

BUILDING SNAKES FROM DNA – A STEP TOWARDS GENERALIZING THE

SNAKE IN THE BOX PROBLEM

by

MD. SHAHNAWAZ KHAN

(Under the Direction of Walter D. Potter)

ABSTRACT

 The snake in the box problem is an NP-hard problem which has been a challenging

problem for both computer scientists and mathematicians. It aims to maximize certain types

of paths (snakes) in a graph, an n-dimensional hypercube while satisfying certain

constraints described using the concept of spread. This thesis identifies a common pattern

among the longest snakes which is very similar to the DNA in living cells both structurally

and functionally. It introduces a radically new approach to use this underlying pattern (the

DNA) for building the longest snakes in a generalized way. By using these structures in

three different dimensions three new lower bounds are established beating the previously

held records. This thesis also attempts to explain why such underlying structures contribute

to the longest snakes and in general how the longest snakes arrange themselves in a

hypercube.

INDEX WORDS: Snake-in-the-box, generalization, DNA, DNA of snake, new lower

bound, higher spread, longest maximal snake

BUILDING SNAKES FROM DNA – A STEP TOWARDS GENERALIZING THE

SNAKE IN THE BOX PROBLEM

by

MD. SHAHNAWAZ KHAN

B.TECH, AMU, INDIA, 2010

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2014

© 2014

MD. SHAHNAWAZ KHAN

All Rights Reserved

BUILDING SNAKES FROM DNA – A STEP TOWARDS GENERALIZING THE

SNAKE IN THE BOX PROBLEM

by

MD. SHAHNAWAZ KHAN

 Major Professor: Walter D. Potter

 Committee: Khaled Rasheed

 Frederick Maier

Electronic Version Approved:

Julie Coffield

Interim Dean of the Graduate School

The University of Georgia

December 2014

iv

DEDICATION

To my parents for everything.

v

ACKNOWLEDGEMENTS

 I would like to thank Dr. Potter for his support and encouragement for all these

years in the AI center. I would also like to thank Dr. Rasheed for his help and advises

during my stay here. I also thank Dr. Maier for being in my committee and helping me

whenever I had doubts. At the end, I would also like to thank people at the AI center for

all the discussions inside and outside the classes.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

 1 INTRODUCTION AND LITERATURE REVIEW ...1

 2 THE DNA OF SNAKES ...4

 ABSTRACT ...5

 2.1 INTRODUCTION ...5

 2.2 DNA BASICS ..9

 2.3 BUILDING CANONICAL SNAKES ...10

 2.4 THE DNA ..13

 2.5 RESULTS AND DISCUSSION ..20

 REFERENCES ..22

 3 COMPLEX DNA AND GOOD GENES FOR SNAKES23

 ABSTRACT ...24

 3.1 INTRODUCTION ...24

 3.2 THE DNA OVERVIEW ..26

 3.3 DECODING COMPLEX DNA ...28

 3.4 SIMPLE DNA WITH GOOD GENES ..31

vii

 3.5 RESULTS AND DISCUSSION ..33

 REFERENCES ..38

 4 SNAKE REPRESENTATIONS ..40

 4.1 OVERVIEW ..40

 4.2 FIBONACCI SNAKE REPRESENTATION41

 5 CONCLUSION ..44

BIBLIOGRAPHY ..45

APPENDICES

 A THE LONGEST SNAKES FOR NEW LOWER BOUNDS46

 B THE LONGEST CANONICAL SNAKES ...48

 C VALIDATING SNAKE IN TRANSITION SEQUENCE50

viii

LIST OF TABLES

Page

Table 2.1: Building Snakes for Dimension n Spread k ..11

Table 2.2: New Lower Bounds for Snakes ..21

Table 3.1: Canonical Longest Snakes found in dimension-spread34

Table 3.2: Comparison of Results with Different Genes ...35

Table 3.3: Longest Snakes Built Using Various Gene Combinations in the DNA37

ix

LIST OF FIGURES

Page

Figure 2.1: A spread 2 snake in a 3-dimensional hypercube - Snake (3, 2)6

Figure 2.2: A double helix structure of DNA ..9

Figure 2.3: A transition chunk ...12

Figure 2.4: The longest snake and its shadows in dimension-spread (5, 3).......................19

Figure 3.1: Transition sequences (0-based) in a 3-dimensional cube25

Figure 3.2: The longest snake and its shadows in dimension-spread (5, 3).......................27

1

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

 This thesis is about discovering an underlying general structure among previously

established longest snakes and using this general structure to establish new lower bounds

for snakes in other dimensions for the Snake in the Box problem. This radically new

approach is primarily inspired from the role of DNA in living cells which contains the

instructions for the development and functioning of the cell. The Snake in the Box (SIB

problem) is a graph search problem which continues to baffle both computer scientists and

mathematicians. The term “snake” describes a specific traversal sequence of nodes in a

graph (a hypercube, whose size is described by its “dimension”) without violating certain

distance constraints described using the concept of “spread”. SIB is an NP-Hard problem

and the first works were published in 1958 by Kautz (Kautz 1958). The snake refers to the

sequence of traversing through nodes in a graph such that if the distance between any two

nodes along the path is less than or equal to the spread then the shortest distance (Hamming

distance) between them is equal to this distance along the path. If the distance between the

two nodes along the path is greater than the spread then the shortest distance between these

two nodes is greater than or equal to the spread. It finds its application in signal detection,

error correction, modulation of signal codes etc. (Yehezkeally et al. 2012). Snakes in any

dimension “n” with spread “k” can be represented using the notation “Snake (n, k)”. We

will use this notation throughout all the remaining chapters. We will often refer to this

dimension, spread combination as dimension-spread.

2

This thesis started as a motivation to find a common repeating pattern among the

longest snakes known so far and be able to predict the longest snakes in other dimensions-

spread by generalizing it. As the SIB problem is an NP-hard problem, the search space

grows exponentially with each increasing dimension. For any brute force search technique

the search space is so huge that the exhaustive search of larger dimensions, with current

computer processing capabilities, will take years and decades and even might not be

finished within a human lifetime. In recent years several heuristics have been applied as an

alternative to the brute force exhaustive search (Potter et al. 1994). Generalization of an

NP-hard problem would be too ambitious a project and machine learning algorithms came

as an affordable solution. Among several approaches that were tried, a Reinforcement

Learning approach was tried to learn the pattern and predict the transition sequences for

building the longest snakes. Since the size of the available data for training is too small

(i.e. the previously established longest snakes in several dimensions are of the order of 101)

and was not sufficient enough for the model to let it generalize, therefore this project could

not grow further. Later, while analyzing the data, the longest snakes collected for training

the learning model, several common structures were found and were exploited to hunt for

snakes in other dimensions.

These common structures form the basis of this thesis. The algorithms explained in

the subsequent chapters which are for submission to conferences exploits this general

schema. The importance of this generalization is emphasized by the results obtained, as

three new lower bounds for snakes in several dimension-spread are established.

At the end (Chapter 5), the thesis report is concluded by highlighting the salient

features of the algorithms discussed in the chapters. These algorithms define a particular

3

way to build snakes and explain the more natural way these snakes arrange themselves in

a hypercube. We also discuss some of the possible limitations of the algorithms and ways

to overcome them. Being a fundamentally new approach, we also discuss the future

applications of the algorithms to find newer lower bounds in dimension-spreads yet to be

searched.

4

CHAPTER 2

THE DNA OF SNAKES 1

1 Md. Shahnawaz Khan and W. D. Potter. Submitted to International Conference on Artificial

Intelligence’15, 01/30/2015.

5

ABSTRACT

The Snake in the Box problem is an NP-Hard problem. The goal is to find the

longest maximal snakes (a certain kind of path satisfying particular constraints described

as “spread”) in an n-dimensional hypercube [8]. With increasing dimensions the search

space grows exponentially and the search for snakes becomes more and more difficult. This

article identifies an underlying pattern among the known longest snakes in previously

searched dimensions, which resembles the DNA of living cells in many ways. Surprisingly,

these generic structures are fundamentally different for the four combinations of odd and

even dimension and spread. It briefly explains the reason why they have different

underlying structures. In odd dimensions with odd spread, there is one symmetric point and

a unique mapping of complementary transition pairs and are discussed in detail in this

paper. This article focusses only on one of these – odd dimension with odd spread. Later,

it also reports three new lower bounds that are established using these generic structures

from previously known longest maximal snakes. Another known longest snake in another

odd dimension with odd spread is also found using this approach.

2.1 INTRODUCTION

A snake is a special type of path in a graph (an n-dimensional hypercube) which

does not violate its distance constraint described using the concept of “spread”. Spread,

being a concept of distance, is a non-negative number, and generally starts for spread k

equal to 2. For spread 0, it has no meaning as technically it makes no contribution to the

constraint. For spread 1, it simply requires a non-overlapping path traversing the n-

dimensional hypercube and could be seen very similar to a Traveling Salesman Problem

(often used as a standard problem in current AI literature). For spread 2 onwards it starts

6

getting trickier and more computationally intensive to find such paths. The snake refers to

the specific sequence of nodes in a graph and the edges joining these nodes form the path.

While traversing it maintains the constraint that if the distance between any two nodes

along the path is less than or equal to the spread then the shortest distance (Hamming

distance) between them is equal to this distance along the path. For example, if node 0 and

node x are placed like 0, _, x (where “_” could be any other node and node “x” is

constrained) in a spread 2 or higher spread snake, then node x has to be a node which is

exactly 2 Hamming distance away from node 0 (i.e. node x differs from node 0 in exactly

2 bits). If the distance between the two nodes along the path is greater than the spread then

the shortest distance between these two nodes is greater than or equal to the spread. For

example, if node 0 and node x are placed like 0, _, _, _, x in a spread k snake (for spread k

≤ 3) then node x has to be a node which is at least k Hamming distance from node 0 (i.e.

node x differs with node 0 in at least k bits). The maximally longest snake refers to the

longest snake that can be found in a particular dimension-spread and cannot be grown

further. So a path through nodes 0, 1, 3, 7, 6 would be the longest maximal snake of length

4 (distance between first node and last node in the path) in dimension 3 with spread 2.

Figure 2.1: A spread 2 snake in a 3-dimensional hypercube - Snake (3, 2)

7

Snakes have been represented in various forms. Node-sequence representation,

being the most naive and primary form of representation, is nothing but the ordered

sequence of nodes that are traversed in an n-dimensional hypercube along the path

(previously mentioned 0, 1, 3, 7, 6 is one such node-sequence representation). Among

various other representations of snakes, transition sequence is a simple and parsimonious

representation. For a 0-based transition sequence representation, it is a non-negative integer

describing the transition of nodes (the position of change of the bit between the previous

node and current node when the nodes are represented in a binary code) to build a snake.

The change of node 0 to node 1 can be represented by transition “0” (node 000 changes to

node 001 by changing the bit at position 0). Likewise, the traversal of node 1 to node 3 can

be represented by transition 1 (node 001 changes to node 011 by changing the bit at position

1). In short, the node sequence 0, 1, 3, 7, 6 can be written as 0, 1, 2, 0 in transition sequence.

For any transition sequence, only the first node needs to be chosen but due to the symmetric

nature of a hypercube any node would serve the purpose by naming it as node 0. A

canonical snake, in a transition sequence representation, is a snake transition sequence such

that the first occurrence of any transition precedes the first occurrence of any other

transition that is bigger than it. For example, a snake starting as 0, 1, 2, 3, 1, 0, 4 would be

a canonical snake, since the first occurrence of transition “0” precedes the first occurrence

of all other transitions that are bigger than it and so on and so forth for all the other

transitions in it. While a snake starting as 0, 1, 2, 4, 0, 3 would not be a canonical snake

since the first occurrence of transition “3” does not precede the first occurrence of transition

“4”. This transition sequence (transition sequence 0, 1, 2, 4, 0, 3) can be represented in its

canonical form by using the smallest unused transition for the first occurrence of every new

8

transition while rewriting it (and using this replacement elsewhere). So for 0, 1, 2, it would

still be 0, 1, 2 in its canonical form. When we encounter transition “4” we use the next

smallest unused transition “3” for it (and replace “4” with “3” everywhere else). So the

sequence 0, 1, 2, 4, 0 would become 0, 1, 2, 3, 0. Later when we encounter a new transition

“3” we have to use the next unused smallest transition i.e. transition “4” (and replace

transition “3” in the old sequence with transition “4” in its canonical form). So its canonical

form would be 0, 1, 2, 3, 0, 4. Also previous works have shown that a canonical

representation of transition sequence can be used to represent any snake [4].

The snake in the box (SIB) problem has been an interesting and challenging

problem for both mathematicians and computer scientists [8]. The challenge has been taken

to another level every time a particular dimension’s longest maximal snake(s) are found,

as the search space grows exponentially. As the search space grows exponentially, it gets

more and more difficult to do an exhaustive search and some kind of heuristic is required.

David Kinny mentions some complete search techniques and illustrates the role of

branching factor while backtracking [1]. He mentions the crucial pruning of the search

space by using a canonical form [2].

9

2.2 DNA BASICS

In this section, some basic and generic information about DNA is discussed which

will help the reader to follow and appreciate the similarities discussed in the latter sections.

Deoxyribonucleic acid or DNA is a double-stranded helix, with the two strands connected

by hydrogen bonds [2] [3]. Its structure is shown in Figure 2.

Figure 2.2: A double helix structure of DNA* [9]

Courtesy: http://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-

function-watson-397

*The referenced web page was visited on November 2, 2014

http://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397
http://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397

10

It is found in every living cell and encodes the genetic instructions used in various

aspects of development and functioning of living organisms. DNA controls the growth,

functioning and reproduction of cells in the living organisms. The information in DNA is

stored as a code which is made up of four chemical bases: adenine (A), cytosine (C),

guanine (G), and thymine (T). The order, or sequence, of these bases determines the

information available for building and maintaining an organism. These DNA bases pair up

with each other, A with T and C with G, to form units called base pairs. The base pairs are

constant, i.e. base A would always pair up with base T and base C with base G. It is beyond

the scope of this article to discuss the reason why these bases always pair up with each

other.

2.3 BUILDING CANONICAL SNAKES

 The canonical snakes are representative of all the snakes in the search space or in

other words all the snakes in the search space can be represented using one of the canonical

snakes. We first introduced an exhaustive search algorithm to build canonical snakes in

transition sequence as shown in Table 1. This algorithm is the first known algorithm to

validate a snake in transition sequence representation without converting it into any other

form. The validating algorithm is based on the idea of number of unpaired transitions that

helps in maintaining the snake spread-k constraints. The exhaustive search makes no

assumption about its search space. It tries a transition by adding it to a snake and validating

the sequence. If it succeeds it moves to search for the next transition else it tries another

transition until all the transitions available have been tried, after which it backtracks to its

last successful transition and tries another transition from it. This is repeated until all the

transitions at the first position have been tried and there is no other backtracking possibility.

11

Table 2.1: Building Snakes for Dimension n Spread k

 Initialize an ordered list (for transition sequence), call it the Primary List (PL) and 2 auxiliary

sets (Paired and Unpaired Transition Set – PTS and UTS, which are mutually exclusive)

 Initialize PTS with transitions 0 to n-1 // 0 based transition sequence

 Add transitions 0 to k in the PL and in the UTS and remove these transitions from PTS

 Set a flag isValid to true

While (number of elements in UTS >= k and flag isValid)

{

o Add an element i to PL which is different from last k transitions* and is a member of

{0,..,n-1}

o Flip the membership of this element i between PTS and UTS // mutually exclusive

o If (number of elements in UTS >= k)

{

 Copy the PTS and UTS to new temporary sets Temporary PTS (T-PTS) and

Temporary UTS (T-UTS)

 Starting from the first transition in PL, flip the membership of each transitions

between the current T-PTS and T-UTS and in each step check the number of

elements in T-UTS>=k else set the flag isValid to false and break from this loop

}

o Else

{

 Set the flag isValid to false

}

}

 If (not isValid)

o Remove the last added transition

*Pruning the search space by removing certain invalid snakes

12

In an n-dimensional hypercube, for a 0-based transition sequence, the transition

sequence consists of numbers between 0 to n-1. The unpaired number of transitions

maintains the spread in the path. So, if we are looking at a sequence 0, 1, 2, 3, 1, we see

that there are two transition “1” (in other words paired), while 0, 2, 3 are unpaired. As the

number of unpaired transitions drops below k, the k-spread constraint is violated. For any

transition chunk of length greater than or equal to k, it should hold that there are at least k

unpaired transitions. And for any transition chunk of length d less than k there should be

at least d unpaired transitions. So, {0, 1, 2, 3, 1}, {1, 2, 3, 1}, {2, 3, 1} and {0, 1, 2} are

some of the examples of such transition chunks.

Figure 2.3: A transition chunk

As shown in Table 1 for a spread k snake, choosing a transition different from the

last k transitions prunes the search space by removing the invalid snakes. An extra pruning

step that is added is that if the next element that is being added to the list matches with the

element which is at the last (k+1)th position in the list then the transition at the last (k+2)th

position should not be there in the last k-transitions. For example, consider a transition

sequence as {ak+2, ak+1, ak, ak-1, …, a1} consisting of k+2 transitions. If we want to add

transition “ak+1” as the next transition in this transition sequence then we can add it only if

transition “ak+2” is not there in the subsequence {ak, ak-1, …, a1}.

chunk

13

2.4 THE DNA

Snake 1 (11, 5): [0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 8, 5, 9, 7, 0, 10, 8, 1, 4, 5, 7, 6, 10, 8, 3, 4,

2, 5, 10, 9, 6, 4, 1, 5, 7, 0, 9, 6, 3]

Snake 2 (6, 2): [0, 1, 2, 3, 1, 0, 4, 3, 0, 5, 4, 0, 1, 3, 4, 0, 2, 4, 1, 0, 4, 3, 1, 5, 3, 4]

Snake 3 (7, 3): [0, 1, 2, 3, 0, 4, 5, 1, 0, 3, 6, 4, 0, 1, 2, 3, 0, 4, 5, 1, 0]

2.4.1 The Underlying Structure

 The three snakes shown above have a few things in common. Apart from being the

longest maximal snake in a particular dimension-spread, they also share a particular

underlying structure upon which it is built. Snake 1 is a spread 5 snake in dimension 11.

Snake 2 is a spread 2 snake while Snake 3 is a spread 3 snake. All these snakes are the

longest maximal snakes and are canonical palindromes (a canonical snake whose reverse

when expressed in a canonical form is equal to the original canonical snake). They have

one or two points of symmetry based on if they have an even spread or an odd spread. Let

us look at the same snakes again with the highlighting.

Snake 1 (11, 5): [0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 8, 5, 9, 7, 0, 10, 8, 1, 4, 5, 7, 6, 10, 8, 3, 4,

2, 5, 10, 9, 6, 4, 1, 5, 7, 0, 9, 6, 3]

Snake 2 (6, 2): [0, 1, 2, 3, 1, 0, 4, 3, 0, 5, 4, 0, 1, 3, 4, 0, 2, 4, 1, 0, 4, 3, 1, 5, 3, 4]

Snake 3 (7, 3): [0, 1, 2, 3, 0, 4, 5, 1, 0, 3, 6, 4, 0, 1, 2, 3, 0, 4, 5, 1, 0]

The shaded region highlights the basic structure of the snake which lays the foundation of

a particular snake, similar to specific sequencing of genes in DNA which later decides

everything for the organism. This shaded region, which is termed as the DNA, is defined

14

as “DNA of a valid snake is the smallest portion of the snake (approximately at the center

of the snake) that contains all the possible transition sequences for the snake and has one

or more points of symmetry. It also defines the complementary pairs of the transitions that

should be used in the remaining parts of the snake.” There is one or more than one point

of symmetry in the DNA. In the simplest case, where there is only one point of symmetry,

the equidistant transitions to the left and right of this symmetric point occur in pairs and

are called complementary pairs henceforth in the paper. These complementary pairs always

occur in pairs to the left and right of the DNA throughout the snake.

2.4.2 Odd and Even Dimensions

 Odd and even dimensions have different DNA in their longest snakes, primarily

because the number of possible transitions in the two types of dimensions is different, i.e.

for odd dimensions it is odd, while for the other it is even. In an odd dimension, the

arrangement of a possible odd number of transitions for pairing in the underlying structure

(similar to the base pairing in DNA) will be different than the even transitions where the

number of possible transitions is even. The spread of the snake also plays a role in defining

the structure of the DNA. The number of initial transitions that are used in the DNA (shown

in red color) is equal to its spread (since no k transitions can be the same in a spread k

snake). These initial transitions form the core of the DNA. For odd spread, an odd number

of transitions is already used in the DNA to form its core. Now, for odd spread snakes in

an odd dimension, the remaining transitions that have to be paired uniquely, after forming

the core, are even in number and can be uniquely paired. But for such snakes (snakes with

odd spread) in even dimensions, the remaining transitions are odd in number and cannot

15

be uniquely paired. Let us take an example of snake (7, 2) to illustrate more on the pairing

of complementary pairs and symmetric points in DNA.

Snake (7, 2) : 0, 1, 2, 0, 3, 1, 0, 4, 2, 1, 0, 3, 5, 0, 1, 2, 4, 0, 6, 5, 0, 4, 2, 0, 3, 4, 0, 1, 2, 4,

0, 3, 5, 0, 4, 2, 0, 3, 4, 0, 1, 2, 0, 6, 1, 0, 4, 2, 1, 0

The snake shown above is the longest maximal snake in dimension-spread (7, 2)

[7]. Since for spread 2 snakes no two consecutive transitions can be the same, transitions 3

and 4 appear in the middle as shown using red color. The remaining 5 transitions have been

paired but not uniquely, most of the transitions have been paired with more than 1 transition

in the DNA (shown as the highlighted grey area). Also since there is more than one point

of symmetry their pairing varies for three ways of finding the point of symmetry, i.e. {(3,

4), (3), (4)}. Say for example “5” can be paired with “0” if “3, 4” is the point of symmetry

as both are equidistant from this point of symmetry. “5” can be paired with transition “3”

if “4” is the point of symmetry. “5” can also be paired with “4” if “3” is the point of

symmetry. The DNA for even spreads is difficult to create and we will restrict ourselves to

the odd spreads. As explained earlier, for odd spreads in even dimensions the remaining

transition options for creating the DNA would be odd which again would create non-unique

pairing. To simplify our task we will confine ourselves to odd dimensions with odd spread.

The remaining dimension and spread combinations are intended to be pursued as future

work.

16

2.4.3 Similarity with DNA

 So how is the underlying structure similar to DNA? And what role do these

subsequences play in building snakes? If we observe closely we will find that all the

transitions {0… n-1} have been used in creating this shaded part. Similar to the DNA in

living cells, it contains all the information/ingredients that could be used later. Apart from

having all the transitions it also defines two more interesting features, the base-pairing and

the length of the longest snake possible that can be grown using this underlying structure.

The first feature is easier to explain and demonstrate while the second feature can only be

explained from the results obtained as is the case with mapping of particular genes to a

particular characteristic in a living organism (i.e. mapping genotype with phenotype).

Similar to the base pairing in DNA, i.e. base A always occurs with base T and base C

always occurs with base G, the transition sequences also always occur in pairs defined

using this underlying structure. In other words this underlying structure decides the

transition that would appear with its complementary transition at any two equal distances

from the symmetric point. Let us take the example of Snake 1, we see that the distance of

transition “7” on the left side of transition “5” (the symmetric point), is always the same as

the distance of transition “4” on the right side of transition “5” and vice versa. This is what

also makes it a canonical palindrome (a canonical snake whose reverse when expressed in

a canonical form is equal to the original canonical snake).

2.4.4 Building the DNA

 Let us start from scratch while rebuilding these underlying structures for snakes.

Building upon the idea from the previous section (Section 2.3), which described basic rules

17

for a canonical snake in a transition sequence representation, we have the following

mandatory guidelines:

1. No k subsequent transitions can be the same in a spread k snake.

2. In the snake, for all subsequences of size greater than the spread, the number of

unpaired transitions is greater than or equal to the spread.

Let us build the DNA of Snake 1, the DNA of the longest snake in dimension 11 with

spread 5. Let us start from the symmetric point (for odd spreads there is one symmetric

point). So for keeping it simple, let us use “0” as the symmetric point. Now since no

adjacent k (k is 5 in this case) sequences can be the same we can put four other transitions

in this structure as shown below.

 3, 1, 0, 2, 4

The order of transitions does not matter as this is the defining stage where the pairs are

being defined and whatever transition we decide to put would form the definition of

pairing. We could have used {3, 1, 0, 2, 4} or {0, 1, 2, 3, 4}. We built the first sequence by

adding “1” to the left of transition “0” and “2” to the right of “0”. Then we added “3” to

the left and “4” to its right. From the above sequences we have defined that transition “1”

is paired with transition “2” and transition “3” is paired with transition “4” as they are at

equal distance from “0” on the left and right side. So far, for spread k, if the dimension n

is equal to k then putting all the transitions like this would make the longest snake of length

k. But as we increase the dimension, we need to decide where the other extra transition

sequences would be placed. In our example the next two transitions (say transition “5” and

transition “6”) we can have the following sequences where either each of these transitions

18

is placed in the same way to each side of the structure or switched on the other side as

shown:

6, 5, 3, 1, 0, 2, 4, 5, 6 or 6, 5, 3, 1, 0, 2, 4, 6, 5

Both of these would be the longest snakes for dimension-spread (7, 5). As we go higher

in the dimensions, we start adding new transitions or reusing the previous used transitions

to left and right (if these transitions do not make the snake invalid). Based on the structure

of the longest snake found so far, the second one containing {6, 5,…., 6, 5} is more

common in odd dimensions with odd spread. So, let us add the next two transitions to this

sequence, as shown:

7, 6, 5, 3, 1, 0, 2, 4, 6, 5, 8

After adding these, we can re-use the pair of transitions 2 and 1. One of the common

patterns that have been found is that during reusing the transitions the transition that was

placed on the left side last time is preferred on the right side and vice versa. So the new

structure would look like:

2, 7, 6, 5, 3, 1, 0, 2, 4, 6, 5, 8, 1

At this point adding the remaining transitions (transitions 9 and 10) would look like:

9, 2, 7, 6, 5, 3, 1, 0, 2, 4, 6, 5, 8, 1, 10

This is all we need for the longest snake. This is the DNA of the longest snake in

dimension-spread (11, 5). This is the same structure as that of Snake 1. In fact, when we

used this underlying structure to build the longest snake, we found the following snake

whose canonical form is Snake 1.

Found: [7, 3, 10, 8, 1, 0, 4, 2, 3, 10, 5, 0, 9, 2, 7, 6, 5, 3, 1, 0, 2, 4, 6, 5, 8, 1, 10, 0,

6, 9, 4, 1, 3, 0, 2, 7, 9, 4, 8]

19

Canonical: [0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 8, 5, 9, 7, 0, 10, 8, 1, 4, 5, 7, 6, 10, 8, 3, 4, 2, 5,

10, 9, 6, 4, 1, 5, 7, 0, 9, 6, 3]

 The above snake is the longest known snake in (11, 5) and is of length 39. This is

also the maximally longest snake in this dimension-spread and is confirmed through

exhaustive search in dimension-spread (11, 5).

2.4.5 Working -Skin Nodes and Shadows

Figure 2.4: The longest snake and its shadows in dimension-spread (5, 3).

No hypothesis is ever complete without an attempt to explain its workings. In this

section we will attempt to explain why this works. When a node is used in the path of a

spread k snake, it makes all of its neighbors, at a Hamming distance of k or less, unusable

for future path options (except the k-nodes in the path). These unusable nodes are called

skin nodes. These skin nodes when joined in the sequence of being created by the snakes

20

are termed as “shadows” in a smaller hypercube. Figure 4 shows a dimension 5 spread 3

longest snake and the shadows (connection of skin nodes) it casts upon its composite

smaller hypercube (i.e. Hamming distance = 1). In an n-dimensional hypercube, for spread

k, when we traverse an edge of the hypercube, this edge casts its shadow in all the adjoining

smaller hypercubes and is resonated until spread k. These shadows inhibit the growth of

snakes in the future. But if an algorithm can strategically place the edges considering our

future moves such that our paths are less and less affected by these shadows then a long

snake would be possible. The pairing of transitions helps us in maintaining and strategically

placing the shadows. Of course, choosing the correct pair is decided by both of the factors,

the past transitions that have been used and the future transitions that are left unused. The

complementary shadows pave the way for a snake to move inside these tightly packed

shadows.

2.5 RESULTS AND DISCUSSION

 Once the DNA is chosen, we start assembling the pairs to the left and right side of

the structure (DNA) while following the pairing rule (using complementary pairs on the

left and right side of the DNA). After adding the complementary pairs on both sides the

snake is validated. For validating the snakes faster, we store a map of unpaired transitions

from each position for the current snake and update it when new pairs are added on both

sides (following the same fundamentals described in Section 2.3). Picking up the

complementary pair is done as an exhaustive search and we can call it an exhaustive

complementary pair search. Though the DNA occupies a very small part of the snake and

intuitively it seems that the search for the snake is still the same old difficult job, the reality

is quite the contrary. First of all, by only allowing a unique pair of transitions from the

21

DNA (rather than an arbitrarily large combination of transition pairs) we restrict the search

space to a much smaller area. The second and the most important contribution of the DNA

is that the right DNA lays the required foundational structure that can only grow to be the

longest snake in the hypercube. One of the current limitations of this approach is that these

structures are very simple only for odd dimensions with odd spread. For the other three

combinations of odd and even dimension-spread, these structures are far more complex

and become less analogous to the helical structure of DNA with unique base-pairing. We

intend to pursue the research in the remaining types of dimension-spread combinations, but

for now we confine ourselves to odd dimensions with odd spread.

Using this DNA structure we were able to find new lower bounds for the snakes in

(13, 5), (15, 7) and (17, 7). The previous best known results are from [5] [6].The longest

snake known so far for (9, 3), of length 63, was also found using this approach. The results

are summarized in Table 2. The value in the parentheses in the right hand column is the

previously known lower bound. The search in dimension-spread (15, 7) was completed by

exhausting the complete search space defined by the structure which means no other longer

snake is possible for the structure. For the other dimension-spreads the search could not be

completed at present and longer snakes are possible for such structures.

Table 2.2: New Lower Bounds for Snakes

Dimension-spread Lower bound

(13, 5) 85 (79)

(15, 7) 57c (55)

(17, 7) 103 (98)

c - Complete search for the given structure

22

REFERENCES

[1] David Kinny. (2012). “A New Approach to the Snake-In-The-Box Problem,” Proc.

20th European Conference Artificial Intelligence, 462–467

[2] F. H. Crick, J. D. Watson. (1954). “The Complementary Structure of Deoxyribonucleic

Acid”, Proceedings of the Royal Society (London) A223, 80

[3] J. D. Watson, F. H. C. Crick. (1953). “Molecular Structure of Nucleic Acids: A

Structure for Deoxyribose Nucleic Acid”, Nature 171, 737

[4] Kochut, K. J. (1996). “Snake-In-The-Box Codes for Dimension 7”. Journal of

Combinatorial Mathematics and Combinatorial Computations 20:175-185

[5] S. Hood, D. Recoskie, J. Sawada, D. Wong. (2011). Snakes, coils, and single-track

circuit codes with spread k, Journal of Combinatorial Optimization, 1–21

[6] S. Hood, J. Sawada, C.H. Wong, (2010). “Generalized Snakes and Coils in the Box”

[7] W. D. Potter, R. W. Robinson, J. A. Miller, K. J. Kochut, D. Z. Redys. (1994). "Using

the genetic algorithm to find snake-in-the-box codes”, Proceedings of the 7th International

Conference on Industrial and Engineering Applications of Artificial Intelligence and

Expert Systems, 421-426

[8] W.H. Kautz. (1958). “Unit-distance error-checking codes”, IRE Trans. Electronic

Computers, 179–180

[9] http://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-

watson-397

http://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397
http://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397

23

CHAPTER 3

COMPLEX DNA AND GOOD GENES FOR SNAKES 2

2 Md. Shahnawaz Khan and W. D. Potter. Submitted to International Conference on Artificial

Intelligence’15, 02/17/2015.

24

ABSTRACT

The Snake in the Box problem deals with finding the longest snakes in an n-

dimensional hypercube. The snake is supposed to follow a specific distance constraint,

described by the term “spread”. It is an NP-Hard problem and searching the entire search

space is not a feasible option as the search space grows exponentially with increasing

dimensions. In the previous paper [1], a generic pattern among the longest snakes for the

Snake in the Box problem was discussed. This generic pattern was termed the DNA

because of the structural and functional similarity with the DNA of living cells. It is

fundamentally different for each of the four combinations of odd and even dimension and

spread. In the previous paper, we discussed the simplest pattern, found in the odd

dimensions with odd spread. This paper illustrates one of the complex DNA patterns that

is found in the other three types of odd and even combinations of dimension and spread. It

also discusses several possible combinations of transition sequences in a simple DNA

pattern (similar to gene combinations in the DNA of living cells) and their effect on the

length of the longest snakes that can be grown from it.

3.1 INTRODUCTION

 Snake in the box problem is an NP-Hard combinatorial problem which has been

pursued by both computer scientists and mathematicians for several decades [8]. It aims to

find the longest maximal snakes in an n-dimensional hypercube. A snake is a special type

of path in a graph (an n-dimensional hypercube) that does not violate certain distance

constraints, described using the concept of “spread”. A snake represents a path in an n-

dimensional hypercube, such that if the distance between any two nodes along the path is

less than or equal to the spread then the shortest distance (the Hamming distance) between

25

them is equal to this distance along the path. If the distance between any two nodes along

the path is greater than the spread then the shortest distance through the graph between

these two nodes should be greater than or equal to the spread. Spread is nothing but a

positive integer which represents this distance constraint and generally starts with 2.

Several works have been published on the longest snakes for spread 2 and higher in several

dimensions [2] [3] [7] [9] [10].

Figure 3.1: Transition sequences (0-based) in a 3-dimensional cube

The longest maximal snake for a particular dimension-spread refers to the longest

snake that can be found in a dimension-spread and cannot be grown further. Snakes can be

represented in several ways. Among various representations of snakes, the transition

sequence is a simple and parsimonious representation. For a 0-based transition sequence

representation, a non-negative integer describes the transition of nodes (the position of

change of the bit between the previous node and current node when the nodes are

represented in a binary code) to build a snake (see Figure 1). A canonical snake, in a

transition sequence representation, is a snake transition sequence such that the first

26

occurrence of any transition precedes the first occurrence of any other transition that is

bigger than it. For example 0, 1, 2, 3 is a canonical snake in dimensions greater than or

equal to 4 while 0, 1, 3, 2 is not a canonical snake as the first occurrence of transition “2”

does not precede the first occurrence of transition “3” in the second case. Given the current

computing resources, it is not possible to search the complete search space of the graph to

find the longest maximal paths in dimensions greater than 7 [5]. Often several heuristics

are applied to hunt for these snakes in the hypercube [7]. This paper discusses three things

in a broad sense. First of all it briefly explains the fundamentals relating core subsequences

to DNA [1]. It distinguishes the two types of DNA based on the mapping of complementary

pairs and terms them as simple and complex. Later it explains the more complex DNA and

how it is used in the snake. Finally, the last topic covered is about how to build simple

DNA that would grow to long snakes.

3.2 DNA OVERVIEW

In [1], a generalized underlying structure was explained which was found to be

common among the longest snakes in several dimension-spreads known so far. It also

discussed the similarity they draw with the DNA of living cells. These underlying

structures form the basic foundation in the potential construction of the longest snakes.

Using these structures three new lower bounds of snakes in three separate dimension-

spreads were found. This structure termed as the DNA was defined as “DNA of a valid

snake is the smallest portion of the snake (approximately at the center of the snake) that

contains all the possible transition sequences for the snake and has one or more points of

symmetry. It also defines the complementary pairs of the transitions that should be used in

the remaining parts of the snake.” One of the important characteristics of the DNA was

27

that they have all the possible transitions that can participate in building the snake present

in them. They also define the pairing of transitions that should follow in the remaining part

of the snake. A concept of shadows was used to explain the underlying behavior while

using the DNA structure in building snakes.

Figure 3.2: The longest snake and its shadows in dimension-spread (5, 3)

Also in [1], the broad differences in the DNA structure of odd and even dimensions

were discussed. The discussion later was restricted to the odd spread as even spreads had

multiple symmetric points, leading to multiple mappings of complementary pairs. For odd

spreads, which have a single symmetric point, the even dimensions were also excluded

since the remaining number of possible transitions in such dimensions, apart from the odd

number of distinct transitions required to form the core of the DNA, were odd and could

28

never have a unique mapping. In short, odd dimensions with odd spreads were the only

point of discussion. Here we categorize the DNA into two, based on their unique or

multiple mapping of complementary pairs. They are termed:

1. Simple DNA

2. Complex DNA

Simple DNA (DNA in odd dimensions with odd spreads) was the primary focus of

the DNA discussion in [1]. In this paper we will try to explain our complex DNA. We will

discuss the possible structures and will highlight some of the structures containing good

genes (the transition pair combination that leads to longer snakes).

3.3 DECODING COMPLEX DNA

 For snakes whose spread is even or for even dimensions with odd spread, there are

many reasons for non-unique mapping of complementary transition pairs. One such reason

could be that there is more than one symmetric point in the DNA for even spread snakes.

Also for cases where odd numbers of transitions are left to be used for defining the

complementary transition pairs (after forming the core of the DNA), these odd number of

transitions lead to a non-unique mapping. For these types, the DNA is more complex than

the one for odd dimensions with odd spread. In this section we will try to explain some of

these complex DNAs with examples. For our first illustration, let us take the first example

as the longest maximal snake in dimension 7 with spread 2, which is of length 50 and is

shown below.

Snake(7, 2) : 0, 1, 2, 0, 3, 1, 0, 4, 2, 1, 0, 3, 5, 0, 1, 2, 4, 0, 6, 5, 0, 4, 2, 0, 3, 4, 0, 1, 2, 4,

0, 3, 5, 0, 4, 2, 0, 3, 4, 0, 1, 2, 0, 6, 1, 0, 4, 2, 1, 0

29

 This is the longest maximal snake of dimension 7. The DNA of this snake is shown

in the shaded grey region while at its core the two transitions (transitions “3” and “4”) are

shown in red color (since spread = 2). Let us carefully examine the remaining part of the

snake. We start with the complementary transition pair mapping, the mapping of the

transition pairs equidistant on the left and right side of the symmetric point(s), which is

defined in the DNA for this snake. For the snake shown above, when {3, 4} are together

considered as the symmetric point, the complementary pairs of transition “0” are “5”, “4”

and “0” and are shown below with superscripts.

6, 5c1, 0c2, 4, 2, 0c3, 3, 4, 0c3, 1, 2, 4c2, 0c1, 3

(“3” and”4” as the symmetric point)

The distance of complementary pair c1 is 5 from the symmetric points while the

distance of complementary pair c2 is 4. The distance of complementary pair c3 is 1. The

other two complementary pairs that appear in the snake are “0” with “6” and “0” with “3”.

These complementary transition pairs are defined when transitions “3” and “4” are

considered as the symmetric point individually, as shown.

6c4, 5, 0, 4, 2, 0, 3, 4, 0, 1, 2, 4, 0c4, 3

(“3” as the symmetric point)

6, 5, 0, 4, 2, 0, 3c5, 4, 0c5, 1, 2, 4, 0, 3

(“4” as the symmetric point)

In short, in the DNA we observe that “0” forms the complementary pairs with “5”, “4”,

“0”, “0”, “4”, “6”, “3”, “4” and “0” on the left and right sides of the DNA. All the other

complementary transition pairs that have been used in this snake are shown below with

30

their names as superscripts. The transitions forming the pair share the same complementary

pair name on the left and right side of the symmetric point (such as “c6”).

6, 5, 0, 4c6, 2c7, 0, 3c9, 4c9, 0, 1c7, 2c6, 4, 0, 3

(“3” and”4” as the symmetric point)

6, 5, 0, 4, 2, 0, 3, 4, 0, 1, 2, 4, 0, 3

(“3” as the symmetric point)

6, 5c8, 0, 4, 2c10, 0, 3, 4, 0, 1, 2c10, 4, 0, 3c8

(“4” as the symmetric point)

The only complementary pair that cannot be defined using this DNA is that at three

places “1” is paired with itself. One of the possible explanations that can be accommodated

for this anomaly is that while adding these complementary pairs, since the symmetric point

also changes based on the complementary pair we are choosing so the DNA includes one

neighboring transition to its left or right to keep the DNA always symmetric about its

symmetric point. So say if we are using complementary pair c’ where the symmetric point

is “4” and the pairs are “0” and “1” as shown:

6, 5, 0, 4, 2, 0c’, 3, 4, 0, 1c’, 2, 4, 0, 3, 5

As “4” is the new symmetric point transition, so it should include “5” on its right in the

DNA to make it symmetric about it (7 transitions to its left and 7 transitions to its right).

Also, after including transition “5”, the pairing would look like:

0, 3, 5, 0, 1, 2, 4, 0, 6, 5, 0, 4, 2, 0, 3, 4, 0, 1, 2, 4, 0, 3, 5, 0, 4, 2, 0, 3, 4, 0, 1

This inclusion would explain the apparent anomaly. Later, to shift the symmetric point

again to {3, 4} the transition “1” is added to the left. Let us take an example of another

longest maximal snake in dimension-spread (8, 4) which is of length 19.

31

Snake (8, 4): 0, 1, 2, 3, 4c1, 5c2, 0c3, 1, 6, 3, 7, 5, 1c3, 2c2, 3c1, 4, 5, 0, 1 (Possible core 1)

Snake (8, 4): 0, 1, 2, 3, 4c1, 5c2, 0c3, 1, 6, 3, 7, 5, 1c3, 2c2, 3c1, 4, 5, 0, 1 (Possible core 2)

The symmetric point in the above snake is transition “3” which is shown in blue

color. Since the spread is an even number, the possible two cores encoded in red are listed

as its two variants. It also shows all the complementary pairs denoted using the superscripts

and are used in the remaining part of the snake. The only complexity the DNA of this snake

carries is that there is more than one mapping of the complementary transition pair (e.g.

transition “5” is paired with transitions “1” and “2”).

3.4 SIMPLE DNA WITH GOOD GENES

In simple DNA, while defining the unique pairing, there are several possible

combinations of transition sequences that can be used. These different combinations

(similar to gene combinations in the DNA of living cells) decide the length of the longest

snake that can be found using the DNA. This important characteristic of being a factor in

deciding the length of the longest possible snake, similar to genotype mapping with

phenotype in the DNA of living cells, is discussed in this section. Some of these transition

combinations that contribute to the longest snakes have been identified.

Consider a snake (11, 5). The core 5 transitions that are used initially have to be

different, and can be written as:

3, 1, 0, 2, 4

In this dimension (n = 11), the remaining number of possible transitions to be used in the

DNA is even (it is 6). All the longest snakes that were found in [1] belonged to this category

of odd dimension and odd spread. After initially placing the first k transitions in a spread-

32

k snake (here k is equal to 5), the next two transitions (“6” and “5”) can occur in one of the

following ways as shown below:

6, 5, 3, 1, 0, 2, 4, 5, 6 or 6, 5, 3, 1, 0, 2, 4, 6, 5

Interestingly, both of these types can contribute to the longest snakes depending on the

dimension and spread. In the first type the two transitions outside the core are placed at

equal distance from the symmetric point (in the above example, transition “5” is at a

distance of three from transition “0” to the left and right side while transition “6” is at a

distance of four from transition “0” to the left and right side). This type of DNA contributes

to the longest maximal snake in (7, 3).

Snake (7, 3): 0, 1, 2, 3, 0, 4, 5, 1, 0, 3, 6, 4, 0, 1, 2, 3, 0, 4, 5, 1, 0

The second one in which the next two transitions form complementary pairs with each

other by switching sides on the left and right side of the core, is found in (11, 5). The DNA

is shown below:

DNA of Snake (11, 5): 9, 7, 0, 10, 8, 1, 4, 5, 7, 6, 10, 8, 3, 4, 2

As shown in the above example transition “8” and transition “10” form the

complementary pairs. This second type of DNA was also used in the recently found longest

snakes in (13, 5), (15, 7) as well as in (17, 7). The first type of DNA, when it was used for

(15, 7), grew to be the longest snake of length 57 after an exhaustive search of placing the

next complementary pairs. The second type also grew to be the longest snake of length 57.

The exhaustive search here refers to the addition of complementary pairs to the left and

right side of the DNA, in an exhaustive way as discussed in [1]. The exhaustive search was

not complete for (17, 7) and 103 is the length of the longest snake found so far. For the

smaller dimension-spread sometimes there are not enough transition options to form these

33

two structures as is the case with snakes in (7, 5). Also for (9, 3) the longest known snake

of length 63 was found with the second type of DNA, while the first one could only grow

to a snake of length 55. The search was exhaustive for placing the next complementary

pairs using both types of DNA in (9, 3). The other good gene combination in the DNA,

found in the dimensions searched so far, is to add the complementary transition pairs,

nearest to the symmetric point, immediately when it can be added (transition “7” and

transition “4” at the second and fourteenth positions respectively in the example below)

9, 7, 0, 10, 8, 1, 4, 5, 7, 6, 10, 8, 3, 4, 2

This is very common in bigger dimensions. For bigger dimensions, there are large

numbers of transition pairs that need to be placed on the left and right side of the core

structure. Laying all of them simply on alternate sides does not make good DNA for

growing long snakes.

9, 0, 10, 8, 1, 4, 5, 7, 6, 10, 8, 3, 2

The DNA shown above is one such example for (11, 5). In this DNA, transition “7”

and transition “4” are not placed at the second and fourteenth positions respectively as was

done in the previous DNA. This type of DNA does not grow to be the longest maximal

snake in (11, 5). The longest snake this DNA can grow is of length 35 (again found using

the exhaustive search of placing the complementary pairs), while the longest maximal

snake is of length 39.

3.5 RESULTS AND DISCUSSION

While building snakes using the transition sequence and validating these snakes in

the transition sequence, it was possible to find some of the longest snakes known so far in

dimension 8 through 12 for spread 3, 4 and 5. The results are summarized in Table 3. The

34

values in parentheses indicate the best known results. In Table 3, we see that the exhaustive

search was not efficient enough to find the longest snakes in bigger dimensions like

dimension 9, 10, 11 and 12 with spread 3. The maximally longest snakes that were found

in other dimension-spreads using the exhaustive search were used for DNA analysis and

replicating them in other dimension-spreads.

Table 3.1: Canonical Longest Snakes found in dimension-spread

* indicates the length of the longest maximal snake

For snake (9, 3), a simple DNA analogous to the simple DNA of known maximal

snakes of previous dimension-spreads was used to build the known longest snake. Since

dimension-spread (9, 3) is an odd dimension with odd spread a simple DNA with unique

complementary pair mapping was possible to build. The search space of paired

complementary transitions was exhaustively searched for the simple DNA. One of the

possible implications, if the DNA approach finds the longest maximal snake, is that the

length of the longest maximal snake in (9, 3) is of length 63 since the search was complete

using this approach. On the other hand, for snake (11, 3) which also happens to be an odd

Dimension-Spread Spread 3 Spread 4 Spread 5

Dimension 8 35(35*) 19(19*) 11(11*)

Dimension 9 58(63) 28(28*) 19(19*)

Dimension 10 - 47(47*) 25(25*)

Dimension 11 - 68(68) 39(39*)

Dimension 12 - - 55(56)

35

dimension-odd spread the search space of paired transitions using the DNA was not

completed. The best found so far was of length 153. As reported in [1], the other three new

longest snakes were also built using this DNA approach. For (15, 7), the search space was

exhaustively searched for DNA pairing and the longest found was 57. Since the search was

completed, it could also be the longest maximal snake in (15, 7). For (17, 7) and (13, 5),

the search was not complete and longer snakes are possible using the complementary pairs.

These results are summarized in Table 4.

Table 3.2: Results from the Best Gene Combinations in DNA

Dimension-spread Good genes

(15, 7) 57c (55)

(9, 3) 63c (63)

(13, 5) 85 (79)

(17, 7) 103 (98)

(11, 3) 153 (157)

c - Complete search for the given structure

In the previous section, we discussed the various possibilities of placing the

transitions inside the DNA and their implications due to varying mapping of

complementary pairs. In Table 5, we summarize the results obtained using various gene

combinations in the DNA for several dimension-spreads. The second column describes the

DNA that was used for searching the snake and the third column describes the longest

36

snake that was found using the DNA. For some of the dimension-spreads the search was

complete (length is marked by a superscript c) while for others longer snakes are possible.

The values in parentheses in the third column are the length of the previously known

longest snakes in the dimension-spread. An asterisk * means that it is the length of the

longest maximal snake in the dimension-spread.

In this paper we demonstrated the possibility of building snakes in dimension and

spread combinations other than the odd dimension odd spread. The DNA for these

remaining combinations is complex and uses multiple mapping. The usefulness of this type

of DNA is not much appreciated because there was no new records established using this

type of DNA. This complex DNA is able to explain various longest snakes while for few

others, it cannot completely explain using a single hypothesis. For the Simple DNA, the

results obtained were astonishing and we were able to break three new records while tying

with another. Simple DNA which is found in odd dimension with odd spread shows

promising results and can be used to explore further. One of the important area for

exploration could be to predict the next complementary pairs outside the DNA that could

help in growing the longest snake.

37

Table 3.3: Longest Snakes Built Using Various Gene Combinations in the DNA

Dimension-spread DNA Length

(11, 5) 9, 2, 7, 6, 5, 3, 1, 0, 2, 4, 6, 5, 8, 1, 10 39c(39*)

(11, 5) 9, 7, 6, 5, 3, 1, 0, 2, 4, 6, 5, 8, 10 35c(39*)

(11, 5) 9, 2, 7, 6, 5, 3, 1, 0, 2, 4, 5, 6, 8, 1, 10 33c(39*)

(9, 3) 7, 5, 4, 3, 1, 0, 2, 4, 3, 6, 8 63c(63)

(9, 3) 7, 2, 5, 4, 3, 1, 0, 2, 4, 3, 6, 1, 8 57c(63)

(9, 3) 7, 2, 5, 4, 3, 1, 0, 2, 3, 4, 6, 1, 8 57c(63)

(9, 3) 7, 5, 4, 3, 1, 0, 2, 3, 4, 6, 8 55c(63)

(15, 7) 13, 11, 2, 9, 8, 7, 5, 3, 1, 0, 2, 4, 6, 8, 7, 10, 1, 12, 14 57c(55)

(15, 7) 13, 4, 11, 2, 9, 8, 7, 5, 3, 1, 0, 2, 4, 6, 8, 7, 10, 1, 12, 3, 14 57c(55)

(15, 7) 13, 11, 2, 9, 8, 7, 5, 3, 1, 0, 2, 4, 6, 7, 8, 10, 1, 12, 14 57c(55)

(15, 7) 13, 11, 9, 8, 7, 5, 3, 1, 0, 2, 4, 6, 8, 7, 10, 12, 14 53c(55)

(15, 7) 13, 11, 9, 8, 7, 5, 3, 1, 0, 2, 4, 6, 7, 8, 10, 12, 14 51c(55)

(15, 7) 13, 11, 9, 7, 5, 3, 1, 0, 2, 4, 6, 8, 10, 12, 14 45c(55)

(13, 5) 11, 9, 2, 7, 6, 5, 3, 1, 0, 2, 4, 6, 5, 8, 1, 10, 12 85(79)

(13, 5) 11, 9, 7, 6, 5, 3, 1, 0, 2, 4, 6, 5, 8, 10, 12 85(79)

(17, 7) 15, 13, 11, 2, 9, 8, 7, 5, 3, 1, 0, 2, 4, 6, 8, 7, 10, 1, 12, 14, 16 103(98)

(17, 7) 15, 13, 4, 11, 2, 9, 8, 7, 5, 3, 1,0,2, 4, 6, 8, 7, 10, 1, 12, 3, 14, 16 93(98)

(11, 3) 9, 7, 5, 4, 3, 1, 0, 2, 4, 3, 6, 8, 10 153(157)

c - Complete search for the given DNA

* indicates the length of the longest maximal snake

38

REFERENCES

[1] Khan, Md. S. and Potter, W. D. (2015). “The DNA of Snakes”, submitted to The

International Conference on Artificial Intelligence’15.

[2] Meyerson, S., Whiteside, W., Drapela, T., and Potter, W.D. (2014). “Finding Longest

Paths in Hypercubes: Snakes and Coils,” in Proceedings of the IEEE Symposium on

Computational Intelligence for Engineering Solutions, IEEE SSCI' 2014, Orlando, FL (to

appear)

[3] Meyerson, S., Whiteside, W., Drapela, T., and Potter, W. D. (2014). “Finding Longest

Paths in Hypercubes, 11 New Lower Bounds: Snake, Coils, and Symmetric Coils,” (under

review).

[4] G. Zémor. (1997). “An upper bound on the size of the snake-in-the-box”,

Combinatorica, 17, 287–298

[5] David Kinny. (2012). “A New Approach to the Snake-In-The-Box Problem”, Proc.

20th European Conference Artificial Intelligence, 462–467

[6] Kochut, K. J. (1996). “Snake-In-The-Box Codes for Dimension 7”, Journal of

Combinatorial Mathematics and Combinatorial Computations 20:175-185

[7] S. Hood, J. Sawada, C.H. Wong, (2010). “Generalized Snakes and Coils in the Box”

[8] W.H. Kautz. (1958). “Unit-distance error-checking codes”, IRE Trans. Electronic

Computers, 179–180

[9] D. A. Casella and W. D. Potter. (2004). “New lower bounds for the snake-in-the-box

problem: Using evolutionary techniques to hunt for snakes”, In Proceedings of the Florida

Artificial Intelligence Research Society Conference, pages 264-268

39

[10] S. Hood, D. Recoskie, J. Sawada, D. Wong. (2011). Snakes, coils, and single-track

circuit codes with spread k, Journal of Combinatorial Optimization, 1–21

40

CHAPTER 4

SNAKE REPRESENTATIONS

Snakes can be represented in various ways. Here we discuss some of the existing

representations of snakes and a possible new representation based on the ideas discussed

in the thesis. Representations of snake can play an important role in optimizing any search

technique with respect to its time and space complexity. Some of the few common search

optimizations may include pruning the search space and reducing the time required to

validate snakes.

4.1 OVERVIEW

 Two of the most common representations that are used in the current literature are

node-sequence representation and transition sequence representation. In node-sequence

representation we use the nodes of an n-dimensional hypercube that are traversed along the

path as we move in the hypercube. Transition sequence representation on the other hand

represents the change in bit position when one moves from one node to the other. While

counting the bit position, one can start with either 0 as the first position or 1 as the first

position. Based on this we call it a 0-based or 1-based transition sequence. Both the

representations have their own advantages and disadvantages. Node sequence

representation is one of the simplest representations but the number of nodes increases

exponentially as we move to higher dimensions. To validate snakes in this representation

one usually stores a map of neighboring nodes for each node or converts each node into its

bit representation and uses bit operations to find the distance between consecutive nodes.

41

On the other hand the transition sequence representation uses less terms to represent a

snake in an n-dimensional hypercube as it uses the change in bit position while moving

from one node to another and discards the concept of absolute node. The number of

transitions increases linearly as we move to higher dimensions. This can play a very

important role for very large dimensions. Validating a transition sequence gets tricky and

in this thesis we introduced the first ever algorithm which validates the transition sequence

in its native form without converting it into any other representation.

4.2 FIBONACCI SNAKE REPRESENTATION

In this article we discuss a new representation of a snake for the Snake in the Box

problem. This representation facilitates easier validation of snakes. The proposed

representation is grounded in the basic idea of differentiating all the distinct transitions in

an n-dimensional hypercube. This representation is called the Fibonacci Snake

Representation, because, similar to a Fibonacci series where the next term is the sum of

previous terms, this representation also uses the sum of previous terms to determine the

next term. This representation has its range in natural numbers (excluding 0) which it uses

in selecting its terms for representing distinct transitions in an n-dimensional hypercube.

4.2.1 Terms in FSR

 A snake transition sequence 0, 1, 2, 3, 1, 0 can be represented as f1, f2, f3, f4, f2, f1

where fi is the ith term in this Fibonacci Snake Representation (FSR). For choosing fi+1 the

constraint is that the sum of all the terms up till fi should be less than fi+1, i.e. f1 + f2 +..+ fi

< fi+1. Also, when re-using the terms in a sequence, the sign of the term alternates between

+ and -. So in fact the above sequence would exactly look like +f1, +f2, +f3, +f4, -f2, -f1. It

42

says that 0 in the transition sequence would be represented by some term +f1 in FSR.

Likewise 1 as +f2, 2 as +f3, 3 as +f4, next 1 as -f2 and next 0 as -f1.

One such FSR would be all the terms from the set of numbers containing the powers

of 2. We can call it Binary FSR (BFSR is a special case of FSR). In BFSR, f1 = 1, f2 = 2,

f3 = 4, f4 = 8 and so on. It satisfies the constraint f1 + f2 +..+ fi-1 < fi. For the BFSR, it

satisfies the constraint f1 + f2 +..+ fi < fi+1 since f1 < f2 (as 1 < 2), f1 + f2 < f3 (as 1 + 2 < 4).

It also satisfies that f1 + f2 + f3 < f4 (as 4+2+1 < 8).

4.2.2 Validation

To validate a snake in FSR, we need to sum all the terms in the sequence. The

resultant sum should be the sum of at least k terms to satisfy a spread k snake. While

summing the sequence, the first occurrence of any term should be positive. If the first

occurrence of any term is not positive then while validating the sequence this term is

multiplied with -1 in each occurrence before adding it. So say for example we are validating

a part of the snake which is -1, -4, 0, 8, 1. To validate this which could be a part of a longer

snake we change it to 1, 4, 0, 8, -1 by changing the sign of -1 and -4 such that their first

occurrence is positive. For sequences whose sum is zero, they do not satisfy any spread

snake and are invalid snake sequences however some subsequence may be valid. In short,

the sum would determine the maximum spread the sequence can satisfy as a valid snake.

Let us explain this with a BFSR example. So for the previous transition sequence

(sequence 0, 1, 2, 3, 1, 0) the corresponding BFSR is 1, 2, 4, 8, -2, -1. We get this by using

the numbers that are exact powers of the natural numbers. So 20 is 1 and 21 is 2 and so on.

These numbers satisfy the FSR constraint. By summing the complete sequence we get 12

which is the sum of 2 terms (8 + 4) and can be a valid spread 2 snake (number of terms

43

define the spread). This is very useful for validating lower spread snakes since for invalid

snakes the sum would correspond either to an individual term or sum of fewer terms. This

is because the number of terms to obtain the sum describes the maximum spread for which

the sequence can be valid. For a spread 2 snake adding the term -8 to the sequence (1, 2, 4,

8, -2, -1) would make it an invalid spread 2 snake as the sum decreases to 4 and is not a

sum of at least 2 terms. Also while validating, the difference between sums at each stage

should be the sum of at least k terms in a valid spread k snake. So 1, 2, 4, 8, -2 has an

incremental sum of 1, 3, 7, 15, 13. When we add 1 with 2 we get 3 and when we add 4 to

it we get 7 and so on and so forth we get this incremental sum. For these incremental sum

we see that the first sum 1 and the fifth sum 13 have a difference of 12 (which can be

expressed as a sum of two terms 4 and 8) and thus cannot be a valid snake for spread 3.

These sums at each stage do not change while building snakes and thus need not be re-

generated with each addition of a new transition.

44

CHAPTER 5

CONCLUSION

In this thesis, we reported the discovery of a general underlying pattern among

many of the longest maximal snakes. These underlying patterns - the DNA of snakes, were

found to be very similar to the DNA found in cells of living organisms. Extending this idea

of DNA, snakes were built using these underlying structures. These structures successfully

grew into the longest snakes in as many as four dimension-spreads whose longest maximal

are yet to be known (among these four, three of them are the new known longest snakes).

This approach brought an NP-Hard problem one step closer to being generalized. The

approach being general can be used to hunt for snakes in dimension-spreads which have

not been tried yet. As this approach of using DNA with predefined base-pairing reduces

the search space to a much smaller search space, it helps in easing the computationally

intensive search which otherwise with current computing resources is too difficult to

search. One of the limitations of this algorithm is that for complex DNA the mapping is

not-unique and using it is not a trivial task. In fact for complex DNA, the empirical

evidence is not sufficient enough to build a solid hypothesis and is considered as an area

of possible future work for research. For snakes with simple DNA, the search of placing

the next complementary pair is a simple exhaustive search. As we go in higher dimensions,

another possible research direction would be to find a way to predict the next

complementary transition pair while building the snake from its DNA.

45

BIBLIOGRAPHY

Abbott, H. L. and M. Katchalski. (1991). “On the Construction of Snake-In-The-Box

Codes”. Utilitas Mathematica 40:97-116

Harary, F., J. P. Hayes, and H. J. Wu. 1988. “A Survey of the Theory of Hypercube

Graphs”. Computational Mathematics Applications 15:277-289

S. Hood, D. Recoskie, J. Sawada, D. Wong. (2011). Snakes, coils, and single-track circuit

codes with spread k, Journal of Combinatorial Optimization, 1–21

S. Hood, J. Sawada, C.H. Wong, (2010). “Generalized Snakes and Coils in the Box”

Kautz. W. H. (1958). “Unit-Distance Error-Checking Codes”. IRE Trans. Electronic

Computers 7:179-180

Kochut, K. J. (1996). “Snake-In-The-Box Codes for Dimension 7”. Journal of

Combinatorial Mathematics and Combinatorial Computations 20:175-185

W. D. Potter, R. W. Robinson, J. A. Miller, K. J. Kochut, D. Z. Redys. (1994). "Using the

genetic algorithm to find snake-in-the-box codes”, Proceedings of the 7th International

Conference on Industrial and Engineering Applications of Artificial Intelligence and

Expert Systems, 421-426

Y. Yehezkeally, M. Schwartz. (2012). “Snake-in-the-box codes for rank modulation”

IEEE Trans. Inform. Theory, 58, 5471–5483

46

APPENDIX A

THE LONGEST SNAKES FOR NEW LOWER BOUNDS

A.1.1 SNAKE (13, 5) - LENGTH 85

[0, 1, 2, 3, 4, 5, 6, 1, 7, 3, 8, 2, 9, 10, 1, 6, 7, 11, 4, 12, 9, 3, 10, 1, 6, 0, 2, 3, 8, 1, 7, 10,

12, 2, 3, 11, 5, 8, 7, 4, 12, 2, 3, 6, 1, 7, 4, 0, 9, 10, 3, 6, 1, 11, 4, 12, 0, 3, 6, 8, 2, 12, 11, 3,

5, 1, 7, 10, 4, 2, 12, 11, 5, 6, 0, 3, 4, 12, 2, 9, 7, 3, 6, 12, 8]

A.1.2 SNAKE (13, 5) - LENGTH 85

[0, 1, 2, 3, 4, 5, 6, 7, 1, 3, 8, 5, 9, 6, 0, 10, 8, 3, 11, 2, 0, 9, 12, 8, 3, 4, 5, 2, 7, 11, 9, 3, 4,

6, 0, 2, 5, 1, 10, 7, 9, 4, 6, 5, 12, 10, 7, 11, 4, 3, 8, 6, 5, 2, 12, 1, 10, 3, 4, 5, 2, 0, 9, 12, 8,

3, 1, 2, 0, 7, 8, 6, 12, 4, 0, 2, 11, 10, 6, 4, 5, 2, 3, 11, 8]

A.2 SNAKE (15, 7) - LENGTH 57

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 0, 1, 7, 12, 8, 4, 13, 11, 0, 14, 10, 7, 5, 8, 6, 4, 0, 9, 1,

10, 7, 2, 6, 12, 3, 4, 9, 11, 10, 5, 6, 13, 12, 7, 8, 9, 10, 0, 1, 4, 13, 14, 5, 6]

A.3 SNAKE (17, 7) - LENGTH 103

[0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 9, 2, 4, 10, 11, 3, 8, 12, 7, 13, 2, 6, 14, 3, 9, 1, 7, 12, 4, 2, 11,

15, 3, 8, 1, 5, 4, 12, 0, 6, 15, 2, 16, 7, 4, 9, 13, 8, 1, 12, 0, 15, 4, 5, 10, 13, 8, 3, 0, 14, 11,

47

6, 15, 2, 4, 5, 0, 12, 10, 13, 9, 15, 16, 6, 0, 5, 14, 10, 3, 9, 7, 2, 6, 8, 14, 5, 13, 9, 16, 1, 0,

6, 3, 4, 13, 14, 2, 12, 0, 9, 6, 10, 4]

48

APPENDIX B

THE LONGEST CANONICAL SNAKES

B.1 SNAKES WITH SPREAD 2

(6, 2) - 26 - [0, 1, 2, 3, 1, 0, 4, 3, 0, 5, 4, 0, 1, 3, 4, 0, 2, 4, 1, 0, 4, 3, 1, 5, 3, 4]

(7, 2) - 50 - [0, 1, 2, 0, 3, 1, 0, 4, 2, 1, 0, 3, 5, 0, 1, 2, 4, 0, 6, 5, 0, 4, 2, 0, 3, 4, 0, 1, 2,

4, 0, 3, 5, 0, 4, 2, 0, 3, 4, 0, 1, 2, 0, 6, 1, 0, 4, 2, 1, 0]

B.2 SNAKES WITH SPREAD 3

(6, 3) - 13 - [0, 1, 2, 3, 0, 4, 2, 5, 0, 1, 2, 3, 0]

(7, 3) - 21 - [0, 1, 2, 3, 0, 4, 5, 1, 0, 3, 6, 4, 0, 1, 2, 3, 0, 4, 5, 1, 0]

(8, 3) - 35 - [0, 1, 2, 3, 0, 4, 2, 5, 6, 1, 4, 2, 7, 3, 6, 1, 4, 0, 6, 7, 1, 5, 3, 7, 6, 2, 5, 4, 1,

6, 5, 0, 3, 4, 1]

(9, 3) - 63 - [0, 1, 2, 3, 0, 4, 2, 5, 0, 1, 6, 7, 5, 4, 1, 0, 3, 4, 2, 0, 5, 4, 1, 7, 0, 4, 6, 7, 3,

4, 2, 8, 0, 3, 4, 1, 5, 3, 2, 1, 7, 3, 6, 2, 0, 3, 4, 2, 7, 3, 6, 1, 5, 7, 2, 6, 0, 3, 2, 4, 0, 7, 2]

B.3 SNAKES WITH SPREAD 4

(7, 4) - 11 - [0, 1, 2, 3, 4, 0, 5, 1, 6, 2, 0]

(8, 4) - 19 - [0, 1, 2, 3, 4, 5, 0, 1, 6, 3, 7, 5, 1, 2, 3, 4, 5, 0, 1]

 [0, 1, 2, 3, 4, 5, 0, 2, 6, 3, 7, 5, 2, 1, 3, 4, 5, 0, 2]

(9, 4) - 28 - [0, 1, 2, 3, 4, 0, 5, 1, 6, 7, 2, 0, 1, 4, 8, 7, 0, 3, 4, 5, 7, 2, 0, 1, 6, 5, 4, 0]

49

(10, 4) - 47 - [0, 1, 2, 3, 4, 0, 5, 6, 3, 1, 7, 0, 5, 8, 1, 2, 3, 5, 4, 6, 1, 0, 2, 5, 9, 1, 6, 8, 3,

2, 5, 6, 4, 8, 7, 0, 2, 1, 4, 6, 3, 8, 2, 4, 5, 0, 8]

(11, 4) - 68 - [0, 1, 2, 3, 4, 0, 5, 1, 6, 2, 0, 7, 1, 3, 2, 8, 0, 4, 1, 2, 9, 0, 5, 1, 3, 7, 0, 2, 1,

6, 7, 4, 3, 8, 0, 10, 5, 4, 7, 6, 1, 0, 4, 5, 2, 1, 8, 9, 0, 2, 3, 7, 4, 8, 0, 2, 1, 6, 9, 5, 4, 8, 0, 7,

9, 4, 1, 0]

B.4 SNAKES WITH SPREAD 5

(8, 5) - 11 - [0, 1, 2, 3, 4, 5, 0, 6, 1, 7, 2]

(9, 5) - 19 - [0, 1, 2, 3, 4, 5, 0, 6, 2, 7, 4, 8, 0, 1, 2, 3, 4, 5, 0]

(10, 5) - 25 - [0, 1, 2, 3, 4, 5, 0, 6, 2, 7, 3, 8, 5, 9, 2, 1, 7, 0, 5, 4, 3, 2, 7, 6, 0]

(11, 5) - 39 - [0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 8, 5, 9, 7, 0, 10, 8, 1, 4, 5, 7, 6, 10, 8, 3, 4, 2, 5,

10, 9, 6, 4, 1, 5, 7, 0, 9, 6, 3]

50

APPENDIX C

VALIDATING SNAKE IN TRANSITION SEQUENCE

C.1 FLOWCHART

Yes

Yes No

No

No

Yes

START

Initialize snakeLength as 0

Spread (k) ≥ 1

Initialize oddNumberedTransitionSet

(ONTS) as an Empty Set.

Initialize index as 0.

Set a flag valid to true.

valid &

index < sizeOf(Path)

Initialize trans as Path[index].

Initialize testingSeq as a sublist of

Path[0] to Path[index]

ONTS

contains trans

Add trans to ONTS

Remove trans from ONTS

A
A

W2

V2

U2

Yes

No

Yes

No

Yes

No sizeOf

(testingSeq)

> k

Initialize lastK as a sublist containing

last k transitions of testingSeq before trans

lastK

contains trans

Initialize i = 0, tempONTS as a copy

containing current ONTS

sizeOf

(tempONTS) ≥ k

A

X2

Z2
Y2

Y2

51

Yes

No

valid = true

valid = false

sizeOf(ONTS)

== sizeOf

(testingSeq)

X1

C

U1

Yes No

index++

valid

Yes

Yes

Yes

No

No

No

D

i ≤ (index – k)

Initialize trans_i = Path[i]

sizeOf

(tempONTS)

≥ k

i++

valid = false

Z1

tempONTS

contains trans_i

Add trans_i to tempONTS

Remove trans_i from tempONTS

Y1

C

V1
W1

snakeLength = index

END

D

