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ABSTRACT 

This thesis compares the effectiveness of using lexical and ontological information for 

text categorization. Lexical information has been induced using stemmed features. Ontological 

information, on the other hand, has been induced in the form of WordNet hypernyms. Text 

representations based on stemming and WordNet hypernyms were evaluated using four different 

machine learning algorithms on two datasets. The research reports average F1 measures as the 

results. The results show that, for the larger dataset, stemming-based text representation gives 

better performance than hypernym-based text representation even though the later uses a novel 

hypernym formation approach. However, for the smaller data set with relatively lower feature 

overlap, hypernym-based text representations produce results that are comparable to the 

stemming-based text representation. The results also indicate that combining stemming-based 

representation and hypernym-based representation produces an improvement in the performance 

for the smaller dataset.  
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CHAPTER 1 

INTRODUCTION 

 

1.1. BACKGROUND 

Text categorization is the process of automatically assigning natural language texts to one or 

more predefined categories. With the rapid growth in the number of online documents, text 

categorization has become an important tool for tasks like document organization, e-mail 

routing, news filtering, spam filtering etc. 

 Text categorization can either be done using a rule-based approach or by constructing a 

classifier using supervised learning. Rule-based approach involves manual generation of a set of 

rules for specifying the category of the text and is highly accurate. However, as it needs domain 

experts to compose rules, it is costly in terms of labor and time. Moreover, rules are domain 

dependent and hence rarely transferable to another data set. Supervised learning, on the other 

hand, involves automatic creation of classification rules using labeled texts. In supervised 

learning, a classifier is first trained with some pre-classified documents (labeled texts). Then, the 

trained classifier is used to classify unseen documents. As rule-based approach is time 

consuming and domain dependent, researchers have focused more on machine learning 

algorithms for supervised learning of classification models. 

 In order to use machine learning algorithms for automatic text categorization, the texts 

need to be represented as vectors of features. One of the most widely used approaches for 

generating feature vectors from texts is the bag-of-words model. In the simplest form of the bag-
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of-words model, features are the words that appear in a document. Such models do not consider 

any linguistic information. As the semantic relationship between words is not taken into account, 

it can result in the following two cases: 

Case A: Two texts which are of the same subject but are written using different words, 

conveying the same meaning, may not be categorized into the same class. 

Case B: Two texts using different forms of the same word may not be identified as belonging to 

the same class.  

For dealing with Case B, we can use stemmed words instead of normal words. Stemming 

ensures that different forms of a word are changed into the same stem. Although the studies on 

the effects of stemming on categorization accuracy are not conclusive, it is commonly used for 

the reduction in the dimensionality of the feature space. Case A can be handled by using 

hypernyms from WordNet [9]. A hypernym is a word or a phrase that has a broad meaning. It 

encompasses many specific words which have similar meaning. So, even if two texts are 

different at the level of words, there is a fair chance that they are similar at the level of 

hypernyms. Using a rule-based learner, RIPPER [6], Scott and Matwin [5] were able to show a 

significant improvement in the classification accuracy when the bag-of-words representation of 

text was replaced by hypernym density representation.  

Stemming and WordNet hypernyms are two different ways of inducing linguistic 

information into the process of text categorization. Stemming is based on the morphological 

analysis of the text and helps in the induction of lexical information. Hypernym analysis, on the 

other hand, is a way of providing ontological information. So there can be a debate about which 

kind of linguistic information better serves the purpose of improving the classification accuracy. 

The aim of this research is to compare the effect of lexical (stemming) and ontological 
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(hypernym) information on classification accuracy. For that we have compared the performance 

of a bag-of-words model that uses stemmed words as tokens with one that uses hypernyms.  

 

1.2. MOTIVATION FOR THE STUDY   

Scott and Matwin [4] clearly state that the hypernym-based improvement is possible only in 

smaller datasets. They found that for larger datasets, like the Reuters 21578 collection [16], 

hypernym density representation of text cannot compete with normal bag-of-words 

representation. The reader may then wonder why we even bother comparing such a method to 

another method.  Considering the facts that Scott and Matwin [4] used binary features rather than 

real valued density measurements and a low height of generalization for hypernyms, we are left 

with reasons to believe that hypernyms might improve the classification accuracy if those 

limitations are eliminated. Besides, an improvement in text classification using WordNet synsets 

and the K-Nearest-Neighbors method has recently been shown in [3]. So, giving the hypernym-

based approach (using the WordNet ontology) a chance to compete with the stemming-based 

approach seemed fair. To take care of the previously mentioned limitations, we have used real 

valued density measurements for the features. We have also suggested a novel way of obtaining 

the hypernyms which is not based on height of generalization as in [4] and [5]. Also, although 

there has been a detailed survey on the effectiveness of different machine learning algorithms on 

the bag-of-words model (e.g. [2]), no comparison of the algorithms for the hypernym-based 

model could be found in the literature. Here, we present the comparison of stemming-based bag-

of-words model with hypernym-based bag-of-words model using four different machine learning 

algorithms. They are naïve Bayes classifiers, Bayesian networks, decision trees and support 

vector machines. 
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1.3. OUTLINE OF THE THESIS 

The rest of the thesis is organized as follows. Chapter 2 presents a description of stemming and 

WordNet ontology. It provides a brief introduction to Porter’s stemming algorithm and discusses 

a novel way of converting normal words to hypernyms. The different machine learning 

algorithms used in the research are explained in chapter 3. In chapter 4, the preprocessing steps 

carried out on the Reuters 21578 dataset are discussed. The actual experiments and results are 

presented in chapter 5. Chapter 6 shows the experiments and results for 20-Newsgroups dataset. 

Finally, the thesis is concluded in chapter 7 with a discussion of the results.  
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CHAPTER 2 

LEXICAL AND ONTOLOGICAL INFORMATION 

  

2.1. MORPHOLOGY, LEXICAL INFORMATION AND STEMMING 

Morphology is the study of the patterns of word formation. Word formation can be seen as a 

process in which smaller units, morphs, combine together to form a larger unit. For example, the 

word ‘stemming’ is formed using ‘stem’ and ‘ing’. English morphs can be either affixes or they 

can be roots. An affix is a generic name given to prefixes and suffixes. A root is the unit that 

bears the core meaning of a word. Hence in the given example, ‘ing’ is the suffix attached to the 

core ‘stem’ in order to form the word ‘stemming’. However, combining roots to zero or more 

affixes is not the only way of forming English words. There are other rules like vowel change. 

One example is forming ‘ran’ from ‘run’ using a vowel change.  

For effective bag-of-words based text categorization, it is important to compute accurate 

statistics about the proportion of the words occurring in the text. This is because the bag-of-

words model recognizes similarity in the texts based on the proportions of the words. Hence, 

sometimes, it becomes desirable to ignore the minor differences between different forms of the 

same word and change them into the same form. This means we treat ‘tiger’ and ‘tigers’ as 

different forms of the same word and change them into the common form ‘tiger’. This process 

provides lexical information to the bag of words model. In order to accomplish this, we need a 

process which can analyze the words morphologically and return their roots.  Stemming is one 

such process that removes suffixes from the word. It ensures that morphologically different 
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forms of a word are changed into the same stem and thus helps in inducing lexical information.  

It is possible for stemming algorithms to produce stems that are not the roots of the words. 

Sometimes they even produce stems that are incomplete and make no sense. For example, a 

stemming algorithm might return ‘acquir’ as the stem of the word ‘acquiring’. However, as all 

the morphological variations of a word are changed into the same stem, the goal of getting 

accurate statistics of a word is achieved. So as long as we get consistent stems for all the 

morphological variations of the words present in the texts, any string is acceptable as a stem. 

One of the commonly used stemming algorithms is the Porter Stemming Algorithm 

proposed in [15]. It removes suffixes by applying a set of rules. Different rules deal with 

different kinds of suffixes. Each rule has certain conditions that need to be satisfied in order for 

the rule to be effective. The words in a text are checked against these rules in a sequential 

manner and if the conditions in the rule are met, the suffixes are either removed or changed. We 

used the prolog version of Porter’s Stemming Algorithm written by Philip Brooks [18].  

 

2.2. WORDNET ONTOLOGY AND HYPERNYMS 

WordNet is an online lexical database that organizes words and phrases into synonym sets, 

called synsets, and records various semantic relationships between these synsets. Each synset 

represents an underlying lexical concept. The synsets are organized into hierarchies based on is-a 

relationships. Any word or phrase Y is a hypernym of another word or a phrase X if every X is-a 

Y. Thus the hypernym relationship between synsets is actually a relationship between lexical 

concepts and hence works as ontological information. In figure 2.1, every word or a phrase in the 

chain is hypernym of another word or a phrase that occurs above it in the hierarchy. For 

example, ‘mammal’ is a hypernym of ‘big cat’, ‘feline’ and ‘carnivore’. In other words, mammal 
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is a broader concept that can encompass all those specific concepts. By changing normal words 

to hypernyms, we ensure that the bag-of-words model is able to correctly compute statistics 

about the similar concepts occurring in the texts. This change increases the chance that two texts 

of the same subject matter, using different words, are categorized into the same class. 

 

 

 

Figure 2.1: WordNet hierarchy for the word ‘tiger’ 

 

 

WordNet hypernym-based text representation was first suggested in [5] and further tested 

in [4]. Changing a normal text into a hypernym-based text requires replacing all the words in the 

text with their hypernyms. However, before doing that we need to decide which hypernym to 

choose from the chain of hypernyms available for each word. To solve this problem, Scott and 

Matwin used a parameter h, height of generalization, which controls the number of steps upward 

in the hypernym chain for each word [5]. This means at h=0, the hypernym is the word itself. In 

Figure 2.1, it is ‘tiger.’ At h=1, it is ‘big cat’. However, this method does not guarantee that two 

words that represent the same concept are changed into the same hypernym. For selecting 

appropriate hypernyms, we suggest a novel technique that is not based on height of 

generalization. We introduce a variable n which is the depth from the other end of the chain. This 
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means at n=0, the hypernym is the last word in the hierarchy. In Figure 2.1, it is ‘entity’. At n=3, 

it is ‘object’. The rationale behind doing so can be explained with the following example. At 

n=5, the hypernym of ‘tiger’ is ‘animal’ and so is the hypernym of ‘carnivore’. This means we 

were successful to show that both words represent the same concept. This method of obtaining 

hypernyms ensures that any two words representing the same concept are changed into the same 

hypernym.  

Smaller values of n produce hypernyms that represent more general concepts. However, 

if the value of n is too small, then the concepts are over generalized. Hence, it results in similar 

synsets for many unrelated concepts. On the other hand, if the value is too large, the concepts 

might not be generalized. Hence, we might get the words themselves as the hypernyms. The 

appropriate level of generalization depends upon the characteristics of the text and the version of 

the WordNet being used [5]. In this experiment we use WordNet 3.0 and report the results for six 

different values of n. The values of n used for generating hypernyms were 5, 6,7,8,9 and 10. 
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CHAPTER 3 

LEARNING ALGORITHMS 

 

This chapter describes the classification algorithms used in the experiment. We experimented 

with decision trees, naïve Bayes classifiers, Bayesian networks and support vector machines. 

 

3.1. DECISION TREES 

Decision trees are very popular for classification and prediction problems because they can be 

learned very fast and can be easily converted into if-then rules, which have better human 

readability. They classify instances that are represented as attribute-value pairs. A decision tree 

classifier takes the form of a tree structure with nodes and branches. A node is a decision node if 

it specifies some test to be carried out on an attribute of an instance. It is a leaf node if it 

indicates the target classes of the instances.  For classification, the attributes are tested at the 

decision nodes starting from the root node. Depending upon the values, the instances are sorted 

down the tree until all the attributes are tested. Then, the classification of an instance is given at 

one of the leaf nodes. Table 3.1 shows five instances that belong to different classes of a 

common concept ‘Game’. A decision tree that can classify all these instances to their proper 

classes has been shown in figure 3.1. The first attribute {yes, bat, 11, yes} will be sorted down 

the leftmost branch of the decision tree shown in the figure and hence classified as belonging to 

the class ‘cricket’. 
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Table 3.1: Instances of the target concept ‘Game’ 

Ball_ involved Played_with  Players Outdoor Game 
yes bat 11 yes Cricket 
no hands 2 no Chess 
yes feet 11 yes Soccer 
yes bat 2 no ping pong 
yes bat 11 no indoor cricket 

 

 

 

Figure 3.1: A decision tree for the concept ‘Game’ 

 

 

For constructing decision trees for the experiment, we relied on C4.5, a variant of ID3 

learning algorithm [20]. ID3 forms a tree working in a top down fashion, selecting the best 

attribute as the root node. This selection is based on information gain. Information gain of an 

attribute is the expected reduction in entropy, a measure of homogeneity of the set of instances, 

when the instances are classified by that attribute alone. It measures how well the attribute would 

classify the given examples [21]. Once the attribute for the root node is determined, branches are 
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created for all the values associated with that attribute and then next best attribute is selected in a 

similar manner. This process continues for all the remaining attributes until the leaf nodes, 

displaying classes, are reached. The decision tree shown in figure 3.1 has been learned using 

ID3. C4.5 is an extension of ID3 designed such that it can handle missing attributes.   

The use of decision trees for the task of text classification on the Reuters data set has 

been shown in several research papers including [7] and [8]. Apte, et al. achieved the high 

accuracy of 87.8 % using a system of 100 decision trees [8]. Decision trees produce high 

classification accuracy, compared to support vector machines, on the Reuters text collection [2]. 

 

3.2. BAYESIAN LEARNING 

Bayesian learning in a learning method based on probabilistic approach. Using Bayes’s rule, 

Bayesian learning algorithms can generate classification models for a given data set. This section 

first discusses Bayes’s rule, and then it gives brief introductions to the naïve Bayes classifier and 

Bayesian networks.  

 

3.3. BAYES RULE AND ITS RELEVANCE IN MACHINE LEARNING 

For two events A and B, Bayes’s rule can be stated as: 

P (A|B) = P (B|A)* P (A)/ P (B) 

Here, P (A) is the prior probability of A’s occurrence. It does not take into account any 

information about B. P (B) is the prior probability of B’s occurrence. It does not take into 

account any information from A. P (A|B) is the conditional probability of A, given B. Similarly, 

P (B|A) is the conditional probability of B, given A. How is this rule relevant to machine 

learning? This question can be answered using the equation shown below. It has been adapted 
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from [21]. 

P (h|D) = P (D|h) P (h)/ P (D) 

This equation is based on Bayes’s theorem. Here, h is the hypothesis that best fits the 

given set of training instances D. P (h) is the prior probability that the hypothesis holds and P (D) 

is the probability that the training data will be observed. P (D|h) is the probability of observing 

D, given h and p (h|D) is the probability that the hypothesis holds, given D. Learning of such 

hypothesis leads to the development of classifiers based on probabilistic models. We will further 

discuss the relevance of Bayes’s rule, in the light of two learning algorithms, in the following 

sections. 

 

3.4. NAÏVE BAYES CLASSIFIER 

Let us assume that the instances in a data set are described as attribute-value pairs. Let X= {x1, 

x2…,xn} represent the set of attributes and C= {c1, c2….,cn) represent the classes.  

Let ci be the most likely classification of a given instance, given the attributes x1, x2….,xn. 

Using Bayes’s rule,  

P (ci| x1, x2….,xn) = P (x1, x2….,xn | ci) P (ci)/P (x1, x2….,xn) 

As P (x1, x2….,xn) is constant and independent of ci, we get that the class ci which maximizes  

P (ci | x1, x2….,xn) is the one that maximizes P (x1, x2….,xn | ci) P (ci). This classifier is called 

naïve Bayes because while calculating P(x1, x2….,xn | ci) it assumes that all the attributes are 

independent given the class. Hence the formula changes into: P (ci) Пk=1
n

  P (xk|ci).                    

For the most likely class ci, this posterior probability will be higher than posterior probability for 

any other classes. In summary, using Bayes’s rule and the conditional independence assumption, 

the naïve Bayes algorithm gives the most likely classification of an instance, given its attributes. 
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Dumais et al. [2] compared the naïve Bayes classifier to decision trees, Bayesian networks and 

support vector machines. They report that, for text categorization, the classification accuracy of 

naïve Bayes classifier is not comparable to the other classifiers. Similar results have been shown 

in [1] and [20]. Despite that, naïve Bayes classifiers are commonly used for text categorization 

because of their speed and ease of implementation.   

 

3.5. BAYESIAN NETWORKS 

A naïve Bayes classifier assumes that the attributes are conditionally independent because this 

simplifies the computation. However, in many cases, including text categorization, this 

conditional independence assumption is not met. In contrast to the naïve Bayes classifier, 

Bayesian networks allow for stating conditional independence assumptions that apply to subsets 

of the attributes. This property makes them better text classifiers than naïve Bayes classifiers. 

Dumais et al. [2] showed an improvement in the classification accuracy of Bayes nets over naïve 

Bayes classifiers. 

 Bayesian networks can be viewed as directed graphs consisting of arcs and nodes. Arcs 

between the nodes infer that the attributes are dependent while the absence of an arc infers 

conditional independence. Any node Xi is assumed to be conditionally independent of its non 

descendants, given its immediate parents. Missing edges show conditional independence 

between the nodes. Each node has a conditional probability table associated with it, which 

specifies the probabilities of the values of its variable given its immediate parents. 
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Figure 3.2: Conditional dependence/independence between the attributes of the instances in the 
Table 3.1. 

 

 

To form Bayesian networks we used the WEKA package (described below), which 

contains implementations of Bayesian networks. We used the one that uses hill climbing for 

learning the network structure from the training data. 

 

3.6. SUPPORT VECTOR MACHINES 

The idea of support vector machines (SVM) was proposed by Vapnik [14]. It classifies a data set 

by constructing an N-dimensional hyperplane that separates the data into two categories. 

  

Figure 3.3: Instances in a two dimensional space separated by a line 
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  In a simple two dimensional space, a hyperplane that separates linearly separable classes 

can be represented as shown in figure 3.3.  In figure 3.3, black and white circles represent 

instances of two different classes. As shown in the figure, those instances can be properly 

separated by a linear separator (straight line). It is possible to find an infinite number of such 

lines. However, there is one linear separator that gives the greatest separation between the 

classes. It is called the maximum margin hyperplane and can be found using the convex hulls of 

the two classes.  When the classes are linearly separable, the convex hulls do not overlap. The 

maximum margin hyperplane is the line that is farthest from both convex hulls and is orthogonal 

to the shortest line connecting the hulls, bisecting it. Support vectors are the instances that are 

closest to the maximum margin hyperplane. Figure 3.4 illustrates the maximum margin 

hyperplane and support vectors for the instances shown in Figure 3.3. The convex hulls have 

been shown as the boundaries around the two classes. The dark line that is farthest from both 

hulls is the maximum margin hyperplane separating the given set of instances. Support vectors 

are the instances that are closest to the dark line. 

 

 

 

Figure 3.4: Maximum Margin Hyperplane 
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When there are more than two attributes, support vector machines find an N-1 

dimensional hyperplane in order to optimally separate the data points represented in N 

dimensional space. Similarly, for finding the maximum margin hyperplane for data that are not 

linearly separable, they transform the input such that it becomes linearly separable. For that, 

support vector machines use kernel functions that transform the data to higher dimensional space 

where the linear separation is possible. The choice of kernel function depends upon the 

application. 

Training a support vector machine is a quadratic optimization problem. It is possible to 

use any QP optimization algorithm for that purpose. We have used Platt’s sequential minimal 

optimization algorithm [11], which is very efficient as it solves the large QP problem by 

breaking it down to a series of smaller QP problems [2]. Support vector machines were first used 

by Joachims [1] for text categorization and they have proved to be robust, eliminating the need 

for extensive parameter tuning. They do not need stemming of the features even when 

classifying highly inflectional languages [10]. Dumais et al. [2] show that support vector 

machines with 300 features outperform decision trees, naïve Bayes and Bayes nets in 

categorization accuracy. They used a simple linear version developed by Platt [11] and got better 

results than that of Joachims [1] on the Reuters 21578 dataset. Support vector machines are very 

popular algorithms for text categorization, and are termed as the best learning algorithms for this 

task.   
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CHAPTER 4 

EXPERIMENTAL SETUP 

 

This chapter describes the two document collections used in our experiments and gives the 

details of preprocessing techniques based on one them. 

 

4.1. DOCUMENT COLLECTIONS 

Our experiments have been carried out on the Reuters 21578 collection and the 20-Newsgroups 

dataset. Reuters 21578 is a collection of 21578 news articles that appeared in the Reuters 

newswire in 1987, and it is a standard benchmark for text categorization used by many 

researchers. We used 12902 articles from “ModApte split” in which 9603 documents were used 

as training data and the remaining 3299 as testing data. In order to compare our results with 

previous studies, we considered the 10 categories with the highest number of training sets as 

shown in Table 4.1.  

 

Table 4.1: Data Distribution for Reuters dataset 

Category No. of training documents No. of testing documents 
Earn 2877 1087 
Acq 1650 719 

Money-fx 538 179 
Grain 433 149 
Crude 389 189 
Trade 369 118 

Interest 347 131 
Ship 197 89 

Wheat 212 71 
Corn 182 56 
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20-Newsgroups dataset was downloaded from http://www.ai.mit.edu/~jrennie/20Newsgroups. It 

is a collection of newsgroup posts from mid 1990s. We used the “bydate” version of the dataset, 

which has duplicates removed, and the documents are sorted by date into training and testing 

sets. Table 4.2 shows the distribution of the documents in 20 classes. 

 

 

Table 4.2: Data Distribution for 20-Newsgroups dataset 

Category No. of training documents No. of testing documents 
Alt.atheism 480 319 

Comp.sys.ibm.pc.hardware 590 392 
Rec.sport.baseball 597 397 

Sci.med 594 396 
Talk.politics.misc 465 310 

Comp.graphics 584 389 
Comp.os.ms-windows.misc 591 394 

Comp.sys.mac.hardware 578 385 
Comp.windows.x 593 395 

Misc.forsale 585 390 
Rec.autos 594 396 

Rec.motorcycles 598 398 
Rec.sport.hockey 600 399 

Sci.crypt 595 396 
Sci.electronics 591 393 

Sci.space 593 394 
Soc.religion.christian 562 398 

Talk.politics.guns 546 364 
Talk.politics.mideast 564 376 

Talk.religion.misc 377 251 
 

 

 

4.2. PREPROCESSING OF REUTERS 21578 COLLECTION 

The Reuters-21578 dataset is originally saved in 22 files. The first 21 files contain 1000 

documents and the last file contains 578 documents. All the documents are in Standard 

Generalized Markup Language (SGML) format. A sample of a document is shown in figure 4.1. 
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Figure 4.1:  Reuters 21578 document in SGML format. 

 

 

4.3. CONVERTING SGML DOCUMENTS TO PLAIN TEXT  

Besides the main text, the SGML documents contain other information like document type, title, 

date and place of origin, etc. embedded in the SGML tags. Not all of this information is useful 

for text categorization. Similarly, the tags themselves do not have any significance for text 

categorization, and they need to be removed from the documents so that they do not influence 

the process of feature selection. Hence, all the documents were processed using a java program 

that returned just the title and the body text of each document as shown in Figure 4.2. 
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Figure 4.2:  Reuters-21578 document in Title-Body Format. 

 

 

 4.4. TOKENIZATION AND STOP WORD REMOVAL  

After the documents were changed into Title-Body format, they underwent tokenization and stop 

word removal. Words, punctuations, numbers and special characters, in the text, are all tokens. 

To deal with the text, we need to identify and separate all tokens, this is called tokenization. Each 

document was changed into a list of tokens by separating at the ‘spaces’ between the words. Stop 

words are words like ‘a’, ‘an’, ‘the’, ‘of’, ‘and’, etc. that occur in almost every text and also have 

high frequencies in the text. These words are useless in categorization because they have very 

low discrimination values for the categories [13]. Using a list of almost 500 words from [12], all 

stop words were removed from the documents. After removal of the stop words, punctuation and 

numbers were also removed as they too have nothing to do with the categories of the text. Figure 

4.3 shows an instance of a document obtained after tokenization and stop word removal. 
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Figure 4.3:  Reuters-21578 document after tokenization and stop word removal 

 

 

4.5. FORMATION OF TEXT REPRESENTATIONS  

Each document obtained after tokenization and stop word removal was changed into two forms 

of text representations. In the first representation, all resulting tokens were changed into 

stemmed tokens using Porter’s stemming algorithm. In the second representation, all tokens were 

replaced by hypernyms from WordNet. The hypernym-based representation had 6 different types 

based on the value of depth n. We chose the values of n to be 5, 6,7,8,9 and 10 representing very 

general to very specific hypernyms. Hence, we got seven text representations for each document. 
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4.6. FEATURE SELECTION  

After the formation of text representations, we used TFIDF [19] for the selection of important 

features for categorization. For that we formed indexing vocabularies. For each text 

representation, we collected tokens from each document and stored them in a list. We then 

removed all redundant tokens from the list. However, we calculated the frequency of each token 

before removing the redundant ones. The list of tokens and their frequencies formed the indexing 

vocabulary. We obtained seven such vocabularies, one for each representation. The size of the 

indexing vocabularies for hypernym-based representation is much smaller than the normal 

indexing vocabulary used in the traditional bag-of-words approach. This is because many similar 

words are changed into a single hypernym and stored as the same concept. It also helps the 

reduction in size of the feature space. We calculated TFIDF for all of the tokens in the indexing 

vocabulary, and, then, selected the first 300 words with the largest TFIDF values as the feature 

set for categorization. We obtained seven such feature sets for seven text representations.  

 

4.7. FORMATION OF NUMERICAL FEATURE VECTORS  

In order to use machine learning algorithms for categorizing the documents, they need to be 

represented as vectors of features. For that, the tokens in the documents that were common to the 

tokens in the feature set were selected, and then their proportions in the document were 

calculated. The set of real valued numbers thus obtained formed the feature vectors for the 

documents. Each feature vector consisted of 301 attributes. The first 300 were real valued 

numbers that represented the proportion of the corresponding features in a document and the last 

attribute represented the category to which the document belonged. This process was carried out 

on all the documents seven times for seven different text representations. The results were the 
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numeric feature vectors in the form required by the machine learning classifiers. An example is 

shown in Figure 4.4. 

 

 

 

Figure 4.4: Numerical feature vector for a document in the category ‘earn’ 

 

 

4.8. PREPROCESSING OF 20-NEWSGROUPS DATASET 

The 20-Newsgroups dataset underwent preprocessing steps that were similar to the preprocessing 

steps of Reuters 21578 dataset. The documents were first changed into plain text by removing all 

other information except for the title and body of the text. The plain text underwent tokenization 

and stop word removal resulting in the raw text representation. Then the raw text was changed 

into hypernym-based, stemming-based and combined text representations as needed.  
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CHAPTER 5 

EXPERIMENTS ON REUTERS 21578 DATASET 

 

This chapter is organized as follows. First, it presents a brief description of WEKA, the package 

used in our experiments. It then compares the stemming-based bag-of-words model with the 

hypernym-based bag-of-words models, on the Reuters 21578 dataset, under four classification 

algorithms, all of which have been implemented in WEKA. Thereafter, it compares both models 

to a combined text representation formed by merging the two. Finally, it assesses the 

effectiveness of stemming-based and hypernym-based text representations by comparing their 

performances with the performance of a raw text representation. The raw text representation was 

formed using tokenization and stop word removal only. Neither stemming-based nor hypernym-

based processing was done on it. For evaluating the performances of the learners (classification 

algorithms), we used precision and recall. Precision is the number of correct predictions by a 

learner divided by the total number of positive predictions for a category. Recall is the number of 

correct predictions by a learner divided by the total number of actual correct examples in the 

category. We have reported the F1 measure which combines precision and recall as:  

F1 measure = 2 * Precision * Recall / Precision + Recall 

All the bar charts for results display standard errors of mean (SEM) along with average F1 

measures. SEM is an estimated standard deviation of the error in a method calculated as: 

SEM= s/√n  

Here, s is the sample standard deviation and n is the size of the sample. 
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5.1. WEKA 

WEKA is an acronym that stands for Waikato Environment for Knowledge Analysis. It is a 

collection of machine learning algorithms developed at the University of Waikato in New 

Zealand. WEKA is available for public use at http://www.cs.waikato.ac.nz/ml/weka/. For this 

research, we have used naïve Bayes, Bayesian networks, decision trees and support vector 

machines. The algorithms in WEKA can either be used directly or called from the user’s Java 

code. When used directly, the users have the option of either using a command line interface or a 

graphical user interface (GUI). This research uses the WEKA GUI called ‘Explorer’. Using 

Explorer, users can simply open the data files saved in ‘arff’ format and then choose a machine 

learning algorithm for performing classification/prediction on the data. Users are also provided 

with the facility of either supplying a separate test set or using cross validation on the current 

data set. The WEKA Explorer allows the users to change the parameters of the machine learning 

algorithms easily. For example, while using a multilayer perceptron, users can select their own 

values of learning rate, momentum, number of epochs etc. One of the greatest advantages of 

using the GUI is that it provides visualization features which allow users to view their results in 

various manners.  

 
 
5.2. COMPARISON OF STEMMING-BASED AND HYPERNYM-BASED MODELS.   

Table 5.1 summarizes the average F1 measures for all four learners for the ten most frequent 

Reuters 21578 categories using stemming-based and hypernym-based text representations. 

Stemming-based representation clearly outperformed the hypernym-based representations for all 

learners, for all six values of hypernym depth (n). The Bayesian network, using stemming-based 

representation, turned out to be the winner among the four classifiers. Support vector machines 
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came very close to the Bayesian networks. In terms of the percentage of correctly classified 

instances, support vector machines using stemming-based representation outperformed all others 

as shown in Table 5.2. 

 

 

Table 5.1: Average F1 measures over 10 frequent Reuters 21578 categories for stemming-based 
and hypernym-based representations 

 

 

Table 5.2: Percentage of correctly classified instances 

 

 

Table 5.2 also supports the claims of Dumais et al. [2] that Bayesian networks showed 

improvements over naïve Bayes and that support vector machines are the most accurate methods 

for categorizing the Reuters 21578 dataset. However, performance of classification algorithms is 

not the main concern of this research. The main point is the comparison of the relevance of 

Classification 
Algorithms 

Stemming based 
representation 

Hypernym based representation 

n=5 n=6 n=7 n=8 n=9 n=10 
Decision Trees 0.6155 0.5354 0.5067 0.5399 0.5375 0.5574 0.5526 
Naïve Bayes 0.5908 0.5408 0.5614 0.5752 0.5765 0.5793 0.59 
Bayes nets 0.6516 0.5938 0.6127 0.6284 0.6235 0.6429 0.6432 
SVMs 0.6305 0.6001 0.6117 0.6263 0.6217 0.624 0.6299 

Classification 
Algorithms 

Stemming based 
representation 

Hypernym based representation 

n=5 n=6 n=7 n=8 n=9 n=10 
Decision Trees 83.11 79.83 78.60 80.05 80.33 81.74 81.31 
Naïve Bayes 79.94 75.50 77.63 79.18 79.25 79.25 80.01 
Bayes nets 82.90 79.22 80.59 81.67 81.27 82.82 83.08 
SVMs 87.37 84.81 85.96 86.54 86.32 86.72 87.01 
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lexical (stemming) and ontological (hypernym) information on text categorization. Based on 

average F1 measure (Table 5.1) and classification accuracy (Table 5.2), we can say that 

stemming-based feature representation is better than hypernym-based feature representation for 

categorizing the Reuters 21578 dataset. As shown in Figure 5.1, stemming-based representation 

performed better than the best performing hypernym-based representations for all four learners. 
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Figure 5.1:  Comparison of stemming-based representation with best performing hypernym-
based representation, for all four learners, in terms of average F1 measures and standard errors. 
 

 

5.3. COMPARISON WITH COMBINED TEXT REPRESENTATION 

More experiments were done in order to find out whether combining stemming-based and 

hypernym-based representations would improve the classification accuracy. For that we 

experimented with the hypernyms at n= 5, 7 and 10. As n=5 represents the hypernyms with 

general concept, 7 intermediate and 10 specific, we believed those three values to be good 

representatives of the hypernym space. For combination, the tokens were first stemmed and then 

changed into the hypernyms. Table 5.3 summarizes the average F1 measures for all four learners 

for the ten most frequent Reuters 21578 categories using the combined text representations.  
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Table 5.3: Average F1 measures over 10 frequent Reuters 21578 categories for combined text 
representations 

 

Classification Algorithms Average F1 measures for Combined representations 
n=5 n=7 n=10 

Decision Trees 0.511 0.5497 0.5752 
Naïve Bayes 0.5525 0.5767 0.5819 
Bayes nets 0.5921 0.6235 0.6405 
Support Vector Machines 0.6085 0.6284 0.6334 

 

 

The results did not yield improved performance over stemming-based representation. As 

shown in figure 5.2, for all four learners, the best results for the combined representations were 

not at par with the results for stemming-based representation. The combined method worked 

better than the hypernym-based method for decision trees but degraded the performances for 

naïve Bayes and Bayesian nets. Support vector machines were found to be robust to the change 

in the text representations. As seen in Figure 5.2, their results were consistent for hypernym-

based representation, stemming-based representation and combined representation.   
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Figure 5.2:  Comparison of the average F1 measures and standard errors of stemming-based 
representation with best performing hypernym-based and combined representations 

 

 



 

 29

5.4. COMPARISON WITH RAW TEXT REPRESENTATION 

A set of experiments were carried out to compare the performances of stemming-based 

representation and hypernym-based representations with a raw text representation. The raw text 

representation was formed by applying tokenization and stop word removal on Reuters 21578 

documents. Neither stemming-based nor hypernym-based processing was applied to the resulting 

documents. In order to assess the effects of stemmed tokens and hypernyms on the classification 

accuracy, we compared the average F1 measures of stemming-based representation and 

hypernym-based representations with the F1 measures of raw text representation. As stemming is 

based on lexical analysis and as hypernyms represent ontological information, these comparisons 

evaluate the effects of inducing lexical information and ontological information on text 

representation. Table 5.4 summarizes the average F1 measures for all four learners for the ten 

most frequent Reuters 21578 categories using raw text representation. Figure 5.3 compares the 

results shown in table 5.4 with the results for the stemming-based model and the best results for 

hypernym-based model. 

 

 

Table 5.4: Average F1 measures over 10 frequent Reuters 21578 categories for raw text 
representations 

 
Classifiers Decision trees Naïve Bayes Bayes nets Support vector machines 

Average F1 measures 0.5973 0.5929 0.6496 0.6261 
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Figure 5.3:  Comparison of the average F1 measures and standard errors of stemming-based 
representation with best performing hypernym-based and raw text representation. 

 
 

As seen in the figure, decision trees, Bayesian networks and support vector machines 

produced better results with stemming-based representation than raw text representation. This 

result was significant in decision trees than the rest of the classifiers. However, for the naïve 

Bayes classifier, the raw text representation proved to be the best. The results were consistent 

with our previous experiments in which stemming-based representation performed better than 

hypernym-based representations and combined text representations for all classifiers. The 

hypernym-based approach could not yield any improvements over the raw text representation for 

decision trees, naïve Bayes and Bayesian networks. In fact, it degraded their performances. It 

produced a slight improvement over the performance of support vector machines but that 

improvement was not significant as support vector machines proved to be very robust to the 

change in the text representations. 
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CHAPTER 6 

EXPERIMENTS ON THE 20-NEWSGROUPS DATASET 

 

The following experiments were done to validate the conclusions derived from the experiments 

on the Reuters 21578 dataset. These experiments were performed on a subset of the 20-

Newsgroups dataset. Five classes, out of 20, were selected as shown in Table 6.1.   

 

Table 6.1: Data Distribution for 20-Newsgroups data subset 

Category No. of training documents No. of testing documents 
Alt.atheism 480 319 
Comp.sys.ibm.pc.hardware 590 392 
Rec.sport.baseball 597 397 
Sci.med 594 396 
Talk.politics.misc 465 310 

 

 

Reuters 21578 dataset has classes like corn, grain and wheat with highly overlapping 

features. There is a fair chance that these common features are ontologically mapped to the same 

hypernyms. Suspecting that this might be the cause for the poor performance of hypernym-based 

representation; the five classes from the 20-Newsgroups dataset were intentionally selected to be 

diverse so that there would be less overlap between their features. This design can help in testing 

whether hypernyms produce better categorization accuracy when the classes have relatively 

lower feature overlapping.  

 

 



 

 32

6.1. COMPARISON OF VARIOUS REPRESENTATIONS 

In the Reuters 21578 dataset, stemming-based representation had performed better than all six 

hypernym-based representations for all classifiers. While in this subset, the hypernym-based 

representation with n=10 outperformed stemming-based representations for Bayesian networks 

and decision trees. Table 6.2 summarizes the average F1 measures for all four learners for the 

five 20-Newsgroups categories using stemming-based, hypernym-based, and raw text 

representations.  

 

 

Table 6.2: Average F1 measures over the subset of 20-Newsgroups dataset for stemming-based, 
hypernym-based, and raw text representations. 

 

Classifiers 
Stemming 

based 
representation 

Hypernym based 
representation Raw data 

n=5 n=7 n=10 

Decision Trees 0.7594 0.6394 0.7322 0.778 0.7494 
Naïve Bayes 0.763 0.6904 0.7254 0.7572 0.7614 
Bayesian Nets 0.7994 0.7082 0.7614 0.8192 0.81 
Support vector machines 0.8318 0.748 0.7854 0.8252 0.7978 

 

 

One of the reasons hypernym-based representation performed well could be the size of 

the dataset (number of classes involved). The size is much smaller compared to the Reuters 

dataset and hypernyms have been shown to perform better in smaller datasets by Scott and 

Matwin [5]. Also, the five classes used in the experiments have been deliberately chosen such 

that there is less overlap between the features of the classes. As mentioned earlier, this choice 

was intentional and was made in order to test whether the hypernyms could yield better 

categorization accuracy for a dataset with fewer overlapping features. The results have shown 

that the hypernym-based representations are capable of performing as well as stemming-based 
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representations, and even better, for such datasets. This performance of hypernyms is evident in 

Figure 6.1.  
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Figure 6.1: Comparison of the average F1 measures and standard errors of stemming-based 
representation with best performing hypernym-based representation and raw text representation 

 

 

Figure 6.1 also compares the F1 measures of the best performing hypernym-based 

representation with the raw text representation. The best performing hypernym-based 

representation produced better categorization accuracy than the raw text representation for 

decision trees, Bayesian networks and support vector machines validating that hypernyms are 

indeed capable of improving the categorization accuracy if the dataset is small and there is less 

overlapping between the features of the classes. 

Despite the good performance of hypernyms, support vector machines using stemming-

based representation turned out to be the best classifier for this dataset. As Bayesian networks 

using stemming-based representation was the best classifier of the Reuters dataset, this leads to 

the conclusion that stemming-based representation with an appropriate classifier is capable of 

outperforming all hypernym-based representations. For decision trees, naïve Bayes classifiers 
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and support vector machines, stemmed features resulted in better categorization than the raw 

text.  

 

6.2. EFFECTS OF COMBINED TEXT REPRESENTATIONS 

For combination, for all values of n, the tokens were first stemmed and then changed into 

hypernyms. Table 6.3 summarizes the average F1 measures for all four learners for the 20-

Newsgroups subset using the combined text representations. 

 

       Table 6.3: Average F1 measures over five 20-Newsgroups categories for combined text 
representations 

 
 

Classifiers 
 

Combined representations 

n=5 n=7 n=10 

Decision Trees 0.7252 0.7514 0.7556 
Naïve Bayes 0.727 0.7384 0.7674 
Bayesian Nets 0.7354 0.769 0.802 
Support vector machines 0.7818 0.8098 0.8346 

 

 

For the 20-Newsgroups data subset, the combined representations displayed very 

interesting results. Using naïve Bayes classifiers and support vector machines, for which 

stemming-based representation had worked better than hypernym-based representations, the 

combined representations produced results that were better than the individual methods. For the 

other two classifiers, the results for combined representations were not as good as the best results 

for hypernym-based representation alone. This signifies that hypernyms add to the categorization 

accuracy produced by stemmed features but the opposite is not true.  This comparison has been 

shown in Figure 6.2.   
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Figure 6.2: Comparison of the average F1 measures and standard errors of stemming-based 
representation with best performing hypernym-based and combined representations 

 
 
 

6.3. EXPERIMENTS WITH ALL 20 CLASSES 

While categorizing 20 classes of the 20-Newsgroups dataset, Stemming-based representation 

performed better than hypernym-based representation. Figure 6.3 compares the average F1 

measures of Stemming-based representation with F1 measures of hypernym-based representation 

(n=10), over the 20 classes of 20-Newsgroup dataset, for all four learners. 
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Figure 6.3: Comparison of the average F1 measures and standard errors of stemming-based 
representation with best performing hypernym-based representation over twenty 20-Newsgroup 

categories 
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As seen in the figure, all the classifiers yielded better accuracy with stemming-based 

representation. This result is anomalous to the results for the subset of 20-Newsgroups dataset in 

which hypernym-based representation (n=10) performed better than stemming-based 

representation for two classifiers. However, it is consistent with the results for Reuters 21578 

dataset in which stemming-based representation clearly outperformed all hypernym-based 

representations for all classifiers.   
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CHAPTER 7 

DISCUSSIONS AND CONCLUSIONS 

 

The performance of stemming-based representation was found to be better than hypernym-based 

representations and combined representations for all four classifiers on the Reuters 21578 

dataset. The stemming-based representation produced improved classification accuracy over the 

raw text representation for decision trees, Bayesian networks and support vector machines. This 

improvement was more significant in decision trees than other classifiers. The performance of 

the stemming-based approach signifies that induction of lexical information can be useful for 

categorizing Reuters 21578 dataset. Support vector machines were found to be robust to the 

change in text representation. They performed similarly for stemming-based, hypernym-based, 

combined and raw text representation. Such consistent performance of support vector machines 

reinstates the claim that they are robust and do not need stemming for producing good results 

[10]. Bayesian networks using stemmed features proved to be the best classifier and naïve Bayes 

classifiers performed the best with raw text representation. 

The experiments also indicated that hypernyms do not add to the classification accuracy 

for the Reuters 21578 dataset.  Such bad performance of hypernyms is consistent with the results 

shown by Scott and Matwin [4]. However, they had suspected that the use of real valued density 

measurements and more general hypernyms might improve the results. We used real valued 

density measurements and did not achieve significant improvements in the classification 

accuracy. Similarly, using more general hypernyms did not help either. In fact, as the features 
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became more general, they failed to distinguish between overlapping classes and produced worse 

results. Figure 7.1 shows the average F1 measures of all four classifiers at different values of n.  
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Figure 7.1: Average F1 measures over 10 frequent Reuters categories at different values of n. 

 

 

As seen in Figure 7.1, the F1 measures are roughly proportional to the values of n. As the 

values of n increase, F1 measures also increase. Higher values of n produce hypernyms that 

represent more specific concepts. Thus as a concept becomes less general, categorization 

accuracy increases. This means that ontologically mapping the words to general concepts does 

not seem helpful for the task of categorizing the Reuters 21578 dataset. Hence, based on the 

experiments, for the Reuters 21578 dataset, incorporating lexical information seems to be more 

effective than incorporating ontological information.  

On the other hand, for the 20-Newsgroups subset, though support vector machines using 

stemmed features proved to be the best individual classifier, hypernym-based text representations 

performed as well as stemming-based text representations. This indicated that when the dataset is 
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small (fewer classes) and when classes overlap less, hypernym-based text representations are 

capable of producing results that are comparable to the results of stemming-based representation. 

Like stemmed features, hypernyms were useful in improving the categorization accuracy over 

the raw data, for the 20-Newsgroups subset. The improvement was achieved at n=10. This 

signifies that ontologically mapping the words to relatively specific concepts yields better results 

than mapping the words to more general concepts. The improvements in the results from general 

to specific concepts are shown in Figure 7.2. The figure shows that for all classifiers, F1 

measures increase when the values of n increase. This means that the categorization accuracy 

improves when the words are mapped to more specific concepts. This result is consistent with 

the results obtained for Reuters 21578 dataset.  
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Figure 7.2: Average F1 measures over five 20-newsgroup categories at different values of n. 

 

 

The experiments using combined text representations for the 20-newsgroup subset 

indicate that hypernyms improve the categorization accuracy produced by stemmed features but 

the opposite is not always true. In fact, support vector machines using the combined text 
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representation produced better results than the best individual classifier - SVM using stemmed 

features alone.   

In summary, for the larger dataset (Reuters 21578) with significant feature overlap of 

classes, inducing lexical information was found to be more effective than inducing ontological 

information, irrespective of the type of the classifier used. This finding was strengthened by the 

superior performance of the stemming-based representation compared to the hypernym-based 

representation while categorizing all 20 classes of the 20-Newsgroups dataset. Using smaller 

dataset (20-Newsgroups subset) with fewer overlapping features, both hypernyms and stemmed 

features were found to be capable of improving the categorization accuracy over the raw text 

representation. However, this improvement was dependent upon the classifier being used. 

Hypernyms were able to improve the performance of decision trees, Bayesian networks and 

support vector machines. Stemming, on the other hand, was able to improve the performance of 

decision trees, naïve Bayes classifiers and support vector machines. Hypernyms performed better 

at higher values of n, for both datasets, indicating that ontologically mapping the words to very 

general concepts may not be helpful for the task of text categorization. 
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