=10 minutes) 
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Figure 2.9. Comparison between actual data (all F) and six-step ahead network 

prediction of Type III model (Ward network A) (step size=10 minutes) 
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Figure 2.10. Comparison between actual data (all F) and network prediction of 

Type III model without using any previous variables (Ward network A) 
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Figure 2.11.  Measured versus one-step ahead predicted DBT for Type I model 
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Figure 2.12.  Measured versus six-step ahead predicted DBT for Type I model 
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Figure 2.13.  Measured versus predicted DBT for Type I model without 

using any previous variables 
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Figure 2.14.  Measured versus one-step ahead predicted DBT for Type II model 
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Figure 2.15.  Measured versus six-step ahead predicted DBT for Type II model 
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Figure 2.16.  Measured versus predicted DBT for Type II model without 

using any previous variables 
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Figure 2.17.  Measured versus one-step ahead predicted DBT for Type III model 
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Figure 2.18.  Measured versus six-step ahead predicted DBT for Type III model 
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Figure 2.19.  Measured versus predicted DBT for Type III model without 

using any previous variables 
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Figure 2.20.  Comparison between actual DBT data of a pair of birds in Week 4 
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Figure 2.21.  Comparison between actual DBT data of a pair of birds in Week 6 
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CHAPTER 3 

CONCLUSION 

 

The main objective of this research was to develop new ANN models that could 

capture the complex relationship among DBT, AT, RH and TIME and provide good 

predictions for real-time DBT.   

Three types of ANN models were developed in this research. Type I model 

predicted DBT responses of birds not used in training to AT×RH combinations used in 

training.  Type II model predicted DBT responses of birds used in training to AT×RH 

combinations not used in training.  Type III model predicted DBT responses of birds not 

used in training to AT×RH combinations not used in training.   For each type of model, 

we also developed short-term and longer-term prediction models based on using previous 

DBT, AT and RH measured in 1 to 6 steps ahead (1 step = 10 minutes).  Moreover, for 

each type of model, we developed a DBT prediction model without using any previous 

DBT, AT and RH measurements.  The short-term DBT prediction model could be used as 

part of a model-based controller that continuously adjusts environmental conditions based 

on physiological responses of the birds.  The longer-term DBT prediction could be used 

as part of online expert systems that makes management decisions such as deciding an on 

set point for environmental controller.  In addition, the DBT prediction model based only 

on current AT, RH and TIME without using any previous DBT, AT, RH measurements 
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could provide a greater potential in its application to the development of environmental 

control systems for poultry housing.  

The ANN models developed in this study seemed to capture the complex 

relationship between DBT and other environmental variables including AT, RH and 

TIME very well, and generally provided a good DBT predictions.  Our data indicated 

clearly that ANN models displayed good generalization ability under unknown birds, 

unknown treatments and unknown birds with unknown treatments for both short-term 

and longer-term DBT prediction.   All ANN models using previous DBT, AT and RH 

showed good model performance with r2 great than 0.79.  For all three types of models, 

the r2 values decrease linearly with the increase of the prediction intervals, while MAE 

values increase linearly with the increase of the prediction intervals.  This suggested that 

the accuracy of model prediction decreases as the prediction interval increases.  However, 

our best ANN models without using any previous variables displayed poor model 

performance in DBT prediction (r2 of 0.3818, 0.4085 and 0.3450 for Type I, II and III 

respectively).  Considering the fact that there were only two replicates in each AT×RH 

combination and the differences between replicates were noticeably great in some cases, 

our model performance might have been degraded due to such smaller sample population 

and larger data noises.   Obviously, in the future, the experiment with more replicates and 

therefore larger sample population are needed for developing more robust DBT 

prediction models. 
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ANN is a very promising approach in real-time DBT prediction, which provides 

new insight about how to model poultry physiological responses to environmental stress.  

The developed new types of models could be applied in the future in the development of 

environmental control systems for poultry housing. 
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