
Using Genetic Algorithms to Reorganize Superpeer Structure in Peer to

Peer Networks

by

Jaymin B. Kessler

(Under the direction of Khaled Rasheed and Budak Arpinar)

Abstract

In this thesis, we describe a genetic algorithm for optimizing the superpeer structure of

semantic peer to peer networks. Peer to peer, also called P2P, networks enable us to search

for content or information1 in a distributed fashion across a large number of peers while

providing a level of fault tolerance by preventing disconnecting peers from disrupting the

network. We seek to maximize the number of queries answered while minimizing the time

in which they are answered. It will be shown that the genetic algorithm (GA) dramatically

improves network performance and consistently finds networks better than those found by

random search and hill climbing. A comparison will also be made to networks found through

exhaustive search, showing that the GA will, for smaller networks, converge on a globally

optimal solution.

Index words: Peer to peer, Genetic algorithm, Clustering, Network

1Information, as used in this thesis, is used to mean knowledge that has been gathered or
received, a collection of facts, or processed, or stored data.

Using Genetic Algorithms to Reorganize Superpeer Structure in Peer to

Peer Networks

by

Jaymin B. Kessler

B.S., Ramapo College, 2001

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2004

c© 2004

Jaymin B. Kessler

All Rights Reserved

Using Genetic Algorithms to Reorganize Superpeer Structure in Peer to

Peer Networks

by

Jaymin B. Kessler

Approved:

Major Professor: Khaled Rasheed and Budak Arpinar

Committee: Walter D. Potter

Ron W. McClendon

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

December 2004

Dedication

This thesis is first and foremost dedicated to my parents, grandparents, and my cat Chairman

Meow, without whom none of this would be possible.

iv

Acknowledgments

I would like to thank Dr. Rasheed and Dr. Arpinar for their ideas, suggestions, guidance,

and patience with me, Dr. Potter and Dr. McClendon for going out of their way to help

things come together, Kaijima Makiko for keeping me focused and on the right track, and

Dr. Covington for making it so easy to write a properly formatted thesis in LATEX.

v

Table of Contents

Page

Acknowledgments . v

List of Figures . viii

List of Tables . ix

Chapter

1 Introduction . 1

1.1 The Network Reorganization Problem 1

1.2 current methods in network reorganization 3

1.3 the Dialogue network . 11

1.4 Knowledge discovery example 13

1.5 proposed approach . 15

2 Network Architecture . 17

2.1 Superpeer Architecture . 18

2.2 Queries and knowledge encoding 19

2.3 Query routing . 21

2.4 Initial clustering and nightly reorganizing 23

3 Genetic Algorithm . 24

3.1 Overview of Genetic Algorithms 24

3.2 Representation . 28

3.3 Operators . 30

3.4 Fitness . 34

vi

vii

4 Experiments and results . 37

4.1 Experiment 1 . 37

4.2 Experiment 2 . 41

4.3 Experiment 3 . 43

5 Conclusion . 46

5.1 Summary . 46

5.2 Review of contribution . 47

5.3 Future Work . 48

Bibliography . 50

List of Figures

1.1 Solving the cause of cancer query . 14

1.2 A slower way of solving the cause of cancer query 15

2.1 A sample superpeer network with three superpeers. 20

3.1 A common algorithm for generational genetic algorithms. 25

3.2 A common algorithm for steady state genetic algorithms. 26

3.3 Connections between hosts 0 and 2, 1 and 3, 2 and 4. x indicates an unused cell 29

3.4 Pareto front points are in red and dominated points are between dotted lines 36

4.1 The highest fitness network in the population before evolution. 38

4.2 The highest fitness network found by the GA after evolution. 39

viii

List of Tables

3.1 Comparing probability of selection in rank based and roulette wheel methods

with q = 0.66 and r = 0.33 . 31

4.1 10 sample runs (out of 30) comparing GA, random search and hill climbing

(lower is better) . 40

4.2 10 sample runs comparing GA, random search and hill climbing on larger

networks (lower is better) . 42

4.3 10 sample days comparing the best network found the previous day, the cur-

rent best (not including the previous day’s network) and worst before reorga-

nization, and best found after reorganization (lower is better). All networks

were tested on the current day’s queries. 45

4.4 Comparing network size to time required for nightly reorganization. 45

ix

Chapter 1

Introduction

1.1 The Network Reorganization Problem

The problem of network reorganization varies greatly depending on the network architecture

used and the objective function being optimized. For the purpose of this thesis, it should

be assumed that we are using a superpeer network consisting of a large number of terminal

peers, each of which is connected to one superpeer. We will refer to a superpeer and all

its connected peers as a cluster1. These clusters can be connected to other clusters by

connecting the superpeers.

When we reorganize a network, we are searching for a design that maximizes (or min-

imizes) an objective function by modifying certain discrete or continuous parameters. For

example, an airplane can be designed to be more aerodynamic by modifying parameters such

as wing curvature, wing length, ratio of wing length to fuselage length, and placement of jets.

Once the problem is parameterized, reorganization becomes a simple search problem. In the

case of superpeer networks, the number of parameters available to modify is considerably

less than those used in many other design problems. We can’t change the physical location

of a node2, the bandwidth allocated to that node, or the information it contains. Because

superpeers are fixed, we can’t change which nodes are superpeers. The only options available

are to change the superpeer cluster that a peer belongs to, and to change which superpeers

1In actuality, a peer may be a member of more than one superpeer cluster. However, we will
assume this is not the case for simplicity.

2As used here, node is a host that is either a peer or superpeer.

1

2

are connected to which other superpeers.

Dialogue is a peer to peer network for information discovery designed by students and

faculty at the University of Georgia’s computer science department. The purpose of the

Dialogue network is to automatically discover new information by combining information

found on other nodes. Each node contains as its content information in the form of html,

pdf, ascii text, and other documents. Each node’s content is also semantically annotated

using recent semantic web standards such as RDF or OWL. When a node wishes to generate

new information, it sends a query out over the network so that other nodes may fill in

the missing information with their own information. Essentially, reorganizing the network

involves finding a design which maximizes the number of queries successfully answered while

minimizing the time required to answer them. This is done by modifying peer clustering and

connections between superpeers.

1.1.1 Difficulty of Reorganization

Peer to peer networks are dynamic in nature. Content, network structure, and the peers

themselves are constantly changing. In fact, one of the key benefits of the architecture is

that unlike the client server model, peers can leave and join without bringing down the

network. This also means that our network structure must constantly be updated to reflect

changes in the peers connected and user demand. For an algorithm to be effective, it has to

take all this into account while still being fast enough to keep up.

Constantly searching for optimal network designs is made even more difficult by the size

of the networks. The search space in peer to peer networks can become prohibitively large.

Depending on the day of the week and time, some networks can grow to millions of connected

peers. Even if we assume that a small subset of these will remain fixed as superpeers, the

3

problem remains intractable. A relatively small superpeer network consisting of 200 peers

and 25 superpeers gives us a search space of 25200 ∗ 2(252−25
2

) possible networks. The first

term reflects the fact that each of the 200 peers is a member of 1 of 25 superpeer clusters.

Therefore there are 25200 possible clustering arrangements. Multiplying by the second term

takes into account the number of possible connections between the superpeers themselves.

The best way to understand this is to think of the connections between the N superpeers as

being represented by an NxN matrix of bits. Superpeers x and y are connected if matrix[x,y]

== 1, and unconnected when matrix[x,y] == 0. It is assumed that if matrix[x,y] == 1, then

matrix[y,x] must also be 1. Therefore we do not need the part of the matrix to the right of

the diagonal. This means (n+1)2−n+1
2

bits are required to express all possible connections. We

can further reduce this number when we consider that the diagonal of the matrix (where x

== y) is not needed as it only tells us if peer x is connected to itself. Without the matrix

diagonal and everything to its right, the number of bits required to express all possible

connections between 25 superpeers is 252−25
2

. Because each bit can either be 0 or 1, we have

2(252−25
2

) different connections.

Furthermore, clustering peers based on similarity of content or queries alone is often

insufficient for speeding up search. There is no guarantee that a peer is likely to search for

something that is in the same area of specialization as the information that peer already

contains. Clustering based on similarities in queries may work for networks such as Gnutella

where the majority of users search for the same or similar things [13], but there is no guarantee

that this will be the case in the Dialogue network.

1.2 current methods in network reorganization

The following sections outline both current methods in network reorganization and related

uses of genetic algorithms. The reader who is unfamiliar with genetic algorithms or peer to

peer networks can consult chapters two and three respectively for an overview.

4

1.2.1 Neighbor Selection in Hybrid Peer to Peer Networks

Koo et al. [2] discuss applying genetic algorithms to the problem of neighbor selection in

hybrid peer to peer networks. A hybrid peer to peer network is one that requires a central

entity called a tracker to collect statistics and to select neighboring peers from which other

peers download content. This is useful because the content distributed on these networks

usually consists of very large movie files, which are broken into smaller blocks and down-

loaded concurrently from multiple peers. These blocks are reassembled by the downloading

peer so there is no need to transmit the blocks in order. Once a peer has the entire file it

becomes a seeder. Seeders do not always provide blocks to connected peers. They are there

to provide blocks that no other currently connected peer has (for example, if all other peers

disconnect from the network after downloading the full file). The most well known example

of this type of network is Bittorrent.

Every few seconds, a peer will analyze the average rate of download experienced from

its neighbors. These and other statistics can be sent back to the tracker and used to more

intelligently select neighbors. They formulate the neighbor selection problem as

MAXE

n∑
j=1

{Gj(N)− pj}|C|

Gj ≈
1

|C|
|

N⋃
i=0

(ci ∩ εij) ∪ cj|

subject to
∑N

j=1 eij ≤ di where N is the number of peers, pj is the proportion of the total

content peer j has, |C| is the total number of pieces of content, and Gj(N) can be thought

of as the proportion of total content contained in the union of cj and all ci where neighbor

i and j are connected. εij is a set such that εij = C if neighbors i and j are connected and

εij = ∅ if they are not.

Their solution is a binary GA with chromosome length N2

2
− N . The bitstring corre-

sponds to the eij values where 1 means peer i and j are connected and 0 means they are not.

5

Standard one point crossover and bit flip mutation were used, with probabilities of 0.3 and

0.1 respectively. Solutions are evaluated through the above function by plugging the bits

encoded by the chromosome into the εij values. Infeasible solutions are given a fitness of zero.

One of the most noticeable differences between superpeer P2P networks and Bittorrent

is that superpeer P2P networks must allow a peer to quickly search for content across

large networks. With Bittorrent networks there is no searching for content or query routing

because a central tracker makes all decisions as to which blocks are downloaded from which

peers. Peers a and c may both be connected to peer b, but it is never the case that a query

will be routed from a to c through d. Because of this, Bittorrent networks do not need to be

reorganized to route or answer a large number of wildly varying queries, or to cluster peers

into groups. This is exactly what is necessary in the Dialogue network.

1.2.2 An Adaptive Peer To Peer Network for Distributed Caching of

OLAP Results

Kalnisy et al. [3] discuss the PeerOLAP architecture for supporting On-Line Analytical

Processing queries. In this architecture, a large number of clients are connected through

an arbitrary P2P network. Each peer contains a cache storing the most useful results. If a

query cannot be answered locally by the cache contents of the peer that initiated the query,

it is propagated through the network until a peer that has cached the answer is found. An

answer may also be constructed by partial results from many peers. The system is also able

to reconfigure itself on-the-fly.

The PeerOLAP network can be thought of as a set of peers that access data warehouses

and propagate queries. Each peer makes available its computational capabilities and the

contents of its local cache. When a peer receives a query, it first tries to answer it locally.

6

If it doesn’t have the required data, it may propagate the query to its neighbors. In this

way, the network behaves as a distributed virtual cache. The way the peers act together is

designed to reduce the overall query cost.

The network structure is reorganized by creating virtual neighborhoods of peers with

similar query patterns. If a peer’s neighbors are intelligently selected, the peer should have

more of its queries successfully answered without having to extend the search to other parts

of the network. These neighbors are the only other peers that a peer may directly visit. It

is also mentioned that the size of these neighborhoods should be limited in order to prevent

flooding of the network and overloading peers with work.

They formulate the network reorganization as a caching problem. Each peer is allowed a

limited number of available network resources, considered to be the equivalent of cache cells,

and the objects that are cached are the direct connections to other peers. Each connection

is assigned a benefit value and the most beneficial connections are selected to be the peer’s

neighbors. Caching is done through a simple LFU (Less Frequently Used) policy where the

least frequently used connections are replaced. The benefit of connecting to a peer to get a

chunk of a result is defined as

B(c, P) =
T (c, Q → P) + α·H(P → Q)

size(c)

where T () is the total cost of computing chunk c and transmitting it from peer Q to P,

H(P → Q) is the number of hops from P to Q, and size(c) is the size of the chunk (for nor-

malizing). Reconfiguring the set of neighbors every time there is a change in the LFU cache

is too expensive. Instead, the system selects the more beneficial connections as neighbors

once after every k requests are served.

7

1.2.3 Reorganization in Network Regions for Optimality and Fairness

Robert Beverly [1] presents an improvement to unstructured overlay peer to peer networks,

such as Gnutella. In unstructured overlays, nodes can directly connect to other willing nodes.

There is no even or organized distribution of content, therefore queries are given a limited

time to live and submitted to the network by flooding connections, similar to a breadth first

search. In structured overlays, node and content identifiers are tightly constrained. These

overlays can be thought of as distributed hash tables where content is evenly distributed

across peers. A hash function determines which peers will store what content. Because of

this, structured overlays are not very well equipped to deal with a highly transient set of

peers. It becomes harder to maintain the content structure required for efficient routing

when nodes are joining and leaving at a high rate [11]. Beverly focuses on unstructured

networks because they can form organically, without a forced structure, allowing nodes to

selfishly connect and affect topology.

Beverly considers an optimal network to be one that is balanced between being fair and

ideal. Fairness is defined as a network’s ability to prevent nodes from gaining utility without

contributing. For example, if a peer issues a large number of queries but does not provide any

useful content, it is considered a freerider. It has been estimated that almost 70% of users on

the Gnutella peer to peer network share no files, and nearly 50% of all responses are returned

by the top 1% of sharing hosts [12]. These peers should be disconnected from the network.

If possible, the network should try to ensure the query success of each node is proportional

to the query success it provides to its neighbors. An ideal network is able to successfully

answer any query, provided that the information needed to answer that query is available

somewhere on the network. The most obvious example of such a network is one in which

all peers are directly connected to each other. This network is also the worst you can do

in terms of fairness (all peers directly connected even though a majority aren’t contributing).

8

The actual reorganization of the superpeer network is simple. Peer i connects to a

randomly chosen superpeer that is not currently a neighbor. After sending and receiving a

number of queries, the utility of the connection to each neighbor is evaluated using a utility

function. If the connection between neighbors i and j results in a negative utility value, the

neighbor is dropped. The following utility function rewards ideal and fair networks while

penalizing those with needless communication. The utility function tries to capture query

load and search success rate when connected to peer i.

ui(G, Mi, Li) =
√

Mi − αLi,∀i ∈ N

Li is a measure of the aggregate load in queries per second received by node i. Mi is the

total number of query matches obtained by node i from issuing queries.

1.2.4 Application of GAs to the Bin Packing Problem

The bin packing problem, while not strictly a network reorganization problem, provides a

good example of using genetic algorithms in grouping. The bin packing problem (BPP) is

defined as follows [15] : Given a finite set O of numbers (the object sizes) and two constants

B (the bin size) and N (the number of bins), is it possible to ’pack’ all the objects into N bins,

i.e. does there exist a partition of O into N or less subsets, such that the sum of elements

in any of the subsets doesn’t exceed B? This NP-complete decision problem naturally gives

rise to the following NP-hard optimization problem: what is the best packing, i.e. how many

bins are necessary to pack all the objects into (what is the minimum number of subsets in

the above mentioned partition)?

Emanuel Falkenauer [4] introduces the application of the Grouping Genetic Algorithm

(or GGA) to the bin packing problem. The GGA differs from classical GAs in two ways.

First, specialized operators are employed that are well suited to the task of grouping. Second,

a special encoding scheme is used in order to make the relevant structures of the grouping

9

problem correspond to genes in chromosomes. For example, a standard GA solution to the

bin packing problem might encode the following solution where one gene corresponds to one

item to be packed:

ADBCEB

This is interpreted to mean the first item is placed in bin A, the second item in bin D, the

third and sixth items in bin B, the fourth item in bin C and the fifth item in bin E. In the

grouping GA, one gene always corresponds to one group. From the previously mentioned

solution, we know that the following items are placed into bins A through E:

A={1}, B={3,6}, C={4}, D={2} and E={5}

Therefore, our variable length group oriented chromosome may be written as {0}{2,5}{3}{1}{4}.

The length of the chromosome is always equal to the number of groups. It should also be

noted that by having chromosomes that are group oriented rather than item oriented, we

are in a better position to optimize the cost function which heavily depends on the groups.

When optimizing, we want to find solutions that require the fewest bins. However, instead

of only focusing on that one criterion, Falkenauer suggests maximizing the following cost

function

fBPP =

∑
i=1..N(Fi/C)k

N

where N is the number of bins used in the solution, Fi the sum of sizes of all the items in

bin i, C is the bin capacity and k a constant s.t. k < 1. This is a measure not only of the

number of bins are required, but also how efficiently each one is being used. This function

guides the GA toward a better solution by encouraging better use of the bins.

The operators used in the GGA are crossover, mutation, and inversion. The crossover

operator is designed to transfer groups from parents to children. Since all grouping prob-

10

lems have different constraints and different definitions of an invalid population member,

Falkenauer outlines the following pattern.

1. Select at random two crossing sites, delimiting the crossing section, in each of the two

parents.

2. Inject the contents of the crossing section of the first parent at the first crossing site

of the second parent. Recall that the crossover works with the group part of the chro-

mosome, so this means injecting some of the groups from the first parent into the

second.

3. Eliminate all items now occurring twice from the groups they were members of in the

second parent, so that the old membership of these items gives way to the membership

specified by the new injected groups. Consequently, some of the old groups coming

from the second parent are altered: they do not contain all the same items anymore,

since some of those items had to be eliminated.

4. If necessary, adapt the resulting groups, according to the hard constraints and the cost

function to optimize. At this stage, local problem-dependent heuristics can be applied.

5. Apply the points 2. through 4. to the two parents with their roles permuted in order

to generate the second child.

Mutation can be divided into three general strategies. Creating a new group, eliminating

an existing group, and shuffling a small number of items among groups are all possibilities.

Finally, the inversion operator takes good schemas and shortens them. This should help

to increase the chances of them being transfered to offspring, ensuring an increased rate

of sampling of the above-average ones. In inversion, promising genes (representing groups)

are placed close together in a chromosome to increase the chances of them being transfered

together to the next generation. Note that group membership does not change during this

11

operation, rather only the order the groups are encoded in changes.

As was previously mentioned, bin packing is similar to the network reorganization

problem in that they are both grouping problems. When superpeer networks are reorga-

nized, peers are taken from one superpeer group and placed in another. In some cases, this

grouping is often subject to constraints such as requiring a peer to possess certain content

or limiting superpeer clusters to a maximum number of peers. Furthermore, there exists a

utility function that allows us to evaluate how good the new grouping arrangement is. In the

bin packing problem, we are arranging items into bins in a way similar to arranging peers

into clusters. Constraints are placed on the total size of the items placed in each bin. Finally,

a number of objective functions have been proposed for evaluating how good of a solution

each arrangement is. It seems reasonable that a solution to the bin packing problem may be

adapted to solve a P2P network reorganization problem by replacing bins with superpeers,

items with peers, changing the problem constraints, and replacing the objective function

with one that measures something like query success rate.

1.3 the Dialogue network

Dialogue is a Peer to Peer network designed for systematic information discovery, creation,

and sharing. The network is arranged into clusters, where each cluster represents a particular

area of expertise. When a peer joins the network, the meta-data in its documents (web pages,

PDFs, text files, and others) are extracted to OWL or RDF making them easier to process.

RDF, which stands for Resource Description Framework, is a web standard written in XML.

It provides a way to describe content using resources, properties, and objects. OWL, which

stands for Web Ontology Language, is considered to be a stronger language than RDF with

greater machine interpretability. OWL also has a larger vocabulary and stronger syntax

than RDF [8]. Next, representative terms and relationships of the peer’s content will be

12

identified. Semantic similarity metrics are then used to find the cluster whose content is

most similar to that of the peer wishing to join the network.

Dialogue discovers new information by combining information from connected peers.

When we want to find information, a query is sent out over the network. Queries consist of

combinations of entities and relations such that either can be a missing piece to be filled in

by a peer possessing the proper information.

The following four requirements were defined for the Dialogue network

• Dialogue needs to facilitate a query interface and algebra to interact with, process

and seek new information. This algebra is planned to facilitate composition as well as

querying the information in RDF(S) or OWL.

• Dialogue will enable classification of peers according to their local information maps

and send queries only to ”knowledgeable” peers for a given query. Thus we use peers

to find the right information and their information to find the right peers. This can be

accomplished by initially clustering the peers by checking how similar their content is.

• Dialogue will employ a systematic set of propagation (i.e., collaboration) techniques

among peers to find the right information in a short amount of time. Note that dif-

ferent collaboration schemes can yield or miss the valuable information. Similar to

human interaction, new information can be created if the right collaborators contribute

the right information at the right time. This capability will require developing some

heuristic algorithms similar to social interaction.

• Finally, it should be possible to detect and eliminate conflicts as different peers can

contribute contradictory information on the same issue.

13

1.4 Knowledge discovery example

During the course of a lawsuit investigation, scientists investigated possible causes of the

client’s cancer. They speculated that the cancer may have been caused by the client’s expo-

sure to cancer causing chemicals while at school. At the time Beverly Hills High School, the

client’s school, had an active oil rig nearby that produced 450 barrels of oil and 400,000 cubic

feet of natural gas per day. An investigation discovered high levels of benzene, a chemical

known to cause leukemia.

Dialogue would link the client’s cancer to the benzene from the oil rig in the following

way (see Figure 1.1). Lets assume that there are four clusters of peers on the network, spe-

cializing in leukemia (cluster 1), lung cancer (cluster 2), cancer-causing chemicals (cluster

3), and petrochemicals (cluster 4). There are connections between clusters 3 and 4, clusters

2 and 3, clusters 1 and 3, and clusters 1 and 2. Connections between these clusters often

represent some semantic correlations between areas of specialty but this need not always be

the case. In this case cancer causing chemicals and petrochemicals are related, lung cancer

and cancer causing chemicals are related, leukemia and cancer causing chemicals are related,

and leukemia and lung cancer are related.

The query could originate from anywhere in the network but for this example we will

assume it starts in the leukemia specialist cluster. We initiate a query, which consists of

entities and relations3, about benzene which is forwarded to other peers in the leukemia

cluster. Because none of these peers can successfully answer by filling in any missing entities

or relations, the query is forwarded to all the connected clusters (lung cancer and cancer

causing chemicals). No peers in the lung cancer cluster can successfully answer so the query

is forwarded to the cancer causing chemicals. If the peers in the cancer causing chemicals

cluster can’t successfully fill in the missing information in the query, it is forwarded to

3Example entities could include benzene and cancer, and the relation could be causes.

14

Figure 1.1: Solving the cause of cancer query

the petrochemicals cluster where it is successfully answered. The success and efficiency of

answering this query depends heavily on the network structure. Therefore, optimal dynamic

restructuring of the network is very important.

In the network shown in Figure 1.1, the benzene query is answered in a minimum of

2 hops4 between superpeers. First, the leukemia cluster sends it to the cancer chemicals

cluster, and then it is forwarded to the petrochemicals cluster. To show the importance of

network reordering, contrast this with the network shown in Figure 1.2. The same benzene

query initiating in the leukemia cluster is now answered in a minimum of 3 hops, because

there is no longer a direct link between the leukemia and cancer chemicals clusters. While

4Here, a hop refers to sending a query to another superpeer cluster.

15

Figure 1.2: A slower way of solving the cause of cancer query

the difference between 2 and 3 hops does not seem that great, consider what would happen

when the number of superpeers gets larger. In a network of 50 superpeers, adjusting one

connection can mean the difference between a query being answered in one hop or 49 hops

in the worst case.5

1.5 proposed approach

In this thesis, we apply a simple steady state genetic algorithm to the problem of network

reorganization. In peer to peer networks, the connections between peers directly determine

5Imagine the 50 superpeers are connected such that superpeer 1 is only connected to 2, superpeer
2 is only connected to 3, and so on. A query that originates in superpeer 1 and can only be answered
by superpeer 50 is answered in 49 hops. Connecting superpeers 1 and 50 causes the query to be
answered in one superpeer hop.

16

what content or information is available to which peers. Increasing the number of connec-

tions makes more content available but it may flood the system with queries, slowing down

the network by increasing traffic and the workload of connected machines [6]. Rather than

blindly increasing the number of random connections, our GA should intelligently find an

optimal network structure by clustering peers into superpeer groups and connecting super-

peers in a way that maximizes the overall query success rate while minimizing the overall

time required to answer queries. Each individual population member will use integers to

encode information on both peer clustering around a superpeer, and connections between

these superpeer clusters. The objective fitness function will seek to maximize the number

of queries answered while minimizing the time in which they are answered. The GA is

described in detail in chapter three.

The rest of this thesis is organized as follows. Chapter two presents a description of

network architecture. We focus on superpeer networks, specifically the Dialogue network.

Information encoding, query routing, and the dynamic reordering of network structure is

explained. Chapter three begins with an introduction to genetic algorithms. We present a

genetic algorithm for solving the network reorganization problem, including representation,

operators, and an objective fitness function. Chapter four details three experiments testing

the effectiveness of our GA solution. The GA is compared to random search, a variation of

hill climbing, and exhaustive search for networks of various size. Finally, chapter five gives a

summary, a review of our contribution, and possible directions for future work.

Chapter 2

Network Architecture

This chapter provides an introduction to network architecture, specifically focusing on the

superpeer architecture used in the Dialogue network. The Alliance for Telecommunications

Industry Solutions [9] gives two definitions of network architecture.

• The design principles, physical configuration, functional organization, operational pro-

cedures, and data formats used as the basis for the design, construction, modification,

and operation of a communications network.

• The structure of an existing communications network, including the physical configu-

ration, facilities, operational structure, operational procedures, and the data formats

in use.

This is to be differentiated from the underlying protocol which specifies the details of

how data passes between two communicating applications1. As of 2004 one of the most

commonly used architectures is client-server, partially because the client-server architecture

is the basis of the world wide web. The client-server architecture was intended to solve the

rendezvous problem. The rendezvous problem can be described as follows: A human has

written two programs designed to communicate with each other. She starts the first program

which looks for program 2, doesn’t find it, and stops running, all before the user can start

the second program. Similarly, the user starts program 2 which quits upon being unable

to find program 1 [10]. In the client-server architecture, a machine that wants to contact

another machine will constantly retry, even when the other machine is unavailable. Which

1These protocols include TCP/IP and UDP, to name some commonly used ones.

17

18

machines are considered clients and which are considered servers depends on who initiates

the connection. The machine initiating communication is considered to be the client and the

machine it tries to connect to is the server.

Client-server can be described as follows. The central entity (server) is a program running

on a host at a specific IP address and port and offers a service such as telnet, ftp, or serving

web pages (http). The client initiates a connection request, negotiates with the server, and

eventually connects. The server is usually able to handle multiple clients being connected

at once. The servers that are connected to the clients are not connected to each other, and

do not even have any knowledge of each other. This provides a layer of security. However,

since the server is the central entity, if the server dies the whole network disappears. Also,

these networks are not very scalable as a sufficiently large number of clients connecting to a

server will usually make the server unavailable2.

The rest of this chapter will focus on a radically different network architecture called Peer

to Peer which tries to address some scalability and fault tolerance problems that client-server

has.

2.1 Superpeer Architecture

Peer to Peer is a network architecture in which there is no centralized coordination. Peers

are fully autonomous and able to join and leave the network at will, with little effect on

performance. These peers act as both client and server simultaneously while providing

content to the rest of the network. Peer to Peer networks provide a number of improve-

ments over the traditional client-server model, but also introduce a number of challenges.

Having clients directly exchange files or information rather than go through a centralized

2This is commonly referred to as the Slashdot effect. Somebody posts an interesting link on
slashdot.org, and the server hosting the link becomes unavailable for the next hour or more as tens
of thousands of slashdot readers try to view the linked page all at once.

19

server obviously increases efficiency, but a level of security is sacrificed as peers must now

directly connect to each other. Having peers act as both client and server at the same time

is a good way to share computing resources although load balancing becomes a problem.

Having the peers provide content themselves provides a tremendous amount of available

information, although it becomes difficult to search as the size of the network grows. Finally,

the network exhibits a level of fault tolerance coming from the fact that much of the

content on the network is redundant [5]. Because of this, there is a smaller chance of a

particular piece of content becoming completely unavailable when a peer leaves the network.

However, there are no guarantees that content available one minute will be available the next.

One of the most serious problems with Peer to Peer networks occurs when the network

traffic saturates slower links, such as peers connected via dial-up modem. Routing queries

through these peers can slow network operation to a crawl. One commonly used improvement

intended to fix this problem is the superpeer architecture. In a superpeer network, more

powerful machines with faster connections are chosen to be superpeers. These superpeers

receive (or generate) queries, try to answer them, and then forward them to all connected

peers (see Figure 2.1). The peers try to answer queries but never forward them to other hosts.

2.2 Queries and knowledge encoding

The GA described in this thesis was initially designed as part of the University of Georgia’s

Dialogue semantic peer to peer network. Given knowledge of what queries were asked, which

queries were answered, and in how much time, the GA should find an optimal superpeer

structure that maximizes the number of queries asked while minimizing the time they are

answered in. However, at the time this was written functionality supporting the asking and

answering of queries was not complete. A more simple scheme had to be constructed in

20

Figure 2.1: A sample superpeer network with three superpeers.

order to create the simulation and test the GA.

In the actual Dialogue network, clients contain information in the form of papers, web

pages, and other documents. This information is then stored in a form that can be understood

by the Dialogue client, such as RDF or OWL, and used to answer incoming queries. The

queries themselves take the form of combinations of entities and relations. Specific clients

also have specific areas of expertise that may be used in the initial grouping of peers into

superpeer clusters. To summarize, any system adequately simulating the knowledge system

used in the Dialogue network must have the following

• a way of encoding queries that doesn’t depend on currently incomplete semantic pro-

cessing functionality.

• a way of determining if a host can answer a query.

21

• a way of expressing related pieces of information belonging to the same area of exper-

tise.

• a way of generating related pieces of information in a specific domain without having

to code all the connections between them.

To simplify the simulation, both pieces of information and queries are represented as

integers. Specific areas of expertise are represented as groups of ten integers, 0 — 9, 10

— 19, and 20 — 29 for example. When an instance of a peer is allocated, the knowledge

manager class randomly chooses an area of expertise, lets say 20 —29, and then generates

ten integers in that range representing pieces of information. When a new query arrives, the

knowledge manager tries to answer it by matching it to a piece of information. If the host

can’t answer the query, NO ANSWER is returned.

2.3 Query routing

Routing begins when a host receives a QUERY SUBMIT event. Because each host’s area of

expertise is randomly generated, it is possible for the query originator to answer the query

itself. However, for this simulation we assume that in a real situation there would be no

reason to propagate queries that the originating host can answer and therefore we always

assume that the originating host cannot answer the query itself.

The host first forwards the query to the superpeer it is connected to which then attempts

to answer the query. If the superpeer is unable to answer, it is then broadcast to all peers

that are currently connected to that superpeer. The superpeer then waits for all hosts

to respond, either with a successful answer or NO ANSWER. If one or more successful

answers are received, the first is returned to the query originator and the query is considered

answered. The simulation only considers the first successful answer in determining the time

22

in which a query is answered.

If no connected hosts return a successful answer, the superpeer will broadcast the query

to all connected superpeers and the process continues. Those superpeers will then forward

the query to all peers connected to them, wait for all peers to answer, and then broadcast

to other connected superpeers if the query has not already been answered.

There are three conditions that can end query propagation. First, queries have a time

to live field that is decremented every time it is forwarded to another superpeer. This is a

system parameter and can be set to any number of hops. When the time to live becomes

zero, the query dies and it is no longer forwarded. Second, a query contains a record of

all the superpeers that it has been previously sent to. If a superpeer receives no successful

answers from connected peers and is not connected to any other superpeers that haven’t

previously seen the query, the query dies. Finally, a successful answer to a query causes all

other responses to be ignored. Notice that a peer in one cluster answering a query does not

guarantee that query propagation will end in other clusters. The query is allowed to run its

course through other clusters and all returned answers are ignored.

Because broadcasting and answering queries is a potential bottleneck in peer to peer net-

works, techniques to reduce this bottleneck can be employed. Kunwadee Sripanidkulchai [13]

shows that caching query results, similar to the way that web pages can be cached for faster

fetching, helps to reduce both the time in which queries are answered and also the amount

of traffic on the network. Because peers will always greatly outnumber superpeers, limiting

the number of peers that queries are broadcast to will also considerably improve network

efficiency. In the Gnutella network, this is achieved through the use of bloom filters. A

bloom filter is a data structure for succinctly representing a set of filenames. The list is

hashed, compressed, and sent to the superpeer. An interesting property of bloom filters is

23

that when they are used to test if a particular peer contains a file, they give a very small

number of false positives and absolutely no false negatives [14]. Although peers connected to

the Dialogue network will be searching for information rather than file names, the network

can still greatly benefit from peers periodically sending a summary of the information they

contain to the superpeer for indexing.

2.4 Initial clustering and nightly reorganizing

New hosts wishing to join the network will initially be clustered based on the semantic

content of their public documents. They will be assigned a superpeer cluster to join based

on how similar their information is to that of the other peers in that superpeer cluster. The

GA is in no way involved in this initial clustering. For example if a user is an expert in

genetic algorithms, her documents are likely to contain a large amount of information in

that area. Therefore the user would most likely be placed into a superpeer cluster with other

genetic algorithm experts. The simulation described in this thesis randomly places all peers

into initial superpeer clusters rather than clustering based on semantic content.

The GA will most likely be run nightly, during off peak hours when network usage is

at a minimum. Depending on daily query volume, either all queries or ones that were not

satisfactorily answered are logged during the day. At night, the GA reconfigures the network

structure based on a population of designs and runs all logged queries again. It then finds

the network structure that maximizes the number of queries successfully answered while

minimizing the time taken to answer them.

Chapter 3

Genetic Algorithm

3.1 Overview of Genetic Algorithms

In this chapter we describe a genetic algorithm to solve the network reorganization problem.

Genetic algorithms are evolutionary search techniques based on principles of biological evo-

lution. An initial population of randomly generated solutions to some problem is maintained,

each with a scalar fitness value. Fitness is a value that is computed for each population

member and used to evaluate how good a solution that member is. In the example of the

Dialogue network, we could use the number of queries answered along with other information

to compute the fitness for each population member(network)1. From this population, two

members are selected to be parents, with higher fitness population members having a greater

chance of being selected. These parents then produce one or more offspring by means of

various operators such as crossover and mutation. In generational genetic algorithms this

process is repeated until a new generation is created. This new generation is then considered

to be the current generation and the old generation is discarded. See Figure 3.1 for a common

algorithm for generational GAs. In steady state genetic algorithms, like the one described

in this thesis, the new individuals are directly inserted into the current population replacing

weaker members, rather than being placed in a new population. This process is outlined in

Figure 3.2. The population’s average fitness tends to increase over time leading to a higher

average fitness and populations of better solutions. The GA is allowed to run until some

1It would be overly simplistic to use only the number of queries answered as it ignores the
number of queries asked and the time it took to answer those queries.

24

25

Figure 3.1: A common algorithm for generational genetic algorithms.

terminal condition becomes true, such as the loss of diversity.

The remainder of this section describes the general approach the GA takes in terms of

its use in the Dialogue network. As mentioned above, we begin with a randomly generated

population. Since each individual population member encodes a network design, all initial

clusters and connections are random. We then evaluate each population member and assess

26

Figure 3.2: A common algorithm for steady state genetic algorithms.

27

its fitness. To evaluate a population member, we configure the actual Dialogue network

connections and clusters according to the design encoded by that member. We then test the

network by submitting queries. The population member’s fitness is directly related to how

successful the particular configuration is in answering those queries. The specific function

used to evaluate fitness will be given in a later section. For now, just note that it takes into

account the ratio of queries answered to queries asked, and the total time taken to answer

those queries. After all population members have been assigned fitness values, two are chosen

to be parents. The higher the fitness, the more likely a population member is to be chosen

as a parent. Note that low fitness members are not excluded from being parents, but the

probability of them being chosen is low. The two parents then produce a child through

operators such as crossover and mutation, which are described in a later section. We want

that child to be added into the population, but the population size must remain fixed. This

means a current population member must be removed to make room for the new child. We

randomly choose a member from the worst n% of the population, remove it, and replace it

with the new child. We then choose another two parents and the process is repeated until a

terminal condition is reached such as the loss of diversity.

The hope is that two parents who are high in fitness can produce a child that is of equal

or higher fitness. To illustrate this process, assume the following bitstrings are parents that

encode information about connections between superpeers2.

11100000

00001111

The more 1’s in the string, the more superpeers are connected. Through the use of genetic

operators, these parents could produce an offspring such as 11101111 which is a design

connecting more superpeers than either parents. This increase in superpeer connections could

lead to an increase in the query success rate. Two high fitness parents do not always produce

2The actual encoding of superpeer connections used in the GA is a little more complex, but this
overly simplified encoding will work for the example.

28

a high fitness child. Parents such as

11110000

00001111

could easily produce a child like 00000000. However, overall the high fitness children produced

replace the lower fitness members and the population’s average fitness generally tends to

increase over time.

3.2 Representation

Each population member is represented by two separate vectors of integers. The first

vector describes which peers belong to which superpeer clusters and the second describes

the connections between the superpeers. Obviously, the total length of each population

member directly depends on the number of peers and superpeers currently connected to the

network. Chromosome length is defined as h + n2−n
2

where h is the number of connected

hosts that are not superpeers and n is the number of superpeers. Each integer in the

vector represents an ordinal index into a superpeer lookup table and can range from 0 to

MAX SUPERPEERS − 1.

3.2.1 Clusters

The first MAX PEERS positions in the chromosome represent clustering information. Each

of the MAX PEERS positions represent a non-superpeer host currently connected to the

network. The integer stored in that position represents the superpeer that the non-superpeer

host is connected to, or rather the table index of the superpeer. For example if we have five

peers and two superpeers, we could theoretically have the following

(1,1,0,1,0)

meaning that host 0 is connected to superpeer 1, host 1 is connected to superpeer 1, host

2 is connected to superpeer 0, host 3 is connected to superpeer 1, and host 4 is connected

29

Figure 3.3: Connections between hosts 0 and 2, 1 and 3, 2 and 4. x indicates an unused cell

to superpeer 0. This essentially groups the peers into clusters by what superpeer they are

connected to.

3.2.2 Inter-superpeer connections

The next n2−n
2

genes represent connections between the superpeers themselves where n is

the number of superpeers. If you think of this part of the GA as an NxN matrix such as the

one in Figure 3.3, a connection between superpeers 3 and 1 can be established by setting

matrix[3][1] = 1. Likewise, matrix[3][1] = 0 indicates that no connection is present between

superpeers 3 and 1. You will notice an unnecessary amount of redundancy in this encoding

scheme. Because all connections are bidirectional, a connection between superpeers 3 and 1

must surely imply there is also one between 1 and 3. If you look back at the matrix, you

will see that we only really need the part of the matrix to the left of the diagonal as the

rest expresses redundant or unnecessary information. The diagonal itself expresses hosts

connected to themselves while everything to the right just repeats what is to the left of

the diagonal (with x and y values swapped). This is why instead of an NxN matrix, we

only need n2−n
2

bits to represent connections. This n2−n
2

bit string allows us to encode 2
n2−n

2

different sets of superpeer connections.

30

3.3 Operators

The basic operators used in this genetic algorithm are selection, crossover, mutation,

and replacement. Selection is the process of choosing population members to be parents.

Crossover, a recombination operator, is responsible for creating a new individual from

two parents. Mutation introduces further variation in search directions by randomly incre-

menting or decrementing the value of individual genes. Replacement takes the newly formed

population member and reinserts it back into the population by killing off a weaker existing

member. No diversity maintenance operators were used in our GA. A diversity maintenance

operator tries to limit population members from becoming too similar. In steady state

genetic algorithms we can choose a population member to kill off and replace not only by

fitness, but also by how similar it is to the rest of the population. In generational GAs we

can weight a population member’s fitness value with a measure of how similar it is to the

rest of the population.

3.3.1 Selection

Two selection methods were used in choosing parents. Earlier experiments used rank based

selection, a method in which population members are assigned a rank based on their fit-

ness. Members with a better rank have a greater chance of being selected. For example

if population member 1 has a fitness of 13, member 2 has a fitness of 128, and member

3 has a fitness of 42, ranks 1, 2, and 3 will be awarded to population members 2, 3,

and 1 respectively. One way to compute the probability of selection is with the function

prob(rank) = q− (rank−1)r where r = q/(pop size−1). The parameter q controls selection

pressure3 and ranges between [1
pop size

, 2
pop size

]. Selection by rank can in some cases be an

improvement over roulette wheel selection. In roulette wheel selection a population member’s

3Selection pressure can be thought of as the ratio of the best individual’s selection probability
to the average selection probability of all individuals in the population.

31

probability of being selected is the ratio of its fitness to the total population fitness. For

example, if the total population fitness is 50.0 then a population member with a fitness of

25.0 has a probability of 0.5 of being selected. As you can see, rank based selection can keep

excessively high fitness members from completely dominating selection and limiting diversity.

Table 3.1: Comparing probability of selection in rank based and roulette wheel methods with
q = 0.66 and r = 0.33

Fitness Rank P rank P roulette

10 3 0 0.009
1000 1 0.66 0.9
100 2 0.33 0.09

An alternative approach, known as tournament selection, seemed to help the GA to con-

verge more quickly. In tournament selection, n population members are randomly selected to

compete in a tournament. Of those n members, the one with the best fitness is chosen to be a

parent. This process is repeated one more time to find the second parent. Tournament selec-

tion seems to provide two main benefits over rank based selection. First, similar to simulated

annealing, the boltzmann selection distribution can be used to occasionally select a tourna-

ment winner with a lesser fitness. Over time, the probability of a lesser fitness individual

winning a tournament can be decreased as we begin to converge on a global maximum (if we

are maximizing fitness). Second, tournament selection allows us to better control selection

pressure by regulating the tournament size. For example, if the tournament size is two, a

population member only needs to have a fitness greater than the other competitor in the

tournament. By increasing the tournament size to four, a population member must now have

a fitness that is better than the other three competitors to win.

3.3.2 Crossover

Crossover is the operator responsible for taking parts of each parent and combining them into

a new individual. Some crossover operators try to copy contiguous sequences of genes from

32

each parent to the new child while others attempt to find new useful genes through various

methods of combining the genes of the parent. Some common examples of the latter include

heuristic and arithmetical crossover. Heuristic crossover uses the rule x3 = r · (x2 − x1) + x2

where parent x2 is not worse than x1 for maximization and parent x1 is not worse than

x2 for minimization. In order to move in the direction that most likely minimizes error,

the heuristic depends on the relationship between the values for a particular gene and

the resulting fitness to come from a regular distribution but this is not the case here. In

this problem, the values of genes are simply indices into a table of known superpeers and

therefore the heuristic does no better than random search. Arithmetic crossover, defined

as a linear combination of two vectors st
v and st

w such that the two resulting offspring are

st+1
v = a · st

w + (1 − a) · st
v and st+1

w = a · st
v + (1 − a) · st

w, also yields few benefits as there

is no reason to believe that the resulting gene (superpeer table index) will contribute to a

high fitness, despite the numerical similarity to its high fitness parents’ gene.

For the given problem, the most useful crossover operators seem to be one-point and

uniform. In one-point crossover, a random locus is chosen between 0 and the length of the

chromosome. The first child is created by concatenating the first part of the first parent and

the second part of the second parent. Similarly, the second child is the concatenation of the

first part of parent two and the second part of parent one. This operator seems to perform

well because rather than mathematically calculating a new gene based on two good genes,

some sequences present in the parents are preserved in the children. Uniform crossover is a

generalization of one-point crossover. In uniform crossover, you step through each gene. With

a probability of P, where P is usually 0.5, either the gene from parent 1 or parent 2 is passed

on to the new child. This operator tends to break up strings of genes (called building blocks)

that may have contributed to a good solution. However, the ability to combine features from

both parents regardless of their relative locations often outweighs this disadvantage [7].

33

3.3.3 Mutation

Three types of mutation operators were considered for the problem. First was boundary

mutation which mutates a gene to the upper or lower bound of a variable, in this case

[0..MAX SUPERPEERS). Boundary mutation’s usefulness is usually based on the fact

that often times the best solution to a numerical optimization problem involves setting

the variables involved to their maximum or minimum allowed values. It’s easy to see why

in this case boundary mutation is more of a hinderance than a help. We are ignoring all

the potentially useful superpeers in the table except for the first and last. The fact that a

superpeer is either the first or last in the table is not a factor in how useful they are.

Next is non-uniform mutation, defined as v′k = vk +∆(t, UB−vk) if a randomly generated

digit is 0 and v′k = vk −∆(t, vk − LB) if that randomly generated digit is 0. Here, LB is the

lower bound (0) and UB is the upper bound (MAX SUPERPEERS-1) of the variable. The

delta function is usually defined as ∆(t, y) = y · (1− r(1− t
T

)b
). T is the maximum number of

generations we plan to run for, t is the current generation, b is a system parameter often set

to 5, and r is a random number between 0 and 1. This method works under the assumption

that favoring exploration by making larger changes is desirable during the beginning of the

GA’s run, while smaller changes are more desirable towards the end to fine tune solutions

we have found. For this reason, non-uniform mutation is great for fine tuning variables in

numerical optimization problems. However, in this problem there is no reason to believe

that small changes in gene values will yield small changes in fitness. Similarly, we have no

reason to believe that large changes in the genes will lead to large changes in fitness. For

this reason, we don’t want to discourage large changes in genes towards the end.

The most useful mutation operator for this problem seems to be uniform mutation. In

uniform mutation, a gene’s current value is replaced with a random value in the gene’s

range. It may sound counterintuitive that a random search would consistently outperform

34

the above more intelligent methods but this is only because uniform mutation is the only

one that doesn’t place unnecessary and undesirable restrictions on the search space at any

time during the search.

3.3.4 Replacement

In generational genetic algorithms, two parents are selected from the current generation

to create a child. This process is repeated n times (where n is the population size) until

the children form a whole new generation. Only after this new generation is completely

created are new parents selected from it to continue the process. Notice that the newly

created child is placed in the next generation, rather than in the current one. This is not

the case with steady state GAs, like the one described in this thesis. In a steady state

GA, a newly created child is inserted immediately into the current population. If we wish

to keep the population size constant, this means we must choose a population member to

replace with the new child. This, for obvious reasons, is called replacement. There are many

methods of replacement ranging from replacing the worst population member, to replacing a

member randomly chosen from the worst n% of population members, to replacing the worst

population member that is the most similar to the child we want to insert. The last method

mentioned is intended to maintain diversity by preventing the population from containing

too many similar members. This GA uses the second method, randomly choosing a current

member to replace from the worst 10%.

3.4 Fitness

Essentially, network reorganization is a multiobjective problem. We want to maximize the

number of queries answered while minimizing the time taken to answer them. Many solutions

have been proposed to help with the problem of multiobjective optimization, one of the

most commonly used being finding the Pareto front points. A point is on the Pareto front if

35

there are no points that are better than it in all objectives. To clarify, a point may still be

on the Pareto front if another point is better than it in some objectives. But that point is

no longer in the Pareto front if another point is found that is better than it in all objectives.

Figure 3.4 demonstrates a sample Pareto front. Pareto points are in red and dotted lines

demonstrate some points that are dominated by Pareto points. To simplify things, a 2

dimensional example will be used where the first parameter f1 is represented by the y axis

and the second parameter f2 is represented by the x axis. To find the Pareto front, we first

must decide if we want to minimize or maximize each of the parameters f1 and f2. Then we

have to find the points that are not dominated by any others. If we want to maximize f1

along the y axis, it dominates all points below it. If we want to minimize f1 along the y axis,

it dominates all points above it. If we want to maximize f2 along the x axis, it dominates all

points to the left of it. If we want to minimize f2 along the x axis, it dominates all points to

the right of it. So putting it all together, if we want to maximize f1 and f2, a point p is on

the Pareto front if it is not dominated by any other points (there exist no points that the

Pareto point is to the left of and below).

A fundamental drawback of the Pareto front method is that an end user is usually required

to interpret the graph and evaluate which solution is the best. Whether the Pareto front is

analyzed by humans or computer, it is a very time consuming operation. To speed up the GA,

a weighted sum approach can be taken where the two criteria for evaluation are combined in

one objective function. This is a classical approach to multiobjective optimization and can

greatly simplify the evaluation of points. Specifically, the following formula was used, taking

into account the number of queries asked, the number of queries successfully answered, the

time they were answered in, and the total time the simulation ran for.

total query time

queries answered + 0.001
+ (1000.0 ∗ queries asked

queries answered + 0.001
)

Notice that we are trying to minimize the fitness, rather than maximize. If we ignore

the first part, we are left with the ratio of queries asked to queries answered, multiplied

36

Figure 3.4: Pareto front points are in red and dominated points are between dotted lines

by a factor of 1000, with 0.001 added to the denominator to prevent division by zero. As

the number of queries answered approaches zero, this term becomes excessively large. If

two networks have a similar percent of queries successfully answered, we need to favor the

network that answered the queries the fastest. The first term simply calculates the average

time each query was answered in.

Chapter 4

Experiments and results

Here we present three experiments to evaluate the effectiveness of the GA when applied

to the network reorganization problem. The networks found by the GA are compared to

networks found by random search and hill climbing, and for smaller networks the GA is also

compared to exhaustive search.

4.1 Experiment 1

The first experiment compares the results found by running the GA on a small network of

12 peers and 3 superpeers to those found by random search, a variation on hill climbing,

and exhaustive search. We hope to show that the GA is doing more than randomly visiting

points in the search space, and can outperform a heuristic method such as hill climbing.

Hill climbing begins with a randomly generated network. At each iteration we either change

a peer’s superpeer cluster or add/remove a connection between superpeers. If the resulting

network has a higher fitness than the previous one, it becomes the current network. Random

search simply generates one new network consisting of random clusters and superpeer con-

nections at each iteration and stores the best network seen so far.

All networks were tested on 120 randomly generated queries, which were evenly dis-

tributed across all peers for submission to the network. In all experiments, a set of random

costs representing the time needed to transmit a query between two hosts is generated.

The queries were generated at the beginning of the simulation and used to test all network

configurations throughout the experiment. The GA, consisting of 50 population members,

37

38

Figure 4.1: The highest fitness network in the population before evolution.

was allowed to evolve over 5000 iterations. To keep the comparison between the GA and

other methods fair, a new random network is generated for hill climbing and random search

every time we create a new GA population member. Tournament selection was used with a

tournament size of 2. The entire experiment was repeated 30 times.

4.1.1 Results

Table 4.1 compares the fitnesses of the networks found by the GA, random search, and hill

climbing in 10 out of the 30 runs. The GA was the most consistent, producing networks

with the highest fitness in every run. Hill climbing was able to produce 7 networks with

the same fitness found by the GA, while the other 23 runs produced comparatively low

fitness networks. As expected, random search performed the worst, with no runs producing

networks with a fitness as high as those found by the GA.

39

Figure 4.2: The highest fitness network found by the GA after evolution.

Figures 4.1 and 4.2 represent a sample network before and after evolution by the GA.

The large circles represent superpeers 0, 1, and 2. The smaller circles labeled P0 through

P11 represent peers. Near each peer is a number representing a peer’s knowledge specialty.

For example, peers 0, 5 and 11 all specialize in knowledge area 2. These specialties do

not change as the network changes. The edges connecting peers to their superpeer clusters

represent connections, and are assigned a number based on the cost of sending information

between a peer and superpeer. For example, in Figure 4.1 there is a cost of 40 time units

when sending data between superpeer 0 and peer 0. These time units do not affect any real

world quantity such as bandwidth or physical distance. They are only used to simulate the

cost of sending data to different peers.

The number of factors affecting network performance make it difficult to understand

how the network in Figure 4.2 is any better than 4.1. To fully understand, you would have

to take into account every query submitted, where that query originated from, the cost of

40

searching each peer, and each peer’s collection of information. From looking at the figures,

it may seem like there is no logical reason for one network performing better than the other.

Much in the way that it is difficult to visualize exactly what was learned by a large neural

network, it is difficult to rationalize why ceertain peers belong to certain clusters. These

P2P networks found by the GA should be thought of as “black boxes” to which queries are

input and a fitness is output. In contrast, Figure 1.1 which solves the cancer cause query

is easy to follow. This is because it was a carefully crafted example intended to answer

one query and show how the GA can evolve a network that answers the query better. It

is easy to see how this one query moves through clusters as missing pieces of information

are filled in. If the network were larger and more queries were submitted, it would become

quite unclear how one network is better than another without a considerable amount of work.

Table 4.1: 10 sample runs (out of 30) comparing GA, random search and hill climbing (lower
is better)

Run GA Fitness Random search fitness hill climbing fitness

0 3177.053711 3871.968506 3342.723145
1 3177.053711 3754.563477 3342.723145
2 3177.053711 3654.455566 3342.723145
3 3177.053711 3447.515381 3177.053711
4 3177.053711 3654.455566 3342.723145
5 3177.053711 3540.059814 3342.723145
6 3177.053711 3756.250977 3177.053711
7 3177.053711 3342.723145 3342.723145
8 3177.053711 3871.968506 3342.723145
9 3177.053711 3763.250977 3259.163086

However, verifying that the GA converges to a network with the same fitness in every run

and consistently finds better solutions than random search and hill climbing is not enough

to prove that it is converging on a globally optimal network. The best (and most obvious)

way to assure the GA is finding a globally optimal network is to compare the solution

found to one found through exhaustive search. More accurately we will be comparing the

fitnesses of the networks found by both methods rather than the networks themselves, as

41

many different networks can have the same fitness and the GA is only able to find one of

these optimal solutions in every run. This phenomenon is called genetic drift because the

population will drift towards some particular high fitness solution as the GA converges.

After running the above experiment 30 times, an exhaustive search of network space1

was run to verify GA convergence. The solution found by exhaustive search had a fitness of

3177.053711, proving that the GA had consistently converged on a globally optimal network.

While exhaustive search is guaranteed to always find a globally optimal network, the

obvious drawback of this method is that the problem becomes intractable for networks even

slightly larger than the ones in the above experiments. Even with only 3 superpeers,12 peers,

and 120 queries submitted, exhaustive search took approximately 3 hours and 29 minutes

to complete. The GA found an equivalent solution in around 15 seconds, making it much

more practical for evolving large networks.

4.2 Experiment 2

Experiment 2 tests how the GA performs on a substantially larger network of 50 superpeers

and 500 peers. Since the Dialogue network will certainly consist of more than 12 peers and

3 superpeers, it is important to observe the GA’s performance when the network size is

considerably larger. Given the number of possible networks (50500 ∗ 2(502−50
2

)), comparing

the GA results to exhaustive search (as was done in experiment 1) would be impossible to

do in a reasonable amount of time. What we hope to show is not that the GA is finding

a globally optimal network, but rather that it dramatically improves network performance

and consistently finds networks with a much higher fitness than those found by random

search or hill climbing.

1Search space consisting of every possible network.

42

Because the larger search space leads to a problem of greater complexity, the population

size was increased to 200 and the network was allowed to evolve for 25,000 iterations. This

time, each peer submitted 2 randomly generated queries in its area of expertise rather than

10.

4.2.1 Results

As in experiment 1, the GA produced the best networks followed by hill climbing, with the

worst networks always produced by random search. However, this time hill climbing was

unable to find any networks with a fitness comparable to those found by the GA.

Table 4.2: 10 sample runs comparing GA, random search and hill climbing on larger networks
(lower is better)

Run GA Fitness Random search fitness hill climbing fitness

0 2464.855957 4329.772461 2707.284180
1 2474.807617 5315.000977 2706.151367
2 2504.295898 5207.087402 2821.211914
3 2524.281982 4876.630371 2664.714111
4 2516.926758 3982.040527 2821.688965
5 2415.625977 5116.051758 2782.782959
6 2519.579590 3982.040527 2803.927734
7 2501.279541 3825.925049 3229.171387
8 2519.579590 4878.194824 2784.510010
9 2660.644531 4342.915039 2842.250977

To demonstrate the dramatic increase in network performance, we must compare the best

network at the beginning of the GA’s run to the best found when the GA terminates. In the

fourth run the initial population had a highest fitness of 3454.398926. If you look at table

4.2, the GA found a network with a fitness of 2524.281982, a difference of approximately

930.12. Other runs gave a change in fitness from best initial population member to final

solution found of 500 – 900. Even in the worst case, we are still dramatically improving

network fitness.

43

4.3 Experiment 3

Experiment 3 tracks the progress of the network over 30 simulated days. We want to see

how the solution found by the GA one day performs when tested on queries submitted

the next day. This involves initially configuring the simulated Dialogue network randomly,

submitting and answering queries during the day, performing reorganization by running the

GA on sample queries at night, and using the best network found by the GA to configure

the Dialogue network for the next day. A network of 25 superpeers and 250 peers was

used. These 250 peers are allowed to submit 10 queries each over the network per day, and

the worst 25 answered queries are used that night to test each GA population member. A

population size of 150 was used and the GA was allowed to evolve for 15,000 iterations. The

following chart outlines the general algorithm used for this experiment:

1. Create a single random solution to be used in configuring the Dialogue network for the

first day.

2. Allow peers connected to the Dialogue network to submit and answer queries all day.

3. At the end of the day, choose 25 previously submitted queries to be used in testing

each GA population member.

4. Generate 149 other population members. This will be the population the GA evolves.

5. For every population member, configure the Dialogue network, submit the 25 sample

queries, and record the population member’s fitness. This will fill in the fitness values

for the initial population.

6. Run the GA for 15,000 iterations, after which the GA is stopped and we note the

population member with the best fitness.

7. Configure the Dialogue network based on the best solution found by the GA.

44

8. Goto step 2

To further explain step 4, new populations were formed as follows: the first member of

the new population is always the best network from the previous day. This ensures that

the previous day’s best network has an influence on the current population. We then loop

through the rest of the population, creating new members by copying the previous day’s

best network, and then stepping through each cluster and connection gene and mutating

with a probability of 0.5.

It should also be noted that peers will usually generate queries in their own area of

expertise. As described in chapter 2, each peer specializes in an area of knowledge. This is

represented as a range of integers such as 0–9, 10–19, 20–29, and so on. Because peers usually

ask queries in their own area of expertise, the network found by nightly reorganization one

night should still perform well on the next day’s queries.

4.3.1 Results

Table 4.3 shows the results of the last 10 days of the thirty day simulation. Each row

contains the following information: The fitness of the previous day’s network when tested

on the current day’s queries, the best and worst fitness when the initial GA population is

generated and nightly reorganization begins, and the best fitness found by the GA after

evolution. By comparing the last column of row n and the first column of row n + 1, we can

compare how well the best network found on day n generalizes to answer the queries on day

n + 1. While the previous day’s network does not always provide the optimal network for

the current day’s queries, it does always provide a very good solution.

Table 4.4 shows sample times required to complete nightly reorganization for networks

of various sizes. For a network consisting of 10 superpeers and 100 peers, 248.84 seconds

is required for the GA to complete 15,000 iterations. A network of 50 superpeers and 500

45

Table 4.3: 10 sample days comparing the best network found the previous day, the current
best (not including the previous day’s network) and worst before reorganization, and best
found after reorganization (lower is better). All networks were tested on the current day’s
queries.

Day previous day current best current worst best network found

21 — 3915.872803 6906.364746 2211.458008
22 3074.716324 3156.817383 7571.601074 1896.735962
23 2340.185731 2321.773682 6906.364746 2336.970703
24 2710.011743 3915.872803 8358.556641 1946.076050
25 2321.773682 2321.773682 7593.101074 2321.773682
26 2898.143896 2729.072510 7568.300781 2610.543457
27 2529.007421 2738.643799 6593.522461 2474.678467
28 3265.657480 3020.647949 7556.951172 2760.764648
29 2554.114238 2915.424072 7226.524902 2563.967773
30 2661.772110 2661.104492 7582.400879 2373.247070

peers requires a little more than 5 hours for the GA to complete nightly reorganization. For

large networks, the time required to complete 15,000 GA iterations quickly becomes too

large. The obvious solutions are to test networks using fewer queries, and most importantly

to reduce the number of iterations the GA is allowed to run for. By limiting the simulation

to 8 hours instead of a fixed number of iterations, we can still find a good design and the

network will perform well on the next day’s queries.

Table 4.4: Comparing network size to time required for nightly reorganization.

superpeers peers max eval time (in seconds)

3 12 23.37s
10 100 248.84s
50 500 21409.97s
100 1000 15228221.7s2

Chapter 5

Conclusion

5.1 Summary

We have outlined a genetic algorithm intended to be applied to the network reorganization

problem. It employs commonly used operators to achieve high performance when compared

to other methods such as random search and hill climbing.

Each population member consists of two separate substrings and represents a parametric

description of a superpeer network design. The first substring encodes which superpeer

cluster each peer belongs to and is made up of n integers, where n is the number of peers

in the network. Each of these n genes can be an integer from 0 to m, m being the number

of superpeers in the networks. The second substring is composed of m2−m
2

genes, the exact

number of distinct connections possible between m superpeers. These genes are boolean,

taking on a value of 1 or 0 depending on if a connection exists between two given superpeers.

These two strings, although contained in the same population member, are evolved and

operated on separately. The information needed to compute a population member’s fitness,

specifically how many queries were successfully answered and the total time taken to answer

them, is obtained by reconfiguring the network based on that population member and then

resubmitting a select subset of previously submitted queries. A steady state model was used

in which common operators are applied to two parents, chosen by tournament selection

with a tournament size relative to the size of the population. These two parents are chosen

to produce one offspring by one-point and uniform crossover, and uniform mutation. This

newly created population member is then reinserted into the current population replacing

46

47

either the current worst member or a member randomly chosen from the worst 10% of

the population. The process is continued for a fixed number of iterations depending on the

number of nodes currently in the network and the population size.

5.2 Review of contribution

This thesis presented a novel use for steady state genetic algorithms by applying them to the

problem of optimizing a superpeer network for information discovery. In chapter 4, the GA

method was compared to random search, hill climbing, and for smaller networks, exhaustive

search. Both the GA, random search, and hill climbing were allowed to run for 5000 iterations.

All networks found by random search exhibited poor fitnesses, usually considerably worse

than those networks found by hill climbing. Unlike random search, hill climbing produced

no networks that were unable to successfully answer any queries. However, hill climbing was

able to converge on networks as fit as those found by the GA only 7 out of 30 times, with

the rest of the networks found being of relatively poor fitness. The most consistent method

was the GA, which was able to find the highest fitness networks in every run. Furthermore,

it was proven that for small networks, not only was the GA able to find the highest fitness

solutions but it also consistently found globally optimal networks. This was verified by com-

paring the fitnesses of networks found by the GA to those found by an exhaustive search of

network space. On average, the GA found these globally optimal solutions in approximately

15 seconds. Comparing this to exhaustive search, which took 3.5 hours to complete, shows

that the GA was able to find optimal networks in a very reasonable amount of time.

Experiment 2 tested the GA’s ability to reorganize considerably larger networks. Because

it was not possible to run an exhaustive search, the GA was compared only to hill climbing

and random search. As in experiment 1, the GA produced the best networks followed by hill

48

climbing, with the worst networks always produced by random search. However, this time

hill climbing was unable to find any networks with a fitness comparable to those found by

the GA. While it cannot be verified that the GA is finding a globally optimal solution, it is

important to note the dramatic difference in fitness between the initial GA population and

the GA population after 25,000 iterations. Across all runs, the change in fitness from best

initial population member to final solution found was always between 500 – 900. This is a

dramatic improvement that no other method was able to match.

Experiment 3 simulated 30 days of network activity, including nightly reorganization, for a

network of 25 superpeers and 250 peers. We began with a single randomly generated network

that was used to answer the first day’s queries. Every day, each of the 250 peers are allowed to

submit 10 queries each to the network. During nightly reorganization, a random population

of 150 networks was created and the GA was allowed to evolve for 15,000 iterations. Twenty

five sample queries from that day were used to test each population member and compute its

fitness. The best network found by the nightly reorganization was used to answer the next

day’s queries. While the network found by the GA the previous night is not always the best

network for answering the next day’s queries, it does always provide a very good solution.

Furthermore, networks of various sizes were tested and the amount of time required to run

nightly reorganization listed in Table 4.4. For large networks, the time required to complete

15,000 GA iterations quickly becomes prohibitively large. Possible solutions include testing

networks using fewer queries and reducing the number of iterations the GA is allowed to run

for.

5.3 Future Work

Although it was not explicitly part of the objective function outlined in this thesis, the

number of inter-superpeer connections should be taken more into consideration. A larger

number of these connections will cause queries to be propagated to more clusters, giving

49

them a greater chance of being successfully answered. However, this also would lead to

bandwidth saturation and degrade overall network performance. It is worth noting that

the current objective function depends largely on the overall time taken to answer queries.

Because of this, network designs that connect a large number of superpeers, therefore

leading to network slowdowns, may have lower fitnesses. This will not always be the

case, depending on what subset of daily queries are submitted to the genetic algorithm

during nightly reorganizing. We may also want to use repair operators to ensure that every

superpeer cluster is connected to at least one other superpeer, leaving no cluster as an island.

The genetic algorithm may benefit, in the case of larger networks, from a more intelligent

replacement strategy. Currently, the two replacement strategies being used are replacing the

worst population member and replacing a random population member from the worst 10%

of the population. Perhaps a better strategy would be to employ a niching method such as

crowding. In crowding, which is commonly used in steady state GAs, only the worst 10%

of the population is considered for replacement. Unlike the replacement strategy currently

used, we choose the population member that is most similar to the newborn for replacement,

rather than choosing a random population member. This should help the GA to maintain

diversity longer, giving us a better chance of finding better networks.

Finally, a means of better determining when the GA should be stopped may be helpful.

This may help with diversity but more importantly, it will allow us in some cases to stop

the GA early. Given the large number of nodes that may be present and the time required

to reconfigure the network and resubmit queries, the most scarce resource is time. When

testing population members, we can’t increase the speed with which queries are answered,

so reducing the time the GA takes to run is imperative.

Bibliography

[1] Robert E. Beverly IV. Reorganization in Network Regions for Optimality and Fairness.

Department of Electrical Engineering and Computer Science, Massachusetts Institute

of Technology, Cambridge, MA, August, 2004.

[2] Simon G. M. Koo, C. S. George Lee, Karthik Kannan. “A Genetic-Algorithm-Based

Neighbor-Selection Strategy for Hybrid Peer-to-Peer Networks.” In Proceedings of

the 13th IEEE International Conference on Computer Communications and Networks

(ICCCN’04) (2004).

[3] Panos Kalnis, Wee Siong Ng, Beng Chin Ooi, Dimitris Papadias, Kian Lee Tan. “An

Adaptive Peer to Peer Network for Distributed Caching of OLAP Results.” In Pro-

ceedings of the 2002 ACM SIGMOD International Conference on Management of Data

(2002): 25–36.

[4] Emanuel Falkenauer. “A Hybrid Grouping Genetic Algorithm for Bin Packing”. In

Journal of Heuristics, Vol. 2, no. 1 (1996): 5–30.

[5] Brian F. Cooper, Hector Garcia-Molina. “Peer-to-Peer Resource Trading in a Reliable

Distributed System.” In Electronic Proceedings for the 1st International Workshop on

Peer-to-Peer Systems (IPTPS ’02) (2002).

[6] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A Survey of Peer-

to-Peer File Sharing Technologies. White paper, Electornic Trading Research

Unit (ELTRUN), Athens University of Economics and Business, 2002.

http://citeseer.ist.psu.edu/androutsellis-theoto02survey.html

50

51

[7] Michaelwicz, Z. 1999. Genetic Algorithms + Data Structures = Evolution Programs.

New York: Springer.

[8] W3Schools. Introduction to RDF. URL: http://www.w3schools.com/rdf/rdf intro.asp.

Viewed: November 7, 2004.

[9] The Alliance for Telecommunications Industry Solutions. URL:

http://www.atis.org/tg2k/ network architecture.html. Viewed: November 7, 2004.

[10] Comer, D. and D. Stevens. 1996. Internetworking With TCP/IP Volume III. New Jersey:

Prentice-Hall.

[11] Qin Lv, Sylvia Ratnasamy, Scott Shenker. “Can Heterogeneity Make Gnutella Scalable”.

In Electronic Proceedings for the 1st International Workshop on Peer-to-Peer Systems

(IPTPS ’02) (2002).

[12] Eytan Adar, Bernardo Huberman. Free Riding on Gnutella. URL:

http://www.firstmonday.dk/issues/issue5 10/adar/index.html. Viewed: November

8, 2004.

[13] Kunwadee Sripanidkulchai. The Popularity of Gnutella Queries

and its Implications on Scalability. URL: http://www-

2.cs.cmu.edu/%7Ekunwadee/research/p2p/gnutella.html. Carnegie Mellon University,

Pittsburgh, PA. Viewed: November 9, 2004.

[14] Mitzenmacher, M. “Compressed bloom filters.” In Proc. of the 20th Annual ACM Sym-

posium on Principles of Distributed Computing (2001): 144–150.

[15] M. R. Garey and D. S. Johnson. Computers and Intractability–A Guide to the Theory

of NP-Completeness. W. H. Freeman And Company, New York, 1979.

