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ABSTRACT 

Crop growth simulation models use weather data such as temperature, solar radiation, 
and rainfall to simulate crop development and yield. The crop models are often needed 
for locations with missing or incomplete observed weather data. An accurate estimation 
of these weather variables has thus become necessary. Artificial neural network (ANN) 
models could be used to accurately estimate these weather variables. In this study, ANN-
based methods were developed to estimate daily maximum and minimum air temperature 
and total solar radiation for locations in Georgia. Observed weather data from 1996 to 
1998 were used for model development, and data from 1999 to 2000 were used for final 
ANN model evaluation. In the ANN model development, the preferred number of input 
weather stations and the input variables for estimating each weather variable were 
determined. The ANNs provided higher accuracy than the traditional average, inverse 
distance, and multi-linear regression methods.  
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

Computer simulation models are becoming increasingly important tools in research 

and decision making related to agricultural production. Most crop growth simulation 

models use weather data inputs such as daily maximum and minimum temperatures, solar 

radiation, and rainfall to simulate crop yields (Amir and Sinclair 1991; Hoogenboom et 

al., 1992; Chapman et al., 1993). Air temperature is an important input to a variety of 

spatially distributed hydrological and ecological models (Cook and Wolfe, 1991; Dodson 

and Marks, 1997; Bolstad et al., 1998; Scheifinger and Kromp-Kolb, 2000). In addition, 

air temperature has been used to analyze climate change and the effects of the change 

(Robeson and Janis 1998; Michaels et al., 1998; Goodale et al., 1998; Price et al., 2000). 

Moreover, most processes in the atmosphere and biosphere, such as evaporation, sensible 

heat flux, soil heat flux, are driven directly or indirectly by solar radiation (Bruton et al., 

2000; Scheifinger and Kromp-Kolb, 2000). 

In crop-growth simulation model development, it is assumed that the future climate 

will fit the same distribution as the historical climate used in the analyses. Most current 

models require long-term daily weather records with a high spatial resolution with 

matched temporal resolution. However, for some areas weather measurements are not 

available due to the high cost of instrumentation, maintenance and calibration. For some 

areas, only a limited period of records is available. Therefore it is highly desirable to 
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develop accurate weather data estimation models for use in simulation, weather analysis, 

and decision support applications. 

Traditional interpolation methods include Thiessen polygons, inverse distance 

interpolations, kriging, splines, and regression model. The Thiessen polygon or Voronoi 

polygon has been widely used in climatological rainfall and precipitation estimations 

(Goovaests, 2000; Wilk and Andersson, 2000; Pardo-Iguzquiza, 1998; Dirks et al, 1998; 

Panagoulia, 1992). Dirk et al. (1998) compared the Thiessen polygon with kriging spatial 

interpolation method to estimate spatially continuous rainfall. They found Thiessen 

polygon method was comparable with kriging. Goovaerts (2000) pointed out that the 

Thiessen polygon method did not consider the elevation effects and rainfall records from 

surrounding stations, therefore, large prediction errors could occur in the prediction of 

rainfall.  

Inverse-distance is a weighting interpolation method. The number of neighbors 

necessary in the weighting function is important in terms of reducing computation time 

while maintaining a smooth surface. Dodson and Marks (1997) have suggested that with 

inverse-squared-distance interpolation using eight nearest neighbors is reasonable. 

Robeson (1993) investigated three methods of spatially interpolating temperature 

anomaly data. He found that the inverse-distance method gave about the same results as 

triangulated surface patches and thin-plate splines. In order to consider the elevation 

effects on climate, gradient plus inverse-distance-squared (GIDS) interpolation technique 

was derived (Nalder and Wein, 1998, Price et al., 2000) from the inverse-distance-square 

method. Price et al. (2000) used gradient plus inverse-distance-squared method to 

interpolate Canadian monthly mean climate data. It was suggested that this method is 
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attractively simple and appears to give results adequate for modeling long term forest 

ecosystem responses to climate in relatively flat terrain. 

Regression has been used successfully in weather data estimation (Ollinger et al. 

1993, 1995). Bolstad et al. (1998) used a regression approach as a main method to predict 

air temperature and compared regression approach with local lapse models or kriging 

method. They stated that the regression approach provided an accurate estimate of station 

temperature. Christine et al. (1998) used a regression technique to predict the monthly 

precipitation, monthly averaged maximum and minimum temperature, and monthly 

averaged sunshine hours and compared the regression approach with a modified inverse-

distance-square interpolation. They reported that the prediction accuracy did not differ 

between these two methods.  

Kriging has been implemented in analysis of climatologic factors, such as the analysis 

of precipitation (Dingman et al. 1988), evapo-transpiration (Martinez-Cob & Cuenca 

1992), and temperature (Holdaway 1996, Bolstad et al. 1998). Holdaway (1996) has 

applied kriging to the spatial interpolation of monthly temperature. In his research, 

monthly empirical variograms, averaged over 90 years, were modeled with Gaussian or 

linear models in the ordinary Kriging method. He concluded that anisotropies were found 

in the winter months, suggesting the presence of a large-scale regional trend. Bolstad et 

al. (1998) used kriging (co-kriging) to predicate air temperatures. They found that 

Kriging and co-kriging may be particularly appropriate for temperature predictions in 

regions with little topographic relief, but not useful where temperature measurement 

stations were sparse or high terrain effects were existing. 
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Splining has been discussed by some researchers (Eckstein 1989; Hutchinson and 

Gessler 1994). Hutchinson et al. (1994) used multi-dimensional thin plate splines to fit 

temperature surfaces by minimizing the roughness of the interpolated surface. He 

reported that the thin plate spline method worked as good as Kriging while requiring less 

parameterization, however thin plate splines are computationally demanding and 

complicated to implement. Price et al. (2000) employed the thin-plate smoothing splines 

to interpolate Canadian monthly mean climate data. The GIDS was used to compare with 

the thin-plate smoothing splines. They found that thin plate smoothing splines produced 

better results for the west region where predicting precipitation is difficult. 

Artificial neural networks (ANNs) are potential alternative to estimate such weather 

data. ANNs are computer models that mimic the structure and functioning of the human 

brain (Ward Systems Group Inc., Frederick, MD, 1993). ANNs can determine the 

relationships among the independent variables to predict or estimate dependent variables. 

Back propagation (BP) ANNs are known for their ability to generalize well on a wide 

variety of problems and are well suited for prediction applications. Unlike statistical 

methods, ANN models do not make dependency assumptions among input variables and 

solves multivariate problem with nonlinear relationship among input variables. This 

technique has been used in a wide range of applications, such as classification, pattern 

recognition, automatic control and function approximation (McAvoy et al., 1989; 

Leonard et al., 1992, Rao & Gupta, 1993). Han and Felker (1997) implemented an ANN 

to estimate daily soil water evaporation from average relative air humidity, air 

temperature, wind speed, and soil water content in a cactus field study. They found that 

the ANN achieved a good agreement between predicted and measured values. They 
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concluded that the ANN technique appeared to be an improvement over the multi-linear 

regression technique for estimating soil evaporation. Elizondo et al. (1994) used an ANN 

to estimate daily solar radiation for locations in the southeastern US based on daily 

maximum and minimum air temperature, daily total precipitation daily clear sky radiation 

and day length for that location. They did not include weather data from other locations 

as inputs. They found r2 of 0.74 and a root mean square error of 2.92 MJ/m2. Cook and 

Wolfe (1991) developed a neural network to predict average air temperatures. In their 

study, the monthly average of daily maximum temperatures for three months in advance 

was predicted. Bruton et al. (2000) developed ANN models for estimating daily pan 

evaporation. The results were compared with those of multiple linear regression and 

Priestly-Taylor model and they found that the ANN model provided the highest accuracy. 

The goal of this research was to develop ANN-based methods to estimate daily 

weather data for locations in Georgia based on daily weather data from neighboring 

weather stations as inputs. The specific objectives were: 1) develop localized ANN 

models to estimate daily maximum and minimum air temperature and total solar radiation 

specifically for Tifton (south Georgia) and Griffin (north Georgia), 2) develop general 

ANN models to estimate daily maximum and minimum air temperature and total solar 

radiation for locations throughout Georgia, 3) determine the number of known weather 

stations required as inputs for estimating each weather variable, 4) determine which 

inputs are required for each weather variable, and 5) compare these ANN models with 

traditional methods such as averaging, multi-linear regression and inverse distance 

weighting interpolation methods. 
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 ABSTRACT 

Crop growth simulation models use weather data such as temperature, solar radiation, 

and rainfall to simulate crop development and yield. The crop models are often needed 

for locations with missing or incomplete observed weather data. An accurate estimation 

of these weather variables has thus become necessary. Artificial neural network (ANN) 

models can be used to accurately interpolate these weather variables, based on 

neighboring weather stations. The goal of this study was to develop artificial neural 

network models for estimating and interpolating daily maximum air temperature, 

minimum air temperature, and total solar radiation for Tifton (south Georgia) and Griffin 

(north Georgia). Historical daily weather data from 1996 to 1998 were used for model 

development, and data from 1999 to 2000 were used for final model evaluation.  

The results of the study indicated that the preferred input variables were straight line 

distance (∆s) and the elevation difference (∆z) between the target location and input 

weather stations as well as the values of the variable being estimated at the input stations. 

Maximum temperature was also found to improve the accurate in estimating solar 

radiation. The optimum number of input weather stations for estimating each weather 

variable for both target locations was also determined. The best models for estimating 

these weather variables were compared with other spatial interpolation techniques, 

including inverse distance, average, and multi-linear regression methods. The results 

showed that ANN and regression models provided superior accuracy over inverse 

distance and average methods. ANN models and regression models were comparable in 

estimating maximum temperature. The ANN model was clearly more accurate than 
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regression in estimating minimum temperature at Griffin and comparable at Tifton. The 

ANN models were superior in estimating solar radiation at both locations. Using the 

evaluation data set, the Tifton models had mean absolute error (MAE) values as follows: 

maximum temperature, 0.61ºC; minimum temperature, 0.74ºC; and solar radiation, 1.24 

MJ/m2. The Griffin models had MAE values as follows: maximum temperature, 0.36ºC; 

minimum temperature, 0.82ºC; and solar radiation, 1.51 MJ/m2. ANN models thus 

provided an accurate approach for estimating daily weather variables using data from 

neighboring weather stations for a particular location. 

 

INTRODUCTION 

Computer simulation models are becoming increasingly important tools in research 

and decision making related to agricultural production. Most crop growth simulation 

models use weather data inputs such as daily maximum and minimum temperatures, solar 

radiation, and rainfall to simulate crop yields (Amir and Sinclair 1991; Hoogenboom et 

al., 1992; Chapman et al., 1993). Air temperature is an important input to a variety of 

spatially distributed hydrological and ecological models (Cook and Wolfe, 1991; Dodson 

and Marks, 1997; Bolstad et al., 1998; Scheifinger and Kromp-Kolb, 2000). In addition, 

air temperature has been used to analyze climate change and the effects of the change 

(Robeson and Janis 1998; Michaels et al., 1998; Goodale et al., 1998; Price et al., 2000). 

Moreover, most processes in the atmosphere and biosphere, such as evaporation, sensible 

heat flux, soil heat flux, are driven directly or indirectly by solar radiation (Bruton et al., 

2000; Scheifinger and Kromp-Kolb, 2000). 
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In crop growth simulation model development, it is assumed that the future climate 

will fit the same distribution as the historical climate used in the analyses. Most current 

models require long-term daily weather records with a high spatial resolution with 

matched temporal resolution. For some areas, however, weather measurements are not 

available due to the high cost of instrumentation, maintenance and calibration. Therefore 

it is highly desirable to develop accurate weather data estimation models for use in 

simulation, weather analysis, and decision support applications.  

Traditional interpolation methods to estimate weather data include inverse distance 

interpolations and regression models. Inverse-distance is a weighting interpolation 

method. The number of neighbors necessary in the weighting function is important in 

terms of reducing computation time while maintaining a smooth surface. Dodson and 

Marks (1997) have suggested that with inverse-squared-distance interpolation using eight 

nearest neighbors is reasonable. Robeson (1993) investigated three methods of spatially 

interpolating temperature anomaly data. He found that the inverse-distance method gave 

about the same results as triangulated surface patches and thin-plate splines. In order to 

consider the elevation effects on climate, gradient plus inverse-distance-squared (GIDS) 

interpolation technique was derived (Nalder and Wein, 1998, Price et al., 2000) from the 

inverse-distance-square method. Price et al. (2000) used gradient plus inverse-distance-

squared method to interpolate Canadian monthly mean climate data. It was suggested that 

this method is attractively simple and appears to give results adequate for modeling long 

term forest ecosystem responses to climate in relatively flat terrain. 

Regression has been used successfully in weather data estimation (Ollinger et al. 

1993, 1995). Bolstad et al. (1998) used regression to predict air temperature and 
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compared their approach with local lapse models or kriging methods. They stated that the 

regression approach provided an  more accurate estimate of station temperature. Christine 

et al. (1998) used a regression technique to predict the monthly precipitation, monthly 

averaged maximum and minimum temperature, and monthly averaged sunshine hours 

and compared the regression approach with a modified inverse-distance-square 

interpolation. They reported that the prediction accuracy did not differ between these two 

methods.  

Artificial neural networks (ANNs) provide a potential alternative to estimating 

weather data. ANNs are computer models that mimic the structure and functioning of the 

human brain (Ward Systems Group Inc., Frederick, MD, 1993). ANNs can determine the 

relationships among the independent variables to predict or estimate dependent variables. 

Back propagation ANNs are known for their ability to generalize well for a wide variety 

of problems and are well suited for prediction applications. Unlike statistical methods, 

ANN models do not make dependency assumptions among input variables and solve 

multivariate problem with nonlinear relationship among input variables. This technique 

has been used in a wide range of applications, such as classification, pattern recognition, 

automatic control and function approximation (McAvoy et al., 1989; Leonard et al., 

1992, Rao & Gupta, 1993). Han and Felker (1997) implemented an ANN to estimate 

daily soil water evaporation from average relative air humidity, air temperature, wind 

speed, and soil water content in a cactus field study. They found that the ANN achieved a 

good agreement between predicted and measured values. They concluded that the ANN 

technique appeared to be an improvement over the multi-linear regression technique for 

estimating soil evaporation. Cook and Wolfe (1991) developed a neural network to 
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predict average air temperatures for a single location. In their study, the monthly average 

of daily maximum temperatures for three months in advance was predicted. Bruton et al. 

(2000) developed ANN models for estimating daily pan evaporation. The results were 

compared with those of multi-linear regression and Priestly-Taylor model and they found 

that the ANN model provided the highest accuracy. 

The goal of this research was to develop ANN models to estimate the spatial 

interpolation of daily weather variables for two specific locations in Georgia. The 

objectives were: 1) to develop ANN models for estimating daily maximum and minimum 

temperature and solar radiation specifically for Tifton, i.e. south Georgia and Griffin, i.e. 

north Georgia, 2) to determine the number of neighboring weather stations required as 

input, 3) to determine the inputs required for each estimated weather variable, and 4) to 

compare these ANN models with traditional multi-linear regression, averaging, and 

inverse distance weighting interpolation methods. 

 

MATERIALS AND METHODS 

Weather data for this study were obtained from the Georgia Automated 

Environmental Monitoring Network (AEMN) (Hoogenboom, 1996, 2000a, 2000b; 

Hoogenboom et al., 2000). The AEMN is a network that consists of more than 45 

automated weather stations, located across the state of Georgia 

(www.Georgiaweather.net). Sensors in the AEMN are polled with a one-second 

frequency and averages or totals are calculated every 15 minutes. At midnight daily 

extremes and totals are determined for each weather variable. The data are downloaded to 

a central computer in Griffin twice a day. The weather variables that are measured 
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include air temperature, rainfall, soil temperature at three depths, relative humidity, wind 

speed and direction, solar radiation and open pan evaporation. The locations of the 

weather stations near Tifton, Georgia and Griffin, Georgia used in this study for 

developing ANN models are listed in Table 2.1.  

Daily weather data from 1996 to 2000 were divided into two separate overall data sets 

for model development and model evaluation. The first dataset consisted of the weather 

data collected from 1996 to 1998 (1096 daily weather observations) and was used for 

model development. The second dataset consisted of data collected from 1999 to 2000 

(731 daily weather observations) and was kept separate as an independent dataset. It was 

used only for evaluation of the final ANN models. Computer programs were developed in 

the Java programming language to create input data files for the ANN models. The 

potential input variables that were considered included daily maximum air temperature, 

daily minimum air temperature, daily total solar radiation, and the fractions that a day of 

year belongs to each season (spring, summer, fall, and winter). Other inputs that were 

considered included the difference in elevation (∆z), the difference in east-west direction 

(∆x), and the difference in north-south direction (∆y). The straight line distance between 

the target and known location (∆s) was also considered as a substitution for ∆x and ∆y. 

The values for the daily maximum and minimum temperatures and solar radiation were 

the observed data with the day of the year as an index. The other values were computed 

data from the topographic data and day of year. During preprocessing, the calculated data 

were computed first, based on the appropriate equations. The daily observed data were 

then combined with the calculated data. Finally, the dataset was randomized by day of the 

year.  
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The computer program also included a routine to select neighboring stations for 

estimating the weather data at the target location. The stations were selected based on the 

shortest distance from the target location. Data from these weather stations were 

organized into each pattern in the data set, but the order of weather stations for each 

pattern was randomly distributed. This was done to maintain some generality by location. 

Each pattern could be reproduced by altering the order of the weather station data. 

Therefore, more patterns could be generated for developing the ANN models thus 

increasing the ability of the model to generalize. If for each pattern, there is another 

reproduced pattern created, the total number of patterns for developing the ANN models 

would be doubled. After data preprocessing, each pattern consisted of the three daily 

weather variables per input location and target location and the calculated variables of 

∆x, ∆y, ∆s, ∆z and four seasonal effect terms. 

The back propagation approach is based on gradient descent and is designed to 

minimize the mean square error between the observed and estimated outputs. In this 

study, the two back propagation ANNs that were considered included standard back 

propagation and Ward ANNs. Standard back propagation ANN is a three-layer back 

propagation ANN consisting of an input layer, a hidden layer, and an output layer. Ward 

ANN is also a three-layer back propagation, except that the Ward ANN has multiple 

slabs in the hidden layer (Ward System Group Inc., Frederick, MD, 1993). Ward ANN 

allows the user to select different activation functions such as the Gaussian function, 

hyperbolic tangent function, and Gaussian-complement function for each slab. With 

different activation functions, these networks could possibly detect different features of 

the input vectors and are therefore well suited for prediction.  
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The NeuroShell™ (Ward System Group Inc., Frederic, MD, 1993) is an ANN 

software package with a user friendly menu-driven infrastructure. It has several utilities 

for data manipulation, model development, graphical options, and a runtime option to 

generate source code. One of the important options of NeuroShell™ is its optimal 

network option which helps to prevent over-training. Over-training is critical issue in 

prediction applications because the neural network should be capable of generalizing 

over a similar data set as opposed to only mimicing the training set. NeuroShell™ allows 

the user to set an interval for the program to check the accuracy of the current ANN with 

a separate testing data set. If the average error of the prediction of the ANNs improves 

over the previous optimal ANN, the older optimal ANN is replaced with the model 

developed with the least error. Otherwise, the previous optimal ANN can be saved until 

an improved optimal ANN is reached, or training is completed.  

In our study, the model development data set consisted of data from year 1996 to 

1998 for a total of 1096 daily observations. It was divided into three data sets i.e., 

training, testing, and production with a distribution of 50%, 25%, and 25%, respectively. 

We duplicated each pattern by altering the order of weather stations, thus the actual 

number of patterns in model development was 2192. Therefore, the training, testing, and 

production data sets consisted of 1096, 548, and 548 patterns, respectively. The 

NeuroShell™ software package was used to develop the ANN models to estimate the 

three daily weather variables at the two target locations. Computer experiments were 

conducted to select the optimum architecture and parameters, including number of hidden 

nodes, learning rate, momentum, stopping criteria, and calibration interval for the ANN 

models. These parameters and architecture were selected based on the coefficient of 
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determination (r2), mean absolute error (MAE), and root mean square error (RMSE) of 

model results using production data sets. 

Computer experiments were conducted to determine which input variables were 

important for the ANN models. Different combinations of input variables were examined 

to determine the ANN model that had the lowest estimation error for the production 

dataset. This was accomplished by adding an input variable for the model, retraining and 

analyzing the effects on r2, MAE, and RMSE. Two different types of input variables were 

considered, e.g., the daily weather variables and variables which could be calculated 

knowing the locations of the weather stations and day of year.  

For the development of the ANN model to estimate maximum temperature, the 

following approach was taken to determine the importance of the different inputs. An 

ANN model was initially developed consisting of only maximum temperature inputs at 

surrounding weather station locations. The accuracy of this model was compared to one 

developed with the additional input of ∆s. The more accurate of these two models was 

then compared to one with ∆x and ∆y added as inputs. This process was repeated with 

the inclusion of minimum daily temperature, the seasonal effect terms and ∆z added as 

inputs A similar approach was taken to develop the minimum temperature and solar 

radiation models. As the number of input weather stations was varied, a search was 

performed to determine the preferred number of hidden modes for each model. 

The number of weather stations required as input was also an important factor in 

developing the optimal ANN models. Files were created with an increasing number of 

input weather stations for each pattern and different ANN models were developed based 

on these input files. The number of nearest weather stations required was chosen based 
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upon the accuracy of the developed models. All decisions regarding the preferred ANN 

architecture, inputs, and number of input weather station locations were made using the 

model accuracy on the production data set. 

Final model evaluation was based on an independent dataset of daily weather data 

from year 1999 to 2000 that included a total of 731 daily observations. This data set was 

prepared similarly to the model development data set, except that it did not include any 

reproduced patterns. In addition, all patterns were arranged in the order of day of year. 

For model evaluation, a one-time feed forward mode was used for the ANN models with 

the highest accuracy on the production dataset. This final evaluation was conducted to 

determine if the localized models developed for Tifton and Griffin were able to estimate 

the weather variables for that particular location. A crosscheck was also performed to 

determine if a model developed for maximum temperature, minimum temperature, or 

solar radiation for one location could accurately estimate the same variable at the other 

location. In this evaluation, the Tifton models were used with the Griffin evaluation 

dataset and Griffin models were used with the Tifton data set. 

The results of the ANN models were also compared with the results of other spatial 

analysis techniques that included average, inverse distance, and multi-linear regression 

methods on the evaluation dataset. The purpose of this comparison was to determine if 

ANN models could provide a higher accuracy for estimating maximum temperature, 

minimum temperature, and solar radiation compared to the more traditional methods. 
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RESULTS AND DISCUSSION 

ANN models were initially developed with both the standard three-layer back 

propagation architecture and Ward network architecture. For the same conditions, the 

models with Ward network architecture had a higher r2 and smaller MAE and RMSE than 

the standard back propagation architecture. Based on the results of this preliminary study, 

the Ward network architecture was selected for all further ANN model development. In 

this preliminary study, we also found that a variation in the number of hidden nodes was 

the only ANN parameter that had a significant effect on model accuracy. For all 

subsequent model development, a learning rate of 0.1, momentum of 0.1, stopping 

criteria of 20,000 events past the minimum test set error, and a test interval of 200 

learning events were used.  

A heuristic search was performed to determine the best values for the number of input 

weather stations, input variables, and number of hidden nodes for each weather variable 

ANN at the two target locations. The approach used to develop the maximum 

temperature ANN at Tifton is discussed as an example, but applies to all variables for 

both locations. The inputs consisted of maximum temperatures from five known weather 

stations surrounding the Tifton target location (Table 2.1). The number of hidden nodes 

was then varied to maximize r2 and minimize MAE and RMSE. Subsequently the number 

of closest weather station was reduced by one and new models were developed. The 

optimal number of hidden nodes was determined for each value of the number of weather 

stations. Once the best model was determined using only maximum temperature as an 

input, additional inputs were considered. The same search was repeated in terms of 

varying the number of weather stations and number of hidden nodes. 

 17



From the search results it was determined that the preferred inputs for a particular 

weather variable ANN at Tifton were the same for Griffin. In each case, the weather 

variable being estimated was important as an input from the known stations. For 

example, when developing a maximum temperature ANN, maximum temperature from 

the surrounding weather stations was always an important input.  Also the inclusion of ∆s 

and ∆z improved the accuracy in the individual estimation of the three weather variables. 

For the solar radiation ANN, it was determined that maximum temperature at the known 

weather stations was also important to help increase the accuracy. 

The number of nearest weather stations required to maximize the accuracy varied by 

weather variable as well as by target location. For example, Table 2.2 shows the results 

for the maximum temperature ANN for Tifton in which the search was varied from one 

to five input weather stations. Two input weather stations provided the highest overall 

accuracy for estimating maximum temperature at Tifton using maximum temperature, ∆s, 

and ∆z as inputs. Results are shown for the training, testing, and production data sets, 

although only the production data set was used in selecting the preferred value. Table 2.3 

shows the results for the search for the preferred number of hidden nodes for the case of 

two input weather stations. Eight hidden nodes was the value which produced the highest 

accuracy on the production set. Similar searches were performed for all three weather 

variables at both target locations. Table 2.4 summarizes the results of the search for the 

number of input weather stations and hidden nodes for each of the weather variable 

models by location. The MAE was analyzed for the three weather variables as a function 

of the number of input weather stations for the Tifton location (Figure 2.1 A). The 

minimum MAE for maximum temperature and solar radiation was clearly at two input 
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weather stations. For minimum temperature there was a slight reduction in error at five 

stations. The results for the search for the Griffin location were somewhat different 

(Figure 2.1 B). Maximum temperature and solar radiation had a minimum MAE with 

only one nearest station as input, whereas minimum temperature had a minimum MAE 

for two nearest stations as input. From this analysis it was determined that more weather 

station locations were needed as input for estimating minimum temperature than for 

estimating maximum temperature or solar radiation.  

The nearest weather station for the Griffin location was Williamson, with a straight 

line distance of only 14.92 km. The results indicated that this station was the only one 

needed as an input for estimating maximum temperature and solar radiation. The nearest 

weather station to Tifton was Dawson at a distance of 91.03 km. Two weather stations 

were required for estimating maximum temperature and solar radiation and five for 

minimum temperature at Tifton. Fewer stations were consistently needed for the Griffin 

target location due to the close proximity of the Williamson weather station. When only 

one weather station was needed, ∆s and ∆z were eliminated as inputs because they were 

then constants and did not contribute to model accuracy. Therefore, only maximum 

temperature was used as an input variable for estimating maximum temperature at 

Griffin. Similarly, only solar radiation and maximum temperature were used as input 

variables for estimating solar radiation at Griffin. 

The ANN models for the three weather variables developed for each of the two 

locations were then used with the evaluation dataset with the results shown in Table 2.5. 

This dataset had not been used in model development or in the selection of the preferred 

network architecture or parameters. We found that the ANN models produced estimations 
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for maximum temperature, minimum temperature, and solar radiation which were 

comparable to the results obtained for the model development dataset. For Tifton, the 

model for estimating maximum temperature had an r2 of 0.987, MAE of 0.61ºC, and 

RMSE of 0.84ºC The estimated maximum temperature versus observed maximum 

temperature for Tifton for the evaluation dataset is shown in Figure 2.2 A. A linear 

regression was performed to determine how well the ANN results matched the observed 

maximum temperature. The ANN model estimated maximum temperature well for the 

entire temperature range. The model for estimating minimum temperature had an r2 of 

0.987, a MAE of 0.74ºC, and a RMSE of 0.93ºC. The estimated minimum temperature 

versus observed minimum temperature for Tifton for the evaluation dataset is shown in 

Figure 2.2 B. The ANN model tended to slightly overestimate minimum temperature at 

lower minimum temperatures. However, for all other temperature ranges, the ANN model 

estimated minimum temperature well. The intercept of the regression equation was 

significantly different from 0 at 95% confidence level. The model for estimating solar 

radiation had an r2 of 0.944, a MAE of 1.24 MJ/m2, and a RMSE of 1.74 MJ/m2. The 

estimated solar radiation versus observed solar radiation for Tifton for the evaluation data 

set is shown in Figure 2.2 C. The ANN model tended to overestimate solar radiation for 

low observed values and underestimate solar radiation for high values. For intermediate 

values the ANN worked well. The intercept of the regression equation was significantly 

different from 0 at the 95% confidence level (Table 2.5).  

The model for estimating maximum temperature at Griffin had an r2 of 0.997, a MAE 

of 0.36ºC, and a RMSE of 0.51ºC. The estimated maximum temperature as a function of 

observed maximum temperature of Griffin for the evaluation data set is shown in Figure 
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2.3 A. The Griffin ANN model estimated maximum temperature well for the entire 

temperature range. The model for estimating minimum temperature had an r2 of 0.984, a 

MAE of 0.82ºC, and a RMSE of 1.07ºC. The estimated minimum temperature as a 

function of observed minimum temperature of Griffin for the evaluation data set is shown 

in Figure 2.3 B. The ANN model for estimating minimum temperature at Griffin 

performed well for all observed values, although the variation was greater than for the 

maximum temperature model. The model for estimating solar radiation had an r2 of 

0.958, a MAE of 1.51 MJ/m2, and a RMSE of 2.09 MJ/m2. The estimated solar radiation 

versus observed solar radiation of Griffin for the evaluation data set is shown in Figure 

2.3 C. The ANN model slightly overestimated solar radiation at extremely low values and 

underestimated solar radiation at higher values. The intercept of the regression equation 

was significantly different from 0 at 95% confidence level (Table 2.5). In general, the 

ANN models accurately estimated maximum temperature, minimum temperature, and 

solar radiation for Tifton and Griffin (Table 2.5). 

In the crosscheck evaluation it was determined that, a model developed specifically 

for one location did not accurately estimate the weather variable at another location 

(Table 2.5). For example, when Tifton data was applied to Griffin models, the ANN 

model had an r2 of 0.545, a MAE of 9.62ºC, and a RMSE of 10.83ºC for estimating 

maximum temperature. The Griffin ANN models using Tifton data had an r2 of 0.859, a 

MAE of 3.67ºC, and a RMSE of 4.32ºC for estimating minimum temperature and an r2 of 

0.680, a MAE of 12.65 MJ/m2, and a RMSE of 13.31 MJ/m2 for estimating solar 

radiation. Therefore Griffin models were not useful for estimating the weather variables 

for Tifton. Similarly, when Griffin data was applied to Tifton models, the ANN models 
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had an r2 of 0.930, a MAE of 4.75ºC, and a RMSE of 5.24ºC for estimating maximum 

temperature, an r2 of 0.964, a MAE of 3.40ºC, and a RMSE of 3.75ºC for estimating 

minimum temperature, and an r2 of 0.907, a MAE of 3.15 MJ/m2, and a RMSE of 4.03 

MJ/m2 for estimating solar radiation. 

Table 2.6 presents a comparison between ANN, and other traditional spatial 

interpolation techniques, including averaging, inverse distance, and multi-linear 

regression for estimating the three weather variables. We found that the r2 values were 

comparable for all four methods. The ANN and regression models were consistently 

more accurate than the average or inverse distance methods for all comparisons. The 

ANN and regression models were generally comparable in estimating maximum 

temperature for both Tifton and Griffin. The ANN model was clearly more accurate than 

regression in estimating minimum temperature at Griffin and comparable to regression 

for the Tifton location. The ANN models were clearly more accurate than the regression 

models for estimating solar radiation at both locations. Overall the ANN models were 

comparable to or more accurate than regression method for the three weather variables at 

both locations. 

 

SUMMARY AND CONCLUSION 

From the results of this study it can be concluded that the ANN models produced the 

highest overall accuracy in estimating maximum and minimum temperatures and as solar 

radiation for a single location. The ANN models for solar radiation were consistently 

more accurate than regression method for both locations that were tested. For estimating 

maximum temperature, both the ANN model and the regression method were generally 
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comparable. For estimating minimum temperature, the ANN model was clearly more 

accurate than the regression for the Griffin location and comparable to regression for 

Tifton. 

The preferred inputs for each weather variable were the same for both locations. In 

each case, ∆s and ∆z were important along with the corresponding weather variable being 

estimated. For the solar radiation models, the addition of maximum temperature also 

improved the accuracy. Although the models developed for a specific location performed 

well in estimating daily weather at that location, they were inaccurate when attempting to 

estimate the results at the other location.  

For further research, the development of a generalized model to estimate the weather 

variables throughout the state could be considered. This model would be developed using 

multiple target locations in both the model development and evaluation data sets. The 

optimal number of input stations and input variables could be determined in a similar 

manner to the current study. The accuracy of the generalized models could then be 

compared to the localized models of this study. 
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Table 2.4. Search results for the preferred number of input weather stations and hidden 
nodes for the production data set. 
         Production dataset  
Weather*  target  # of weather # of hidden  r2 MAE RMSE 
Variable location stations nodes per slab      
Tmax  Tifton  2  8   0.990 0.56 0.72 
(ºC)  Griffin  1  1   0.997 0.31 0.43 
Tmin  Tifton  5  5   0.986 0.69 0.89  
(ºC)  Griffin  2  5   0.989 0.66 0.86  
SR  Tifton  2  5   0.944 1.20 1.73  
(MJ/m2) Griffin  1  1   0.978 0.78 1.12  
 
* Maximum temperature (Tmax), minimum temperature (Tmin), solar radiation (SRad) 
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Table 2.6. Comparison of ANN, averaging, inverse distance, and multi-linear regression 
methods for the evaluation data set. 
Location Model* Method  r2  MAE  RMSE  
Tifton  Tmax  ANN   0.987  0.61  0.84 
  (ºC)  Average  0.987  0.80  1.02 
    Inverse distance 0.987  0.80  1.03 
    Regression  0.987  0.61  0.70 
Tifton  Tmin  ANN   0.987  0.74  0.93 
  (ºC)  Average  0.901  0.75  1.03 
    Inverse distance 0.901  0.75  1.03  
    Regression  0.988  0.73  0.81 
Tifton  SR  ANN   0.944  1.24  1.74 
  (MJ/m2) Average  0.946  1.81  2.28 
    Inverse distance 0.946  1.79  2.26  
    Regression  0.944  1.23  2.93 
Griffin  Tmax  ANN   0.997  0.36  0.51 
  (ºC)  Average  0.997   0.89  0.94 
    Inverse distance 0.997   0.89  0.94 
    Regression  0.997  0.35  0.54 
Griffin  Tmin  ANN   0.984  0.82  1.07 
  (ºC)  Average  0.981  1.09  1.85 
    Inverse distance 0.984  1.11  1.99 
    Regression   0.981  1.18  2.23 
Griffin  SR  ANN   0.958  1.51  2.09 
  (MJ/m2) Average  0.957  2.84  3.34 
    Inverse distance 0.957  2.84  3.34 

   Regression  0.957  1.61  4.55 
 
* Maximum temperature (Tmax), minimum temperature (Tmin), solar radiation (SRad) 
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Figure 2.1 Mean absolute error as a function of number of input weather stations for 
estimating maximum temperature, minimum temperature, and solar radiation for Tifton 
GA (A) and Griffin GA (B), production dataset. 
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Figure 2.2 Estimated vs. observed maximum temperature (A) and minimum temperature 
(B), Tifton GA, evaluation dataset. 
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Figure 2.2 Estimated vs. observed solar radiation (C), Tifton GA, evaluation dataset. 
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Figure 2.3. Estimated vs. observed maximum temperature (A) and minimum temperature 
(B), Griffin GA, evaluation dataset. 
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Figure 2.3. Estimated vs. observed solar radiation (C), Griffin GA, evaluation dataset. 
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CHAPTER 3 

 

SPATIAL INTERPOLATION OF WEATHER DATA FOR MULTIPLE LOCATIONS 

USING ARTIFICIAL NEURAL NETWORKS  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
______________________ 
Li, B., R.W. McClendon, G. Hoogenboom. To be submitted to Transactions of the 
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ABSTRACT 

Daily weather data such as temperature, solar radiation, and rainfall are inputs to crop 

growth simulation models for decision support. An accurate estimation of these weather 

variables has thus become necessary in order to use these models for locations without 

complete historical weather data. Artificial neural networks (ANNs) are relative new 

technique for accurately estimating these weather variables. In this study, artificial neural 

network (ANN) models were developed to estimate daily maximum air temperature, 

minimum air temperature, and total solar radiation throughout Georgia. Weather data 

from fourteen automated weather stations for the period of 1996 to 1998 were used for 

model development, and 1999 to 2000 data were used for final model evaluation. For the 

development of the ANN model, daily weather data were used to create patterns for the 

fourteen target locations. Based on the results of the study, the best input variables were 

determined to be straight line distance (∆s) and the elevation difference (∆z) between the 

target location and neighboring weather stations as well as the values of the weather 

variable being modeled from the input weather stations. Maximum temperature was also 

found to be important in estimating solar radiation.  

It was determined that only two closest weather stations provided the highest 

accuracy for estimating the three weather variables. The ANN models for estimating 

these weather variables were compared with inverse distance, average, and multi-linear 

regression methods. The results showed that ANN models provided superior accuracy 

over the other methods. With the overall evaluation dataset, the general ANN model for 

estimating maximum temperature had an r2 of 0.985, MAE of 0.71°C, and RMSE of 

0.99°C. The general ANN model for estimating minimum temperature had an r2 of 0.977, 
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MAE of 0.94°C, and RMSE of 1.24°C. The general model for estimating solar radiation 

had an r2 of 0.907, MAE of 1.53 MJ/m2, and RMSE of 2.15 MJ/m2. The ANN general 

models for estimating the three weather variables were compared to localized models 

developed in a previous study specifically for two of the fourteen locations and the 

localized models were found to be more accurate.  

 

INTRODUCTION 

Computer simulation models are becoming increasingly important tools in research 

and decision making related to agricultural production. Most crop growth simulation 

models use weather data inputs such as daily maximum and minimum temperatures, solar 

radiation, and rainfall to simulate crop yields (Amir and Sinclair 1991; Hoogenboom et 

al., 1992; Chapman et al., 1993). Air temperature is an important input to a variety of 

spatially distributed hydrological and ecological models (Cook and Wolfe, 1991; Dodson 

and Marks, 1997; Bolstad et al., 1998; Scheifinger and Kromp-Kolb, 2000). In addition, 

air temperature has been used to analyze climate change and the effects of the change 

(Robeson and Janis 1998; Michaels et al., 1998; Goodale et al., 1998; Price et al., 2000). 

Moreover, most processes in the atmosphere and biosphere, such as evaporation, sensible 

heat flux, soil heat flux, are driven directly or indirectly by solar radiation (Bruton et al., 

2000; Scheifinger and Kromp-Kolb, 2000). 

In crop growth simulation model development, it is assumed that the future climate 

will fit the same distribution as the historical climate used in the analyses. Most current 

models require long-term daily weather records with a high spatial resolution with 

matched temporal resolution. However, for some areas weather measurements are not 
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available due to the high cost of instrumentation, maintenance and calibration. For some 

areas, only a limited period of records is available. Therefore it is highly desirable to 

develop accurate weather data estimation models for use in simulation, weather analysis, 

and decision support applications.  

Traditional interpolation methods include Thiessen polygons, inverse distance 

interpolations, kriging, splines, and regression model. The Thiessen polygon or Voronoi 

polygon has been widely used in climatological rainfall and precipitation estimations 

(Goovaests, 2000; Wilk and Andersson, 2000; Pardo-Iguzquiza, 1998; Dirks et al, 1998; 

Panagoulia, 1992). Dirk et al. (1998) compared the Thiessen polygon with kriging spatial 

interpolation method to estimate spatially continuous rainfall. They found the Thiessen 

polygon method was comparable with kriging. Goovaerts (2000) pointed out that the 

Thiessen polygon method did not consider the elevation effects and rainfall records from 

surrounding stations. Therefore, large prediction errors could occur in the prediction of 

rainfall. 

Inverse-distance is a weighting interpolation method. The number of neighbors 

necessary in the weighting function is important in terms of reducing computation time 

while maintaining a smooth surface. Dodson and Marks (1997) have suggested that with 

inverse-squared-distance interpolation using eight nearest neighbors is reasonable. 

Robeson (1993) investigated three methods of spatially interpolating temperature 

anomaly data. He found that the inverse-distance method gave about the same results as 

triangulated surface patches and thin-plate splines. In order to consider the elevation 

effects on climate, gradient plus inverse-distance-squared (GIDS) interpolation technique 

was derived (Nalder and Wein, 1998, Price et al., 2000) from the inverse-distance-square 
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method. Price et al. (2000) used gradient plus inverse-distance-squared method to 

interpolate Canadian monthly mean climate data. It was suggested that this method is 

attractively simple and appears to give results adequate for modeling long term forest 

ecosystem responses to climate in relatively flat terrain. 

Regression has been used successfully in weather data estimation (Ollinger et al. 

1993, 1995). Bolstad et al. (1998) used a regression approach as a main method to predict 

daily air temperature and compared regression approach with local lapse models or the 

kriging method. They stated that the regression approach provided an accurate estimate 

of station temperature. Christine et al. (1998) used a regression technique to predict the 

monthly precipitation, monthly averaged maximum and minimum temperature, and 

monthly averaged sunshine hours and compared the regression approach with a modified 

inverse-distance-square interpolation. They reported that the prediction accuracy did not 

differ between these two methods.  

Kriging has been implemented in analysis of climatologic factors, such as the analysis 

of precipitation (Dingman et al. 1988), evapo-transpiration (Martinez-Cob & Cuenca 

1992), and temperature (Holdaway 1996, Bolstad et al. 1998). Holdaway (1996) has 

applied kriging to the spatial interpolation of monthly temperature. In his research, 

monthly empirical variograms, averaged over 90 years, were modeled with Gaussian or 

linear models in the ordinary kriging method. He concluded that anisotropies were found 

in the winter months, suggesting the presence of a large-scale regional trend. Bolstad et 

al. (1998) used kriging (co-kriging) to predicate daily air temperatures. They found that 

kriging and co-kriging may be particularly appropriate for temperature predictions in 
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regions with little topographic relief, but not useful where temperature measurement 

stations were sparse or high terrain effects were existing. 

Splining has been discussed by some researchers (Eckstein 1989; Hutchinson and 

Gessler 1994). Hutchinson (1989) used multi-dimensional thin plate splines to fit 

temperature surfaces by minimizing the roughness of the interpolated surface. He 

reported that the thin plate spline method worked as good as kriging while requiring less 

parameterization, however thin plate splines are computationally demanding and 

complicated to implement. Price et al. (2000) employed the thin-plate smoothing splines 

to interpolate Canadian monthly mean climate data. The GIDS was used to compare with 

the thin-plate smoothing splines. They found that thin plate smoothing splines produced 

better results for the west region of Canada where predicting precipitation is difficult. 

Artificial neural networks (ANNs) offer an alternative to estimate such weather data. 

ANNs are computer models that mimic the structure and functioning of the human brain 

(Ward Systems Group Inc., Frederick, MD, 1993). ANNs can determine the relationships 

among the independent variables to predict or estimate dependent variables. Back 

propagation (BP) ANNs are known for their ability to generalize well on a wide variety 

of problems and are well suited for prediction applications. Unlike statistical methods, 

ANN models do not make dependency assumptions among input variables and solves 

multivariate problem with nonlinear relationship among input variables. This technique 

has been used in a wide range of applications, such as classification, pattern recognition, 

automatic control and function approximation (McAvoy et al., 1989; Leonard et al., 

1992, Rao & Gupta, 1993). Han and Felker (1997) implemented an ANN to estimate 

daily soil water evaporation from average relative air humidity, air temperature, wind 

 43



speed, and soil water content in a cactus field study. They found that the ANN achieved a 

good agreement between predicted and measured values. They concluded that the ANN 

technique appeared to be an improvement over the multi-linear regression technique for 

estimating soil evaporation. Elizondo et al. (1994) used an ANN to estimate daily solar 

radiation for locations in the southeastern US based on daily maximum and minimum air 

temperature, daily total precipitation, daily clear sky radiation and day length for that 

location. They did not include weather data from other locations as inputs. They found r2 

of 0.74 and a root mean square error of 2.92 MJ/m2. In their study, the monthly average 

of daily maximum temperatures for three months in advance was predicted. Bruton et al. 

(2000) developed ANN models for estimating daily pan evaporation. The results were 

compared with those of multiple linear regression and Priestly-Taylor model and they 

found that the ANN model provided the highest accuracy. 

Li et al. (2002) developed ANN models for estimating daily maximum air 

temperature, minimum air temperature, and total solar radiation for a specific site in 

south Georgia and one in north Georgia. Weather data collected at the Georgia 

Automated Environmental Monitoring Network (AEMN) from 1996 to 2000 were used. 

The dataset for model development consisted of data from 1996 to 1998 (1096 daily 

weather observations). The evaluation dataset consisted of data from 1999 to 2000 (731 

daily weather observations). For each of two target locations and three weather variables, 

they determined the preferred number of input weather stations and the preferred input 

variables. The ANN models performed well when estimating the weather data at the 

location for which it was developed. However when one of the models was used to 

estimate the data from the other location, large errors occurred. Each of these ANN 
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models was developed with only one particular location as the target location thus was 

localized to that particular location. Therefore, the application of these models for other 

locations out of the region was questionable.  

The goal of this research was to develop general ANN models to estimate daily 

weather data which would be applicable throughout the state of Georgia. The specific 

objectives were: 1) develop general ANN models using datasets with fourteen target 

locations to estimate daily maximum and minimum temperature and solar radiation, 2) 

determine the number of weather stations required to provide inputs, 3) determine which 

inputs are required for each weather variable, 4) compare these ANN models with 

traditional averaging, multi-linear regression, and inverse distance weighting 

interpolation methods, and 5) compare the general ANN models with localized models by 

Li et al. (2002). 

 

MATERIALS AND METHODS 

Daily weather data collected by the Georgia Automated Environmental Monitoring 

Network (AEMN) were used in this study (Hoogenboom, 1996, 2000b; Hoogenboom et 

al., 2000). The AEMN is a network that consists of over 47 automated weather stations 

located across the state of Georgia. The sensor of each weather station is polled with a 

one-second frequency and averages or totals are logged every 15 minutes. All recorded 

data are saved to a centrally located computer on a daily basis. Weather variables 

measured in the AEMN include air temperature, rainfall, soil temperature at three 

different depths, relative humidity, wind speed and direction, solar radiation and open 

pan evaporation. Daily weather data collected from 1996 to 2000 were used for this 
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study. The locations of the 14 weather stations used are shown in Figure 3.1. These 

locations roughly depict a study area from south of Atlanta, Georgia to the border with 

Florida in the south and reaching to the border with South Carolina in the east and the 

border with Alabama in the west. 

The weather data from 1996 to 2000 were divided into two overall data sets: one for 

model development and one for model evaluation. The data from 1996 to 1998 were used 

to develop the ANN models. This data set included a total of 15,246 daily observations 

for each variable. The data from 1999 to 2000 were used to evaluate the final ANN 

modesl. This overall evaluation dataset included a total of 10,220 daily observations. 

Unlike the ANN model for localized models (Li et al., 2002), there were 14 target 

locations for each day for both model development and evaluation. For each of the 14 

target locations, the remaining 13 weather stations were used as potential input locations. 

The ANN models were thus generalized for Georgia as represented by these weather 

stations (Figure 3.1). A general ANN model was developed for each weather variable 

consisting maximum temperature, minimum temperature, and solar radiation. The overall 

goal was that the models could estimate the weather variables at any location in Georgia 

and for any day of year. The overall evaluation dataset using 1999 and 2000 weather data 

contained patterns with the 14 target locations. This dataset was applied to the final ANN 

models to determine the overall accuracy of the general models. Evaluation datasets for 

the 14 individual locations were also presented to the final models to determine the 

accuracy of the general model by location. 

Computer programs were developed in the Java programming language to create data 

files for ANN models from the raw data of the 14 weather stations. The possible inputs 
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considered were daily maximum air temperature, minimum air temperature, daily total 

solar radiation, and the fractions that a day of year belongs to each season (spring, 

summer, fall, and winter). Other inputs that were considered included the difference in 

elevation (∆z), the difference in east-west direction (∆x), and the difference in north-

south direction (∆y) between the target location and the neighboring stations. The straight 

line distance between the target and input station location (∆s) was also considered as a 

substitute for ∆x and ∆y. The values for the daily temperatures and solar radiation were 

observed data with day of year as index, whereas the other values were computed data. 

During preprocessing, the calculated data were computed first, based on the 

corresponding equations. The daily observed data were then combined with the 

calculated data, and the dataset was randomized by day of year.  

The computer program also included a routine to select the closest neighboring 

stations for all target locations. For each of the 14 target locations, the stations from the 

13 remaining weather stations were selected based on the shortest distance from the 

target location. Data from these weather stations were organized into a pattern in the data 

set based upon target and day of year, but the order of weather stations for each pattern 

was randomly distributed. This was done to maintain some generality by location and 

prevent the ANN from memorizing data for a particular location. After data 

preprocessing, each pattern consisted of the three daily weather variables per input 

weather station and target location and the calculated variables of ∆x, ∆y, ∆s, ∆z per 

weather station and four seasonal effect terms. In addition, there were fourteen patterns 

for each day of the year with fourteen different locations as targets. 
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The back propagation ANN approach is based on gradient descent and is designed to 

minimize the mean square error between the observed and estimated outputs. Ward ANN 

is a three-layer back propagation network consisting of an input layer, a hidden layer, and 

an output layer. Ward ANN has multiple slabs in the hidden layer (Ward System Group 

Inc., Frederick, MD, 1993). A Ward ANN also allows the user to select different 

activation functions such as Gaussian function, hyperbolic tangent function, and 

Gaussian-complement function for each slab. With different activation functions, these 

networks could possibly detect different features of the input vectors and are well suited 

for prediction. Ward neural networks were selected in this study based on our preliminary 

comparisons with the standard back propagation architecture. 

The NeuroShell™ (Ward System Group Inc., Frederic, MD, 1993) is an ANN 

software package with a user friendly menu-driven infrastructure. It has several utilities 

for data manipulation, model development, graphical options, and a runtime option to 

generate source code. One of the important options of NeuroShell™ is the optimal 

network option which helps to prevent over-training. NeuroShell™ allows the user to set 

an interval for the program to check the accuracy of the current ANN with a separate 

testing data set. If the average error of prediction of the ANN improves compared to the 

previous optimal ANN, the older optimal ANN is replaced with the current model. 

Otherwise, the previous optimal ANN can be saved until an improved optimal ANN is 

reached, or training is completed. 

In our study, the model development dataset consisted of 15,246 daily observations 

and was divided into three separate datasets i.e., training, testing, and production with a 

distribution of 50%, 25%, and 25% of the data, respectively. Preliminary analyses 
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showed that the number of hidden nodes was the only ANN parameter that had a 

significant effect on model accuracy. Therefore, the learning rate was set at 0.1, 

momentum was set at 0.1, stopping criteria was set at 20,000 events past the minimum 

test set error, and a test interval of 200 learning events was used. The best value for the 

number of hidden nodes was determined based on the coefficient of determination (r2), 

mean absolute error (MAE), and root mean square error (RMSE) of model results using 

the training, testing, and production datasets. 

Computer experiments were conducted to determine which input variables were 

important for each ANN model. Different combinations of input variables were examined 

to determine the ANN model that had the lowest estimation error for the production 

dataset. One of the objectives of this study was to identify which inputs were needed to 

estimate each of the three weather variables. This was accomplished by adding an input 

variable for the model, retraining and analyzing the effects on r2, MAE, and RMSE. Daily 

weather variables that were evaluated included observed daily maximum temperature and 

minimum temperature, and solar radiation. Calculated variables were determined from 

the topographic data and day of year.  

In developing a general ANN model to estimate maximum temperature for the region, 

the following approach was taken to determine the importance of the different inputs. An 

ANN model was initially developed consisting of only maximum temperature inputs at 

surrounding weather stations for each of the 14 weather stations. The accuracy of this 

model was compared to one developed by adding the input ∆s. The more accurate of 

these two models was then compared to one with ∆x and ∆y added as inputs. This 

process was repeated with the inclusion of minimum daily temperature, the seasonal 
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effect terms and ∆z as inputs. A similar approach was used to develop the general ANN 

models for estimating minimum temperature and solar radiation. 

The number of closest weather stations required as input for each of the 14 different 

target locations was also an important factor in developing the optimal ANN models. 

Different files were created with an increasing number of input weather stations for all 14 

target locations. Different ANN models were developed based on these input files. The 

number of nearest weather stations required for each of fourteen different target locations 

was determined based upon the accuracy of the developed models. All decisions 

regarding the preferred ANN inputs and number of closest weather station locations for 

all 14 target locations were made using the model accuracy on the production data set. 

Final model evaluation was based on the daily weather data at 14 weather stations for 

1999 and 2000 weather data. This overall evaluation dataset was prepared similarly to the 

model development dataset. For model evaluation, a one-time feed forward mode was 

used with the final ANN models. The accuracy of the ANN models for estimating each of 

the three weather variables for an overall evaluation dataset with 14 target locations was 

obtained. The evaluation was also carried out to determine how well the ANN general 

models performed for estimating the three weather variables for each of the fourteen 

target locations. Another evaluation was carried out to determine if the general ANN 

models developed with 14 different target locations were able to estimate the three 

weather variables at Tifton or Griffin as well as the localized models of Li et al. (2002).  

The results of ANN models were compared with the results of multi-linear regression, 

averaging, and inverse distance methods on the overall evaluation dataset. Based on the 

literature review, the Thiessen polygon method assumes a uniform weather area, which is 
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not the case for our study. Therefore, the Thiessen polygon method was not selected for 

comparison with ANN models. Bolstad et al. (1998) compared regression with local lapse 

models and the kriging method. They found that the regression approach provided a more 

accurate estimate of air temperature. Therefore, in our study, regression was selected for 

comparison. In addition, Robeson (1993) investigated inverse distance method, 

triangulated surface patches and thin-plate splines. He found that the inverse-distance 

method gave about the same results as other two methods. Therefore, in our study, 

inverse distance method was selected for comparison. The main purpose of this 

comparison was to determine if ANN models could provide a higher accuracy for 

estimating maximum temperature, minimum temperature, and solar radiation than the 

traditional statistical interpolation methods. 

 

RESULTS AND DISCUSSION 

A heuristic search was performed to determine the preferred number of input weather 

stations, input variables, and number of hidden nodes for each weather variable ANN. 

The approach taken to develop the maximum temperature ANN is discussed below as an 

example. Inputs consisted of maximum temperatures from six known weather stations 

surrounding the target location. The number of hidden nodes was then varied to 

maximize r2 and minimize MAE and RMSE. The number of closest weather stations was 

then reduced by one and ANN models were developed again. The optimal number of 

hidden nodes was determined for each value of the number of weather stations. Once the 

best model was determined using only maximum temperature as input, additional inputs 
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were considered. The same search was continued by varying the number of weather 

stations and again determining the optimal number of hidden nodes. 

As expected, it was found that the weather variable being modeled was always an 

important input. For example, when developing a maximum temperature ANN, 

maximum temperature from the surrounding weather stations was always an important 

input. Also the inclusion of ∆s and ∆z improved the accuracy for the estimation of all 

three weather variables. For the solar radiation ANN, it was determined that maximum 

temperature from the neighboring input weather stations was also important in improving 

the accuracy of the ANN. 

The number of neighboring weather stations required to maximize the accuracy did 

not vary by weather variable. For example, Table 3.1 shows the results for maximum 

temperature ANN search from one to six input weather stations. Two input weather 

stations resulted in the highest overall accuracy (MAE of 0.68ºC) for estimating 

maximum temperature using maximum temperature, ∆s, and ∆z as inputs. Results are 

shown for the training, testing, and production data sets, although only the production 

data set was used in selecting the preferred value. Table 3.2 shows the results of the 

search for the preferred number of hidden nodes for the case of two input weather 

stations. Twenty-nine hidden nodes produced the highest accuracy for the production set. 

Similar searches were also performed for minimum temperature and solar radiation. 

Table 3.1 also shows the results for the minimum temperature ANN search from one to 

six input weather stations. Two weather stations again resulted in the highest overall 

accuracy (MAE of 0.84ºC) for estimating minimum temperature using minimum 

temperature, ∆s, and ∆z as inputs. Table 3.1 shows the results for solar radiation ANN 
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search from one to five input weather stations as well. Two weather stations resulted in 

the highest overall accuracy (MAE of 1.37 MJ/m2) for estimating solar radiation using 

solar radiation, maximum temperature, ∆s, and ∆z as inputs. Table 3.3 summarizes the 

results of the search for the number of input weather stations, hidden nodes, and preferred 

inputs for each of the weather variable ANN models. The MAE is plotted for the three 

weather variables for the production dataset as a function of number of input weather 

stations in Figure 3.2. The minimum error for all three weather variables is clearly at two 

input weather stations. Table 3.4 identifies the input weather stations for each of the 14 

target locations and gives the ∆s and ∆z values.  

The overall evaluation dataset consisting of data for the 14 locations for year 1999 

and 2000 was then presented to the final ANN models for the three weather variables. 

This dataset had not been used either in model development or in the selection of the 

preferred network architecture or parameters. The evaluation results for estimating 

maximum temperature are shown in Table 3.5. We found that the ANN maximum 

temperature model produced estimations for the overall evaluation dataset with an 

accuracy which was comparable to the results for the model development dataset. This 

model had an r2 of 0.985, a MAE of 0.71ºC, and a RMSE of 0.99ºC. Figure 3.3 shows the 

estimated maximum temperature versus observed maximum temperature for the overall 

evaluation dataset. A linear regression was performed to determine how well the ANN 

results matched the observed maximum temperature. The ANN model for estimating 

maximum temperature slightly overestimated at lower values and slightly underestimated 

at higher values of measured maximum temperature. However, at all other temperature 
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ranges, the ANN model estimated maximum temperature well. The intercept of the linear 

regression equation was significantly different from 0 at the 95% confidence level.  

Table 3.5 also presents the results of the general ANN model for maximum 

temperature for evaluation dataset for each of the 14 target locations. The results indicted 

that the eight of the 14 target locations had a higher accuracy than the overall accuracy on 

the overall evaluation dataset, thus six target locations had lower accuracy than the 

overall accuracy. Attapulgus had the least accurate estimation with an r2 of 0.962, a MAE 

of 0.98ºC, and a MASE of 1.39ºC. This site used weather stations at Dawson (110.79 km) 

and Tifton (121.12 km) as input. These two sites were both located north of the 

Attapulgus site and had longer distances compared to other target locations. Williamson 

had the most accurate estimation with an r2 of 0.996, a MAE of 0.44ºC, and a RMSE of 

0.59ºC. The Williamson site used the weather stations in Griffin (14.92 km) and Pine 

Mountain (54.41 km) as input. These two sites were close to the target location and were 

located on either side of the target location along the latitude direction.  

The evaluation results for estimating minimum temperature are shown in Table 3.6. 

The ANN minimum temperature model produced estimations for the overall evaluation 

dataset with an accuracy that was comparable to the results for the model development 

dataset. The general ANN model for estimating minimum temperature had an r2 of 0.977, 

a MAE of 0.94ºC, and a RMSE of 1.24ºC. Figure 3.4 shows the estimated minimum 

temperature versus observed minimum temperature for the overall evaluation data set. A 

linear regression was also performed to determine how well the ANN results matched the 

observed minimum temperature. The figure indicates that the ANN model had a tendency 

to slightly overestimate minimum temperature at lower values and slightly underestimate 
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minimum temperature at higher values. However, for all other temperature ranges the 

ANN model estimated minimum temperature well. The intercept of the linear regression 

equation was significantly different from 0 at the 95% confidence level.  

Table 3.6 also presents results of the general ANN model of minimum temperature 

for evaluation datasets for each of the 14 target locations. The results indicated that half 

of the 14 target locations had a higher accuracy than the overall accuracy. Eatonton had 

the least accurate estimation with an r2 of 0.956, a MAE of 1.40ºC, and a RMSE of 

1.80ºC. This site used weather stations at Griffin (75.66 km) and Williamson (89.10 km) 

as input and they were both located southwest of the target location. Williamson again 

had the highest accuracy with an r2 of 0.987, a MAE of 0.70ºC, and a RMSE of 0.95ºC. 

The evaluation results for estimating solar radiation are shown in Table 3.7. We again 

found that the ANN solar radiation model produced estimations for the overall evaluation 

dataset with an accuracy that was comparable to the results for the model development 

dataset. The model for estimating solar radiation had an r2 of 0.907, a MAE of 1.53 

MJ/m2, and a RMSE of 2.15 MJ/m2. Figure 3.5 shows the estimated solar radiation versus 

observed solar radiation for the overall evaluation data set. A linear regression was also 

performed to determine how well the ANN results matched the observed solar radiation. 

It indicated that the ANN model had the tendency to overestimate solar radiation at low 

values and to underestimate solar radiation at high values. The intermediate values were 

well predicted. The plot shows more variability than the maximum and minimum 

temperature plots. The intercept of the regression equation was 1.3979 that was 

significantly different from 0 at the 95% confidence level.  
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Table 3.7 also presents the results of the general ANN model of solar radiation for 

evaluation datasets for each of the 14 target locations. The results indicated that 10 of the 

14 target locations had a higher accuracy than the overall accuracy. Attapulgus again had 

the least accuracy with an r2 of 0.835, a MAE of 3.37 MJ/m2, and a RMSE of 4.03 

MJ/m2. Plains had the highest accuracy with an r2 of 0.965, a MAE of 0.97 MJ/m2, and a 

MASE of 1.33 MJ/m2. This site used weather stations at Dawson (32.53 km) and Fort 

Valley (70.27 km) as input. These two sites were close to the target location and were 

located on either side of the target location along the latitude direction. 

Four of the 14 target locations, i.e. Dawson, Midville, Tifton, and Williamson, had a 

higher accuracy than the overall accuracy for estimating all three weather variables. 

These four sites are located between two input weather stations along the latitudinal or 

longitudinal directions. Three of the 14 target locations, i.e. Attapulgus, Savannah, and 

Roopville, had a lower accuracy than the overall accuracy for estimating all three weather 

variables. These three sites did not have neighboring weather stations on both sides of the 

target. Moreover, Attapulgus was located far away from the closest input weather 

stations, and Savannah was the only station that was located close to the ocean. 

A comparison was also performed between the general model prediction and a 

localized model for a particular location from a previous study (Li et al., 2002). The 

general ANN models were used with the evaluation dataset for Tifton (south GA) and 

Griffin (north GA). For example, the maximum temperature model developed 

specifically for Tifton provided an r2 of 0.987, a MAE of 0.61ºC, and a RMSE of 0.84ºC 

(Li et al. 2002). This was approximately equal to the results of the general model. The 

general ANN model for maximum temperature using Tifton weather data produced an r2 
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of 0.987, a MAE of 0.61ºC, and a RMSE of 0.84ºC. The maximum temperature model 

developed specifically for Griffin provided an r2 of 0.997, a MAE of 0.36ºC, and a RMSE 

of 0.51ºC (Li et al. 2002). This was higher accuracy than the general model using the 

Griffin evaluation dataset. With respect to minimum temperature, the minimum 

temperature model developed specifically for Tifton provided an r2 of 0.987, a MAE of 

0.74ºC, and a RMSE of 0.93ºC (Li et al. 2002). This was slightly higher accuracy than 

the general model using the Tifton evaluation dataset. The minimum temperature model 

developed specifically for Griffin provided an r2 of 0.984, a MAE of 0.82ºC, and a RMSE 

of 1.07ºC (Li et al. 2002). This was slightly higher accuracy than the general model using 

the Griffin evaluation dataset. Similarly, the solar radiation model developed specifically 

for Tifton provided an r2 of 0.944, a MAE of 1.24 MJ/m2, and a RMSE of 1.74 MJ/m2 (Li 

et al. 2002). This was a higher accuracy than the general model using Tifton evaluation 

dataset. When using Griffin weather data, the solar radiation model developed 

specifically for Griffin provided an r2 of 0.958, a MAE of 1.51 MJ/m2, and a RMSE of 

2.09 MJ/m2 (Li et al. 2002). This was slightly higher accuracy than the general model 

using Griffin evaluation dataset.  

Li et al. (2002) showed that an ANN model for estimating daily weather data for a 

particular site in South Georgia was not accurate for estimating weather data for a site in 

north Georgia, and vice versa. Our results indicate that the general model provided an 

acceptable accuracy for all locations in both regions. However, the general model 

accuracy for a particular location was less than the accuracy of a model developed 

specifically for that location. 
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Elizondo et al. (1994) developed an ANN solar radiation model for the southeastern 

USA. They used three locations for model development and additional location (Tifton) 

for testing. They did not use any neighboring weather stations for model development 

and they also did not consider the variation of distance between the weather station and 

elevation effects from any surrounding locations.  Using 1999 data they obtained an r2 of 

0.64, a MAE of 3.48 MJ/m2, and a RMSE of 3.40 MJ/m2. Our results for the general 

ANN model for solar radiation for the Tifton evaluation dataset provided a higher 

accuracy (Table 3.8). 

Table 3.9 provides a comparison among ANN, average, inverse distance, and multi-

linear regression for estimating the three weather variables. We found that the ANN was 

consistently the most accurate approach compared to averaging, inverse distance, and 

multi-linear regression methods for all three weather variables. Multi-linear regression 

models were more accurate than the average and inverse distance methods for estimating 

maximum temperature and solar radiation. However, multi-linear regression model had a 

same accuracy as the inverse distance method for estimating minimum temperature. The 

inverse distance method was more accurate than the average method for estimating 

maximum temperature and minimum temperature, whereas the average method was more 

accurate for estimating solar radiation.  

 

SUMMARY AND CONCLUSION 

General ANN models were developed to estimate daily maximum air temperature, 

minimum air temperature, and total solar radiation using datasets with 14 target locations 

across Georgia. The number of input weather stations needed to provide accurate 
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estimations was examined. For all three weather variables, two weather station locations 

were determined as the preferred number of input locations. The ANN model for 

estimating maximum temperature was slightly more accurate than the model for 

estimating minimum temperature. Using r2 value for comparison, the ANN model for 

estimating solar radiation was the least accurate. Although the ANN models for 

estimating all three weather variables overestimated at lower values and underestimated 

at higher values, the magnitude of overestimation or underestimation was small 

especially for maximum temperature and minimum temperature. For each weather 

variable, the ANN model estimated well at all other ranges.  

The preferred inputs for each weather variable were also determined using a heuristic 

search. In each of the three weather variables, ∆s and ∆z were found to be important 

along with the corresponding weather variable being estimated. For the solar radiation 

model, the addition of maximum temperature also improved the accuracy of the ANN 

model. 

The general models provided estimates that were slightly less accurate than the 

localized models for the three weather variables at two locations from a previous study 

(Li et al., 2002). The general models, however, provide a means for estimating weather 

variables at any location in Georgia with reasonable accuracy. The localized models, 

while not being accurate for other locations, provide higher accuracy at locations where 

historical weather data are available. From the results of the study it was determined that 

the ANNs were consistently the most accurate methods among other average, inverse 

distance, and multi-linear regression methods for estimating maximum temperature, 

minimum temperature, and solar radiation. 

 59



REFERENCES 

Amir, J. and Sinclair, T.R., 1991. A model of the temperature and solar-radiation effects 
on spring wheat growth and yield. Field Crops Res. 28, 47-58. 
 
Bolstad, P. V., Swift, L., Collins, F., Regniere, J., 1998. Measured and predicted air 
temperatures at basin to regional scales in the southern Appalachian mountains. Agric. & 
For. Met. 91, 161-176 
 
Bruton, J.M., McClendon, R.W., Hoogenboom, G., 2000. Estimating daily Pan 
Evaporation with Artificial neural networks. Trans. ASAE 43(2), 491-6. 
 
Chapman, S.C., Hammer, G.K. and Meinke, H., 1993. A crop simulation model for 
sunflower. I. Model development. Agron. J. 85, 725-735. 
 
Christine  L. Goodale, Jhon D. Aber, Scott V. Ollinger, 1998. Mapping monthly 
precipitation, temperature, and solar radiation for Ireland with polynomial regression and 
a digital elevation model. Clim. Res. 10, 35-49. 
 
Dingman, S.L.. Seely-Reynolds, D.M., Reynolds, R.C. III, 1988. Application of kriging 
to estimating mean annual precipitation in a region of orographic influences. Water 
Resour Bull. 24:329-339 
 
Dirks, K.N., Hay, J.E., Stow, C.D., Harris, D., 1998. High-resolution studies of rainfall 
on Norfolk Island. J. Hydrol. 208(3-4), 187-193. 
 
Dodson, R. and Marks, D., 1997. Daily air temperature interpolated at high spatial 
resolution over a large mountainous region. Clim. Res. 8, 1-20. 
 
Eckstein, B.A. 1989. Evaluation of spline and weighted average interpolation algorithms. 
Computers and Geoscience 15, 79-94. 
 
Elizondo, D., Hoogenboom, G., McClendon, R.W., 1994. Development of a neural 
network model to predict daily solar radiation. Agric. & For. Met. 71, 115-132. 
 
Goodale, C.L., Aber, J.D., Olllinger, A.V., 1998. Mapping monthly precipitation, 
temperature, and solar radiation for Ireland with polynomial regression and a digital 
elevation model. Clim. Res. 10, 35-49. 
 
Han, H. and Felker, P., 1997. Estimation of daily soil water evaporation using an artificial 
neural network. Journal of Arid Environments 37, 251-260. 
 
Holdaway, M. 1996. Spatial Modeling and interpolation of monthly temperature using 
kriging. Clim. Res. 6, 215-25. 
 

 60



Hoogenboom, G. 1996.  The Georgia Automated Environmental Monitoring Network. In: 
Preprints of the 22nd Conf. On Agricultural and Forest Meteorology, 343-346. Boston, 
Mass., American Meteorological Society. 
 
Hoogenboom, G.  2000a.  Contribution of agrometeorology to the simulation of crop 
production and its applications.   Agric. & For. Met. 103(1-2), 137-157. 
 
Hoogenboom, G.  2000b.  The Georgia Automated Environmental Monitoring Network. 
p. 24-25.  In:  Preprints 24rd Conference on Agricultural and Forest Meteorology. 
American Meteorological Society, Boston, Massachusetts.  
 
Hoogenboom, G., Georgiev, G.A., and Gresham, D.D.,  2000.  Development of weather 
based products for agricultural and environmental applications.  p. 66-67.  In: Preprints 
24rd Conference on Agricultural and Forest Meteorology. American Meteorological 
Society, Boston, Massachusetts. 
 
Hoogenboom, G., Jones. J.W. and Boote, K.J., 1992, Modeling growth, development and 
yield of grain legumes using SOYGRO, PNUTGRO, and BEANGRO: a review. Trans. 
ASAE 35(6), 2043-2056. 
 
Hutchinson, M.F. and P.E.  Gessler 1994. Splines—more than just a smooth interpolator. 
Geoderma 62, 45-67. 
 
Leonard, J.A., Kramer, M.A. & Ungar, L.H., 1992. Using radial basis functions to 
approximate function and its error bonds, IEEE Trans. on Neural Networks 3, 624-627. 
 
Li, B., McClendon, R. W., and Hoogenboom, G., 2002. Spatial interpolation of weather 
variables for single locations using artificial neural networks, to be submitted to 
Computer and Electronics in Agriculture. 
 
Martinez-cob, A. and Curnca, R.H., 1992. Influence of elevation on regional 
evapotranspiration using multivariate geostatistics for various climatic regimes in 
Oregon. J. Hydrol. 136, 353-380 
 
McAvoy, T.J., Wang, N.S., Naidu, S., Bhar, N., Gunter, J. and Simmons, M., 1989. 
Interpreting biosensor data via backpropagation. IEEE International Neural Network 
Conference in 1989, 8, 227-233. 
 
Michaels, P.J., Balling Jr. R. C., Vose, R.S., Knappenberger, P. C., 1998. Analysis of 
trends I the variability of daily and monthly historical temperature measurements. Clim. 
Res. 10, 27-23. 
 
Nalder, I.A., Wein, R.W., 1998. Spatial interpolation of climatic normal: test of a new 
methods in the Canadian boreal forest. Agric. & For. Met. 9, 211-225. 
 

 61



Ollinger, S.V., Aber, J.D., Lovett, G. M., Millham, S.E., Lathrop, E.G., Ellis, J.M., 1993.  
A Spatial model of atmospheric deposition for the northeastern U.S. Ecol. Appl. 3, 459-
472. 
 
Pardo-Iguzquiza, E., 1998. Comparison of geostatistical methods for estimating the areal 
climatological rainfall mean using data on precipitation and topography. Int. J. Climatol. 
18, 1031-1047. 
 
Panagoulia, D., 1992. Hydrological modeling of a medium-size mountainous catchment 
from incomplete meteorological data. J. Hydrol 137(1-4), 279-310. 
 
Parmar, R.S., McClendon, R.W., Hoogenboom, G., Blankenship, P.D., Cole, R.J., Forner, 
J.W., 1997. Estimation of aflatoxin contamination in preharvest peanuts using neural 
networks. Trans. ASAE 40(3), 809-813. 
 
Price, D.T., McKenney, D.W., Nalder, I. A., Hutchinson, M. F., Kesteven, J. L., 2000. A 
comparison of two statistical methods for spatial interpolation of Canadian monthly mean 
climate data. Agric. & For. Met. 101, 81-94. 
 
Rao, D.H. and Gupta, M.M., 1993. Dynamic neural controller with somatic adaptation. 
IEEE International Conference on Neural Networks in 1993, 8, 558-563. 
 
Rich, E. and Knight, K., 1991. Artificial intelligence. New York: McGraw-Hill. 
 
Robeson, S.M., 1993. Spatial interpolation, network bias, and terrestrial air temperature 
variability. Publ Climatol 46(1), 1-51 
 
Robeson, S.M. and Janis, M. J., 1998. Comparison of temporal and unresolved spatial 
variability in multiyear time-averages of air temperature. Clim. Res. 10, 15-26. 
 
Schaap, M.G. and Bouten, W., 1996. Modeling water retention curves of sandy soils 
using neural networks. Water Resour. Res. 32(10), 3033-3040. 
 
Scheifinger, H. and Kromp-Kolb, H., 2000. Modeling global radiation in complex terrain: 
comparing two statistical approaches. Agric. For. Met. 100: 127-136. 
 
Ward System Group, Frederic, MD, 1993. Manual of NeuroShell 2. Frederic, MD: Ward 
Systems Group. 
 
Wilk, J. and Adersson, L., 2000. GIS-supported modeling of areal rainfall in a 
mountainous river basin with monsoon climate in southern India. Hydrol Sci. J. 45(2), 
185-202. 

 

 62



Ta
bl

e 
3.

1.
 E

ff
ec

ts
 o

f v
ar

yi
ng

 th
e 

nu
m

be
r o

f t
he

 in
pu

t w
ea

th
er

 st
at

io
ns

 o
n 

th
e 

co
ef

fic
ie

nt
 o

f d
et

er
m

in
at

io
n 

(r
 2 ), 

m
ea

n 
ab

so
lu

te
 e

rr
or

 
(M

A
E)

, a
nd

 ro
ot

 m
ea

n 
sq

ua
re

 e
rr

or
 (R

M
SE

) o
n 

A
N

N
 m

od
el

s o
f e

st
im

at
in

g 
m

ax
im

um
 te

m
pe

ra
tu

re
, m

in
im

um
 te

m
pe

ra
tu

re
, a

nd
 so

la
r 

ra
di

at
io

n.
  

 
 

 
 

 
 

 
Pr

od
uc

tio
n 

da
ta

se
t 

 
Te

st
in

g 
da

ta
se

t 
 

Tr
ai

ni
ng

 d
at

as
et

 
 

W
ea

th
er

**
  i

np
ut

   
   

 #
 o

f w
ea

th
er

   
 #

 o
f h

id
de

n 
r2  

M
A

E 
R

M
SE

  
r2  

M
A

E 
R

M
SE

  
r2  

M
A

E 
R

M
SE

 
V

ar
ia

bl
e 

  v
ar

ia
bl

es
 

st
at

io
ns

   
   

  n
od

es
 p

er
 sl

ab
 

 
 

 
 

 
 

 
 

 
 

 
 

Tm
ax

 
   

  T
m

ax
, 

1 
 

19
 

 
0.

97
6 

0.
91

 
1.

25
 

 
0.

97
5 

0.
92

 
1.

24
 

 
0.

97
6 

0.
92

 
1.

24
 

 
(ºC

) 
   

  ∆
s, 

  
2*

 
 

29
 

 
0.

98
6 

0.
68

 
0.

95
 

 
0.

98
6 

0.
67

 
0.

95
 

 
0.

98
6 

0.
67

 
0.

95
 

   
  a

nd
 ∆

z 
 

3 
 

29
 

 
0.

98
5 

0.
72

 
0.

99
 

 
0.

98
4 

0.
71

 
1.

00
 

 
0.

98
4 

0.
69

 
0.

99
 

 
 

4 
 

10
 

 
0.

98
3 

0.
76

 
1.

04
 

 
0.

98
2 

0.
76

 
1.

05
 

 
0.

98
2 

0.
75

 
1.

05
 

 
 

5 
 

30
 

 
0.

98
3 

0.
76

 
1.

05
 

 
0.

98
2 

0.
77

 
1.

06
 

 
0.

98
2 

0.
75

 
1.

06
 

 
 

 
 

6 
 

35
 

 
0.

98
2 

0.
79

 
1.

08
 

 
0.

98
1 

0.
83

 
1.

14
 

 
0.

98
1 

0.
76

 
1.

15
 

Tm
in

 
   

  T
m

in
, 

1 
 

15
 

 
0.

96
3 

1.
16

 
1.

55
 

 
0.

96
2 

1.
19

 
1.

59
 

 
0.

96
3 

1.
17

 
1.

55
 

(ºC
)  

   
   

  ∆
s, 

 
2*

 
 

13
 

 
0.

98
1 

0.
84

 
1.

13
 

 
0.

97
9 

0.
88

 
1.

19
 

 
0.

98
0 

0.
85

 
1.

15
 

   
 a

nd
 ∆

z 
 

3 
 

25
 

 
0.

98
0 

0.
85

 
1.

14
 

 
0.

97
9 

0.
88

 
1.

18
 

 
0.

98
1 

0.
84

 
1.

12
 

 
 

4 
 

5 
 

0.
97

8 
0.

92
 

1.
21

 
 

0.
97

6 
0.

97
 

1.
26

 
 

0.
97

8 
0.

91
 

1.
20

 
 

 
5 

 
15

 
 

0.
97

8 
0.

91
 

1.
21

 
 

0.
97

7 
0.

94
 

1.
25

 
 

0.
97

9 
0.

89
 

1.
18

 
 

 
 

6 
 

10
 

 
0.

97
6 

0.
96

 
1.

27
 

 
0.

97
4 

1.
01

 
1.

33
 

 
0.

97
7 

0.
94

 
1.

24
 

SR
ad

 
   

 S
R

ad
 

1 
 

10
 

 
0.

89
0 

1.
62

 
2.

40
 

 
0.

90
3 

1.
59

 
2.

26
 

 
0.

90
5 

1.
58

 
2.

23
 

(M
J/

m
2 )  

 T
m

ax
 

2*
 

 
24

 
 

0.
91

2 
1.

37
 

2.
15

 
 

0.
92

8 
1.

31
 

1.
95

 
 

0.
92

8 
1.

30
 

1.
94

 
   

   
   

   
   

 ∆
s, 

 
3 

 
30

 
 

0.
90

7 
1.

43
 

2.
21

 
 

0.
92

4 
1.

36
 

2.
01

 
 

0.
92

0 
1.

40
 

2.
03

 
   

   
   

   
   

 a
nd

 ∆
z 

 
4 

 
25

 
 

0.
90

6 
1.

47
 

2.
22

 
 

0.
92

1 
1.

42
 

2.
04

 
 

0.
91

7 
1.

47
 

2.
09

 
 

 
 

5 
 

25
 

 
0.

90
4 

1.
51

 
2.

25
 

 
0.

91
9 

1.
45

 
2.

07
 

 
0.

91
5 

1.
49

 
2.

11
 

 
 * 

in
di

ca
te

s t
he

 p
re

fe
rr

ed
 m

od
el

. 
**

 M
ax

im
um

 te
m

pe
ra

tu
re

 (T
m

ax
), 

m
in

im
um

 te
m

pe
ra

tu
re

 (T
m

in
), 

so
la

r r
ad

ia
tio

n 
(S

R
ad

) 
 

  

 
63



Ta
bl

e 
3.

2.
 T

he
 e

ff
ec

ts
 o

f v
ar

yi
ng

 n
um

be
r o

f h
id

de
n 

no
de

s o
n 

th
e 

co
ef

fic
ie

nt
 o

f d
et

er
m

in
at

io
n 

(r
 2 ), 

m
ea

n 
ab

so
lu

te
 e

rr
or

 (M
A

E)
, a

nd
 

ro
ot

 m
ea

n 
sq

ua
re

 e
rr

or
 (R

M
SE

) o
n 

A
N

N
 m

od
el

s o
f e

st
im

at
in

g 
m

ax
im

um
 te

m
pe

ra
tu

re
. I

np
ut

 v
ar

ia
bl

es
 c

on
si

st
ed

 o
f m

ax
im

um
 

te
m

pe
ra

tu
re

, ∆
s, 

an
d 
∆z

 fo
r t

w
o 

in
pu

t w
ea

th
er

 st
at

io
ns

.  
 

 
 

Pr
od

uc
tio

n 
da

ta
se

t 
 

 
Te

st
in

g 
da

ta
se

t  
 

 
Tr

ai
ni

ng
 d

at
as

et
 

 
 

 
# 

of
 h

id
de

n 
 

r2  
M

A
E 

R
M

SE
  

 
r2  

M
A

E 
R

M
SE

  
 

r2  
M

A
E 

R
M

SE
 

no
de

s p
er

 sl
ab

  
 

(°
C

) 
(°

C
) 

 
 

 
(°

C
) 

(°
C

) 
 

 
(°

C
) 

(°
C

) 
5 

 
 

0.
98

4 
0.

74
 

1.
02

 
 

 
0.

98
3 

0.
74

 
1.

02
 

 
 

0.
98

3 
0.

73
 

1.
03

 
 

 
10

 
 

 
0.

98
4 

0.
75

 
1.

03
 

 
 

0.
98

3 
0.

75
 

1.
03

 
 

 
0.

98
3 

0.
74

 
1.

04
 

 
 

15
 

 
 

0.
98

4 
0.

73
 

1.
01

 
 

 
0.

98
4 

0.
72

 
1.

00
 

 
 

0.
98

4 
0.

72
 

1.
01

 
 

 
20

 
 

 
0.

98
4 

0.
75

 
1.

03
 

 
 

0.
98

3 
0.

75
 

1.
03

 
 

 
0.

98
3 

0.
74

 
1.

04
 

 
 

23
 

 
 

0.
98

5 
0.

72
 

0.
99

 
 

 
0.

98
4 

0.
71

 
0.

99
 

 
 

0.
98

4 
0.

71
 

1.
00

 
 

 
25

 
 

 
0.

98
6 

0.
69

 
0.

96
 

 
 

0.
98

5 
0.

67
 

0.
96

 
 

 
0.

98
5 

0.
68

 
0.

97
 

 
 

28
 

 
 

0.
98

6 
0.

70
 

0.
96

 
 

 
0.

98
5 

0.
69

 
0.

97
 

 
 

0.
98

5 
0.

68
 

0.
97

 
 

 
29

* 
 

 
0.

98
6 

0.
68

 
0.

95
 

 
 

0.
97

6 
0.

67
 

0.
95

 
 

 
0.

98
6 

0.
67

 
0.

95
 

 
 

30
 

 
 

0.
98

3 
0.

76
 

1.
04

 
 

 
0.

98
3 

0.
76

 
1.

04
 

 
 

0.
98

3 
0.

75
 

1.
05

 
 

 
34

 
 

 
0.

98
3 

0.
77

 
1.

05
 

 
 

0.
98

2 
0.

77
 

1.
05

 
 

 
0.

98
2 

0.
77

 
1.

06
 

 
 

 * 
in

di
ca

te
s t

he
 p

re
fe

rr
ed

 m
od

el
. 

  
 

 
64



Table 3.3. Search results for preferred number of input weather stations and hidden 
nodes, production data set. 
              Production dataset  
Weather*  # of weather # of hidden       input       r2   MAE  RMSE 
Variable    stations       nodes per slab      variables     
Tmax (ºC)       2        29          Tmax, ∆s, ∆z    0.986    0.68    0.95 
Tmin (ºC)       2        13         Tmin, ∆s, ∆z    0.981    0.84    1.13 
S.Rad (MJ/m2)      2        24          S.Rad, Tmax, ∆s, ∆z   0.912    1.37    2.15 
    
* Maximum temperature (Tmax), minimum temperature (Tmin), solar radiation (SRad) 
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Table 3.5. Evaluation of general ANN models for estimating maximum temperature 
using overall evaluation dataset and fourteen evaluation datasets for each of the fourteen 
target locations. 
Data      r2  MAE  RMSE  slope1  intercept2 

    (ºC)  (ºC) 
Overall     0.985 0.71  0.99  0.9812  0.4785* 
Alma     0.984 0.69  0.93 
Attapulgus    0.962 0.98  1.39 
Dawson    0.993 0.70  0.87 
Eatonton    0.983 0.91  1.21 
Fort Valley    0.988 0.71  0.97 
Griffin     0.994 0.49  0.69 
Midville    0.989 0.67  0.93 
Pine Mountain    0.987 0.69  1.05 
Plains     0.994 0.75  0.89 
Roopville    0.986 0.74  0.99 
Savannah    0.970 0.96  1.28 
Statesboro    0.989 0.63  0.85 
Tifton     0.987 0.61  0.84 
Williamson    0.996 0.44  0.59 
 
* significantly different from 0 at 95% of confident level. 
 

1, 2 estimated variable regression analysis coefficient. Estimated = intercept + 
slope*observed 
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Table 3.6. Evaluation of general ANN models for estimating minimum temperature using 
overall evaluation dataset and fourteen evaluation datasets for each of the fourteen target 
locations. 
Data      r2  MAE  RMSE  slope1  intercept2 

    (ºC)  (ºC) 
Overall     0.977 0.94  1.24  0.9778  0.1875* 
Alma     0.977 1.09  1.33 
Attapulgus    0.972 1.05  1.35 
Dawson    0.989 0.73  0.96 
Eatonton    0.956 1.40  1.80 
Fort Valley    0.979 0.92  1.17 
Griffin     0.982 0.88  1.13 
Midville    0.988 0.81  1.02 
Pine Mountain    0.973 1.02  1.46 
Plains     0.990 0.79  1.00 
Roopville    0.972 1.07  1.46 
Savannah    0.977 1.00  1.28 
Statesboro    0.984 1.04  1.23 
Tifton     0.985 0.74  0.94 
Williamson    0.987 0.70  0.95 
 
* significantly different from 0 at 95% of confident level. 
 

1, 2 estimated variable regression analysis coefficient. Estimated = intercept + 
slope*observed 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 68



Table 3.7. Evaluation of general ANN models for estimating solar radiation using overall 
evaluation dataset and fourteen evaluation datasets for each of the fourteen target 
locations. 
Data      r2  MAE  RMSE  slope1  intercept2 

    (MJ/m2) (MJ/m2) 
Overall     0.907 1.53  2.15  0.9163  1.3979* 
Alma     0.931 1.16  1.66 
Attapulgus    0.835 3.37  4.03 
Dawson    0.949 1.16  1.60 
Eatonton    0.931 1.37  1.99 
Fort Valley    0.926 1.37  1.97 
Griffin     0.884 2.11  2.63 
Midville    0.950 1.18  1.64 
Pine Mountain    0.936 1.35  1.80 
Plains     0.965 0.97  1.33 
Roopville    0.878 2.21  2.66 
Savannah    0.898 1.67  2.25 
Statesboro    0.949 1.01  1.56 
Tifton     0.940 1.32  1.81 
Williamson    0.969 1.19  1.63 
 
* significantly different from 0 at 95% of confident level. 
 

1, 2 estimated variable regression analysis coefficient. Estimated = intercept + 
slope*observed 
 

 69



Table 3.8. Comparison of ANN, average, inverse distance, and multi-linear regression 
methods, overall evaluation data set. 
Model    Method  r2  MAE  RMSE 
Maximum Temperature ANN   0.985  0.71  0.99 
(ºC)    Average  0.978  0.93  1.46 
    Inverse distance 0.979  0.93  1.42 
    Regression  0.981  0.83  1.10 
Minimum Temperature ANN   0.977  0.94  1.24 
(ºC)    Average  0.962  1.26  1.61 
    Inverse distance 0.965  1.20  1.54 
    Regression  0.965  1.20  1.54 
Solar Radiation  ANN   0.907  1.53  2.15 
(MJ/m2)   Average  0.880  1.84  2.45 
    Inverse distance 0.877  1.88  2.49 
    Regression  0.881  1.84  2.44 
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Figure 3.1. Fourteen AEMN weather stations in Georgia used in model development and 
evaluation. 
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Figure 3.2. Mean absolute error as a function of number of input weather stations for 
estimating maximum temperature, minimum temperature, and solar radiation, production 
dataset. 
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Figure 3.3. General ANN model of maximum temperature vs. observed maximum 
temperature, overall evaluation dataset 
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Figure 3.4. General ANN model of minimum temperature vs. observed minimum 
temperature, overall evaluation dataset. 
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Figure 3.5. General ANN model of solar radiation vs. observed solar radiation, overall 
evaluation dataset 
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 

 

In this study, two approaches were taken to develop ANN models, localized model 

and general model, were developed to estimate daily maximum and minimum air 

temperature and total solar radiation in Georgia. In the first study, localized ANN models 

were developed to estimate the three weather variables for the specific locations of Tifton 

and Griffin Georgia. In the second study, general ANN models were developed to 

estimate the three weather variables at locations throughout Georgia. Observed weather 

data from 1996-1998 was used in all model development and weather data from 1999-

2000 was used in model evaluation. The measures of accuracy used were r2, MAE, and 

RMSE. 

In the development of localized and general ANN models, the number of input 

weather stations needed to provide accurate estimations was examined. For all three 

weather variables, two weather station locations were determined as the input locations 

for general ANN models, whereas for the localized ANN models, the number of input 

weather stations required varied with the particular weather variable and the target 

location.  

The preferred inputs for each weather variable model were also determined using a 

heuristic search. In each of the three weather variable models, ∆s, ∆z, and the 

corresponding weather variable being estimated were important in improving the 
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accuracy. For the solar radiation models, the additional input of maximum temperature 

also improved the accuracy. 

The three general ANN models were developed using data from fourteen weather 

stations and performed well in estimating daily weather data throughout Georgia. The 

general models were compared to the three localized models for Tifton and the three 

models for Griffin. The accuracy of the general ANN models for all three weather 

variables was less than the localized model for that specific location. The localized 

models developed specifically for Tifton and Griffin were found to be inaccurate when 

used at a location other than the one for which they were developed. 

In the comparison with alternative approaches of averaging, inverse distance, and 

multi-linear regression, the general ANN models clearly provided the highest accuracy 

when estimating weather variables for the overall evaluation dataset (data from fourteen 

weather stations). When the alternative approaches were compared to the localized ANN 

models, the localized ANN models were equal to or slightly better than multi-linear 

regression, depending on the variables and location. The localized ANN models were 

clearly more accurate than averaging or inverse distance methods. 

For future research, effort could be directed to estimate other weather variables such 

as rainfall. A user interface could also be developed to allow the user to input a location 

in terms of latitude and longitude and the date and the system would respond with the 

estimated weather data. The system would automatically determine the two closest 

weather stations and present the weather data and calculated inputs to the appropriate 

general ANN model. 
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