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Chapter 1

Introduction

1.1 Commodities, Markets and Profits

A commodity is a good, especially an agricultural or mining product, that can be

processed and resold. Some examples of such goods are: soybeans, wheat, crude

oil and gold. Large volumes of commodities are bought and sold around the world

each day. Farmers and miners need to sell their products and manufacturers need to

purchase raw materials. This can be done on the spot market, where commodities

are bought and sold “on the spot”. The spot market is actually a term that denotes

many decentralized locations at which the good may be bought or sold.

However, commodities trading is actually much more complex than simply buying

and selling goods on the spot market. Most commodities trading is actually done on

the futures market as futures contracts. That is, at time t0 an individual promises

to sell x bushels of soybeans at price y at a time t1 in the future [Hul97]. Someone

else would enter into the other side of the contract, promising to buy that quantity

of the commodity at the agreed upon price at the proposed time. The development

of futures can be traced to the middle ages when they were developed to meet the

needs of farmers and merchants [Hul98]. Futures make a great deal of sense for both

parties because they reduce risk. The farmer knows that he will sell his crop for a

certain price and the manufacturer can rest assured that his business will be able to

continue production with an ample supply of affordable raw materials.

1
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Commodity futures contracts were first traded on an organized exchange, the

Chicago Board of Trade (CBOT), in 1850. The first contract called for the delivery

of 3,000 bushels of corn. The corn would be exchanged for a cash payment at a

pre-specified future time and location. In 2002, over 260 million contracts for 47 dif-

ferent products were traded on the CBOT. Comparable trading volume exists on the

Chicago Mercantile Exchange and the New York Mercantile Exchange. The enor-

mous size of the futures market has sparked researchers to examine the motivations

of traders.

Commodity futures contracts originated as a way for farmers to reduce their

price risk. Prior to these contracts, a farmer would have to bear the cost of planting

and cultivating a crop with no guarantee of the price for which that crop could

be sold. By contracting to sell his crop at a certain price before planting it, the

farmer did not have to be concerned with future price changes. His only risk was the

actual production of his crop. Therefore, a farmer’s compensation would depend on

his ability to produce a crop rather than his ability to produce a crop and future

changes in the price of the commodity being produced. The farmer, as is anyone else

who seeks to reduce risk, is called a hedger.

The farmer’s need to hedge is fulfilled by speculators. Speculators are willing to

bear the price risk in hopes of favorable price changes. Since farmer’s hedge their

position by contracting to sell in the future (aka shorting the contract) speculators

take long positions (agree to buy). Speculators will only take a long position if they

expect the price of the commodity to be greater at time of delivery than the price

specified in the futures contract [Key78]. Then they can buy from the farmer at a set

price and immediately sell the commodity for a greater price. The difference between

the price stated in the futures contract and the speculators expected price at that

future time is the risk premium. The hedger is willing to allow speculator to have this

premium in exchange for the reduced risk of a guaranteed price. The speculator’s
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compensation is this risk premium. Since it is the speculator’s belief about the

probability distribution of future spot prices that determines the size of the risk

premium that he is willing to accept, the speculator’s success is dependent on the

validity of his beliefs. A comparative advantage can be gained by acquiring superior

information about the underlying dynamics of the commodity’s price behavior.

The use of futures contracts to hedge is not limited to farmers. A manufacturing

firm may require large amounts of a commodity to produce its final product. Airlines

must buy large amounts of jet fuel. Any entity which is exposed to the price risk of a

commodity that underlies a traded futures contract may reduce their risk by taking

the appropriate position futures contracts. Those seeking to reduce risk are hedgers

[CWS95].

The futures market has grown well beyond the previous examples but the logic

still applies. It should be noted that most futures contracts do not result in physical

delivery. A trader can realize the financial gain or loss of his position by taking a

position in the same futures contract that is opposite to his current position.

The effects of various factors on a particular commodity’s price are unique to

that particular commodity. As with any economic good the ultimate arbiter of price

is supply and demand. Efficient markets imply that all information is fully reflected

in the commodity’s price and no one can make a economic profit by trading futures

contracts.

If a pattern can be found in past price data that accurately predicts future price

movement, then markets are not efficient and an economic profit can be made by

those who recognize the pattern. NN and GAs are used to find such a pattern. In

an attempt to predict commodity futures prices, people attempt to use historical

price data for a commodity future to predict the value of that commodity future.

Mathematically, values which run in a series and vary over time are known as a time

series.
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1.2 Time series and financial analysis

Technical analysis focuses on the past data of an asset, such as a commodity futures

contract, in order to predict its future behavior [BKM98]. Thus, in essence, technical

analysis is devoted to studying time series of data related to financial instruments,

including commodities, futures, stocks, etc. Technical analysts examine this historical

data and attempt to formulate rules which explain the behavior that they observe.

They look for patterns in the data and attempt to generalize from those patterns in

order to predict the future behavior of the variable in question such as the price of the

asset. Some technical analysts specialize in stocks, others in futures or commodities,

yet others in foreign exchange rates.

Technical analysts use a variety of methods in their attempts to extract valuable

information from time series. Some of the methods, such as Box-Jenkins methods

[BJ76] or other linear regression approaches rely on their assumption of a linear

relationship among the variables. However, most experts have found that the rela-

tionships among time series values for various financial instruments are not linear

[BLB92, DGE93]. Other, non-linear methods have also been used to perform finan-

cial time series analysis [Sav89, Sch90].

1.3 Methodology

1.3.1 Experiments

A neural network is an artificial intelligence technique that is especially useful for

recognizing patterns in complex data sets and generalizing from those patterns in

order to work with new data. Thus, a neural net would seem to be an ideal technique

to use in time series analysis. The neural net should be able to take n values of the

time series as inputs and estimate the next value as an output. The network should

be able to find any existent relationship between these variables. The neural net
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should be able to recognize any pattern in the data and predict future values. The

theoretical limit to the accuracy of a neural network is the amount of noise present

in the data.

Neural networks are quite useful for recognizing patterns and generalizing from

them. However, optimal network performance is quite dependent upon making the

proper choices when constructing the network. Furthermore, the construction of a

neural network is very much an art form and the ideal network architecture can be

quite elusive. It is possible to combine the neural net with another artificial intelli-

gence technique such as a genetic algorithm. Genetic algorithms excel at minimiza-

tion / maximization problems. Thus, a genetic algorithm can be used to determine

the proper architecture to maximize the accuracy of the neural network.

In addition to the architecture problem, the methods used to train a neural net

can fall prey to local minima. Genetic algorithms can be used once more to find

optimal values for the weights of the neural networks as well. Thus, local minima

can be avoided and optimal neural network results can be obtained.

The goal of the current research is to find a preferred artificial intelligence

approach to predict future values for commodities futures. Project objectives are:

1. Develop a neural network model to predict the next value in the commodity

future time series.

2. Use a genetic algorithm to select the proper architecture for a neural network

model to predict the next value in the commodity future time series.

3. Use a genetic algorithm to search for weight assignments for a neural network

model to predict the next value in the commodity future time series.

Chapter 2 examines objective 1, while chapters 3 and 4 address objectives 2 and

3, respectively. Chapter 5 compares results from all of the objectives and discusses

overall conclusions.
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1.3.2 Data

The data consist of daily commodity data for soybeans at the Chicago Board of

Trade starting with January 1, 1980 and ending with August 30, 2002. Different

portions of this data are used in the various experiments. The data are obtained

from Datastream. In order to more easily optimize neural network performance, the

data are normalized before being used as input for the neural networks. Each data set

is divided by its largest member to provide values between zero and one. In turn, the

predicted, output values are multiplied back to their original values and compared

to actual observed values in their original form. Error statistics are generated using

these non-normalized values.



Chapter 2

Pure Neural Network Approach

2.1 Background on Neural Networks

The brain is made up of neurons. These neurons are connected to each other by

synapses which vary widely in strength. Each neuron receives input from a number of

other neurons. This input may be excitatory, i.e. positive, or inhibitory, i.e. negative.

If the input activation level is sufficient, then the neuron will “fire”. The firing neuron

will then send activation to those neurons which are connected to its output. In this

manner activation spreads through a network of neurons. The human brain contains

between 1010 and 1011 neurons. Each of these neurons is connected to hundreds

or thousands of other neurons[And95]. Thus, the human brain understands speech,

recognizes a loved one’s face, and accomplishes abstract thought, etc. by spreading

patterns of activation throughout this complex neural network. Though each neuron

is making a simple calculation, complex learning is accomplished by altering the

connection strengths between neurons. The calculation performed by each neuron

remains the same, however the weight given to the various inputs changes. This

enables the marvelous complexity of function shown by the human brain.

Neural networks are based on this system. There are nodes which have an acti-

vation function, most commonly the sigmoid function, 1/(1 + e−x). This function

determines if the input activation is sufficient to cause the node to fire. Biological

synapses are modeled by weighted links between the nodes. These weights can be

7
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positive or negative, modeling the excitatory and inhibitory function found in biolog-

ical neural networks. In general, there are one or more nodes which receive the data

as input. These are called input nodes. In most neural network implementations,

the input nodes do not use an activation function. These nodes simply function

as storage bins for the input being fed into them. There are also usually one or

more nodes which provide the output, or answer from the network. These are called

output nodes. In many neural network architectures, including all of those used in

this research, there are additional nodes which reside between the input and output

nodes. These nodes are called hidden nodes and they provide much of the computing

power for the network.

A wide variety of neural network architectures have been used. However, this

research focuses on the most commonly used architecture, the multilayer perceptron,

also known as a three layer, feed-forward neural network. Hereafter “network” or

“neural network” will refer to a network of this type. In this sort of network, nodes

in one layer may only influence those residing in a layer closer to the output layer.

Thus, activation may only feed forward through the network from input nodes to

hidden nodes and then on to output nodes. No feedback loops are allowed.

A properly constructed network can recognize patterns in the input data. Dif-

ferent patterns of input produce different output. The network can also generalize by

responding to similar patterns in a similar manner. However, these desirable behav-

iors are dependent upon the weights in the network being properly set. Calculating

the proper weights for a small network quickly becomes a daunting task. Directly cal-

culating the weights for a large network is practically impossible. However a system

of using supervised learning called back propagation of errors[RHW86] provides an

answer to this problem. This technique uses a gradient decent method to establish

values for the network weights which minimize the output errors. Thus, both the

input and output must be known for the network to be trained.
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2.2 Neural Networks and Financial Time Series Analysis

In addition to the more traditional approaches, a artificial intelligence tech-

niques have been applied to a number of financial instruments. Garcia and

Gençay[GG00] use a neural network to estimate a generalized option pricing for-

mula. Walczak[Wal01] uses neural networks to forecast foreign exchange rates for a

variety of currencies. Trippi and DeSieno[TD92] examine a day trading system for

Standard & Poors 500 index futures contracts which is based on a neural network

combined with rule-based expert system techniques. Hutchinson, et al.[HLP94] con-

struct neural network models for predicting Standard & Poors 500 futures options

prices. Castiglione[Cas00] uses neural networks to predict a variety of financial

time series. Yao, et al.[YTP99] use neural networks to forecast the Kuala Lumpur

Composite Index.

2.3 Software used / Methodology

For this research, a variant form of backpropogation called resilient propagation

(RPROP)[RB93] was used. RPROP utilizes a local adaptation of the weight updates

according to the behavior of the error function in order to overcome some of the

disadvantages of a pure gradient decent approach. The RPROP algorithm is not

effected by the influence of the size of the error derivative, since it relies only on the

sign of the error derivative. Instead, the size of the weight change is determined by

a weight-specific update value �(t)
ij :

�w
(t)
ij =




−�(t)
ij , if ∂E

∂wij

(t)
> 0

+�(t)
ij , if ∂E

∂wij

(t)
< 0

0 , else

(2.1)

The new update-values �(t)
ij must also be determined. This is based on a sign-

dependent adaptation process.
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�(t)
ij =




η+ ∗ �(t−1)
ij , if ∂E

∂wij

(t−1) ∗ ∂E
∂wij

(t)
> 0

η− ∗ �(t−1)
ij , if ∂E

∂wij

(t−1) ∗ ∂E
∂wij

(t)
< 0

�(t−1)
ij , else

(2.2)

where 0 < η− < 1 < η+

Thus, when the last update is too large and the algorithm has jumped over a

local minima, the partial derivative of the corresponding weight wij changes its sign

and the update value �(t)
ij is decreased by the factor η−. When the derivative retains

its sign, the update value is increased by the factor η+. Additionally, in the case

of a change in sign, there is no adaptation in the succeeding learning step. This is

achieved by setting ∂E
∂wij

(t)
= 0 in the above adaptation rule.

In order to reduce the number of freely adjustable parameters, the increase and

decrease factors are usually set to fixed values of η− = 0.5, η+ = 1.2.

This research also utilized weight decay. Weight decay is a modification that

may be used with neural network’s backpropagation learning technique in order

to improve generalization. Using a weight decay term (α) can assist in preventing

over training and preserving generalization by performing a local reduction of the

weights, discouraging large weights. This research used the weight decay variant of

the RPROP algorithm. Thus, the composite error function is:

E =
∑

(ti − oi)
2 + 10−α

∑
w2

ij

For implementation of the neural nets, this research used the Stuttgart Neural

Network Simulator, version 4.2. This software was run on a Pentium 4 PC with

the Linux operating system. A number of different network architectures were used

along with a number of variations of the network parameters. The networks were

evaluated by comparing predicted versus actual values on the data sets. For each
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network, the sum of square errors (SSE) was collected and used for evaluation. Each

combination of variables was set up in SNNS and trained until either:

• the test data error began increasing

• there was no further improvement in the training data error.

This data should provide insight into the problem as well as establishing a baseline

for comparison with other techniques.

2.4 Results / Conclusions

One set of experiments uses one hundred days worth of input into the neural net.

The other set uses only ten days worth of input. The longer data set should allow

longer term patterns to be detected, while the shorter data set should focus the

network on recent values for the variable in question.

Additional, longer time periods could be tested in an attempt to find still longer

term patterns. A time period of approximately a year would be a fairly logical

extension, especially for agricultural commodities such as the soybeans used in this

research. However, longer time periods are outside the scope of this research.

The number of hidden nodes used were five, ten, and one hundred. The weight

decay parameter was allowed to assume the values five, ten, and twenty. The initial

weight range values were kept semetrical and had values of plus and minus: 1.0, 0.5,

0.25, 0.125, 0.0625.

The results of the experiment can be seen in Table 2.1 through Table 2.6. There

is considerable variety in the quality of solutions found by the different networks.

These tables contain the error calculations on the out of sample validation set. The

mean squared error (MSE) was calculated by dividing the SSE by the number of

observations in the data set. The mean error is simply the square root of the MSE.
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These values are in cents per bushel. So, a mean error of 15.20 means that the

network missed its prediction by an average of 15.20 cents per bushel. The average

price per bushel was 651.37 cents. Even relatively small differences in error could

mean a considerable difference in the profit made by using the network since the

volume of the commodity traded can be rather large.

It appears that the most recent data is the most important for calculating the

next value in the time series since there is no improvement gained by increasing the

number of inputs from ten to one hundred. Indeed, there is evidence of decreased

performance on the experiments which used one hundred data points as input. There

seems to be a negative effect of including additional hidden nodes as well. The error

values for the five and ten hidden node subsets are comparable, however the error

generated by the one hundred hidden node sets is noticeably greater. This difference

seems to only exist in the experiments which used one hundred input values. This

seems to indicate that the greater number of hidden nodes combined with the larger

number of input nodes allowed the network begin to over train despite the weight

decay parameter and the stopping condition. Indeed, the results for a weight decay

parameter of five are slightly better than the others. Since a lower weight decay

parameter causes more severe weight decay and thus a more severe limit on over

training, this discrepancy supports the hypothesis. These findings are in agreement

with those of Gerson and Fuller[LF95]. They found that including additional input

or hidden nodes reduced network efficacy for time series evaluation.
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Table 2.1: Results with 100 input values, average price 651.37 cents per bushel
Hidden Weight Initial weight SSE MSE Mean
Nodes Decay range Error
100 5 -1.0–1.0 253563 329.30 18.14
100 5 -0.5–0.5 236477 307.11 17.52
100 5 -0.25–0.25 304617 395.60 19.88
100 5 -0.125–0.125 224618 291.71 17.07
100 5 -0.0625–0.0625 233060 302.67 17.39
100 10 -1.0–1.0 321903 418.05 20.44
100 10 -0.5–0.5 242407 314.81 17.74
100 10 -0.25–0.25 202006 262.34 16.19
100 10 -0.125–0.125 171655 222.92 14.93
100 10 -0.0625–0.0625 242307 314.68 17.73
100 20 -1.0–1.0 478583 621.53 24.93
100 20 -0.5–0.5 207835 269.91 16.42
100 20 -0.25–0.25 326325 423.79 20.58
100 20 -0.125–0.125 375068 487.10 22.07
100 20 -0.0625–0.0625 139092 180.64 13.44

Table 2.2: Results with 100 input values, average price 651.37 cents per bushel
Hidden Weight Initial weight SSE MSE Mean
Nodes Decay range Error

10 5 -1.0–1.0 152358 197.86 14.06
10 5 -0.5–0.5 127937 166.15 12.89
10 5 -0.25–0.25 150851 195.91 13.99
10 5 -0.125–0.125 328134 426.14 20.64
10 5 -0.0625–0.0625 194167 252.16 15.87
10 10 -1.0–1.0 170047 220.84 14.86
10 10 -0.5–0.5 134972 175.28 13.23
10 10 -0.25–0.25 108339 140.70 11.86
10 10 -0.125–0.125 114269 148.40 12.18
10 10 -0.0625–0.0625 160197 208.04 14.42
10 20 -1.0–1.0 159494 207.13 14.39
10 20 -0.5–0.5 164318 213.40 14.60
10 20 -0.25–0.25 125927 163.54 12.78
10 20 -0.125–0.125 120299 156.23 12.49
10 20 -0.0625–0.0625 112058 145.53 12.063
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Table 2.3: Results with 100 input values, average price 651.37 cents per bushel
Hidden Weight Initial weight SSE MSE Mean
Nodes Decay range Error

5 5 -1.0–1.0 170248 221.10 14.86
5 5 -0.5–0.5 116781 151.66 12.31
5 5 -0.25–0.25 123515 160.40 12.66
5 5 -0.125–0.125 120098 155.97 12.48
5 5 -0.0625–0.0625 234568 304.63 17.45
5 10 -1.0–1.0 135776 176.33 13.27
5 10 -0.5–0.5 220699 286.62 16.92
5 10 -0.25–0.25 115173 149.57 12.23
5 10 -0.125–0.125 114570 148.79 12.19
5 10 -0.0625–0.0625 118490 153.88 12.40
5 20 -1.0–1.0 117686 152.83 12.36
5 20 -0.5–0.5 112862 146.57 12.10
5 20 -0.25–0.25 129846 168.63 12.98
5 20 -0.125–0.125 371349 482.27 21.96
5 20 -0.0625–0.0625 111053 144.22 12.00

Table 2.4: Results with 10 input values, average price 651.37 cents per bushel
Hidden Nodes Weight Initial Weight SSE MSE Mean Error

Decay Range
100 5 -1.0–1.0 131555 152.97 12.36
100 5 -0.5–0.5 507729 590.38 24.29
100 5 -0.25–0.25 112058 130.30 11.41
100 5 -0.125–0.125 99294 115.45 10.74
100 5 -0.0625–0.0625 129746 150.86 12.28
100 10 -1.0–1.0 120902 140.58 11.85
100 10 -0.5–0.5 98591 114.64 10.70
100 10 -0.25–0.25 104118 121.06 11.00
100 10 -0.125–0.125 100701 117.09 10.82
100 10 -0.0625–0.0625 129947 151.10 12.29
100 20 -1.0–1.0 576371 670.19 25.88
100 20 -0.5–0.5 214066 248.91 15.77
100 20 -0.25–0.25 118490 137.77 11.73
100 20 -0.125–0.125 100802 117.21 10.82
100 20 -0.0625–0.0625 130751 152.03 12.33



15

Table 2.5: Results with 10 input values, average price 651.37 cents per bushel
Hidden Nodes Weight Initial Weight SSE MSE Mean Error

Decay Range
10 5 -1.0–1.0 410846 477.72 21.85
10 5 -0.5–0.5 107133 124.57 11.16
10 5 -0.25–0.25 134168 156.00 12.49
10 5 -0.125–0.125 103113 119.89 10.94
10 5 -0.0625–0.0625 108641 126.32 11.23
10 10 -1.0–1.0 98189 114.17 10.68
10 10 -0.5–0.5 328034 381.43 19.53
10 10 -0.25–0.25 461699 536.86 23.17
10 10 -0.125–0.125 137082 159.39 12.62
10 10 -0.0625–0.0625 247231 287.47 16.95
10 20 -1.0–1.0 102812 119.54 10.93
10 20 -0.5–0.5 101405 117.91 10.85
10 20 -0.25–0.25 96882 112.65 10.61
10 20 -0.125–0.125 104018 120.95 10.99
10 20 -0.0625–0.0625 117686 136.84 11.69

Table 2.6: Results with 10 input values, average price 651.37 cents per bushel
Hidden Nodes Weight Initial Weight SSE MSE Mean Error

Decay Range
5 5 -1.0–1.0 97787 113.70 10.66
5 5 -0.5–0.5 100400 116.74 10.80
5 5 -0.25–0.25 97485 113.35 10.64
5 5 -0.125–0.125 105827 123.05 11.09
5 5 -0.0625–0.0625 124017 144.20 12.00
5 10 -1.0–1.0 104319 121.30 11.013
5 10 -0.5–0.5 99294 115.45 10.74
5 10 -0.25–0.25 97083 112.88 10.62
5 10 -0.125–0.125 97586 113.47 10.65
5 10 -0.0625–0.0625 107837 125.39 11.19
5 20 -1.0–1.0 110550 128.54 11.33
5 20 -0.5–0.5 150750 175.29 13.23
5 20 -0.25–0.25 112962 131.35 11.46
5 20 -0.125–0.125 108641 126.32 11.23
5 20 -0.0625–0.0625 98892 114.99 10.72



Chapter 3

Use a Genetic Algorithm to evolve architecture for a neural

network

3.1 Introduction

Commodity trading is a complex and difficult business. Those that do it successfully

make a great deal of money. One of the keys to succeeding in the commodities mar-

kets is information. If one could predict future prices within a known error tolerance,

it should be possible to gain a distinct advantage in the marketplace.

Technical analysts believe that the price of a financial asset, including commodi-

ties futures, contains all of the information needed to predict future values of the

asset. These analysts are, to some degree, involved in time series analysis. Many

different approaches have been used in time series analysis. Some time series are

quite amenable to linear regression. However, most financial asset time series have

been found to show a high degree of non-linearity. Neural networks provide a valu-

able alternative to complex parametric non-linear regression techniques. The only

limit to the complexity of the function that a neural network can fit is the number

of hidden nodes present in the network architecture. Additionally, neural networks

have the ability to model noisy data with respectable accuracy.

While neural networks do provide a useful model of the underlying nonlineari-

ties, they are not without limitations. There are parameters which must be chosen

when constructing a neural network. First, the designer must select an architecture.

Even if the standard three layer feedforward architecture is chosen, the number

16
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of hidden and input nodes must still be selected. This is especially true of time

series data, since dividing the data into input sets is a completely arbitrary deci-

sion. Furthermore, after the architecture is selected, learning algorithm parameters

must be selected. The relationship between network performance and architecture

and learning parameters is poorly understood and often searching for the best one

is a heuristic task. This search can be conducted in a trial and error fashion and

an acceptable network can generally be found. However, this is a laborious task

consuming a great deal of time and requiring a substantial amount of expertise.

Alternatively, an automated technique for finding parameters which would max-

imize the network’s accuracy would be quite desirable. Genetic algorithms provide

an excellent way to maximize a function. They allow for searching broad, poorly

understood solution spaces and finding maximizing values for function parameters.

By combining the search capabilites with the modeling power of the neural networks,

a powerful, usable predictive tool can be generated. This research constructs such a

system and examines its performance.

3.2 Background on Genetic Algorithms

Just as neural networks are biologically based, genetic algorithms are based on ele-

ments of the natural world. Genetic algorithms are search algorithms based on the

mechanics of natural selection[Gol89]. They begin with random individuals, which

represent possible solutions and mirror chromosomes in biological evolution. These

individuals are compared against one another using an objective function. Those

which are judged better by this objective function are then selected as progenitors

for the next generation of solutions. These selected individuals exchange some of

their information, reflecting sexual reproduction in biology. The canditate offspring

are then exposed to mutation. This allows for a small chance that a portion of the



18

childs information will be altered. This preserves diversity in the population and pro-

vides a bit more power to the search. This cycle of evaluation, selection, crossover,

and mutation continues until the stopping criterion is met.

There are a number of techniques used for each of the steps of a genetic algorithm.

The objective function is obviously different for each problem. The selection scheme

can also vary. There are probabilistic methods in which the more fit individuals

are more likely to be chosen. There are also methods where a strict percentage of

the most fit individuals is chosen. The crossover step can also be implemented in

a variety of ways. There can be fixed single point crossover where each individual

is seperated into two parts of a predetermined size and then these subportions are

recombined. The crossover can also be random single point crossover. In this case,

for each set of individuals the program determines a random point for the split and

recombination to take place. Each of these can also occur in more than one place so

that there can be two, three, or an arbitrary number of points of crossover. Mutation

most often means randomly changing a bit of the information content of the child.

However, mutation is most dependent upon the representation chosen for the genetic

algorithm.

By beginning with a random population of individuals and including random

mutation, the genetic algorithm can globally sample a large solution space. This

makes it ideal for poorly understood or high order solution spaces. By then recom-

bining portions of good solutions, it is hoped that one of the ensuing offspring will

be an even better solution than the parent.
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3.3 Using a Genetic Algorithm to Evolve Parameters for Neural

Networks

Many people have used genetic algorithms to evolve parameters for neural networks.

Representation is perhaps the most important issue confronting the designer of such

a system and the representations chosen may be roughly divided into direct and

indirect encodings.

Miller et al.[MTH89] provide a good example of direct encoding. They evolved

the internode connectivity for a feedforward network with a fixed number of nodes.

Each connection was represented by a binary bit. A 1 at a particular position in the

chromosome signified that the connection was present, while a 0 indicated that the

nodes in question were not connected. This representation illustrates direct encoding.

There is a discrete element, in this case a bit, in the chromosome which directly

represents each element, in this case a connection, that is represented in the network.

Miller et al. used a standard fitness-proportionate selection scheme and standard

mutation (bits in the string were flipped randomly). However, they modified the

crossover operator so that certain blocks of bits were always copied together. Their

scheme is essentially multi-point fixed crossover. They chose this implementation

of the crossover operator because each such block represented all of the incoming

links into a node. They felt that these bits represented a functional building block

of the network and that preserving them would speed convergence. The objective

function decoded each chromosome into a neural network, trained that network

using backpropagation for a fixed number of epochs and then returned the sum of

the squares of the errors on the training data at the last epoch. Miller et al. tried their

network on three problems: the XOR problem, a real valued four quadrant problem,

and a pattern copier that contained fewer hidden nodes than inputs. While their

approach worked, the problems to which they applied it were quite simple and did not
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supply a rigorous test of this method [Mit96]. Direct encoding causes problems that

are related to the directness of the direct encoding. Because the chromosome maps

directly to the architecture, the size of the required chromosome must increase at the

same rate that the network architecture increases. This rapid increase in size may

make direct encodings computationally unfeasable for large problems. Additionally,

direct encodings cannot efficiently represent repeated or nested structures, though

these sorts of structures are common for some problems.

Kitano [Kit90] provides an example of indirect encoding. He uses what he terms

grammatical encoding. The grammars are a set of rules that can be used to build

a set of structures. He encodes the grammars into the chromosomes of the genetic

algorithm. Thus, the genetic algorithm evolves the grammars. To evaluate each indi-

vidual, first the chromosome must be decoded to produce its grammar. The grammar

is then used to construct a neural network. The network is then trained as usual and

the ones with a lower error receive a higher fitness. Kitano’s genetic algorithm used

normal fitness-proportionate selection, standard multi-point crossover, and a mod-

ified mutation operator. Instead of randomly flipping a bit, the mutation operator

replaced one symbol of the encoded grammar with another. Furthermore, the muta-

tion rate was variable. The variation was dependent upon the similarity between the

individual’s parents. If the parents were quite similar, then the mutation rate was

increased. Two dissimilar parents result in a child with a lower mutation rate. In this

way, the genetic algorithm responds to a loss of population diversity by increasing

the mutation rate. This technique was found to be effective on a number of relatively

simple problems [Mit96].

Stanley and Miikkulainen [SM02c, SM02b, SM02a] provide an interesting alterna-

tive paradigm for combining genetic algorithms with neural networks. They propose

a system which they call NeuroEvolution of Augmenting Topologies (NEAT). Their

system evolves both the weights and the architectures of the neural network. The
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NEAT chromosome contains node genes and connection genes. The connection genes

refer to the node genes. There are a variety of mutation operators. The node weights

are modified by a standard mutation operator. However, the connections and nodes

themselves are modified by a pair of unusual mutation operators. The add connection

mutation adds a connection gene which refers to a pair of nodes which were not pre-

viously connected. The add node mutation inserts a node in between two previously

connected nodes. The old connection between the two original nodes is removed

and a connection from each of the nodes to the new node is added. These muta-

tions schemes allow the network to slowly grow and become more fully connected.

The crossover scheme is even more unusual. In order for crossover to occur, Stanley

and Miikulainen create an intriguing specifier for their genes called an innovation

number. Whenever a new connection or node is created, they assign it a unique

number. This number is inherited by all offspring that inherit those genes. When

crossing over two chromosomes, genes that do not match up are inherited from the

most fit parent, or randomly if the parents are equally fit. The goal of this method is

to allow crossover without the need for any topological analysis. The NEAT method

also uses speciation and explicit fitness sharing to preserve genetic diversity, most

importantly topological diversity. Perhaps the most unusal thing about the NEAT

algorithm is that the network populations begin as uniform networks with no hidden

nodes. This encourages networks with a minimal number of nodes and weighted con-

nections. In turn this makes the search for ideal weights much easier. The NEAT

algorithm was found to be quite successful at solving the pole balancing problem.

3.4 GA evolved NN Parameters in Finance

El Shazley and El Shazley[SS99] use a genetic algorithm to evolve a neural network

which is used to forecast currency prices for the British pound, the German mark,
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the Japanese yen and the Swiss franc. They use a genetic algorithm to evolve a

number of network parameters. The best individual is then fully trained on the data.

An innovation with their approach was that this individual is then fed back into a

genetic algorithm which is used to evolve the network weights using the weights of

the trained network as a starting point. Their results showed marginal improvement

over common methods of predicting currency prices.

3.5 Software used / Methodology

The genetic algorithm portion of this research relies heavily on a set of pub-

licly available classes. These classes belong to the GAlib, version 4.5 which is

available from the Massachusetts Institute of Technology. GAlib is available at

http://lancet.mit.edu/ga/.

The neural network portion of this research consists of custom written code which

implements the RPROP algorithm with a weight decay parameter. This code was

written in C++.

This experiment was developed and run on a Pentium 4 PC under the Linux

operating system.

Each of the paramters was represented by a real number. Thus, the chromosome

representation was an array of real numbers, not a simple binary string. However,

each of the parameters had a different bound on its range of allowable values. The

genetic algorithm was used to encode the following parameters (with their bounds

in parenthesis):

1. number of input nodes. (1–100)

2. number of hidden nodes. (1–100)

3. initial weight range. (0.0625–2.0)
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4. initial step size. (0.0626–1.0)

5. maximum step size. (10–75)

6. weight decay parameter. (0–20)

These ranges were chosen to include the best values found in Chapter 2 as well as a

sizable area on either side in order to find better possible values.

This choice of representaion leads to some interesting results. While standard

roulette wheel selection and single point crossover were used the mutation operator

was rather unusual. Since the representation was not a bit string, simply flipping

a bit on the real number would not be very helpful. However, the GAlib offers a

mutation operator which makes Gausian random modifications to the real number.

Thus, additional possibly useful genetic diversity can be realized without the negative

effect of almost certain uselessness.

The population size was limited to a very small number. This limitation was due

to practical considerations. For each individual in the population in each generation

the objective function trains a neural network for 1000 epochs. This is a computa-

tionally expensive process and thus the population size was kept small in order to

limit the demand for computational resources.

Additionally, the mutation rate was set unusually high, 0.1. This choice was

made because of the relatively small population size of twenty and the choice of real

number representation. With a small number of initial individuals, the variety of any

one of the parameters would be limited. Also, since the real number representation

precludes the crossover operator from generating a new value for a parameter, a

higher mutation rate was selected to restore the genetic diversity that had been lost

because of the chosen representation. Alternatively, more sophisticated crossover

and selections schemes may have provided other, possibly more effective methods

for restoring this lost genetic diversity.
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The neural network served as the objective function for the genetic algorithm.

The process of evaluation of a chromosome was as follows:

1. Decode the parameters and instantiate a network using those parameters.

2. Train the neural network using the RPROP + weight decay algorithm and the

evolved learning parameters for 1000 epochs.

3. Report the lowest total sum of squared error for both the training and testing

data sets.

4. Fitness equals the inverse of the total error reported.

Note that the lowest total sum of squared error is returned, not that of the last

epoch. Furthermore note that the returned error is the sum of the error on the

training and testing data sets. When the sum is calculated, it is checked against

the current low. If the new error is less that the previous low, the new low is saved

along with a copy of the network at that point. Saving the sum of the error of

both data sets should allow the genetic algorithm to find the network with the best

performance without being concerned with over training.

After the genetic algorithm produced its fittest individual, a network was pro-

duced with the paramters coded therein and this network was trained until conver-

gence. As stated above, during the training a snapshot of the network that produced

the lowest error was retained. The algorithm then retrieved this low error network

and used it to process the validation set.

3.6 Results

The results of the experiment can be seen in Table 3.1. The entry specified by

PureNN is the best network result found in Chapter 2. The entry specified by GANN

shows the results found with the genetic algorithm / neural network hybrid. It is
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slightly disappointing that the genetic algorithm did not out perform the best net-

work found by trial and error searching. However, it should be noted that the two

networks are very close indeed and that the GANN outperformed the vast majority

of networks whose error values can be found in Table 2.1 through Table 2.6. One pos-

sible explanation involves the difference between the genotype and the phenotype.

The genetic algorithm encodes a genotype. This genotype decodes into a phenotype,

an individual network. However, it does not decode directly into an individual. The

initial weight range element of the genotype is used as the boundry points for a

random number generation for each of the weights of the network. Thus, one geno-

type decodes to a vast number of phenotypes. This will, in general, produce only

small differences in the fully trained network. However, it could produce a difference

on the order of magnitude of what is observed in Table 3.1. It is possible that when

the network was evaluated inside the genetic algorithm’s objective function that a

much more fortunate set of randomly generated initial weights led to a slightly more

desirable outcome.

Table 3.1: Comparing NN with GANN
Description Hidden Weight Initial weight SSE MSE Mean

Nodes Decay range Error
GANN 8 8.1472 -0.6211–0.6211 100601 117.11 10.82

NN 10 20 -0.25–0.25 96882 112.65 10.61



Chapter 4

Use a Genetic Algorithm to evolve the weights for a neural

network.

4.1 Introduction

Commodity traders are interested in maximizing their profits. The most reliable way

for one to do so is for the trader to have information that no one else has. Of course,

insider trading is against the law. However, there is nothing illegal about analysing

existing data to produce information that few if any others have obtained.

Technical analysts assert that the price of a financial asset, such as commodities

futures, contains all of the information needed to predict the future value of the asset.

They believe that any other information about the company or product in question

is incorporated into the price. Assuming that this assertion is valid, one should be

able to analyse the historical price data for a commodity and obtain information

allowing one to better predict its future price.

Neural networks allow the analysis of complex, non-linear data. More complex

and non-linear data simply requires a neural network with more complexity. This

additional complexity is achieved by adding hidden nodes together with their connec-

tions to the other network nodes. Neural networks have a notable ability to obtain

acceptable results despite noisy data. This makes them an especially interesting

alternative for modeling financial time series data.

Though neural networks can prove to be a very useful and powerful modeling

technique to obtain information about the non-linear data, they must be trained

26
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in order to perform acceptably. Generally this training involves a gradient decent

method for minimizing network error. However, gradient decent can easily become

stuck at a local minima. Additionally, backpropagation and its variants require

some number of parameters to be set. The learning algorithms are quite sensitive

to changes in these parameters and the relationship between the parameters and

network performance is poorly understood. Often they must be chosen by trial and

error. This is time consuming and requires some level of sophistication of the user.

Genetic algorithms provide a method for searching broad, poorly understood

solution spaces and maximizing (or minimizing) values for funciton parameters. By

using a genetic algorithm to find the values for the weights that minimizes the error

of the network, the modeling power of the neural network can be utilized without

exposing the user to the laborious task of finding adequate learning parameters. This

research constructs such a system and exmamines its performance.

4.2 Background on using a GA to evolve weights for NN

Many people have used genetic algorithms to evolve the weights for neural networks.

Representation is perhaps the most important issue confronting the designer of such

a system and the representations chosen may be roughly coupled into real valued

and binary bit string encodings.

Montana and Davis[MD89] used neural networks to classify underwater sonar

data. The network used was a fully connected feedforward neural network. The

genetic algorithm chromosome consisted of vectors of real values that corresponded

to the network weights. The genetic algorithm objective function was computed by

reading the weight values off of the vector and assigning them to weights in the

neural network. The network was then run on the training set and the sum of the

squares of the errors for the training cycle was returned. The mutation operator
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selected a node and for every incoming link added a random value between positive

and negative one to the weight. The crossover operator took two parent weight

vectors and randomly selected from which parent to copy the real valued weight.

Montana and Davis compared the performance of their genetic algorithm learning

algorithm with that of backpropagation and found that the genetic algorithm found

better weight assignments in less time than did backpropagation.

There is a problem associated with the use of GAs for evolving ANNs. It is

known as the permutation problem or the problem of competing conventions. The

problem is that many permutations of a neural network are equivalent. That is, one

hidden node can easily be swapped with another, including all of the connection

weights, and the networks are exactly equivalent. Thus, the genetic algorithm is

searching through a much larger solution space than is necessary. It is searching

through a space that includes all of the permutations of the valid neural network

solutions. This expanded search space results in degraded GA performance. There

are sophisticated, specialized methods for preventing this problem. However, these

techniques were not used in this research. Instead, the GA was allowed to run for a

longer period of time in order to reduce the negative effects of this problem.

4.3 Software used / Methodology

The genetic algorithm portion of this research relies heavily on a set of publicly avail-

able classes. These classes belong to GAlib, version 4.5 which is available from the

Massachusetts Institute of Technology. GAlib is available at http://lancet.mit.edu/

ga/.

The neural network portion of this research consists of custom written software

which implements simple feedforward neural network functionality.
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The code for this experiment was written in C++ and developed and run on a

Pentium 4 pc under the Linux operating system.

Representation is the main issue that must be decided when designing a genetic

algorithm to evolve the connection weights for a neural network. There is some

contraversy over whether real valued chromosomes are preferable or not. There seem

to be a number of factors which encourage real number representation.

1. Many researchers have used real valued representation with good result.

2. Real valued representations are more efficient since there is no further decoding

necessary.

3. Floating point processors make manipulation of real valued chromosomes quite

efficient.

4. Real valued representations are easier to understand and program, reducing

development time.

For these reasons, this research uses a real number representation. A real number

representation is not without repercussions. The primary effect that a real number

representation has is its degradation of the efficacy of the crossover operator to pro-

duce new values for the representation. Indeed, with a real number representation,

crossover can only occur at the real number boundries. Therefore, the initial popula-

tion of values at each location in the chromosome will not be altered with crossover.

A further result is that mutation must play a larger factor in retaining and gener-

ating genetic diversity. To that end, a higher than normal mutation probablity, 0.1

was used.

The mutation operator must be modified as well. Using a binary representations

bit flipping mutation operator would result in extremely drastic changes in weight

values and thus in the individual’s fitness. A more feasible solution was presented by
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the GAlib software. It allowed the mutation operator to induce a gausian random

alteration to the weight. This generally results in small weight change while allowing

for the rare more substantial change.

To evaluate a chromosome, the objective function took the weight vector and

instantiated a fixed architecture neural network with those values as the network’s

connection weights. One epoch of the training data was then fed through the network

and the inverse of the sum of the squares of the network error was returned.

Since the fitness is evaluated only against the training set, over fitting the training

data is a serious possibility. Thus, the best solution to the problem might not be the

individual that the genetic algorithm finds as the fittest. However, given the high

rate of mutation, it is likely that the best solution will be evaluated at some point

as the algorithm evolves. Thus, each time the objective function evaluates an epoch

of the training set, it also evaluates an epoch of the testing set. Each individual

is compared to the current lowest error and if it produces a lower error than the

current minimum, it will be saved as the best solution. When the genetic algorithm

completes its evolution, the best solution is retained, not necessarily the individual

with the highest fitness score. In a sense, this is a kind of meta-fitness. In any case,

the best solution network was then used to process the validation data and generate

the sum of squared error for that data set.

4.4 Results / Conclusions

The results of the experiment can be seen in Table 4.1. The entry specified by

PureNN is the best network found in Chapter 2. The entry specified by GANN shows

the results found by using a genetic algorithm to evolve the network parameters and

then using RPROP learning technique to train the network in Chapter 3. The entry

specified by GANN-Weight is the result found by this experiment. It is extremely
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close to the best performing network found with a fraction of the man hours invested

in finding it.

Table 4.1: Comparing NN with GANN and GANN-Weight
Description SSE MSE Mean Error

GANN 100601 117.11 10.82
NN 96882 112.65 10.61

GANN-Weight 97910 113.85 10.67



Chapter 5

Summary

Three artificial intelligence approaches were taken to develoop a reliable method

for predicting the futures price for a commodity, soybeans. All approaches used the

same data for training, testing, and validation.

The first experiment proceeded along traditional neural network system lines.

Parameters were selected by hand and varied to do a rough search to find acceptable

parameters which would lead to a network with minimal error.

The second experiment introduced genetic algorithms and used their powerful

search mechanisms to find optimal network parameters. This approach produced a

network that performed on a very similar, if slightly inferior level to the previous

network.

The third experiment alterred the use of the genetic algorithm. In this experi-

ment, the genetic algorithm was used instead of a traditional learning technique to

find optimal weights for the network. The result of this experiment was a network

that performed even closer to the standard neural network’s performance.

It is disappointing that neither of the genetic algorithm hybrids produced better

results than the pure neural network approach. However, the performace of all three

approaches is so close as to render any differences marginal.

The goal of this research is to find a preferred artificial intelligence approach to

predict future values for commodities futures. To that end, other factors must be

considered since the performance of all three approches is insufficently different to
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render a clear winner. Two additional factors are obvious and seem to be important.

The first is the number of man hours required for each approach. The pure neural

network approach from Chapter 2 was very time intensive. It required a great deal

of expert time to achieve this level of performance. The hybrid approches required

little in terms of man hours other than writing the custom code used for each.

Thus, the two hybrid systems score much higher on the ease of use test. The other

additional factor which should be considered is the amount of computer resources

required by the approach. The first approach used clock cycles while running, but

no more than any math intensive program would do. The GANN-Weight approach

took an order of magnitude fewer clock cycles than did the GANN approach that

used RPROP. Thus, by combining all three criteria, the clear winner and preferred

artificial intelligence approach to predicting future commodity futures prices is the

GA-Weight approach.
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