
Exploring Applications of Extremal Optimization

by

Eric V. Drucker

(Under the direction of Walter D. Potter)

Abstract

Extremal Optimization (EO) is a relatively new single search-point optimization heuristic

based on self-organized criticality. Unlike many traditional optimization heuristics, EO

focuses on removing poor characteristics of a solution instead of preserving the good ones.

This thesis will examine the physical and biological inspirations behind EO, and will explore

the application of EO on four unique search problems in planning, diagnosis, path-finding,

and scheduling. Some of the pros and cons of EO will be discussed, and it will be shown that,

in many cases, EO can perform as well as or better than many standard search methods.

Finally, this thesis will conclude with a survey of the state of the art of EO, mentioning

several variations of the algorithm and the benefits of using such modifications.

Index words: Extremal optimization, Snake in the box, Forest planning problem,
Mobile subscriber equipment, Multiple fault diagnosis

Exploring Applications of Extremal Optimization

by

Eric V. Drucker

B.S., The University of Georgia, 2007

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

2009

c© 2009

Eric V. Drucker

All Rights Reserved

Exploring Applications of Extremal Optimization

by

Eric V. Drucker

Approved:

Major Professor: Walter D. Potter

Committee: Khaled Rasheed

Pete Bettinger

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

December 2009

Dedication

To my wife, Brooke, my parents, Bob and Joan, and my sister, Jenny. Thanks for all of your

encouragement.

iv

Acknowledgments

I would like to thank the AI faculty for always providing meaningful and interesting discus-

sions on new and exciting AI applications. I would also like to thank my thesis committee,

Dr. Rasheed and Dr. Bettinger, for helping me through to the very end of my degree. Finally,

I would like to thank Dr. Potter for helping me achieve so much during my time UGA.

v

Table of Contents

Page

Acknowledgments . v

List of Figures . viii

List of Tables . ix

Chapter

1 Introduction . 1

1.1 Background . 2

2 Self-Organized Criticality & The Bak-Sneppen Model 6

3 Extremal Optimization . 8

3.1 τ-function . 9

3.2 Comparisons with Simulated Annealing and Genetic Algo-

rithms . 10

3.3 Generalized Extremal Optimization 11

4 Heuristic Evaluations Using the Mobile Subscriber Equipment

Problem . 14

4.1 Mobile Subscriber Equipment 14

4.2 Directional Extremal Optimization 17

4.3 Setup . 18

4.4 Results & Observations . 20

5 Experiments in Diagnosis, Planning, and Pathfinding 25

5.1 Diagnosis . 25

vi

vii

5.2 Planning . 26

5.3 Pathfinding . 27

5.4 Problem Setup . 29

5.5 Results & Observations . 31

6 EO Hybridization & State of the Art 34

6.1 Population-Based Extremal Optimization 34

6.2 Continuous Extremal Optimization 35

6.3 Jaded Extremal Optimization 35

6.4 Particle Swarm Optimization Hybridization 36

6.5 Dynamic Optimization . 36

7 Conclusions . 38

Bibliography . 40

List of Figures

3.1 Selection probability distribution using a representation containing 100 com-

ponents with τ set to 1.5 . 13

4.1 Average fitness evaluations to find Sbest . 22

4.2 Reliability on MSE for τ = 5.0, 0 to 20,000 Iterations 22

4.3 Reliability on MSE for τ from 0 to 10 with 10,000 Iterations 24

viii

List of Tables

4.1 Results seen in comparing GA, EO, and PSO on the MSE problem 21

5.1 Results seen in comparing EO, GA, PSO, and RO on Multiple Fault Diagnosis,

Forest Planning, and the Snake in the Box problem 32

ix

Chapter 1

Introduction

Search and optimization heuristics have played a large role in the field of Artificial Intelligence

since its inception. Creators of many of these heuristics have turned to nature for inspiration,

looking for examples where order is derived from chaos. Traditionally, two types of systems

have been researched: physical and biological. This thesis will survey Extremal Optimization

(EO), a recently developed optimization heuristic that has roots in both biological and

physical systems.

Extremal Optimization [9] is a single search point (single solution) heuristic based on the

Bak-Sneppen model of co-evolution [2]. The Bak-Sneppen model demonstrates self-organized

criticality (SOC), a tendency for dynamical systems to organize themselves into optimal

states. The Bak-Sneppen model addresses the evolution of entire ecosystems, or neighbor-

hoods, via punctuated equilibrium instead of individual species gradually evolving over time.

These so-called neighborhoods are made up of several species, each demonstrating com-

plex relationships with neighboring species. Accordingly, every time the fitness of a species

changes, the fitness of each one of its neighbors has the potential to change as well. EO

individuals are based on these neighborhoods, and each component of the individual rep-

resents a different species within the neighborhood. Mutation is simulated by replacing the

fitness of the least fit species in the neighborhood with a new, randomly-generated species.

This change may affect the fitness of some or all of the selected species’ neighbors, causing a

chain reaction through the entire neighborhood [2]. After this drastic change, the neighbor-

hood has the potential to be in a more fit state than it previously was. Hence, unlike most

1

2

optimization techniques, EO focuses on removing poor components of solutions instead of

favoring the good ones.

This thesis will begin by defining several optimization heuristics to which EO will be com-

pared, including Genetic Algorithms, Simulated Annealing, Particle Swarm Optimization,

and Raindrop Optimization. Next, in Chapter 2, the underlying theories of EO will be dis-

cussed. Chapter 3 will then address the EO algorithm and mention a few common variations

of the heuristic. Next, Chapters 4 and 5 will discuss new experiments performed comparing

EO to the heuristics previously mentioned. Finally, in Chapter 6, this thesis will conclude

with a survey of the state-of-the-art of EO, mentioning a few of the novel application areas

in which it has been used.

1.1 Background

1.1.1 Genetic Algorithms

John Holland created genetic algorithms (GAs) based on the ideas in Darwin’s theory of

evolution. In simple terms, GAs recreate the ideas behind “survival of the fittest” to find

optimal solutions to problems [18]. GAs consist of a population of individuals, or possible

solutions to the problem being solved. Solutions are generally (and most easily) represented

as binary strings, where each bit in the string corresponds to some property or action in the

final solution.

Traditional GAs involve three operators to successfully run: selection, crossover, and

mutation. Selection is performed to determine which individuals in the population should

be used, and is based on the idea of natural selection, where the more fit individuals will be

selected more frequently than the less fit individuals. Once individuals have been selected,

crossover is performed. The idea of crossover is based on the crossover of chromosomes in

genetic reproduction. Genetic material from each “parent” chosen in selection is combined

to create new individuals having characteristics of each. Since better individuals are usually

chosen in selection, crossover usually combines good characteristics to create individuals with

3

many more strong characteristics. Finally, mutation helps find better solutions by slightly

changing information contained in each individual that might not otherwise be considered in

a population. For example, if no individuals in a population had a specified trait, this trait

would never exist in any children, unless this mutation of “genetic code” is performed.

1.1.2 Simulated Annealing

The SA algorithm [23] was developed to solve combinatorial optimization problems by mim-

icking the gradual cooling of extremely hot metals to harden alloys, and is based on the

Metropolis algorithm [26]. The gradual cooling, based on probabilities found using a cooling

schedule, is used to determine whether or not a randomly generated configuration should be

accepted as the successor to the current configuration, regardless of its fitness value. When

considering a more fit neighbor, it is always accepted as the successor. Using this proba-

bility function, as time progresses, the chances that a worse configuration will be accepted

decreases, forcing the heuristic to mimic a greedy search. The possible successors of any

given state are known as its neighbors, and typically are those reachable by modifying one

component of the current configuration.

1.1.3 Particle Swarm Optimization

Particle Swarm Optimization [22, 21, 17] is a population-based optimization heuristic mod-

eled on social behavior to demonstrate swarm intelligence. Swarm intelligence is based on

the collective behavior resulting from systems made up of populations. Such behavior can

be seen in nature in schools of fish, flocks of birds, and swarms of bees. Even in humans,

social-psychological principles narrate social influences and learning mechanisms that occur,

causing individuals to move towards and away from each other throughout “socio-cognitive

space”. When considering a flock of birds, each individual bird moves along its own inde-

pendent path. However, the movement of the flock as a whole is determined by the direction

and speed of the lead bird in conjunction with the speed and direction of each bird and its

4

actions based on its surrounding neighbors. PSO, like flocks of birds, moves towards a target

based on the combined movement of many individuals within a population. The resulting

movement of the swarm is caused by the movement of each individual particle. Each member

of the population moves corresponding to the factors outlined below:

• ∆GB, the difference between the current location and the best global location seen.

• ∆PB, the difference between the current individual’s best seen location and the current

location.

• Social influence = C1 ×Rnd×∆PB

• Cognitive influence = C2 ×Rnd×∆GB

• V elocity = inertia× (previous velocity) + Social influence + Cognitive influence

In each PSO iteration, each particle in the swarm is set to its previous location plus

V elocity. The velocity is constructed from the social and cognitive influences, much like

those in flocks of birds, requiring a balance of the two to be successful. If either is assigned

too high a weight, the heuristic will fail to find a global optimum.

1.1.4 Raindrop Optimization

Raindrop Optimization [5, 36] is another recently developed single search point optimization

heuristic. It was originally tailored for the Forest Planning problem described in Chapter 5,

and makes use of both stochastic and deterministic methods to find good solutions. Although

it is a single search point technique, RO is more invasive than the other heuristics discussed,

in that it may alter a solution several times before calculating its fitness again.

In RO, raindrops and their subsequent rippling effect in bodies of water are simulated. To

do so, a component in a solution is selected at random to be where the raindrop strikes, and

the component is assigned a new random value. Adjacent components are then evaluated to

determine whether or not their current values conflict with the newly assigned value. If so,

5

they are modified deterministically, and the same process is performed on all of its neighbors

until no neighbors of affected components are in a conflicting state, thus simulating the end

of the rippling effect. The RO algorithm is detailed below:

1. Generate an initial solution S, and set Sbest equal to S.

2. Randomly select one of the components of S, Sc, and change its value randomly.

3. Assess whether any domain constraint violations have occurred.

4. If no domain constraint violations occur, go to step 7.

5. Otherwise, create a list of components of S that contribute to the constraint violations.

6. Repeat the following until the list is empty:

(a) Select and remove from the list the component S ′c that is physically closest to Sc,

(b) Deterministically change the value of S ′c so that the next best choice for it is used,

and that the choice does not result in a constraint violation with components

physically closer to Sc than S ′c.

(c) If this value causes further constraint violations, add the affected components to

the list.

7. If S is better than Sbest, then set Sbest equal to S.

8. Otherwise, if X iterations have passed with no improvement, reset S to Sbest.

9. If N iterations have passed, then stop, otherwise return to step 2.

RO only uses two tunable parameters: the number of total iterations, and the number of

iterations to perform before reverting to the best-seen configuration.

Chapter 2

Self-Organized Criticality & The Bak-Sneppen Model

This chapter will discuss the theories that led to the development of Extremal Optimiza-

tion, particularly the self-organized criticality and Bak-Sneppen model of co-evolution. The

Bak-Sneppen model outlines the co-evolution between several species in a particular neigh-

borhood, or ecosystem [2]. The foundations of the Bak-Sneppen model lie in self-organized

criticality (SOC), a tendency for systems occurring in nature to become organized in com-

plex optimal states. SOC was originally discussed by Katz [19], however was popularized

by the work done by Bak, Tang, and Wiesenfeld [4, 3]. SOC, as described by Bak [1], is

“how a system that obeys simple, benign local rules can organize itself into a poised state

that evolves in terms of flashing, intermittent bursts rather than following a smooth path”.

Dynamical systems generally demonstrate this property. Over time, such systems become

organized in such a way that, when a small change is made to the state of a single property of

that system, other parts of the system are disrupted and change states. This effect is known

as an avalanche [1], and when key parts of the system change states, these avalanches can

be large and can affect the majority of a system.

Sometimes, researchers describe the self-organized critical state as “the edge of chaos”

[2]. This is because, in this state, the system is stable and inactive; however, a small change

to the system will cause many other changes to occur, causing the system to become highly

disorganized. This effect is best demonstrated in the sand pile experiment [1], which is

performed as follows:

There is a small, flat table with nothing on its surface. Grains of sand are placed on top

of the table one by one. Over time, a small pile of sand will form. Every so often, placing

6

7

a grain of sand on the top of the pile will disrupt a couple of grains and cause them to

move down the pile, demonstrating a small avalanche. As the pile grows bigger, its overall

slope will grow, which in turn causes the avalanches to become larger. The edges of the pile

will eventually reach the edge of the table. Avalanches will still occur at both small and

large levels, but they will not continue to grow in size, because the entire system can only

hold a finite amount of sand. At this point, the system is in its self-organized critical state.

Immediately following an avalanche and before another grain of sand is added, the system

will be completely still; yet when a grain of sand is added, another avalanche is triggered,

causing the system to be unstable again.

The concept of SOC applies to many different dynamical systems in the universe. It

has been observed in plate tectonics, star quakes (the collapse of a part of a pulsar), solar

flares, and most importantly, evolution [2, 1]. Bak and Sneppen developed their model of

co-evolution as a way to describe how SOC may explain, among other things, the concept

of punctuated equilibrium. Punctuated equilibrium is an evolutionary theory proposing that

species evolve in rare, drastic events rather than gradually over time. The theory was intro-

duced by Niles Eldredge and Stephen Jay Gould [16] as an alternative to the idea that species

are progressively evolving over time, also known as phyletic gradualism, the theory commonly

attributed to Charles Darwin’s work. Eldridge and Gould claimed that in many cases, fossils

show little to no “gradual” change over time, and that sudden, drastic changes are much

more apparent. Similar to Darwin’s theories, these mutations lead to fitter species, thus,

SOC is a perfect phenomena to seek inspiration from in the development of an optimization

heuristic.

Chapter 3

Extremal Optimization

Extremal Optimization is a heuristic based on the steps included in the Bak-Sneppen model

of co-evolution. Boettcher and Percus used the rank based selection and mutation operators

from the Bak-Sneppen model to set up their initial experiments on graph bi-partitioning,

where it performed well enough to compete with well-established heuristics, including Sim-

ulated Annealing and Genetic Algorithms.

Graph bi-partitioning is an NP-hard problem, and was the first problem on which

Boettcher and Percus chose to apply their newly created Extremal Optimization heuristic.

Graph bi-partitioning is the problem of partitioning a set of N vertices of a graph into two

equal subsets such that the number of “edges” (connections between pairs of points) that

cross the partition of points is minimized. The number of such crossing edges is known as

the cut-size; thus, the problem can be reduced to searching for the minimal cut-size of a

graph [9].

Boettcher and Percus attempted to solve a graph bi-partitioning problem using the algo-

rithm detailed below [9]:

1. The points in the graph are partitioned randomly into two equal subsets

2. Each point in each subset is assigned a fitness equal to gi
(gi+bi)

, where gi and bi are the

number of good edges and bad edges, respectively. If a point has no edges, it is assigned

a fitness of 1.

3. The point with the lowest fitness is selected, and a second point from the opposite

subset is selected at random. These two points then swap subset membership.

8

9

4. Steps 2 and 3 are repeated until a stop criterion has been met.

The final result of the algorithm is defined in this case as the lowest cut size seen so far.

In these initial experiments, EO performed well, finding the optimal partition several times.

Boettcher and Percus note that EO performs well because it is able to evaluate many local

optima, even late in the run, a characteristic that most general-purpose heuristics like SA

and GAs lack due to their tendency to converge.

3.1 τ-function

Unfortunately, step 3 of the original model can cause the heuristic to become stuck in local

optima. To handle this problem, Boettcher and Percus introduced a power-law distribution

approach for selecting the component to be modified [9, 7]. To select a component with this

approach, an integer k is determined using the probability function

P (k) ∝ k−τ ; 1 ≤ k ≤ N

where N is the number of components in the configuration, and τ is a constant that deter-

mines how stochastic or deterministic the selection should be [7]. Figure 3.1 shows the selec-

tion probability for ranked components using a representation containing 100 components.

Note that the lowest ranked components are heavily favored, but even the best-ranked com-

ponent has a slight chance of being selected for mutation. Using τ -selection, the standard

EO algorithm is detailed below:

1. Generate an initial value for each component of S, and set Sbest equal to S,

2. Determine a fitness associated with each component of S,

3. Rank the components by fitness and select component k using τ -selection,

4. Assign the selected component a new random value to create S ′,

5. If the fitness of S ′ is higher than the previous best, Sbest, replace Sbest with S ′,

10

6. Set S equal to S ′,

7. Repeat steps 2 through 6 n times, or until stop criterion is met.

With higher values of τ , EO is more likely to get stuck in local optima for the same

reasons it does without a selection function at all. For lower values of τ , EO sometimes

replaces better components of a solution in order to explore a larger part of the search space.

If τ is set to zero, EO produces similar results to random search, and if τ is set to∞, then it

resembles the original SOC-based EO. Because of this semi-stochastic nature, EO can jump

in and out of near-optimal solutions at any point in time.

Admittedly, τ has no basis in nature; however, it has shown to have a significant impact

on the chances that an optimal solution will be found by ensuring an appropriate amount

of the search space is accessible, thus demonstrating ergodic behavior. Boettcher and Percus

studied the effects of τ on the solutions found by EO, noting that it depends more on the

number of mutations and solution components than it does on problem specific information

[7]. This is explained by the fact that they found that optimal values of τ lay at the transition

point where the heuristic moves from ergodic to non-ergodic behavior. These studies also

found that an ideal value for τ can be found using the equation

τ ≈ 1 +
log(A

logN
)

logN

where N is the system size, and A is the number of cycles the EO algorithm is run. Thus,

better optima can be found with smaller τ values when there are more possible solutions,

and larger values of τ can be used for longer run-times. Using the equation to estimate

values for τ , Boettcher and Percus found that using values that were higher or lower than

the estimated value produced progressively worse solutions.

3.2 Comparisons with Simulated Annealing and Genetic Algorithms

To validate the use of EO in a field where researchers already make use of several other

strong optimization heuristics, Boettcher and Percus compared the use of EO to Simulated

11

Annealing (SA) and Genetic Algorithms (GAs) on the graph bi-partitioning of four well-

known graphs [6]. SA was chosen because it is also a single search point optimization heuristic,

and has been used on problems in many domains for several years. EO differs from SA in

that SA seeks out better components to a configuration whereas EO seeks to replace the

worse components in a configuration. Another key difference between EO and SA is that EO

only has at most one parameter to tune (τ), and SA allows for several due to its cooling-

schedule technique. GAs were selected for comparison as well because they are among the

most commonly used general optimization heuristics. EO differs from GAs in two significant

ways. First, GAs are population based whereas EO only uses a single individual. Second,

GAs focus on preserving strong genetic content by selecting the best individuals, and EO

focuses on removing poor components from solutions in order to move the solution to a more

optimal state.

During their experiments, Boettcher and Percus found that on many different graphs,

EO was able to find optimal solutions faster than SA. Also, for similar problems, EO was

able to find optimal solutions to similar problems with increasing representation sizes where

SA produces worse results as the size increased. In some cases, a GA converged more quickly

than EO, and in others, EO ran faster than a GA; however, both delivered equivalent,

optimal results in a reasonable amount of time, thus proving EO’s validity as a trustworthy

optimization heuristic.

3.3 Generalized Extremal Optimization

One issue related to the use of EO is the method of calculating a fitness contribution for

an individual component of a solution. Sometimes this is not even possible given certain

criteria in some domains. To overcome this, de Sousa et al. introduced Generalized Extremal

Optimization, or GEO [13]. GEO was designed for use on bit-strings. For each component

bit in an individual, GEO flips the bit and calculates the new fitness. Each bit is then ranked

by the resulting fitness, where higher fitness values are lower ranked. Though GEO causes

12

the heuristic to execute the objective function several more times (once for each bit of an

individual), it allows EO to be used in many more domains, particularly those in which a

tailored fitness contribution would not be appropriate.

13

Figure 3.1: Selection probability distribution using a representation containing 100 compo-
nents with τ set to 1.5

Chapter 4

Heuristic Evaluations Using the Mobile Subscriber Equipment Problem

In this chapter, we will compare EO, GA, PSO, and RO on the Mobile Subscriber Equipment

(MSE) problem, a discrete network configuration problem. Some of the work in this chapter

led to the publication of [25].

4.1 Mobile Subscriber Equipment

Mobile Subscriber Equipment (MSE) was once used in battlefields to provide a communica-

tions framework to wired and wireless subscribers in a military operation. An optimal list of

equipment helped to provide the necessary communications without wasting equipment and

manpower. Research using optimization heuristics on MSE demonstrated success [33], and

although it is outdated, MSE is still valuable as a benchmark optimization problem.

Several heuristics were selected for comparison with Extremal Optimization applied to

MSE, including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Raindrop

Optimization (RO). GA and PSO are both population-based heuristics, RO is a single search

point heuristics. GA is the most frequently used, whereas PSO and RO are up-and-coming

heuristics in their respective fields.

An MSE network consists of many components, including Node Centers (NCs), Large

Extension Nodes (LENs), Small Extension Nodes (SEN1s, SEN2s), System Control Centers

(SCCs), NATO Analog Interfaces (NAIs), and Remote Access Units (RAUs). NCs acted as

the backbone, allowing the various other components to connect to the network. The different

extension nodes (LENs, SEN1s, and SEN2s) connected different numbers of wired subscribers

to the network, and RAUs connected wireless subscribers. Mission requirements involving

14

15

MSE would only designate the number of wired subscribers (MSRTs) and wireless subscribers

(DNVTs), thus the configuration of an MSE network involves determining how many of each

component to use for a given mission. The resulting representation for optimization heuristics

is an integer sequence, one integer value for each type of component.

The objective function will determine how well a given set of components will work for

the desired number of subscribers. If the set of components will absolutely not work, this

function will result in a value of zero. Otherwise, the function will result in a positive number,

where a higher number is a better fit for the set of components to the desired number of

wireless and wired subscribers in the network.

The following variables are used throughout the objective function. N represents the total

number of antennas needed to support the network; TA represents the number of antennas

available in the network, which is twelve times the number of Node Centers in the list of

components; and AFB is the total number of antennas available once the backbone of the

network is set up.

N = TA− AFB + (others)

TA = ComponentsNC × 12

AFB = (32× Y)−X2 − (13×X)

X = ((ComponentsNC − 1) mod 4) + 1

Y =
(ComponentsNC − 1)

4

Z = Y + 1

Once these variables have been determined, the following seven terms can be calculated

and used to determine the overall value for the objective function. The cardinality term,

defined below, is used to give higher values to configurations that use fewer components.

Componentsi represents the number of components of type i (NC, LEN, SEN1, SEN2,

SCC, RAU, or NAI) in the input configuration. Corps represents the number of components

16

available to be used, and P is a predetermined constant (equal to 1/7) to give each component

an equal weight in the function.

Cardinality Term =
50

#Components∑
i=0

Components i
Corps i

× P

The SEN1 to SEN2 relationship is used to let the function favor configurations that have

a ratio of 3 SEN2s to every SEN1. Thus, its value is equal to the lesser of either the number

of SEN1s divided by three times the number of SEN2s, or three times the number of SEN2s

divided by the number of SEN1s. It has been previously determined that this is an optimal

ratio based on support and resources required.

The UHF connectivity is used to favor network configurations that have fewer excess

antennas. If there aren’t enough antennas to support the network, the overall objective

function will later prove to be invalid, but if there are many extra antennas, there is a waste

of resources, which should be avoided. The UHF connectivity term is determined by dividing

the number of needed antennas by the number of available ones if the total number available

from the backbone is greater than 12 more than the number needed, otherwise it is equal

to one. This will lower the total objective value with a larger number of antennas available

from the backbone.

The minimum constraint violation is used to ensure that there is at least one node center

and at least one system control center in the configuration because at least one of each

is required in a valid network. It is assigned a value of zero if either of these components

is missing, otherwise it is assigned a value of one. The maximum constraint violation is

calculated to determine whether or not the configuration has a valid number of each type

of component. If more of any type of component exists within the configuration than there

are available for use, the term is set to equal zero and the configuration is determined to be

invalid.

17

Lastly, the MSRT support term and the DNVT support term represent whether or not

the required number of MSRTs and DNVTs can be supported by the network. If either has a

required value that is larger than the number supported by the network, the configuration is

determined to be invalid by assigning the appropriate support term a value of zero. Otherwise,

the support terms are calculated by dividing the required number of subscribers by the

number supported by the configuration. This favors configurations that support a number

of subscribers that is as close to the number required as possible, in order to avoid wasting

resources.

The overall objective value is then calculated by multiplying each of the seven terms

together. If any term resulted in a value of zero, the objective value is equal to zero and the

configuration is invalid based on the requirements of the network.

4.2 Directional Extremal Optimization

In initial experiments on MSE we used weighted component-specific evaluation functions,

and when a component was selected for mutation, it would be replaced by a new random

value. This process was very disruptive to good solutions, and would often result in invalid

configurations. GEO has proven itself extremely useful in situations where a unique fitness

evaluation cannot be determined; however, it requires bit-strings to work correctly. Thus, the

concept of GEO was applied using integers instead of bits, using additional weights to create

a directional scheme. In this scheme, to determine the amount in which a particular value

is “holding back” the overall fitness, each component is evaluated twice, once with its value

incremented, and once with it decremented. The component is then assigned a direction

in which it should be changed based on which value provided a better fitness. If both the

incremented and decremented values produce the same fitness as the original value, or if they

are both lower than the original fitness, then no direction is assigned. Each component is

then ranked by the new fitness in its selected direction, and if no direction was assigned, the

component’s original fitness was used. Selection is then performed normally, either using the

18

worst ranked or using τ -selection. Finally the selected component is assigned a random value

between the original value and the bound in the selected direction, or a random value between

the upper and lower bound for those components that were not assigned a direction. Because

EO is designed to weed out the poor components of a solution, the direction scheme works

particularly well in discrete-integer problems by adding a positive bias to newly assigned

values for solution components.

4.3 Setup

The GA was set up using tournament selection, point crossover, and an age proportional

mutation operator. Tournament selection and point crossover are both standard GA oper-

ators. In tournament selection, two or more individuals in the population are selected at

random, and the one with the highest fitness then goes on to crossover. Once two individuals

are selected in this manner, crossover is performed. Point crossover is carried out by selecting

a point within the representation at random and then combining opposite halves to create

two new individuals. Finally, mutation is carried out using the age proportional operator

devised for this application. For each component selected for mutation, a new random value

is generated and then divided by the age of the particular individual. This operator allows

more disruptive mutation early on and prevents mutating away from better solutions as time

passes.

For the GA, trials were run using populations of 300, 400, and 500, and using mutation

rates of 5%, 10%, and 15%. On average, the GA ran for 34 generations using nearly 14,000

fitness evaluations. Increases in the mutation rate always demonstrated increases in fitness

regardless of population size, so further experiments were performed only using a mutation

rate of 15%.

The PSO algorithm was evaluated using 8 parameter settings. Swarm sizes of 100 and 300

were used with C1 = 1.5, C2 = 4.0, and 0.4 ≤ inertia ≤ 1.0, where inertia was incremented

in steps of 0.1. Also, Vmin was set to -6 and Vmax was set to 6.

19

To evaluate MSE using RO, we considered it a constraint violation when the required

number of either wired or wireless subscribers was not met, ie. when the fitness was equal to

zero. Values for each component were incremented and decremented appropriately for each

iteration as long as the configuration remained valid. We performed our experiments using

iterations in a range from 5,000 to 20,000, and the number of reversions set to either 4 or 5.

The EO algorithm was set up to evaluate each component of the MSE component list.

Each component was assigned a penalty according to each goal of the objective function.

Since some components could be affected by more goals than others, the penalties were

normalized before the components were ranked. Once ranked, a power-law distribution with

τ equal to 4 was used to select the component to be modified, and the selected component

was assigned a number between 0 and the maximum possible value. An initial trial using this

as the only evaluation criteria resulted in a reliability of less than 10% on 1,000 runs of 10,000

EO iterations each. The results of the original experiment demonstrated a need for a less

drastic change in the numbers of components, because the heuristic would sometimes become

stuck. To improve the component evaluation function, Directional Extremal Optimization

was implemented. Using directions, an innovative adaptation of the EO approach, reliability

was drastically improved to 92% on 1,000 runs.

The EO algorithm was then run 1,000 times for each of 3,000 parameter settings. The

parameters were τ (0 to 10 in increments of 0.01) and number of iterations (1,000, 5,000,

10,000). The best value of τ was found to be in the range of 4.94 to 5.03. Using τ equal to 5,

the EO algorithm was run on a range of set iterations (100 to 20,000 in increments of 100),

and each set number of iterations was run 1,000 times. The maximum reliability reached was

100% for 19,700 iterations. On average, EO found the best solution after 4,000 iterations,

and 57,300 fitness evaluations. Limiting the number of iterations to 10,000, cutting run-time

in half, produced a reliability of 92.2% with the best solution found after an average of 3,200

iterations and 45,700 fitness evaluations.

20

4.4 Results & Observations

The results of our experiments on the MSE problem can be found in Table 4.1. GAs were run

using a mutation rate of 15% with population sizes of 300, 400, and 500 (GA300, GA400, and

GA500 respectively), and the highest reliability, 99.6%, was found using GA500. The GA500

required an average of 12,000 fitness evaluations to complete, whereas the GA400 and GA300

required 9200 and 6200 respectively. Although the reliability decreased slightly with smaller

population sizes, the required time and number of required fitness evaluations dropped off

significantly, demonstrating a more efficient performance with smaller population sizes.

PSO was run with swarm sizes of 300 and 100 (PSO300 and PSO100 respectively), using

the tuned parameter settings. Similar to the results found using GAs, a larger swarm size

resulted in a higher reliability. Again, the average number of fitness evaluations dropped off

significantly with the smaller swarm size while maintaining a relatively high reliability.

RO was run with varying numbers of iterations (5,000 to 20,000), and performed with

the highest reliability when using 20,000 iterations. Although RO only achieved a reliability

of 72%, the lowest of the four heuristics, this is still an acceptable value for MSE. Also, RO

was one of the more efficient heuristics, requiring only 14,000 fitness evaluations on average

to find an optimal solution.

Finally, EO was used with a set number of iterations equal to 10,000 and 19,700

(EO10,000 and EO19,700). EO demonstrated similar characteristics regarding decreasing

numbers of fitness evaluations and reliabilities. However, due to using the full fitness function

to evaluate each component for each iteration, EO required a significantly larger number

of fitness evaluations compared to PSO and GA. With further research on a less complex,

more domain specific component fitness evaluation, the number of fitness evaluations could

be reduced such that EO could compete with GA and PSO in terms of run-time. Let it

be noted, though, that EO was the only heuristic to achieve 100% reliability on the MSE

problem.

21

Overall, both EO and PSO performed well when compared to GA; however, neither

heuristic could reach the efficiency of GA given that the ratio of reliability to the number of

required fitness evaluations was much lower for both. In all cases, the ideal parameters are

those that have the highest efficiency, not the best reliability, and the heuristic can be run

several times to ensure an optimal value is found.

Table 4.1: Results seen in comparing GA, EO, and PSO on the MSE problem

Heuristic % Reliability Fitness Evaluations Ratio
GA500 99.6 12,000 8.3000× 10−3

GA400 99.1 9,200 1.0772× 10−2

GA300 98.1 6,200 1.5823× 10−2

EO19,700 100 57,300 1.7450× 10−3

EO10,000 92.2 45,700 2.0180× 10−3

PSO300 99.85 31,500 3.1700× 10−3

PSO100 98.63 11,800 8.3580× 10−3

RO 72 14,000 5.1428× 10−3

To get a deeper understanding of the performance of EO on MSE, a few additional

tests were performed. So far, we have only considered the number of fitness evaluations

before termination when discussing the number of fitness evaluations performed. Figure

4.1 shows the average number of fitness evaluations before the optimal solution is found.

Even though EO required an average of 45,700 fitness evaluations when running for 10,000

iterations, Figure 4.1 shows that EO found the optimal solution after an average of 3300

fitness evaluations. Consequently, one could argue that a better stop criterion could be

created, or some sort of reversion mechanism (as in RO) could be introduced to keep EO

from exploring dead ends. Figure 4.2 shows the reliability of EO as the number of iterations

increases. Naturally, as the iterations increase, so does the reliability. However, for EO to

achieve higher reliabilities, it requires exponentially more iterations to run. Thus, instead of

using extremely high numbers of iterations, it may prove effective to perform multiple runs

of EO. These values, combined with the values shown in Figure 4.1 may help find an optimal

number of iterations for each run before starting over.

22

Figure 4.1: Average fitness evaluations to find Sbest

Figure 4.2: Reliability on MSE for τ = 5.0, 0 to 20,000 Iterations

23

Finally, a quick study was done on the effect of different τ values on the reliability of

EO. The MSE setup was used again, using 10,000 EO iterations, and running our algorithm

repeatedly for τ = 0 to τ = 10, incrementing τ by 0.01 each time. Unsurprisingly, the

results displayed in Figure 4.3 show that lower values of τ kept our algorithm from finding

optimal solutions due to selecting random components too frequently. Similarly, values of τ

that were too high also prevented our algorithm from finding good solutions by selecting the

worst components too frequently. The resulting curve allowed us to find an optimal value of

τ when using 10,000 EO iterations on this problem. These results confirm the conclusions

drawn about τ in Chapter 3. As the number of iterations increases, the curve in Figure 4.3

reaches its peak more quickly and tapers less on the right side of the peak. For exceedingly

high numbers of iterations, this curve resembles more of a plateau, allowing many values of

τ to produce optimal results, given that a larger-than-necessary portion of the search space

is being considered.

24

Figure 4.3: Reliability on MSE for τ from 0 to 10 with 10,000 Iterations

Chapter 5

Experiments in Diagnosis, Planning, and Pathfinding

After having success in comparing GAs, PSO, RO, and EO on the MSE problem, we extended

our research to compare these heuristics in different application domains. To continue with

our comparisons, we selected problems in diagnosis, planning, and pathfinding domains. For

the diagnosis problem, we selected Multiple Fault Diagnosis. Next, for the planning problem,

we selected the Forest Planning problem. Finally, for pathfinding, we chose the snake-in-the-

box problem.

5.1 Diagnosis

Commonly used in fields such as medicine and physics, Multiple Fault Diagnosis (MFD) is

the process of identifying a set of one or more causes to a given set of symptoms. As the

number of possible causes increases, the number of possible diagnoses increases exponentially,

demonstrating a need for an efficient method to make efficient, accurate diagnoses. Research

has been performed using optimization heuristics successfully in such a manner [24, 32],

making MFD a useful benchmark problem in comparing optimization heuristics.

For our experiments, we implemented Peng and Reggia’s probabilistic causal model

(PCM) [29, 30]. In the PCM, multiple fault diagnosis problems are identified by the fol-

lowing set:

{D,M,C,M+}

where D is a set of disorders, M is a set of manifestations (symptoms), C is a set of (d,m)

pairs, where disease d has some probability of causing symptom m, and M+ is the subset

of symptoms in M that a patient exhibits. Diagnosis DI is a subset of D, which identifies

25

26

the diseases potentially causing the symptoms in M+. DI is easily represented by bit strings

in optimization heuristics, setting a value of 1 if a disease is present in DI, and a value

of 0 if it is not. To evaluate the fitness of DI, we made use of a modified version of the

relative likelihood function as described in [29, 30]. The relative likelihood function utilizes a

tendency matrix, in which each cell represents the likelihood that the corresponding disease

causes a particular system. The information within this matrix is usually based on historical

trends, and/or detailed analysis by domain experts. The full fitness value is the product of

multiplying three values, L1, L2, and L3, detailed below:

L1 =
∏

mi ε M+

1−
∏

dj ε DI

(1− cij)

L2 =

∏
dj ε DI

∏
mi ε effects(dj)−M+

(1− cij)

L3 =
∏

dj ε DI

pj
(1− pj)

L1 represents the likelihood that the diagnosis covers the symptoms in M+. L2 represents

the likelihood that the diagnosis does not cover more symptoms than those included in M+.

Finally, L3 represents the likelihood that a common disease in the diagnosis contributes

significantly to the likelihood of the overall diagnosis. For our experiments, we created an

MFD problem consisting of 25 causes in the causal set, and 10 symptoms in the symptom

set.

5.2 Planning

The goal of the FP problem is to optimize timber harvests for a single harvest schedule given

several constraints. Each forest stand in a valid solution may be harvested only once out of

the n harvest periods in the schedule, and adjacent stands may not be harvested in the same

time period. Within the forestry domain, these restrictions help to prevent erosion among

other things by preventing over-harvesting a forest. For the experiments discussed in this

thesis, a problem in [5] was used that contained 73 forest stands. In this problem, harvest

schedules were evaluated by the following formula:

27

Minimize
n∑
i=0

(Hi − T)2

n = number of harvest periods

i = harvest period

Hi = total harvest in period i

T = target harvest volume for entire forest per time period

All harvest volumes are measured in MBF, or thousand board feet. In this case, we used

n = 3 periods, and a target period harvest volume T = 34, 467MBF. To represent a harvest

schedule, an integer sequence with a length equal to the number of stands is used, and each

value in the sequence corresponds to the time period, 0 to n, that particular stand should

be harvested.

5.3 Pathfinding

The Snake-In-The-Box (SIB) problem is the computationally difficult problem of finding

the longest induced path through a d-dimensional hypercube. Kautz originally introduced

the SIB problem as a method of finding unit-distance error-checking codes [20]. Since then,

several researchers have found the longest induced paths in hypercubes up to dimension

seven. Long paths have been found in higher dimensions; however, it is unknown as to

whether these are the longest existing paths. Thus, the problem is still open for further

research.

In introducing the SIB problem, Kautz discusses binary sequences characterized by two

distinct traits: error-checking, and unit-distance. Successive elements in these sequences differ

by only one bit. Long sequences of this type provide good uses in error-detection in converting

analog into digital data, and in circuitry design. A way of modeling these special sequences

is with n-dimensional unit cubes. Each vertex in the code is assigned a binary number such

28

that all of its neighboring vertices differ by only one bit. These sequences would then be paths

through the n-dimensional hypercube. Additional constraints are then added, such as not

allowing a path to visit the same vertex twice, and not allowing the path to go through any of

the vertices adjacent to any previous vertex in the sequence. It has proven to be increasingly

difficult to find long paths in higher dimensions, but longer sequences of this type would

be more beneficial in several applications. The properties that this sequence demonstrates,

particularly that it creates a tube-like path throughout the cube, are the reason the problem

is called the snake-in-the-box problem [20].

Initial solutions to the problem were found using only mathematical proof, but this

only worked in lower dimensions. Kautz provides solutions for hypercubes in dimensions up

to n=6, but further solutions were not found until later. In higher dimensions, traditional

formulas and exhaustive search do not work because of the exponentially increasing search

space. This requires us to use alternate search methods to find good solutions. In dimensions

7 and above, the longest solutions have been found using evolutionary heuristics, mainly

genetic algorithms [35, 34, 10]. For dimensions 8 and above, the longest solutions discovered

are only lower bounds and have not been proven to be the optimum solution.

For our experiments, we chose to search for snakes in dimension 8. Although there are

several possible representations for the SIB problem, we chose to use the bit string represen-

tation, as introduced by Diaz-Gomez [14, 15], and the transition sequence representation.

The bit string representation contains one bit for each node within a hypercube. For

each bit, it is assigned a value of 1 if it is included in the snake or a value of 0 if it is not.

To evaluate the fitness of a bit string, the length of the snake is determined by connecting

neighboring nodes that are included, beginning with node 0. To ensure that the resulting

snake is valid, Diaz-Gomez introduced a “vector of neighbors”, created by multiplying the bit

string representation with the adjacency matrix of the hypercube being used. The resulting

vector includes the number of each nodes neighbors that are included in the snake, thus if

any node has a value greater than 2, the snake is invalid.

29

The transition sequence representation is an integer sequence, where each value represents

the bit that should be flipped to get to the next node in the sequence. In other words, given

an adjacency matrix for a particular hypercube, the next node in the path is found in cell

(n, t) in the matrix, where n is the current node number, and t is the transition value in the

sequence. For both of these representations, snake length is the most frequently used fitness

function; however, several fitness evaluation methods exist, specifically the “tightness” of a

snake [35].

5.4 Problem Setup

This section will detail the setup for EO on each problem mentioned. For the other heuristics,

the standard algorithms were used, and any modifications to the representations or evaluation

functions will be mentioned briefly in the results section.

5.4.1 EO-MFD

For the MFD problem, Generalized Extremal Optimization (GEO) was used. Two experi-

ments were performed: one to find the parameter settings leading to the highest efficiency

measure (for comparison to other EO runs) and one to find the parameter settings leading

to the highest reliability (recall, reliability is the ratio of optimal diagnoses found to the

total number of diagnostic trials 1023). To find the highest efficiency measure, GEO was

used with 0 ≤ τ ≤ 6 in increments of 0.01, and the number of iterations from 10 to 40 in

increments of 1. To find the parameters leading to the highest reliability, GEO was used

with 0 ≤ τ ≤ 3 (in increments of 0.01), and the range of total GEO iterations went from 100

to 500 (in increments of 5). Representing a diagnosis followed the other setup schemes pre-

sented, namely, a bit string representation. The modified relative likelihood fitness function

served as the basis for evaluating individual solutions as well.

Our GEO algorithm had the highest efficiency measure using τ = 4.66 and after 16

iterations, producing a reliability of 77.1%. We were able to achieve 100% reliability with

30

τ = 1.39 and after 490 iterations. For comparison, the highest efficiency measure found was

0.048 however the run with the highest reliability had an efficiency measure of 0.002.

5.4.2 EO-FP

During our Forest Planning experiments, the issue of whether or not to include the “no-

harvest” time period came into question due to the nature of EO. Consequently, we tried

two similar approaches on the FP problem. The experiments were identical, but the second

experiment allowed for stands to be unscheduled (i.e., not harvested) and the first did not.

Allowing for stands to be left without being harvested allows the EO algorithm to move

around in the search space, since there are more valid solutions. EO was used with an

integer representation, using the values 1 to 3 for the first experiment (each corresponding

to which harvest time period to choose), and 0 to 3 for the second experiment where a zero

for any stand meant it was chosen to not be harvested. In both experiments, τ was tested

on the range of 1 ≤ τ ≤ 3 (in increments of 0.05), and the number of iterations was set

at 50,000. No tests were done on the efficiency measure because the optimal solutions are

not known; only target best known solutions are available [5]. Instead, the tests were to find

the best value of τ to use in further research on the problem. For the first experiment, no

solutions below 20M were found, and there was no obvious improvement for any values of τ .

For the second experiment, the best configuration found had a solution of 10,597,074 using

τ = 1.5.

5.4.3 EO-SIB

As with the EO-FP setup, the nature of EO led us to try two different representations on

the SIB problem in our efforts to find a better known solution. The first was a bit string

representation. EO was used with τ in the range of 1 ≤ τ ≤ 3 (in increments of 0.05). Again,

because there are no known optimal solutions, the number of iterations was fixed at 10,000.

The second representation used was a transition sequence representation.

31

Since an integer sequence was used, EO was modified to test more possible configurations.

A transition sequence of length 100 was used, and for each transition, the fitness function was

run 7 times, once for each different value the transition could be (not including its current

value). Thus for each iteration, the fitness function was run 700 times. The new fitness values

were ranked and their corresponding transitions tracked, and τ -selection was used on all 700

possible changes. This scheme was then modified to only keep track of the transitions that

were part of the current snake, since no changes after that would affect the fitness of the

new configuration.

With both representations, snake length was the primary indicator of snake strength. But,

as with other search schemes where we found disappointing SIB results, we also considered

tightness (nodes in the snake that share more neighbors with others are more fit than those

that do not), and the number of free nodes (nodes that are not part of the snake path or

adjacent to the snake path). The longest snake found using the transition sequence was of

length 70 using τ = 1.4, and the only parameter used in the fitness function was the length

of the snake. The longest snake found using bit-string representation was of length 74, using

τ = 1.6.

5.5 Results & Observations

After the initial studies on MSE, all four heuristics were compared on the MFD, FP and

SIB problems. The results of these comparisons can be found in Table 5.1. Although it may

be argued that any of these heuristics could have performed well given enough time or a

large enough population, these results here are representative of when can be achieved using

normally tuned parameters for each heuristic.

On the MFD problem, a GA, DPSO, and EO performed very well, and all demonstrated

the expected increase in reliability with an increased population size or increase number of

iterations. RO did not have a good performance at all, achieving a reliability of only 12%,

raising questions as to what aspects of the MFD problem held it back. One thing to note

32

relating to RO is that it only works with valid solutions, thus its diagnosis must completely

explain some of the symptoms in question, whereas the other search techniques allowed for

partial covers of the symptom set. Thus, the other search techniques were able to move more

freely through the search space, possibly accessing areas that were difficult for RO to access

with the given constraints.

Table 5.1: Results seen in comparing EO, GA, PSO, and RO on Multiple Fault Diagnosis,
Forest Planning, and the Snake in the Box problem

Heuristic MFD FP SIB
Extremal Optimization 100% 10M 74
Genetic Algorithm 87% 6,505,676 95
Particle Swarm Optimization 98% 35M 86
Raindrop Optimization 12% 5,500,391 65

For the Forest Planning problem, using RO we were able to reproduce the optimal results

seen in [5]. GAs were the only other technique to achieve a decent schedule for FP, though

a modified fitness function was introduced to add a penalty to solutions with constraint vio-

lations. This modified fitness function allowed the GA to preserve potentially strong genetic

material. Both DPSO and EO struggled in finding optimal solutions for FP, demonstrating

an opportunity for future research to be performed.

Finally, all heuristics performed well on the SIB problem. Using the bit-string represen-

tation, GAs found the best snake of length 95 using only 100 individuals and running for

250 generations. The second best snake, which had a length of 86, was found using DPSO.

DPSO found its best using a transition sequence representation. Also, DPSO used seeding,

setting the initial swarm equal to long snakes in smaller dimensions rather than a purely

random initialization. EO and RO both found their longest snakes (74 and 65 respectively)

using the bit string representation. Although these snakes were significantly shorter than the

one found by GA, the two heuristics performed reasonably well, given that they are both

single element search methods, and that a length of 65 can be considered average [31].

Overall, EO performed well on the problems with a smaller search space (MFD and

MSE), yet struggled on the harder problems. Our speculation is that this is caused by the

33

use of a general evaluation function for each component in our representations rather than

using problem-specific information. For the FP problem, we could have potentially held

back EO by using the “no-harvest” time period. Even though this allowed EO to move

more freely through the search space by providing more valid configurations, it drastically

increased the size of the search space, making the problem even harder to solve. For our

SIB experiments, we may have held back our solutions by unfairly favoring those nodes near

the beginning and end of the snake. While this helped to find medium-length snakes, no

information was considered regarding factors other than length, so sub-optimal sequences

towards the middle of the snake would not be modified, holding EO in sub-optimal areas of

the search space. This “holding back” could be prevented with an increased τ value; however

this could resemble more of a random search than a good search heuristic. In both cases,

a problem-specific evaluation for each component of a solution would have avoided these

negative characteristics, potentially yielding better results.

Chapter 6

EO Hybridization & State of the Art

So far, this thesis has only discussed the standard EO heuristic and a few notable modifi-

cations. This chapter will discuss the state of the art of Extremal Optimization, including

new adaptations and instances in which it has been hybridized with other heuristics. EO has

performed very well in several domains, and using these state of the art adaptations, it has

the potential to perform even better.

6.1 Population-Based Extremal Optimization

To improve on the performance of EO, Chen, Lu, and Yang introduced population-based

EO (PEO) [12]. Initially, PEO is described as performing the EO algorithm on a set (pop-

ulation) of solutions, helping to explore a larger portion of the search space in parallel. To

further enhance performance, Chen et. al. introduced a Lévy mutation operator to EO. The

Lévy mutation is an adaptable operator, combining the benefits of Cauchy mutation, which

performs well on search points far from optimal solutions, and Gaussian mutation, which

performs well when candidate solutions are near-optimal. Once the worst component of a

solution was selected, this mutation was applied, and if the resulting value was valid, it was

accepted. The combination of the mutation operator and the use of a population increased

the speed at which the algorithm converged, and demonstrated a higher accuracy than other

heuristics on several benchmark problems.

34

35

6.2 Continuous Extremal Optimization

Continuous Extremal Optimization (CEO) was introduced by Zhou, Bai, Cheng, and Wang

to apply the benefits of EO on continuous optimization problems [37]. CEO consists of two

parts; classical EO as a global search, and a local hill-climbing technique. CEO is performed

in the same manner as EO; however, before each iteration it moves the solution to a local

optimum using a hill-climbing technique before evaluating the components of the solution.

To demonstrate a simple model using CEO, Zhou et al. implemented it on a Lennard-Jones

optimization problem. In their experiment, they compared results using CEO to those found

using several domain-specific methods as well as other general optimization heuristics. Zhou

et al. found that although CEO didn’t have great success on the Lennard-Jones problem when

compared to the domain-specific methods, it outperformed all other general optimization

heuristics.

6.3 Jaded Extremal Optimization

To improve the performance of EO, Middleton introduced Jaded Extremal Optimization

(JEO) [27]. JEO incorporates an aging parameter into τ -EO, adjusting the fitness of each

component proportional to the number of times it was previously been selected. The following

equation is used to determine the value to add to the fitness evaluation of each component i:

λi = λΓ
i ≡ λ0

i + Γki

Note that Γ is a tunable parameter in JEO, thus when Γ = 0, it is the equivalent of τ -

EO. Middleton also notes that tuning Γ can be done fairly quickly, and it reduces the effort

required to tune τ . In comparisons with τ -EO, JEO converged significantly faster, providing

equivalent optimal results.

36

6.4 Particle Swarm Optimization Hybridization

PSO has been a useful addition to the wide range of available optimization heuristics, though

it demonstrates some problems with early convergence. Chen et. al. hybridized PSO with

EO to take advantage of the strong global search characteristics of PSO while using the

effects of EO to keep the heuristic from becoming stuck in local optima [11]. The PSO-EO

hybridization used a standard PSO model, but incorporated a population-based EO iteration

for one out of every N PSO iterations, where N was a tunable parameter. Chen et. al. used

their heuristic on six benchmark problems, each of which contain solution landscapes with

many peaks and valleys, providing many points for traditional optimization heuristics to

become stuck. Their tests using these benchmark functions resulted in a performance better

than that of PSO, PEO, or GA alone, both in terms of convergence speed and success rate.

6.5 Dynamic Optimization

EO has also demonstrated success when applied to dynamic function optimization problems

[28]. Moser and Hendtlass recently introduced multi-phase multi-individual Extremal Opti-

mization (MMEO) and compared its use to standard optimization heuristics on the Moving

Peaks (MP) problem. MP is a dynamic optimization problem that has been frequently used

as a benchmark for testing optimization heuristics. Its fitness function changes over time,

and as a result, the fitness landscape consists of several peaks, all of which change in height,

width, and location over time. In initial experiments, Moser and Hendtlass found that the

standard EO algorithm would not perform well on the MP problem. This was explained by

the fact that the most successful algorithms applied to MP keep a memory of both local

and global optima. As a result, Moser and Hendtlass devised MMEO to incorporate these

missing features. The MMEO algorithm is performed as follows:

1. Use stepwise sampling to determine an initial value for each solution Si in the popula-

tion. Evaluate each solution, and rank them according to their fitness.

37

2. Use τ -selection to select solution Si for mutation

3. Use a hill-climber to locally optimize Si, halting optimization if Si becomes too close

to another solution

4. Store Si if it is not a duplicate of any other solution

5. Reoptimize using hill climber if the fitness of any population member changed.

6. Use precise steps in the reoptimization of Sbest, halting at convergence.

Moser and Hendtlass noted that the power-law selection produced poorer results than

choosing the best individual each time, and continued their work using τ set to infinity. Using

this basic setup, MMEO produced strong results on the MP problem. Moser and Hendtlass

discuss many variations to the heuristic, and conclude that MMEO found great solutions for

the MP problem; however it used a lot of problem specific information and didn’t perform

as well when using a more simplistic approach.

Chapter 7

Conclusions

Extremal optimization is an exciting addition to the optimization field. Its approach of

“weeding out” the bad components instead of the traditional approach of favoring the good

components has proven to be a positive search method. Because of its uncommon ability to

transition in and out of near-optimal solutions at any point in time, EO is a great heuristic

to exploit when considering a hybrid approach with any search technique, particularly those

that frequently demonstrate signs of early convergence. Also, EO has performed well in a

variety of domains, particularly fault diagnosis, network configuration, and path finding,

showing its independence from problem specific information.

Due to the large number of variations of EO, there is a wide variety of potential research

that could be performed in the future. Particularly, further work can be done on optimal

parameter tuning for τ , and potentially looking into alternative probability functions in

which to use τ . Also, more work can be done with the ideas behind Jaded EO, incorporating

penalties for components of a given solution that are derived outside of the problem domain.

As far as our particular problem areas, more work can be done on finding good methods

of evaluating the individual components of a solution for both the Forest Planning problem

and the Snake in the Box problem. Although generic fitness evaluations helped find decent

results, incorporating more problem specific information or using a different variation of

EO could potentially find even better solutions. Even in the Mobile Subscriber Equipment

problem, more work could potentially be done in evaluating the individual components in

order to reduce the number of times the overall solution evaluation is run. Although EO

38

39

didn’t produce outstanding results in all domains, it is definitely a heuristic worth using

when attempting to solve a discrete optimization problem.

Bibliography

[1] Bak, P. (1996). How Nature Works. New York: Springer-Verlag.

[2] Bak, P., & Sneppen, K. (1993). Punctuated Equilibrium and Criticality in a Simple

Model of Evolution. Physical Review Letters, 4083-4086.

[3] Bak, P., Tang, C.,& Wiesenfeld, K. (1988). Self-organized criticality. Physical Review

A, 38, 364-374.

[4] Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: an explanation of

1/f noise. Physical Review Letters, 59, 381-384.

[5] Bettinger, P., & Zhu, J. (2006). A new heuristic for solving spatially constrained forest

planning problems based on mitigation of infeasibilities radiating outward from a forced

choice. Silva Fennica, 40 (2), 315-333.

[6] Boettcher, S. (2000). Extremal Optimization: Heuristics via Co-Evolutionary

Avalanches. Computing in Science and Engineering, 2 (6), 75-82.

[7] Boettcher, S., & Percus, A. G. (2001). Extremal Optimization for Graph Partitioning.

Physical Review E, 64, 026114.

[8] Boettcher, S., & Percus, A. G. (2003). Extremal Optimization: An Evolutionary Local-

Search Algorithm. Proceedings of the 8th INFORMS Computing Society Conference.

[9] Boettcher, S., & Percus, A. G. (1999). Extremal Optimization: Methods derived from

Co-Evolution. GECCO-99: Proceedings of the Genetic and Evolutionary Computation

Conference (pp. 825-832). San Francisco, CA: Morgan Kaufmann.

40

41

[10] Casella, D., & Potter, W. D. (2005). Using Evolutionary Techniques to Hunt for Snakes

and Coils. Proceedings of the 2005 IEEE Congress on Evolutionary Computing.

[11] Chen, M.-R., Li, X., Zhang, X., & Lu, Y.-Z. (2009). A novel particle swarm optimizer

hybridized with extremal optimization. Applied Soft Computing.

[12] Chen, M.-R., Lu, Y.-Z., & Yang, G. (2006). Population-based extremal optimization

with adaptive Lévy mutation for constrained optimization. Proceedings of 2006 Inter-

national Conference on Computational Intelligence and Security (CIS’06) (pp. 258-261).

Guangzhou, China: Springer Berlin.

[13] de Sousa, F. L., Ramos, F. M., Paglione, P., et al. (2003). New stochastic algorithm for

design optimization. AIAA J, 41 (9), 1808-1818.

[14] Diaz-Gomez, P., & Hougen, D. (2006). Genetic algorithms for hunting snakes in

hypercubes: fitness function analysis and open questions. Seventh ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking, and Par-

allel/Distributed Computing (SNPD 2006) (p. 3890394). Las Vegas: IEEE Computer

Society.

[15] Diaz-Gomez, P., & Hougen, D. (2006). The snake in the box problem: mathematical

conjecture and a genetic algorithm approach. Proceedings of the 8th annual conference

on Genetic and evolutionary computation (pp. 1409-1410). Seattle: ACM Press.

[16] Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: an alternative to phyletic

gradualism. In T. J. Schopf, Models in Paleobiology (pp. 82-115). San Francisco:

Freeman, Cooper and Co.

[17] Engelbrecht, A. P. (2005). Fundamentals of Computational Swarm Intelligence. New

York: Wiley and Sons.

[18] Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: Univer-

sity of Michigan Press.

42

[19] Katz, J. I. (1986). A Model of Propagating Brittle Failure in Heterogeneous Media.

Journal of Geophysical Research, 10412-10420.

[20] Kautz, W. (1958). Unit-Distance Error-Checking Codes. IRE Transactions on Electronic

Computers, 179-180.

[21] Kennedy, J., & Eberhart, R. C. (2001). Swarm Intelligence. San Francisco: Morgan

Kaufmann.

[22] Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of the

IEEE International Conference on Neural Networks (pp. 1942-1948). IEEE Service

Center.

[23] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated

Annealing. Science, 220, 671-680.

[24] Leipins, G. E., & Potter, W. D. (1991). A Genetic Algorithm Approach to Multiple

Fault Diagnosis. In L. Davis, Handbook of Genetic Algorithms. New York: Van Nostrand

Reinhold.

[25] Martin, M., Drucker, E., & Potter, W. D. (2008). ”GA, EO, and DPSO applied to the

discrete network configuration problem. Proceedings of the International Conference on

Genetic and Evolutionary Methods, GEM 2008, 129-134.

[26] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).

Equation of State Calculations by Fast Computing Machines. The Journal of Chemical

Physics, 21, 1087-1092.

[27] Middleton, A. A. (2004). Improved extremal optimization for the Ising spin glass. Phys-

ical Review E, 69, 055701.

43

[28] Moser, I., & Hendtlass, T. (2007). A simple and efficient multi-component algorithm for

solving dynamic function optimization problems. 2007 IEEE Congress on Evolutionary

Computation (CEC 2007) (pp. 252-259). Singapore: IEEE.

[29] Peng, Y., & Reggia, J. A. (1987). A probabilistic causal model for diagnostic problem

solving, part I: integrating symbolic causal inference with numeric probabilistic infer-

ence. IEEE Transactions on Systems, Man, and Cybernetics, 17 (2), 146-162.

[30] Peng, Y., & Reggia, J. A. (1987). A probabilistic causal model for diagnostic problem

solving, part II: diagnostic strategy. IEEE Transactions on Systems, Man, and Cyber-

netics, 17 (3), 395-406.

[31] Potter, W. D., Drucker, E., Bettinger, P., Maier, F., Martin, M., Luper, D., et al. (2009).

Diagnosis Configuration, Planning and Pathfinding: Experiments in Nature-Inspired

Optimization. In R. Chiong, Natural Intelligence for Scheduling, Planning, and Packing

Problems. Springer-Verlag.

[32] Potter, W. D., Miller, J. A., Tonn, B. E., Gandham, R. V., & Lapena, C. N. (1992).

Improving the reliability of heuristic multiple fault diagnosis via the environmental

conditioning operator. Applied Intelligence, 2 (1), 5-23.

[33] Potter, W. D., Pitts, R., Gillis, P., Young, J., & Caramadre, J. (1992). IDA-NET: An

intelligent Decision Aid for Battlefield Communications Network Configuration. Pro-

ceedings of the Eighth IEEE Conference on Artificial Intelligence Applications (CAIA

’92) (pp. 247-253), March.

[34] Potter, W. D., Robinson, R., Miller, J., & Kochut, K. (1994). Using the Genetic Algo-

rithm to find Snake-in-the-Box Codes. Proceedings of the 7th International Conference

on Industrial & Engineering Applications of Artificial Intelligence and Expert Systems,

(pp. 307-314).

44

[35] Tuohy, D., Potter, W., & Casella, D. (2007). Searching for Snake-in-the-Box Codes with

Evolved Pruning Models. Proceedings of the 2007 International Conference on Genetic

and Evolutionary Methods (pp. 3-9). Las Vegas: CSREA Press.

[36] Zhu, J., Bettinger, P., & Li, R. (2007). Additional insight into the performance of a new

heuristic for solving spatially constrained forest planning problems. Silva Fennica, 41

(4), 687-698.

[37] Zhou, T., Bai, W., Cheng, L., & Wang, B. (2004). Continuous extremal optimization

for Lennard-Jones Clusters. Physical Review E, 72, 016702.

