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CHAPTER 1 

AN INTRODUCTION TO THE SNAKE-IN-THE-BOX PROBLEM 

This thesis is a primer designed to introduce novice and expert alike to the Snake-

in-the-Box problem (SIB). As such, its objectives are manifold. 

First, it presents in plain language the essential aspects of the problem, while 

easing the reader into the lingo of SIB. As necessary, introductions to prerequisite 

concepts are included. Furthermore, for ease of reference, relevant terms appear bolded 

when defined. 

Second, it untangles much of the literature devoted to the problem—and reported 

since SIB’s introduction in 1958—presenting the problem in historical and technical 

contexts. This includes, addressing conflicts in the SIB lexicon, organizing research into 

general approaches, and discussing the paired origins of the problem. 

Third, it presents methods for representing both the SIB search space and 

potential solutions, for validating and manipulating potential solutions, exploiting 

symmetry to reduce search effort, as well as evaluating in-progress solutions and 

remaining search space for continued growth potential. 

Lastly, it is written to be easy—even enjoyable—to read. 

1.1 A SIMPLE ANALOGY 

At its simplest, SIB is a puzzle game.  The objective of this game is to find the 

longest possible path (the snake) which may be plotted along the edges of a hypercube 

graph (the box). The path follows special rules (constraints) which make the puzzle more 
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challenging. This game has an unlimited number of levels, and a winner is declared for 

each level solved. Each new level is exponentially more difficult to solve than the 

previous level. In fact, years may pass between an individual or team discovering a 

level’s longest path and the verification of the win. 

Equipped with this simplest understanding of SIB, let us leave this analogy 

behind and delve into the problem in greater detail. 

1.2 SIB 

SIB is a graph theory problem concerned with finding the longest possible 

induced path that can be plotted along the edges of an  -dimensional unit hypercube 

graph. It is also a constraint satisfaction problem, due to the constraints placed on the 

path. 

Graph theory is concerned with the study of mathematical graphs; structures that 

represent associations among a collection of interrelated objects. In a graph, each object 

is represented by a vertex, or node, and each relationship—between pairs of objects—is 

indicated by a line, or edge, connecting the objects together. Edges may be directed (one-

way) or undirected. Figure 1 illustrates. In SIB, all hypercube graph edges are undirected.  

 

Figure 1: A sample graph with nodes and edges indicated. 
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1.2.1 THE HYPERCUBE 

A hypercube graph is a graph whose nodes and edges are arranged such that 

they form a geometric hypercube. From geometry, we are all familiar with points, lines, 

squares, and cubes. We understand too that these objects have different degrees of 

dimensionality. Cubes are 3-dimensional, squares are 2-dimensional, lines are 1-

dimensional, and points have 0 dimensions. Using   to represent dimension, the 

geometric hypercube (or  -cube) is the  -dimensional analog of all these objects and 

more. For shapes having more than 3 dimensions, names are less familiar, increasingly 

complicated, or even unassigned. To keep things simple, the term  -cube is used to refer 

to each hypercube by its dimensionality. Hence, the 0-cube describes a point, the 1-cube 

a line, the 2-cube a square, the 3-cube a cube, and so on. Figure 2 illustrates. As a graph, 

the vertices of the geometric hypercube are analogous to the nodes of the hypercube 

graph. Edges remain edges. 

Every hypercube has    total vertices. Each of these vertices is connected to   

neighboring vertices via   edges—edges which are all orthogonal (perpendicular) to each 

 

Figure 2: Hypercube graphs for       (left to right respectively). Solid nodes 

joined by solid edges show previous  -cube in current  -cube. Hollow nodes joined by 

solid edges show duplication of previous  -cube in current  -cube. Dashed edges 

show new edges in the current  -cube. 
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other. Figure 3 illustrates. This relation can be seen easily in the 2-cube and 3-cube, but is 

harder to conceptualize in higher dimensions. 

A graph wherein every node connects to the same number of neighbors is called a 

regular graph. The hypercube graph is a regular graph. It is also a bipartite graph, 

meaning it is possible to divide its nodes into two disjoint (exclusive) sets such that every 

edge connects a pair of disjoint nodes. Figure 4 illustrates. 

Finally, a unit hypercube is one whose edges are all 1 unit in length. A unit is an 

arbitrary expression of length that does not imply any specific unit of measure, but rather 

the uniformity of lengths; in this case, of edges. 

 

 

Figure 3: Example of orthogonal (mutually perpendicular) edges.         

 

 

Figure 4: Hypercube graphs are regular (both), and bipartite (right). 
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1.2.2 THE PATH 

Borrowing a term from Information Theory, Hamming distance is a count of the 

number of differences between two strings of data of the same length [Hamming 1950]. 

Figure 5 illustrates. When those strings are the binary node labels of a hypercube graph, 

Hamming distance indicates the distance between the nodes in the graph—by counting 

the number of non-matching bits between the nodes. (Binary labels are discussed in more 

detail in Section 1.2.3.) In the unit hypercube, the Hamming distance between any two 

adjacent nodes is 1, and the distance between any two non-adjacent nodes is greater than 

1; or more specifically: equal to the fewest number of edges which must be traversed in 

 

 

Figure 5: Hamming distance. The Hamming distance of each comparison (left to right) 

is 2, 4, 3, and 1, because each pair of strings differs in that number of positions 

respectively. 

 

 

Figure 6: Sample subgraphs. I, II, and III are valid subgraphs of the sample graph in 

Figure 1. IV, V, and VI are invalid subgraphs of same. An ‘x’ indicates the violations 

in each invalid subgraph. 
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order to bridge the distance between the nodes. In the  -cube, the maximum distance 

between any two nodes is  .  

A subgraph is a graph whose nodes and edges form a subset of a larger graph. 

That is, the entire subgraph exactly matches all or part of the larger graph. Figure 6 

illustrates. An induced subgraph is a subgraph in which every pair of nodes in the 

subgraph is connected by an edge if and only if the pairs are similarly connected in the 

larger graph. That is, edges must exist in the subgraph wherever edges exist in the larger 

graph. Figure 7 illustrates. 

A path is an ordered set of connected nodes or edges in a graph. A path is a type 

of subgraph. An induced path is a type of induced subgraph in which no two non-

 

 

Figure 8: Sample induced path as an ordered set (left) and in the 3-cube graph (right). 

In the 3-cube, the dashed edges here indicate chords connecting to non-path nodes.) In 

an induced path all non-consecutive path nodes are ≥ 2 distant. 

 

Figure 7: Sample induced subgraphs. These three subgraphs are valid induced 

subgraphs of the sample graph in Figure 1. 
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adjacent nodes in the path are themselves connected in the  -cube. Such additional 

adjacencies are called chords. As such, an induced path is also known as a chordless 

path or an achordal path. The ordered set in Figure 8 illustrates. Furthermore, as with 

the hypercube graph, the Hamming distance between the consecutive nodes in an induced 

path is always 1, while the Hamming distance between non-consecutive nodes in the path 

is always greater than 1. This minimum distance between non-consecutive path nodes is 

known as spread. An induced path is further known as a spread 2 path; meaning that all 

non-consecutive nodes in the path maintain a distance not less than 2. The  -cube graph 

in Figure 8 illustrates. The maximum distance between any two nodes in   is  , hence 

spread   is the maximum possible spread in  . SIB is concerned with spread     paths; 

however, paths of     are also sought. Such searches remain within the domain of SIB, 

as all spread   paths, for    , are subsets of spread   paths [Singleton 1996]. 

The length of a path is equal to the number of edges it describes when plotting the 

path. The initial node of a path is its head, and the terminal node of a path is its tail. A 

path whose head and tail are adjacent is a closed path; otherwise, it is an open path. 

In SIB, an open induced path is a snake, and a closed induced path is a coil. Coils 

which may be split down the middle into two identical snake subsequences are 

symmetrical coils. Symmetrical coils are also referred to as double coils. Those who 

exclusively search for coils in the hypercube sometimes refer to SIB as the Coil-in-the-

Box problem [Casella & Potter 2005c]. Any snake which can be extended is a sub-snake 

of a longer snake or coil. A snake which can no longer be extended is a maximal snake. 

Likewise, a coil which can no longer be extended is a maximal coil. The longest of the 

maximal snakes and coils in dimension   are called the longest maximal snake and 
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longest maximal coil—or the absolute snake bound and absolute coil bound for  — 

respectively. Finding the absolute bounds for   is the goal of SIB. 

1.2.3 NODE LABELING AND PATH REPRESENTATION 

For plotting paths, it is helpful for each node of the  -cube graph to be uniquely 

identifiable. One common convention is to use a Gray code numbering scheme which 

assigns a unique  -bit binary label to each graph node such that each label differs from its 

  neighboring nodes by exactly one bit. In fact, when constrained to binary values, the 

Gray code numbering method by default describes a hypercube. The  -cube in Figure 8 

illustrates. For any  -cube, binary node labels will run consecutively from   to       . 

Because of the regularity (symmetry) of the hypercube, any node may be designated as 

Node 0. Thus, an arbitrary node is first designated as Node 0 with all other nodes labeled 

relative to it. 

There are three common notations for representing an induced path on a 

hypercube graph. Two explicitly describe a path from head to tail, while the third’s 

description is implicit and requires additional processing to extract an explicit path. The 

two explicit representations are the node sequence and the transition sequence. The 

implicit representation is the binary sequence. 

Table 1: Path representations compared. 

Notation Type Sequence notations for the same snake in the  -cube 

Node Sequence (integer labels) 0, 1, 3, 7, 6, 14, 12, 13 

Node Sequence (binary labels) 0000, 0001, 0011, 0111, 0110, 1110, 1100, 1101 

Transition Sequence 0, 1, 2, 0, 3, 1, 0 

Binary Sequence 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0 
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In node sequence (NS) notation, a path is described from head to tail by an 

ordered list of the labels of the nodes through which it passes. Table 1 illustrates. Node 

values range from   to     . Path length (number of edges) in NS is always one less 

than the length of the node sequence.  

In transition sequence (TS) notation, a path is described from head to tail by the 

position of the bit which changes between the labels (in binary) of the nodes through 

which its passes. Table 1 illustrates. As Gray code node labels are each  -bits long, the 

position of each bit in the label can be likened to a dimension of travel in the  -cube—

i.e., a dimensional transition. Transition values range from   to    . Path length 

(number of edges) in TS is equal to the length of the transition sequence itself. 

Both NS and TS representations have their advantages and limitations. As path 

encoding schemes, both describe complete paths; with a NS describing a snake exactly as 

it appears in the hypercube, allowing any point along a path to be easily identified within 

the hypercube; and a TS generalizing the node references, allowing for the identification 

of patterns present within the relative shape of a path. 

In binary sequence (BS) notation, a path is indirectly described via a bit string 

that indicates which nodes of the hypercube are included in the path. The BS contains    

bits, one for each node in the  -cube. For each node through which the path passes, its 

corresponding bit is set to 1. All other bits are set to 0. The order in which the path passes 

through the nodes is not encoded in BS—though paths generally start at Node 0—so 

additional processing is required to extract an explicit path—typically to either NS or TS. 

Directly representing the hypercube and not a path, BS representation is a search-

space reduction representation, effectively limiting the size of the search space (the 
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hypercube graph) to a subgraph of the whole. As such, the BS is not necessarily limited 

to describing a single path; and conversely, a path need not be described by all of the “1” 

bits in the BS. In cases where it is guaranteed that a BS contains the minimal number of 

“1” bits to describe a single path, the number of edges in the BS path is equal to one less 

than the cardinality of the binary sequence. Cardinality here refers to the number of “1” 

bits set in a binary sequence. The BS in Table 1 has a cardinality of 8. 

1.3 THE CHALLENGE 

At a glance, the SIB problem may appear to be a simple puzzle with a simple 

(enough) solution. However, this is an elegant deception, as SIB falls into a category of 

problems which suffer from combinatorial explosion. 

Combinatorial explosion refers to the doubling—at least—of a measurable 

complexity for every occurrence of a measurable increment. For SIB this doubling occurs 

in its search space. As   increases linearly, the dimensional complexity of the hypercube 

grows exponentially. Because of this, SIB is an excellent proving ground for testing the 

mettle of would-be innovative heuristic search techniques. But the significance of SIB is 

not limited to being a challenging sandbox. 

1.4 SIGNIFICANCE 

Knowing the maximum number of elements which may be packed into a code 

type is useful in code design [Kautz 1958]. Longer SIB codes mean greater error 

detection accuracy in the systems which use them [Paterson & Tuliani 1998]. This is the 

chief motivation behind SIB. 

Today, SIB codes continue to find relevant application in many science and 

engineering fields. Some of these areas include: coding theory, electrical engineering, 
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analog-to-digital conversion, precision high speed rotational sensors, pattern recognition 

and classification [Preparata & Nievergelt 1974], disk sector encoding [Blaum & Etzion 

2002], charge modulation schemes for multi-level flash memory [Yehezkeally & 

Schwartz 2011], and systems biology, particularly in gene regulatory networks modeling 

[Zinovik et al. 2008]. 

As a testament to its enduring challenge, since the introduction of SIB by [Kautz 

1958], only dimensions     have been definitively solved; with solutions for     

snakes [Carlson & Hougen 2010] and coils [Paterson & Tuliani 1998] being proved by 

[Östergård & Pettersson 2014b] and [Östergård & Pettersson 2014a] respectively. 

Previously, solutions for     snakes [Potter et al. 1994] and coils [Eastman via Even 

1963] were proved by [Kochut 1996]. Table 2 lists the current snake, coil, and 

Table 2: Current lower bounds of the Snake-in-the-Box problem (   ). Shaded cells 

denote proven solutions (absolute bounds) for   [Potter 2015]. 

Dimension ( ) 
Length 

Snakes Coils Symmetrical Coils 

1 1 0 0 

2 2 4 4 

3 4 6 6 

4 7 8 8 

5 13 14 14 

6 26 26 26 

7 50 48 46 

8 98 96 94 

9 190 188 186 

10 370 358 362 

11 707 668 662 

12 1302 1276 1222 

13 2520 2468 2354 

14+    
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symmetrical coil lower bounds for       . For lower bounds of spreads    , 

[Hood et al. 2013] includes a recently updated table. 
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CHAPTER 2 

HISTORY OF THE SNAKE-IN-THE-BOX PROBLEM 

This chapter presents a brief history of SIB, what lead to its development and the 

continuing search to solve it for ever increasing values of  . 

2.1 PRELUDE 

The transmission of messages (data) over distances without the physical exchange 

of a tangible medium, such as a letter or photograph, is known as telegraphy. Data 

transmission via telegraphy requires messages to be encoded using methods which are 

both appropriate to a given telegraphic medium and known to the sender (encoder) and 

receiver (decoder) alike. Telegraphy—and methods of encoding messages—have existed 

since ancient times. From the humble beginnings of bonfire beacons and smoke signals, 

through interim developments like flag semaphore and the heliograph, telegraphy came 

of age with the introduction of electrical and wireless telegraphy in the late 19
th

 and early 

20
th

 centuries. Out of these last developments, and up through the present day, the march 

of technology has continued to increase telegraphy’s capacities to handle more messages 

of greater complexity at faster transmission speeds. 

2.1.1 DIGITIZATION 

To share a single wired or wireless connection, messages must be woven together 

for transmission. Enter sampling. Sampling is the process of digitally representing a 

continuous (analog) signal—or data stream—by reducing it to a discrete (digital) series of 

snapshots. The first data samplings were performed in order to interlace messages from 
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multiple sources for transmission along a single shared wire. There are a number of 

methods for sampling data streams. One such method is pulse code modulation.  

Pulse code modulation (PCM) entails recording the values of a continuous signal 

a number of times per second [Reeves 1942] [Pierce 1948] [Oliver & Shannon 1957]; 

reducing the continuous signal to a series of discrete snapshots—similar to how moving 

objects appear when illuminated by a strobe light. How often these values are recorded or 

sampled is called a sample’s sampling rate, and the total number of “words” 

(commonly: bits) available for recording each sampled value is a sample’s bit depth. 

Figure 9 illustrates. 

A bit (binary digit) is a basic unit of information capable of expressing one of two 

values: 0 or 1. By stringing together a number of bits, a range of numeric values beyond 

 

Figure 9: Digitization of an analog signal. The smooth line represents an analog signal, 

while the dots indicate the digital sampling of the signal at a fixed sampling rate. 
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the scope of a single bit may be expressed using binary encoding. For example, a string 

of three bits can express numeric values of 0 to 7. Table 3 illustrates. 

The act of changing a bit from 0 to 1 (or 1 to 0) is commonly called a bit flip, due 

to a bit being readily likened to a simple (two position) switch—like a light switch. One 

flips switches, hence one also flips bits. 

Exactly how a bit holds information varies by medium. Anything which can 

express two measureable states (on/off, up/down, present/absent, high/low, etc.) may 

serve as a bit. The earliest devices used various mechanical means; moving parts which 

with repeated use became increasingly error prone over time. 

2.1.2 OPPORTUNITIES FOR ERROR 

For devices that use mechanical means to flip bits, the conventional binary 

numbering method is not an optimal encoding—as fully half of all numeric operations 

performed using the method require (at least) twice as many bit flips as the other half, 

which only require one. Specifically, every even-to-odd increment and odd-to-even 

decrement requires two or more bit flips [Gray 1953]. With half of all bit operations 

being more costly, and increasingly so the larger the numeric values being calculated, the 

Table 3: Numerical encodings compared. 

Decimal Binary Gray Code 

0 000 000 

1 001 001 

2 010 011 

3 011 010 

4 100 110 

5 101 111 

6 110 101 

7 111 100 
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opportunity for error is not only increased but skewed toward half of all numeric 

operations. Additionally, and more significantly, when multiple bit flips are required, it is 

unlikely that the flips will all occur in perfect synchrony. Within the interval it takes for 

all flips to complete, it is possible—more so with slower media—for bit strings to register 

spurious values. For instance, to flip 000 to 111 requires three bit flips, an operation 

during which it is conceivable for the bit string to spuriously register any of the six other 

3-bit values. 

Out of these issues arose research into reliable error-detecting and error-correcting 

methods with applications in both computing hardware and software. Two initial 

breakthroughs came in the form of the Gray code and Hamming codes. 

The reflected binary code or Gray code—named for Frank Gray who first 

described the encoding method in his 1947 patent (issued 1953) [Gray 1953]—is an 

alternate binary numbering method which requires only a single bit flip for any individual 

binary increment or decrement operation. The Gray code both equalized the opportunity 

for error across all bit flip operations, and alleviated the concern over spurious readings 

during bit flips. Table 3 illustrates. 

Hamming codes—introduced by [Hamming 1950]—are a foundation of modern 

error-checking and error-correcting theory, and implement codes with spreads greater 

than 1 to reliably detect (and in some cases correct) errors in transmitted digital data. 

This essentially was the state of things when SIB was introduced. 

2.2 GENESIS 

SIB was first described by [Kautz 1958], and originated with the application of 

Hamming’s error-detecting codes to measurement and analog-to-digital conversion 
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systems which used Gray codes [Adelson et al. 1973a] [Paterson & Tuliani 1998]. Kautz 

observed that as (1) a set of binary code elements with the (Hamming) single-error-

detecting property was represented by a set of disjoint nodes in the unit  -cube, and (2) a 

set of binary code elements with the unit-distance property (Gray code) was represented 

by an ordered set of adjacent nodes in the unit  -cube; then a set of binary code elements 

possessing both properties was represented by an ordered set of adjacent nodes of which 

all non-successive nodes were disjoint [Kautz 1958]. 

Knowing the maximum number of elements which may be packed into a code 

type is useful in code design [Kautz 1958]. Longer codes mean greater accuracy in the 

systems employing them. Such maximums were already known for both Hamming’s 

error-checking codes [Hamming 1950] and Gray’s unit-distant codes [Gray 1947]. So the 

next step was to determine similar maximums for Kautz’s new unit-distance error-

checking codes—an ongoing effort which continues to this day and is known as SIB. 

2.2.1 LEXICAL EVOLUTION 

Kautz, while parenthetically coining the term “snake” based on the interpretation 

of these paths as forming unit-radius tubes in the hypercube, mainly referred to paths as 

chains and differentiated open and closed paths as segments and cycles respectively. 

However, these latter terms did not completely take hold, and for some time thereafter 

each new publication effectively proffered its own SIB lexicon. As attention oscillated 

between closed and open paths, the lack of established terminology proved 

cumbersome—particularly across disciplines, where discussions of the problem could be 

undertaken using wholly unfamiliar or conflicting vocabularies. 
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Thirty years passed before some manner of consensus was reached in the SIB 

research community. Much of the modern SIB lexicon was codified (so to speak) by 

[Harary et al. 1988], in their comprehensive survey of hypercube graph theory. Most 

notably, Harary defined the closed path as a coil and fixed the open path as a snake. 

2.2.2      

The subdomain of spread     path search originated with [Singleton 1966] who 

opened the problem to higher spreads as     . Higher spread      codes offer increased 

error-detection precision [Klee 1967] [Douglas 1969a] as well as possibilities for error 

correction [Paterson & Tuliani 1998] [Klee 1970b]—but at additional computational 

expense.      codes remain a viable subdomain of SIB, but are beyond the scope of this 

primer. 

2.3 PARALLEL GENESIS 

Interest in induced paths in  -cubes did not originate solely out of error-checking 

theory. About the same time in the then Soviet Union, math theorists—having recognized 

the apparent unavoidability of exhaustive search (perebor in Russian) under certain 

circumstances—were actively pursuing a mathematical proof of this inevitability 

[Trakhtenbrot 1984]. As part of this effort, Zhuravlev and Vasil'ev [Vasil’ev 1963] were 

effectively using SIB codes in their research to explain the difficulties in minimizing 

disjunctive normal forms of Boolean functions using local algorithms [Evdokimov 1969] 

[Emelyanov & Lukito 2000]. 
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2.3.1 SIB CODES AND THE MINIMIZATION OF DISJUNCTIVE NORMAL FORM 

Disjunctive normal form (DNF) is a normalized form (canonical form) for 

representing propositional formulae in Boolean logic. Here a normalized (normal) form is 

any formula which may not be further reduced. Essentially, a function or formula is any 

finite combination of variables and constants joined by a set of operators. A propositional 

formula is a formula which uses propositional variables and connectives. Propositional 

variables denote both variables and constants, while propositional connectives denote 

logic operations—most commonly: conjunction, disjunction, implication, negation, and 

equivalence. In DNF, only conjunction, disjunction, and negation are used. [Sobolev 

2002] 

Structurally, DNF is a disjunction of conjunctions. That is, (1) every clause in 

DNF is connected by a disjunction, and (2) every disjunct (clause) is itself comprised 

solely of conjunctions of literals (single terms)—each of which includes every variable in 

the original formula. Any propositional formula may be converted to a DNF, and there 

are a number of methods to do so. [Reeves 1972:37–40] 

As with all disjunctions, for a formula in DNF to be true, only one of its disjuncts 

need be true. Furthermore, given that the disjuncts in DNF each contain all of its 

formula’s variables, they may be likened to rows in a truth table that all result in true. 

Conversion to DNF typically entails a reduction in the number of operators—

down to the three noted above—available to express the formula. As a result, a formula’s 

DNF will often be longer than the original formula. Some cases even result in 

combinatorial explosions of length. In the case of an arbitrary Boolean formula with   

variables and a DNF possessing    disjuncts, identifying a true-disjunct is a relatively 
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inexpensive exhaustive search provided that the true-disjunct occurs early in the DNF, 

but less so the later it occurs. However, if no true-disjunct exists, then all    disjuncts 

must be evaluated in order to prove the formula false—an exponentially expensive 

prospect as the number of formula variables increase. Determining if there exists an 

arrangement of variable values for a propositional formula that return true is also known 

as the propositional (or Boolean) satisfiability problem (SAT). [Trakhtenbrot 1984] 

The primary focus in the theory of normal forms of Boolean formulas is the 

minimization of Boolean functions (like DNF)—the construction of normal forms of 

minimal complexity [Zhuravlev 2002]. It is here that the connection, nay equivalence, to 

SIB becomes evident—with   analogous to the number of variables in a propositional 

formula, and the  -cube analogous to the complex search space within which optimal 

minimizations may be found. Hence, that which is useful and of benefit to SIB is also 

useful and of benefit to Boolean function minimization, and vice versa. 

Lastly, DNF renders a propositional formula to its canonical form. A canonical 

form is the form which every formula within a class of formulae will return when the 

canonical operation—in this case, conversion to DNF—is performed on them. Canonical 

form in the context of SIB is discussed later in section 3.8. 

SIB coils, known in this context as cyclic Boolean functions, have application in 

circuit design and cryptology. 

2.4 THE SEARCHERS 

Research into SIB may be divided into five general approaches: mathematical 

proofs, exhaustive search augmented by pruning methods, construction methods, 

heuristic search, and propositional satisfiability (SAT) solvers. While SAT solvers are 
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technically a subdomain of mathematical proofs, they are differentiated here due to their 

compelling successes in SIB. Each of these approaches remains viable and actively 

explored today, and none exclude the others as sources of inspiration and insight. In fact, 

hybridization of these approaches is quite common. 

2.4.1 BOUNDS 

Given the complexity of SIB, definitive solutions (snake, coil, symmetrical coil) 

for   are rare. So, results typically report improvements to a solution’s bounds—valid 

ranges for solutions for one or more  . Lower bounds represent the minimum predicted 

solution value to the problem for  —and in maximizing problems (of which SIB is one) 

represent the best known potential solutions. Conversely, upper bounds represent the 

maximum predicted solution values to the problem for  . Taken together, upper and 

lower bounds predict a range wherein solutions for   should occur. Once a potential 

solution is proven to be a definitive solution, it is known as an absolute bound for  —

noted herein as      for snakes,      for coils, and      for symmetrical coils. 

Presently absolute bounds for SIB have been determined for     snakes and 

coils, and     symmetrical coils. For all greater  , only upper and lower bounds are 

known. 

2.4.2 BASELINE 

Exhaustive search, also known as brute force search, is the search method which 

considers every possible solution to a problem in order to determine the best solution. 

The most thorough of all searches, it is also the most computationally expensive (least 

efficient), especially as a problem’s complexity increases. For problems with 

exponentially explosive complexities, obtaining solutions via exhaustive search quickly 
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become infeasible. Given present computing power, exhaustive search is infeasible for 

dimensions     in SIB. For reference, [Östergård & Pettersson 2014b] recently 

estimated that approximately 45 core-years of CPU-time are needed to exhaustively 

search    . 

To find solutions beyond the feasible reach of exhaustive search, alternative 

search techniques must be employed. To succeed where exhaustive search falters, these 

techniques selectively sacrifice search completeness for various methods which if 

successful will more quickly (or intelligently) steer exploration toward the better 

potential solutions in the solution space—banking that one or more of these will turn out 

to be the best solution(s). 

2.4.3 THE MATHEMATICIANS 

Mathematicians draw on discrete mathematics and coding theory to devise and 

refine proofs which identify solution bounds for some or all dimensions of  . Their 

resulting equations do not describe specific SIB solutions, but rather curves—over a 

range of  —of either upper or lower bounds of the problem. Mathematicians work 

primarily in the higher otherwise intractable (unexplorable) dimensions, and typically 

focus on coils. Fortunately, coil bounds are applicable to snakes too, as any coil bound 

length less 2 equates to a snake bound. 

For upper bounds, the current best estimates were described by [Zémor 1997] and 

[Lukito 2001]—the latter being best for          . Previous upper bounds 

superseded by Zémor and Lukito were reported by [Chien et al. 1964], [Danzer & Klee 

1967], [Douglas 1969a], [Evdomikov 1969], Evdokimov in 1971 [Korshunov 2009], 

[Deimer 1985], [Solov’eva 1987] for    , [Glagolev 1990], [Snevily 1994] for     , 
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Emelyanov in 1995 [Korshunov 2009], Emelyanov in 1997 [Emelyanov & Lukito 2000], 

Lukito in 1998 [Korshunov 2009], [Emelyanov & Lukito 2000], and others. 

For lower bounds, present best estimates have been provided by [Kautz 1958], 

[Vasil’ev 1963], [Evdomikov 1969], and Evdomikov in 1971 [Korshunov 2009]. 

Previous lower bounds were reported by [Ramanujacharyulu & Menon 1964], Abbott in 

1965 [Wojciechowski 1989] [Korshunov 2009], [Singleton 1966], Brown via [Danzer & 

Klee 1967], [Wojciechowski 1989], Röpling-Lenhart in 1991 [Korshunov 2009], and 

others. The current best coil lower bounds reported via mathematical proof hold for    

     [Abbott & Katchalski 1991] and         [Klee 1967]. 

2.4.4 THE PRUNERS 

Pruners focus on developing pruning methods—search space reduction 

techniques—for making exhaustive searches of presently intractable lower dimensions 

of   feasible. Populations of potential solutions generally start with a single minimal 

subsequence or a small selection of exhaustively generated subsequences and grow as the 

search progresses. Pruning methods include implementations of canonical ordering 

[Davies 1965] [Adelson et al. 1973a] [Kochut 1996] [Wong & Sawada 2008] [Östergård 

& Pettersson 2014a] [Östergård & Pettersson 2014b], parallel virtual machines 

[Rickabaugh & Shende 1998], evolved pruners [Tuohy et al. 2007], and bit-count 

sequences [Hood et al. 2010] [Hood et al. 2013]. 

 For coils, the last dimension solved using pruning methods was     [Östergård 

& Pettersson 2014a], which proved the lower bound given by [Paterson & Tuliani 1998]. 

[Kochut 1996] proved     given by Eastman [Even 1963] and [Adelson et al. 1973a]. 

[Adelson et al. 1973b] proved the lower bounds for       given by [Kautz 1958] 



 

24 

and     by [Even 1963]. The current best coil lower bounds obtained using pruners 

hold for      [Hood et al. 2010]. Previous lower bounds were reported by [Adelson et 

al. 1973a]. 

For snakes, the last dimension solved in this manner was     by [Östergård & 

Pettersson 2014b], which proved the lower bound given by [Carlson & Hougen 2010]. 

[Kochut 1996] proved     given by [Potter et al. 1994]. Solutions for       were 

given by [Harary et al. 1988]. The current best lower bounds obtained using pruners hold 

for        [Tuohy et al. 2007] and      [Hood et al. 2010]. Previous lower 

bounds were obtained by [Abbott & Katchalski 1991], [Rajan & Shende 1999], 

[Bitterman 2004], [Casella & Potter 2005a], and [Meyerson et al. 2014]. 

2.4.5 THE CONSTRUCTORS 

Constructors devise techniques for constructing long snake and coil sequences, 

typically from shorter SIB sequences or similar seeds. Construction methods are used by 

searchers of the other groups to varying degrees in their efforts to improve SIB bounds. 

[Vasil’ev 1963] constructed SIB codes using coils of varying spread. Distance 

preserving codes are coil path sequences in which [Chien et al. 1964] constructed SIB 

codes by combining two smaller codes into one larger code, while [Evdomikov 1969] 

expanded the spread of Hamiltonian circuits (spread 1 coil paths). [Danzer & Klee 1967] 

and [Klee 1967] constructed SIB codes by combining lower dimensional sequences of 

differing spreads. [Preparata & Nievergelt 1974] constructed SIB codes for use in 

comparing feature vectors. Feature vectors are  -dimensional vectors of values which 

individually describe specific features of an object and together describe the object as a 

whole—relative to other objects within the domain. Feature vectors have application in 
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machine learning and pattern recognition. [Abbott & Katchalski 1991] constructed SIB 

codes using the symmetrical properties of the hypercube to extend snakes and coils from 

lower dimensions. [Paterson & Tuliani 1998] constructed SIB codes using equivalence 

classes of coils. [Haryanto & van Zanten 2004] constructed SIB codes using a technique 

based on Reed-Muller codes—a class of linear error-checking codes with application in 

computational complexity theory. [Haryanto 2007] further constructed SIB codes non-

recursively using a linear algebraic code. Later, [van Zanten 2008] presented a non-

recursive method based on binary linear algebraic codes for calculating covers of the  -

cube. Covers are classes of coils that together use every node in the hypercube as path 

nodes. Of note, [Carlson & Hougen 2009] implemented construction rules within a 

genetic algorithm, which established the best snake lower bound for    . This lower 

bound would ultimately prove to be the absolute bound. 

2.4.6 THE HEURISTICIANS 

Heuristicians apply heuristic search methods to unsolved SIB dimensions in order 

to increase known lower bounds of  . Populations of potential solutions generally start 

with multiple solutions—either randomly generated or seeded with valid snake 

subsequences—and improve over time as the search progresses. To date, genetic 

algorithms (GA) [Dontas & De Jong 1990] [Juric et al. 1994] [Potter et al. 1994] 

[Bitterman 2004] [Diaz-Gomez & Hougen 2006a] [Diaz-Gomez & Hougen 2006b] 

[Carlson & Hougen 2010] [Griffin & Potter 2010], population-based stochastic hill-

climbers (PBSHC) [Casella & Potter 2005c] [Casella & Potter 2005a] [Tuohy et al. 

2007], artificial neural networks (ANN) [Bishop 2006], nested Monte-Carlo search 
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[Kinny 2012], sequence permutation [Wynn 2012], and stochastic beam search 

[Meyerson et al. 2014] [Meyerson et al. 2015] have been applied to SIB. 

For coils, the current best lower bounds reported by heuristic search hold for 

    [Casella & Potter 2005c],         [Meyerson et al. 2015], and      [Hood 

et al. 2010]. Previous lower bounds were obtained by [Klee 1967], [Adelson et al. 

1973a], [Abbott & Katchalski 1991], [Bitterman 2004], [Casella & Potter 2005c], and 

[Meyerson et al. 2014]. 

For snakes, lower bounds reported by heuristic search which would later prove 

absolute were reported for     [Potter et al. 1994] and     [Carlson & Hougen 

2009]. Additionally, current best lower bounds hold for     [Wynn 2012],   10 

[Kinny 2012], and         [Meyerson et al. 2015]. Previous lower bounds obtained 

through heuristic search reported by [Bitterman 2004] and [Casella & Potter 2005c]. 

2.4.7 THE SAT SOLVERS 

A subgroup of the mathematicians, SAT solvers apply satisfiability solvers to 

SIB. A SAT solver tests a propositional formula, given in conjunctive normal form, for 

satisfiability. The application of SAT solvers to SIB have been reported by [Chebiryak & 

Kroening 2008], [Chebiryak et al. 2009], and [Zinovik et al. 2008]. 

Presently, SAT solvers have only reported record lower bounds for coils of 

spreads    . 

2.4.7.1 CONJUNCTIVE NORMAL FORM 

Like DNF, Conjunctive normal form (CNF) is a normalized form (canonical 

form) for representing propositional formulae in Boolean logic. It also is the dual of DNF. 
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The duality principle, also known as de Morgan’s laws, is a pair inference rules in 

propositional logic which allow conjunctions and disjunctions to be expressed solely in 

terms of each other via negation. That is,                  and        

         , where  ,  ,  , and   denote conjunction, disjunction, negation, and 

equivalence respectively. As such, CNF, like DNF, renders a propositional formula to a 

canonical form—in this case, its CNF-based canonical form. Canonical form in the 

context of SIB is discussed later in section 3.8. 

Structurally, CNF is a conjunction of disjunctions. That is, (1) every clause in 

CNF is connected by a conjunction, and (2) every conjunct (clause) is itself comprised 

solely of disjunctions of literals (single terms)—each of which includes every variable in 

the original formula. Any propositional formula may be converted to a CNF, and there 

are a number of methods to do so. 

Like DNF, conversion to CNF typically entails a reduction in the number of 

operators—down to the three noted above—available to express the formula. As a result, 

a formula’s CNF will also often be longer than the original formula. And again, some 

cases even result in combinatorial explosions of length.  

As with all conjunctions, for a formula in CNF to be false, only one of its 

conjuncts need be false. Furthermore, given that the conjuncts in CNF each contain all of 

its formula’s variables, they may be likened to rows in a truth table that all result in false. 

In the case of an arbitrary Boolean formula with   variables and a CNF 

possessing    conjuncts, identifying a false-conjunct is a relatively inexpensive 

exhaustive search provided that the false-conjunct occurs early in the CNF, but less so the 

later it occurs. However, if no false-conjunct exists, then all    conjuncts must be 
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evaluated in order to prove the formula true—an (equally) exponentially expensive 

prospect as the number of formula variables increase. 

2.4.7.2 CNF, DNF, AND POLYNOMIAL TIME 

SAT solvers are equally capable of handling propositional formulae given in DNF 

or CNF form. However, CNF is the prevalent form employed. Given that DNF is 

generally easier to read than is CNF—compare: (DNF) “If   or   then  ,” versus (CNF) 

“if not   or not   then not  ”—why choose to work with the less intuitive CNF? It is due 

to the simple fact that algorithms capable of quickly transforming arbitrary Boolean 

formulae to CNF are known, while similar algorithms for converting to DNF are not. 

“Quickly” here means “in polynomial time.” Polynomial time (P) is a class of 

time complexity which quantifies the amount of time it takes for a function to run based 

on its input. For functions which run in P, this amount of time may be determined ahead 

of time. For functions which do not run in polynomial time, or non-polynomial time 

(NP), there are no ways to find answers quickly. These definitions just scratch the surface 

of P and NP, but suffice for our purposes. Suffice it to say, known algorithms for 

transforming arbitrary Boolean formulae to DNF take an unpredictable amount of time to 

run. Hence, transforming to CNF is the better option. 

On a side note, finding longest induced paths in general is a non-polynomial 

operation. For more on the NP status of SIB, see [Rajan & Shende 1999], [Bitterman 

2004] [Diaz-Gomez & Hougen 2006a], [Wong & Sawada 2008], and [Korshunov 2009]. 

2.5 APPLICATIONS OF SIB CODES 

SIB codes have applications in a number of diverse areas, including: encoding 

schemes for analogue-to-digital converters and quantization of signal noise [Kautz 1958] 
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[Klee 1970b] [Hiltgen & Paterson 2000] [Kim & Neuhoff 2000] [Lukito & van Zanten 

2002], DNF simplification of Boolean functions in local searches [Vasil’ev 1963] 

[Evdokimov 1969] [Lukito & van Zanten 2002], worst-case search bounds [Potter et al. 

1994], electronic combination locking schemes [Black 1964] [Chien et al. 1964] [Davies 

1965]  [Paterson & Tuliani 1998] and telemetry [Davies 1965], pattern recognition and 

classification problems [Preparata & Nievergelt 1974] [van Zanten & Lukito 1999], fault 

diagnosis in multiprocessor networks [Kautz 1958], massively parallel computing 

[Harary et al. 1988] [Blass et al. 2001], hypercube computer network topologies [Casella 

& Potter 2005b], charge modulation schemes in multi-level flash memories [Yehezkeally 

& Schwartz 2011], and systems biology and gene regulatory networks [Glass 1977] [De 

Jong 2002] [Chebiryak & Kroening 2008] [Chebiryak et al. 2009] [Zinovik et al. 2008]. 
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CHAPTER 3 

CHARACTERISTICS OF  -CUBES, SNAKES AND COILS 

To understand how to search for snakes and coils in the hypercube requires 

additional insight into the characteristics of both the hypercube (search space) and the 

snake and coil paths (potential solutions) which may traverse it. 

3.1 THE MANY FACETS OF THE  -CUBE 

Recall that the  -dimensional hypercube is composed of    vertices, each of 

which connects to   other vertices via   orthogonal (mutually perpendicular) edges. This 

makes the hypercube highly symmetrical—in fact, the hypercube is hypersymmetrical, 

meaning that it exhibits symmetry across more than two dimensions. As such, it may be 

easily divided into numerous equally symmetrical subgraphs. The  -cube contains 

      
 

 
        (1) 

 -dimensional hypercube substructures, or  -cubes (also  -faces), where   is the 

dimensionality of the desired element to count. Table 4 illustrates for    . 

Table 4: Sub-elements of the  -cube. 

n m       
 

 
  m-Terms Common Terms 

4 0 16 0-cube nodes, points, vertices 

4 1 32 1-cube edges, lines 

4 2 24 2-cube, 2-face faces, squares 

4 3 8 3-cube, 3-face cubes 

4 4 1 4-cube, 4-face identity
1
 

 

1
 Reserved for the  -cube itself. For    , only  -terms are used to refer to elements for      . 
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Additionally, edges and 2-faces may be divided into   parallel subgroups respectively. 

Whereas the number of   elements increases as   increases, the symmetrical 

relationship among the elements remains constant. Counting and characterizing nodes 

and edges is the basis of many of the results reported by SIB researchers. A few have also 

made gains examining 2-faces [Solov’eva 1987] [Snevily 1994] [Emelyanov 200] and 3-

cubes [Danzer & Klee 1967] [Douglas 1969b]. 

3.2 NODE TYPES 

As previously noted, [Kautz 1958] coined the term “snake” based on his 

interpretation of a spread 2 path as forming a unit-radius tube in the hypercube. That is, 

he imagined the unusable nodes at the ends of edges radiating from the path nodes as 

forming the skin of a biological snake. We call these skin nodes. Additionally, the nodes 

that make up the path are called path nodes, and the nodes which are neither path nor 

skin are called available nodes. Collectively, path and skin nodes are referred to as 

unavailable nodes. 

Later, some additional node types will be introduced as part of a few new 

heuristics described in section 3.9. 

3.2.1 EDGE TYPES 

Less frequently considered are edges types. Edges that form the path are path 

edges. Edges which connect path nodes to skin nodes, skin nodes to skin nodes, or skin 

nodes to available nodes, are called skin edges. 
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3.3 DISTANCES BETWEEN IDENTICAL TRANSITION VALUES 

The minimum distance between two identical transition values in a valid path of 

spread   is    . Conversely, the maximum distance is       . Similarly, the longest 

possible subsequence using only   transitions, for      , is     . 

3.4 GROWING PATHS AND COLLAPSING SEARCH SPACE 

With the exception of the head and tail of a snake, every node added to a path 

designates     adjacent nodes as skin nodes. These nodes may be drawn from available 

nodes and existing skin nodes. A single skin node may serve up to   path nodes. (Head 

and tail nodes designate     adjacent nodes as skin nodes.) Hence, the number of 

 

 

Figure 10: The number of available nodes shrinks rapidly as the path builds. 4-cube 

example. Parallel edges are colored alike. Solid edges are available for transition. 

Dotted edges are unavailable. 
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available nodes in the hypercube—nodes yet to become path or skin—decreases by up 

to   nodes with every node added to a path. Furthermore, with the exception of edges in a 

path, for every node that becomes unavailable, up to   edges are eliminated. 

Consider the  -cube in Figure 10 with its 16 nodes and 32 edges. After the first 

transition in the path is applied, 5 nodes (2 path, 3 skin) and 13 edges (1 path, 12 skin) 

became unavailable—leaving 11 nodes and 19 edges. Note that the edges radiating from 

node at the head of the path do not become unavailable until after the path extends from 

it, or the path becomes maximal. With the second transition applied, an additional 3 

nodes (1 path, 2 skin) and 6 edges (1 path, 5 skin) become unavailable—leaving 8 nodes 

and 13 edges. At this point only half of the  -cube’s nodes remain available for growing 

the path. Table 5 lists the transitions at which this halfway point occurs for      . 

3.5 THE CHANGING FACES OF THE  -CUBE 

Just as nodes (and edges) are consumed at knowable rates, so too are 2-faces. 

For    , [Solov’eva 1987] named the six arrangements of spread 2 path segments on a 

2-face (2-cube), and presented formulae enumerating each for     coils paths. Table 6 

lists the six 2-face types—including alternative (more intuitive) labels. Based on these 

Table 5: Length of      paths when half of n-cube nodes are consumed. 

  Length of      
Path length when half of 

 -cube nodes consumed  

3 4 1 

4 7 2 

5 13 4 

6 26 8 

7 50 16 

8 98 24 
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formulae, the rates at which face types change as a path grows may be determined. The 

rates cited below are for snakes. 

 An  -cube devoid of a path begins with 

      
 

 
     (2) 

 

Initializing Node 0, converts 

  
 

 
        (3) 

 

Each subsequent node (after the first) added to the path converts 

 

  
 

 
                   

  
 
 

 
        

(4) 

  

Each subsequent node (after the second) added to the path converts 

 

  
 

 
                   

           , and 

         

(5) 

 

Table 6: The six arrangements of spread 2 path segments on n-cube  -faces. 

Author’s 

Label 
 Description 

Solov’eva’s 

Label 

    A 2-face with no nodes in the snake/coil path.    

    A 2-face with one node in the snake/coil path.    

     A 2-face with two nodes and one edge in the path.    

     A 2-face with two nodes and no edges in the path.    

    A 2-face with three nodes and edges in the path.    
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Each node (after the      rd, inclusive) added to the path occasionally converts 

  
  
 
 

 
           (6) 

 

The maximum rate at which    faces convert to     faces is not known; however, 

their occurrence is easily detected in the collision matrix of the growing path. When 

generating a collision matrix for a path, after the first     bit flips in each bit string, 

every case where a bit string’s cardinality equals   indicates the formation of a new     

face. Occurrences of     faces enable a path to grow longer than it would without their 

presence. Face     is spread 2 specific. 

3.6 EXTRACTING PATHS FROM THE REPRESENTATIONS 

In a node sequence (NS) each node is indicated by its unique node label. Reading 

from left to right, the nodes in the sequence form a path. NS path node values range 

from   to     . NS may start from any node, though Node 0 is preferred. 

In a transition sequence (TS), where individual path values range only from   

to    , each transition indicates the bit position of difference between the binary labels 

of two adjacent nodes. As such, each transition is implicitly anchored between two 

adjacent nodes—the identities of which wholly depend on all of the transitions preceding 

it. When extracting a path from a TS, it is customary to start from Node 0. To illustrate, 

the transition sequence 0 1 2 0 describes the node sequence 0 1 3 7 6. (Note that there is 

one less element in the transition sequence than in the node sequence.) For     the 

node sequence reads as 000 001 011 111 110—  bits each. The first transition flips the 0-

bit in node 000 resulting in node 001. The second transition flips the 1-bit in node 001 
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resulting in node 011. Next, the third transition flips the 2-bit in node 011 giving node 

111. Finally, the fourth transition flips the 0-bith resulting in node 110. 

In a binary sequence (BS), each bit position correlates to a node in the hypercube 

with “1” bits indicating nodes in the path and “0” bits indicating nodes not in the path. To 

extract a path from a BS requires constructing a path from all of the “1” bits in the BS, 

starting from the 0-bit position (Node 0). Note that potentially more than one path may be 

encoded into a single BS if more “1” bits are set than are required to encode a single path 

[Diaz-Gomez & Hougen 2006a] [Diaz-Gomez & Hougen 2006b]. In these cases, 

additional effort is required to extract the multiple paths from the BS. 

3.6.1 CONVERTING BETWEEN REPRESENTATIONS 

As may already be evident, converting between representations is straightforward. 

To convert from NS to TS, map the bit differences between each node pair. To convert 

from NS to BS, set the bits corresponding to each node to “1”. To convert from TS to NS 

or BS, map the transition bits from Node 0, generating a new node from every 

transition—and setting the corresponding bits to “1” for BS. To convert from BS to NS or 

TS, first requires extracting the path(s) as previously noted, and then convert using the 

appropriate NS or TS method above. 

3.7 PATH VALIDATION 

In path construction, the objective is to construct (at least) a valid path—

preferably a snake or coil. Snake and coil construction goes hand in hand with validation. 

As previously noted, snakes and coils are induced paths—that is, paths with no 

adjacencies between non-adjacent nodes. Paths which violate this constraint are neither 

snakes nor coils, and are invalid. 
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3.7.1 THE ADJACENCY MATRIX 

The most common method for determining whether or not a path is valid is to 

check it against an adjacency matrix of the hypercube. An adjacency matrix maps node 

adjacencies of a graph. For the hypercube, it is a        integer matrix which lists 

the   adjacent nodes for each of the      nodes in the hypercube graph. Table 7 shows 

the adjacency matrix for    . Alternately, a           binary matrix may be used—

with “1” bits set at the intersections of adjacent nodes in the matrix. 

Traversing the nodes in the path, one first verifies that the next node in the 

sequence is indeed adjacent to the previous node in the sequence, and then verifies that 

none of the other nodes adjacent to the previous node appear in the path. If any do, the 

path is invalid. 

Table 7: Adjacency matrix for    . 

 -Cube Node Adjacent Nodes 

0 1 2 4 8 

1 0 3 5 9 

2 0 3 6 10 

3 1 2 7 11 

4 0 5 6 12 

5 1 4 7 13 

6 2 4 7 14 

7 3 5 6 15 

8 0 9 10 12 

9 1 8 11 13 

10 2 8 11 14 

11 3 9 10 15 

12 4 8 13 14 

13 5 9 12 15 

14 6 10 12 15 

15 7 11 13 14 
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 Adjacency matrices are typically generated at the beginning of an experiment and 

referenced during runtime; however, individual node adjacencies may also be generated 

as needed during experiment runtime. 

3.7.2 THE COLLISION MATRIX 

The collision matrix
1
 (alternately, a spread   matrix) is an alternative method 

which validates a path by measuring the minimum distances (spreads) among every node 

described by a transition sequence. In the worst case—where the entire transition 

sequence is valid—the collision matrix is an       binary matrix, where     is the 

length of the transition sequence. For cases with collisions, it only forms an   

         , where   is the position of the transition at which the collision occurs. 

                                                 
1
 This collision matrix method traces its origins to the heyday of the Institute for Artificial Intelligence’s 

“Snake Pit”—an active open collaboration among a handful of SIB exploring graduate students overseen 

by Dr. Potter—from fall 2010 through spring 2012. It is difficult to credit any individual group member 

with the first application of transition bits as a validation method. However, the point is moot, given that all 

of the method’s building blocks were first reported by [Singleton 1966]. 

 

Table 8: Example collision matrix for a spread 2 path. The bold box at the start of the 

transition sequence is a moving window in which evaluations occur. It advances one 

position with each step through the sequence. Changing bits in each column are 

bolded (pink). The shaded cells (extending from the left) mark the first     steps of 

each bit string. The blue cell (far right) indicates a spread-2 collision between the 3
rd

 

and 7
th

 transitions, meaning nodes 3 and 11. The sequence is valid to length 6.) 

Collision 

matrix bit 

strings 

Transition Sequence (evaluated left to right) 

0 1 2 0 3 2 0 

1
st
 0001 0011 0111 0110 1110 1010 1011 

2
nd

  0010 0110 0111 1111 1011 1010 

3
rd

   0100 0101 1101 1001 1000  

4
th
    0001 1001 1101 1100 

5
th
     1000 1100 1101 

6
th
      0100 0101 

7
th
       0001 
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At each transition in the sequence, a new  -bit string is instantiated with one bit 

flipped at the position of the current transition value. Additionally, all previously 

instantiated bit strings also have the same bit flipped. For the first     bit flips in each 

bit string, its cardinality (number of “1” bits) must increase each step. Thereafter, if at 

any time its cardinality drops below  , a collision has occurred and the remainder of the 

sequence—including the transition resulting in the collision—is invalid. Table 8 

illustrates. 

Without modification, collision matrices easily detect collisions for any valid  . 

Additionally, the specific nodes involved in a collision are readily identifiable. They are: 

(1) the node preceding the transition at which a collision reporting bit string originated, 

and (2) the node following the transition at which the collision was detected. Note that 

where multiple collisions occur within the same step, each colliding pair of nodes is 

described by one bit string. 

Collision matrices may be generated as needed during experiment runtime, or 

carried with each transition sequence throughout generation. Optionally, a           

integer spread   matrix—with the distance between adjacent nodes set at their 

intersections in the matrix—may be generated for the hypercube and referenced during 

experiment runtime [Horton 2015]. The “Binary Fibonacci Snake Representation” 

validation method described in [Khan 2015] is a collision matrix method that uses  -

integer sets in lieu of the  -bit strings described above. 

3.8 EQUIVALENCE CLASSES AND CANONICAL ORDERING 

For every TS comprised of   transition values, there exist    symmetrical 

paths—comprised of all permutations of ordered transition values. Maximal paths use all 
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available   transitional values. Thus, for maximal paths,    . Likewise, every 

maximal path is part of a class of    symmetrical maximal paths. [Kochut 1996] 

An equivalence class (EC) is any group of symmetrical objects. Any test of one 

member of an EC applies equally to all members of the class. Thus it is enough to 

validate a single path within an EC to validate the entire class. In order to compare 

different EC, a method of selection is needed, which will return the same 

representative—the canonical representative of the EC—when performed on any 

member of the class. 

Canonical ordering is one such method [Kochut 1996]. In a canonically ordered 

sequence, transitions are introduced into the sequence in lexicographic (alphanumeric) 

order. That is, the first transition introduced must be 0 followed by 1, then 2, 3, etc. 

Values may freely recur within the limits of the path’s spread constraint. That is, they 

need not be introduced consecutively to remain canonical. For example, the sequences 0 

1 2 3 and 0 1 2 0 3 1 0 4 are both canonically ordered. It is only when a new dimension is 

traversed for the first time that the next transition value in lexicographic order is 

introduced. A canonically ordered sequence is known as a canonical sequence or is said 

to be in canonical form (CF). 

Any non-canonical sequence may be easily converted to CF by swapping the 

Table 9: Example converting to canonical form. Underscored transitions in sequences 

reveal transition order. 

Non-canonical Sequence Transition Order Map Canonical Sequence 

              
        

        

↓ ↓ ↓ ↓               
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order in which its unique transition values are introduced for the canonical ordering. 

Table 9 illustrates. Likewise, any transition sequence may be translated to the transition 

order of any other transition sequence. 

Snake CF always occur in pairs, with each pair being mutual canonical reversals. 

A canonical reversal is the CF of a reversed canonical sequence. That is, take a snake 

CF, reverse it, and then convert the reversed sequence to CF. The occurrence of CF pairs 

may not be immediately apparent considering that the snake CF for dimensions     

  number 1, 1, 8, 1, 12, and 2 respectively. How then can there be only one CF each for 

Table 10: Equivalence classes for               . 

  id Equivalency Classes (canonically ordered) 

3 A 0120 ← canonical palindrome (i.e., canonical reversal of itself) 

4 A 0120310 ← canonical palindrome 

5 

A 

B 

C 

D 

E 

F 

G 

H 

0123014021032 

0123014312301 

0123024012031 

0123024012301 ← canonical reversal of B 

0123024102301 

0123024321032 ← canonical reversal of A 

0123024321302 ← canonical reversal of C 

0123104312301 ← canonical reversal of E 

6 A 01231043054013402410431534 ← canonical palindrome 

7 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

01203104210350124065042034012403504203401206104210 

01203104210350124065042034012403504203401206240124 

01203104210351024065042034012403504203401206104210 

01230140210350230650321035023064032016501230150210 ← c. r. of C 

01230140210350230650321035023064032106501230150210 ← c. r. of A 

01230143123053103653012305310364301236532103253123 ← c. r. of B 

01231420530240123042053261024013501403102410350142 

01231421531240123142153260124013510413012401351042 

01231421532140123142153165123514015314512351401532 

01234532103253123452310326054301350231035430125023 ← c. r. of G 

01234532103253123453210326054301350321035430135032 ← c. r. of H 

01234532103253123453210326312305310345301230531034 ← c. r. of I 

8 

A 

 

B 

01231041543146340134674310427401475140163104154314234013427431046740

147561340142741043164104764013 

01234532134103213563123014753123543210356301230631037132104123175312

356321035430123043103713210612 ← c. r. of A 
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dimensions 3, 4, and 6? The CF for these dimensions are canonical palindromes—

meaning, their canonical reversals are identical to their original CF. Table 10 lists the 

equivalence classes for           . 

Enumerating coil CF is trickier. Whereas every snake has but one head node and 

one tail node, any pair of adjacent nodes in a coil may serve as tail and head nodes 

respectively. Even with canonical ordering enforced, a single coil may be represented by 

up to its length in CF. As with the snake CF which are canonical reversals of each other, 

all of said coil CF would be canonical shifts of each other. 

3.9 FITNESS MEASURES 

What makes one snake or coil path better than another? What is the measure of a 

great snake or coil? Fitness measures are heuristics meant to distinguish between 

seemingly indistinguishable potential solutions. In a nutshell, heuristics are informed 

guesses—a means of enabling an otherwise blind search operation to gather information 

about its surroundings (search domain) to inform its decision making. Search domains 

include both a solution space (here, the hypercube) and potential solutions (here, snake 

and coil paths). The more effective an heuristic is, the more successes a search operation 

can achieve. 

Keep in mind, however, that success always comes at a price. Typically, the more 

effective a heuristic is, the more specialized it is to its specific domain. Additionally, the 

tradeoff for improving the resolution of any heuristic—the clarity with which it perceives 

its domain—is often paid in the form of additional computational resources. 
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3.9.1 PATH HEURISTICS 

Path heuristics focus on path sequences—looking for telltale indicators that one 

potential solution is either better than, or has the potential to be better than, another 

potential solution. 

Length is the simplest and most important measure of a snake or coil path. 

Regardless of any other qualities, a length   snake or coil is always better than an     

snake or coil. The length of a snake or coil is equal to its number of edges. For snakes, 

length equals the number of transitions in a TS, and one less than the number of nodes in 

an NS or “1” bits in a BS. For coils, length equals the number of nodes in an NS or “1” 

bits in a BS, and one more than the number of transitions in a TS. 

Additional measures attempt to gauge the quality of paths through the presence or 

absence of special patterns in a path or its skin nodes. However, these have met with 

limited success. 

3.9.2 SEARCH SPACE HEURISTICS 

Search space heuristics have shown to be more effective than their path heuristic 

counterparts. This may be due in part to the fact that when a path is short, more data 

points may be found in the search space than in the path; and later, when the path is 

longer, successful analysis of the remaining available space is the key to guiding the path 

to its maximum potential. At any point, the available search space is comprised of all 

remaining available nodes in the hypercube. 

Keeping track of the remaining available nodes in the  -cube is a good method 

for gauging the future growth potential of a snake or coil sequence. A simple metric is to 

sum the current length of a path with the available nodes to get a rough idea of the 
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maximum length the path will be able to achieve. Additionally, if the sum is less than 

some desired length, the path may be confidently discarded, because it will never achieve 

the goal. 

Recently a number of improvements to the standard available nodes measure were 

implemented—as part of a collaboration involving the author—that resulted in some 

impressive gains across the spectrum of spread 2 lower bounds; specifically eleven new 

lower bound improvements for snakes, coils, and symmetrical coils [Meyerson et al. 

2014] [Meyerson et al. 2015]. 

Determining Reachable available nodes [Meyerson et al. 2014] [Meyerson et al. 

2015] offers greater fidelity in gauging the future growth potential of paths. Not all 

available nodes will be useable in all instances. So determining which nodes are actually 

reachable by the current path gives a better sense of the length that path might achieve. 

Dead end pruning [Meyerson et al. 2015] is a further refinement of reachable 

available nodes, and looks to remove additional nodes that will be of no benefit to the 

future potential growth of a snake or coil sequence. Dead end pruning removes nodes that 

are connected to only one other reachable available node. 

Blind alley pruning [Meyerson et al. 2015] is an extension of dead end pruning 

more applicable to coil search than snake search. In it, chains of available nodes which 

end in dead ends—but would otherwise be overlooked by dead end pruning—are 

removed. This enhancement is less useful in snake search as a longest path may require 

traveling down one of these blind alleys. 

Articulation point pruning [Meyerson et al. 2015] is an additional extension of 

dead end pruning. An articulation point (also cut vertices) is any node in a graph which 
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if removed splits the graph into two disjoint (separate) subgraphs [Hopcroft & Tarjan 

1973]. In the subgraph of reachable available nodes, an articulation point is a one-way 

pass from one cluster of nodes to another—in essence a super blind alley entrance 

detector. For coils, articulation points may be used to quickly prune cul-de-sacs of any 

size from the reachable available nodes, further refining growth potential prediction and 

speeding up potential solution evaluation. For snakes, articulation points may be used in 

strategizing path construction by helping to target the largest clusters of reachable 

available nodes in which to grow a snake. 

Further reduction of the search space may be achievable through the application 

of additional graph theory manipulations. 

3.9.3 POPULATION REDUCTION HEURISTICS 

Some search methods—of which many are heuristic techniques—utilize 

populations of potential solutions in their searches. That is, multiple snake paths are 

explored concurrently so as to improve the chances of success. In these methods, 

population sizes expand and contract as new potential solutions are added, and then lower 

potential solutions are removed. 

One common method for determining which potential solutions are removed from 

a population is tournament selection. In tournament selection, two or more potential 

solutions are randomly selected from a population, their respective growth potentials 

(fitness) are compared, with the single best fit of these remaining in the population and 

the others being removed. 

Recently, a variant of tournament selection called reverse tournament selection 

was described by [Meyerson, et al. 2014] [Meyerson, et al. 2015]. Identical to standard 



 

46 

tournament selection with one exception, reverse tournament selection removes only 

the single worst fit potential solution from the population, and retains the remaining 

potential solutions in the population. While this variant method requires more 

tournaments to be conducted in order to reduce a population to a desired level, its less 

aggressive approach appears to longer preserve variation in the population—allowing for 

more exploration of the search space.  
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CHAPTER 4 

CONCLUSION 

This primer introduced many of the essential concepts of SIB, its history and 

continued relevance, as well as methods for representing, validating, and evaluating 

snake and coil solutions. With explanations of prerequisite concepts necessary for 

understanding SIB included throughout, it has been structured to serve as a convenient 

reference for those exploring SIB. 

Details of the various search methods applied to SIB and listed herein have been 

omitted, and are left for the reader to explore. Particularly, the reader is invited to 

examine papers—herein and elsewhere—related to their avenue of inquiry, and to 

become practiced in these approaches within the SIB domain by exploring the lower 

dimensions where absolute bounds are known. Recreating experiments from previous 

work may also prove useful in gaining a sense of the SIB domain. Then, once ready, set 

out to extend the known bounds of the problem themselves. 

As to this primer in particular, future improvements could include discussions of 

each of the individual techniques briefly touched on in 2.4, plus the addition of future 

applied methods. Additional discussions—with illustrated walkthroughs—further 

detailing the methods discussed in 3.7 and 3.9 could better help less experienced readers 

to more quickly grasp these concepts. 
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4.1 THE APPENDICES 

Additional information regarding SIB is present as appendices. Appendices A–E 

are timelines of the discoveries of upper and lower bounds. Appendix F gives an equation 

for calculating the total number of canonically ordered paths to be found in dimension  , 

of length  , and spread  . Appendix G presents some generalized patterns found to occur 

in     ,      , for spread 2. 

The reader is invited to judge for themselves the usefulness of these appendices. 
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APPENDIX A 

TIMELINE OF COIL LOWER BOUND FORMULATIONS 

Table 11: Timeline of coil lower bound formulations. Values for  ,     are included 

where given by authors; otherwise, only formulae were given. 

Reported by Values of   Notes 

[Kautz 1958]   

Zhuravlev 1962  Cited in [Vasil’ev 1963]. 

[Vasil’ev 1963]   

[Ramanujacharyulu 1964]   

Abbott 1965 (Ph.D. thesis)  Cited in [Klee 1970], 

[Wojciechowski 1989], and 

[Korshunov 2009]. 

T. A. Brown 1965?, unpublished  Via [Danzer & Klee 1967] 

[Singleton 1966]   

[Danzer & Klee 1967]    

[Klee 1967]         

[Evdomikov 1969]   

Evdomikov 1971  Cited in [Korshunov 2009]. 

[Wojciechowski 1989]   

Evdokimov 1990  Cited in [Emelyanov & Lukito 

2000]. 

Röpling-Lenhart 1991  Cited in [Korshunov 2009]. 

[Abbott & Katchalski 1991]         
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APPENDIX B 

TIMELINE OF COIL UPPER BOUND FORMULATIONS 

Table 12: Timeline of coil upper bound formulations. Values for  ,     are included 

where given by authors; otherwise, only formulae were given. 

Reported by Values of   Notes 

[Chien et al. 1964]   

Glagolev 1966  Cited in [Korshunov 2009]. 

[Singleton 1966]   

Klee 1967 (book chapter)  Cited in [Douglas 1969a]. 

[Danzer & Klee 1967]   

[Douglas 1969b] Even    

D. G. Larman 1969?, unpublished  Cited in [Douglas 1969b] as 

Larmen [sic]. 

Evdomikov 1971  Cited in [Korshunov 2009]. 

[Wyner 1971]   

[Deimer 1985]       

[Solov’eva 1987]       

[Abbott 1988b]   

Glagolev & Evdokimov 1990  Cited in [Wojciechowski 1989]. 

Kochut et al. 1994, unpublished           Cited in [Kochut 1996]. 

[Snevily 1994]        

Emelyanov 1995  Cited in [Korshunov 2009]. 

Emelyanov 1997  Cited in [Emelyanov & Lukito 

2000] and [Lukito 2001]. 

[Zémor 1997]   

Lukito 1998   Cited in [Emelyanov & Lukito 

2000]. 

[Emelyanov & Lukito 2000]   

[Lukito 2001]                
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APPENDIX C 

TIMELINE OF COIL LOWER BOUNDS 

Table 13: Timeline of coil lower bounds. Bounds are for     ,    . Shaded rows 

indicate solved dimensions. 

Reported by Bounds Notes 

[Kautz 1958]        See      in Appendix D. 

[Kautz 1958]        See      in Appendix D. 

[Kautz 1958]        See      in Appendix D. 

[Kautz 1958]         See      in Appendix D. 

[Even 1963]         See      in Appendix D. 

Eastman (via [Even 1963]) 

[Adelson et al. 1973a] 

[Kochut 1996] 

        
        
        

- 

Different sequence. 

- 

[Klee 1967] 

[Adelson et al. 1973a] 

[Abbott & Katchalski 1991] 

[Paterson & Tuliani 1998] 

[Östergård & Pettersson 2014a] 

        
        
        

        
        

Estimated via equation. 

- 

- 

- 

- 

[Klee 1967] 

[Adelson et al. 1973a] 

[Abbott & Katchalski 1991] 

[Bitterman 2004] 

[Casella & Potter 2005a/b] 

         
         
         

         
         

Estimated via equation. 

- 

- 

- 

- 

[Klee 1967] 

[Abbott & Katchalski 1991] 

[Paterson & Tuliani 1998] 

[Casella & Potter 2005a/b] 

[Meyerson et al. 2014] 

[Meyerson et al. 2015] 

          
          
          
          
          
          

Estimated via equation. 

Estimated via equation. 

- 

- 

- 

See       in Appendix D. 

[Klee 1967] 

[Abbott & Katchalski 1991] 

[Abbott & Katchalski 1991] 

[Casella & Potter 2005a/b] 

[Meyerson et al. 2014] 

[Meyerson et al. 2015] 

          
          

          

          

          
          

Estimated via equation. 

- 

Estimated via equation. 

- 

- 

- 

[Klee 1967] 

[Abbott & Katchalski 1991] 

[Meyerson et al. 2014] 

[Meyerson et al. 2015] 

          
           

           
           

Estimated via equation. 

Estimated via equation. 

- 

- 

[Klee 1967] 

[Abbott & Katchalski 1991] 

[Hood et al. 2010] 

[Meyerson et al. 2015] 

           
          * 

           
           

Estimated via equation. 

Estimated via equation. 

Does not show seq. 

See       in Appendix D. 
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Reported by Bounds Notes 

[Klee 1967] 

[Abbott & Katchalski 1991] 

[Hood et al. 2010] 

           
          * 

           

Estimated via equation. 

Estimated via equation. 

Does not show sequence 

[Abbott & Katchalski 1991]            Estimated via equation. 

[Klee 1967]            Estimated via equation. 
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APPENDIX D 

TIMELINE OF SYMMETRICAL COIL LOWER BOUNDS 

Table 14: Timeline of symmetrical coil lower bounds. Bounds are for     ,    . 

Shaded rows indicate solved dimensions. 

Reported by Bounds Notes 

[Adelson et al. 1973a]        See      in Appendix C. 

[Adelson et al. 1973a]        See      in Appendix C. 

[Adelson et al. 1973a]        See      in Appendix C. 

[Adelson et al. 1973a]         See      in Appendix C. 

[Adelson et al. 1973a]         See      in Appendix C. 

[Adelson et al. 1973b]         - 

[Adelson et al. 1973a] 

[Wynn 2012] 
        

        

- 

Cited in [Potter 2015] 

[Meyerson et al. 2015]          - 

[Meyerson et al. 2015]           See       in Appendix C. 

[Meyerson et al. 2015]           - 

[Meyerson et al. 2015]            - 

[Meyerson et al. 2015]            See       in Appendix C. 
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APPENDIX E 

TIMELINE OF SNAKE LOWER BOUNDS 

Table 15: Timeline of snake lower bounds. Bounds are for     ,    . Shaded rows 

indicate solved dimensions. 

Reported by Bounds Notes 

[Harary et al. 1988]        - 

[Harary et al. 1988]        - 

[Harary et al. 1988]        - 

[Harary et al. 1988]         - 

[Harary et al. 1988]         - 

[Potter et al. 1994] 

[Kochut 1996] 
        
        

- 

- 

[Abbott & Katchalski 1991] 

[Rajan & Shende 1999] 

[Carlson 2009] 

[Östergård & Pettersson 2014b] 

        
        
        
        

- 

- 

- 

- 

[Bitterman 2004] 

[Bitterman 2004] 

[Casella & Potter 2005b & 2005c] 

[Tuohy et al. 2007] 

         
         
         

         

Derived from           . 

- 

- 

- 

[Casella & Potter 2005b & 2005c] 

[Tuohy et al. 2007] 
          

          

- 

- 

[Casella & Potter 2005b & 2005c] 

[Meyerson et al. 2014] 

[Meyerson et al. 2015] 

          

          
          

- 

- 

- 

[Casella & Potter 2005b & 2005c] 

[Meyerson et al. 2015] 
           

           

- 

- 

[Hood et al. 2010] 

[Meyerson et al. 2015] 
           
           

- 

- 

[Hood et al. 2010]            - 
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APPENDIX F 

CANONICAL SELECTION WITH REPLACEMENT AND SPREAD 

Herein is given an equation for calculating the total number of canonically 

ordered paths to be found in dimension  , of length  , and spread  . The results returned 

by the equation are for all valid paths—of which snakes and coils are subsets. For 

example, for    ,    ,    , the sequence 0 1 2 0 1 2 0 1 2 is valid path, but is 

neither a valid snake or coil. This is due to the equation not being constrained by any 

specific search space, including the  -cube. As such, it is incomplete for determining SIB 

lower bounds. Regardless, it does provide some insight into how ordering, canonical 

ordering and spread affect selection. 

F.1 SELECTION WITH REPLACEMENT 

The number of possible ordered arrangements of   elements selected   times with 

replacement is   . This is because there are   elements to choose from each time a 

selection is made. Hence,        times    . Replacement means that elements are 

permitted to occur more than once in an arrangement.  

TS are ordered arrangements of elements with replacement—where the number of 

available transitions is analogous to  , and the length of the transition sequence is 

analogous to  .  
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Let                 define this function which calculates the number of 

possible ordered arrangements of   elements selected   times with replacement. That is, 

             (7) 

 

Lacking a spread constraint    produces paths of minimum spread  . 

F.2 ACCOUNTING FOR SPREAD 

Incorporating   into         reduces the number of elements to choose from for 

the first     transitions by 1 each time, and by     elements thereafter for the 

remaining        , or      , choices. That is, the first     choices build a 

permutation, while the subsequent choices remain a selection string (with a reduced 

number of elements to choose from).  

Let                         define this function which calculates 

the number of possible ordered arrangements of   elements selected   times with 

replacement and constrained by spread  . That is,  

           
            

        
  (8) 

 

Verification: For     the aforementioned permutation (in blue) becomes evident. 

                                           times   

                           times   
                                               times  

                                times   
                                                    times  

                                     times   

(9) 

 

This permutation generalizes to 
  

        
 and the remaining selection string generalizes 

to           . 
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For    ,           safely reduces to        . 

 

                                            
                      
              
   

         

(10) 

F.3 CONSIDERING ONLY CANONICAL ARRANGEMENTS 

Given that there are    symmetrical paths for every TS comprised of   transition 

values [Kochut 1996], the number of possible canonical arrangements of   elements 

selected   times with replacement and constrained by spread   is 
         

  
.  

Let           define this function which calculates this number. That is, 

           
          

        
  (11) 

 

Note that the number of valid snakes and coils will be subsets of the value returned for a 

given      . 
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APPENDIX G 

GENERALIZED PATTERNS IN SNAKE TRANSITION SEQUENCES 

Herein is presented a number of generalized patterns found to occur in the EC 

of     ,      , for spread 2. A Chutes & Ladders
2
 analogy is adopted for discussing 

these patterns. The omission of           do not alter the findings. 

To separate these patterns from the familiar transition values of 0 to    , the 

symbols (         ) are used to represent the transition values in each pattern. If any 

of these symbols were previously assigned special meaning or value, these assignments 

are temporarily suspended for the duration of this pattern discussion.  

G.1 CHUTES 

Chutes are TS subsequences without duplicate transition values—for example, 

         . They occur between pairs of adjacent ladders, as well as between a ladder and 

the head or tail of a snake. Chutes occur in lengths from       ; in whole or in part 

outside of ladder rungs. Note that the   -chute is a special case and is discussed in G.3. 

In addition to connecting ladders, chutes frequently occur in mirrored pairs 

bracing either side of a ladder like a pair of bookends—occasionally with part of one or 

both chutes extending into neighboring ladders. As such, there are two chute patterns for 

each length—that is,           and its mirror          . 

                                                 
2
 Chutes and Ladders is a board game by the Milton Bradley Company based on the ancient Indian board 

game known as Snakes and Ladders. Its use herein is as a simple mnemonic for distinguishing between two 

pattern groups. 
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G.2 LADDERS 

Ladders are TS subsequences in which a single transition value repeats every 

    positions from the first to the last transition inclusively; and can be likened to the 

rungs of a ladder. For example, the subsequence               contains three   rungs. 

The length of a spread   ladder pattern generalizes to         , where   is the 

number of rungs. The ladders presented here are specific to spread 2. Ladders in paths of 

spread     will exhibit similar patterns, but with greater variability between rungs. 

G.2.1    PATTERNS 

There is only one length 2 pattern (  ). Pattern length is    . The    pattern 

string forms a simple 2-rung ladder with the (boxed)  -transitions as the rungs like so: 

           (12) 

 

    represents the shortest valid subsequence for spread   wherein transition 

repetition may occur. The number of possible arrangements of     with   fixed is     
 
 . 

    is valid for      . Pattern     occurred in all examined     . For    , 

        . In the induced path in the  -cube in Figure 8: the first  -transition occurs 

between nodes 000 and 001; the  -transition is between nodes 001 and 011; etc. 

G.2.2    PATTERNS 

There are two length 3 patterns (  ). Pattern length is     . The    pattern 

strings form 3-rung ladders with the  -transitions as the rungs. (Additional repeated 

transitions are underlined.) 

 
            

            
 (13) 
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    is comprised of two instances of pattern    , the latter offsetting the former 

by     positions. The number of possible arrangements of     with   fixed is     
 
 . 

    is valid for     . For    ,         . 

    differs from     in that it contains no repeated transition values between its 

rungs, meaning it produces the lesser compact ladder of the two    patterns. The number 

of possible arrangements of     with   fixed is     
 
 .     is valid for       . 

Pattern     occurred less frequently than    , and was only found in     . 

G.2.3    PATTERNS 

There are seven length 4 patterns (  ). Pattern length is     . The    pattern 

strings form 4-rung ladders with the  -transitions as the rungs. (Additional repeated 

transitions appear alternately underlined or overlined.) 

 

               

               

               

               

               

               

   
             

 (14) 

 

    is comprised of two instances of    , the latter offsetting the former by     

positions. The number of possible arrangements of     with   fixed is     
 
 .     is valid 

for        dimensions. Pattern     was only found in     , wherein it only occurred 

as part of a hook with    . 

    could actually be an instance of     bounded on braced by mirrored chutes of 

at least length 3. As such, it is unclear whether or not this string should be classified as a 
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distinct pattern. The number of possible arrangements of     with   fixed is     
 
 .     is 

valid for        dimensions. Pattern     was only found in     , wherein it 

occurred twice: once as part of a hook with    , and once alone. 

    could actually be an instance of     joined on its right side to a chute of at 

least length 3. As such, it is also unclear whether or not this string qualifies as a distinct 

pattern. The number of possible arrangements of     with   fixed is     
 
 .     is valid 

for       . Pattern     was only found in     , and occurred exclusive of 

pattern    ; meaning that they were only found in respective EC reversals. 

    is a reversal of    , and thus possesses similar characteristics. 

    is taken from the beginning of pattern    . Standalone,     is valid for 

      , and the number of possible arrangements of     with   fixed is     
 
 . 

Pattern     only occurred in     . 

    is taken from the middle of pattern    . Standalone,     is valid for      

 , and the number of possible arrangements of     with   fixed is     
 
 . Pattern     only 

occurred in     . 

   
 , like patterns     and    , contains no repeated transition values between its 

rungs, meaning it produces the least compact ladder of the    patterns. The number of 

possible arrangements of    
  with   fixed is     

 
 .    

  is valid for       . 

Pattern    
  was not found in the examined sequences, but is nonetheless a valid pattern. 

Denoted with a “D” superscript, this deduced pattern is presented here for completeness. 
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G.2.4    PATTERNS 

No length 5 patterns (  ) were found in the examined     . Such patterns, if 

found, will be of length     —the length of     —and form 5-rung ladders. 

G.2.5    PATTERNS 

Only one length 6 pattern (  ) was found. Pattern length is     . The    pattern 

string forms a 6-rung ladder with the  -transitions as the rungs. (Additional repeated 

transitions appear alternately underlined, overlined, etc.) 

                      (15) 

 

    may be viewed in a number of ways: (1) as an overlap of patterns     

and    , with the latter being offset by        positions; (2) as overlaps of 

patterns    ,    , and    , with each offsetting its predecessor by     positions; (3) as 

pattern     appended to pattern    ; (4) as pattern     prefixed to pattern    ; or (5) as 

pattern     bounded on either side by non-identical length 3 chutes. Pattern     was 

found in     , and occurred bounded on either side by mirrored length 4 chutes, of which 

the last transition of one of the chutes doubled as the starting rung of a separate 4-rung 

ladder, while the other was a terminus (head or tail). Patterns     and     originated from 

this pattern. 

G.3 THE HOOK 

At first glance, the hook pattern may appear to be a special ladder pattern with 

two rung values. However, it may also be viewed as two ladders joined by a length    

chute. The term “hook” stems from how ladders joined by this pattern appear hooked 

together. 
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G.3.1    PATTERNS 

Only one hook pattern was found. Keeping with the naming convention 

established while discussing ladders, only one length 6 hook (  ) was found. Pattern 

length is     . The    pattern string denotes a hook between two ladder patterns.  -

transitions form the rungs of the first ladder; and  -transitions form the rungs of the 

second ladder. 

               (16) 

 

    joins two ladders   ,    together, overlapping the end of the first ladder, and 

the start of the second ladder, by one position. Pattern     only appeared in     , 

wherein it twice linked patterns     and    , and in a third instance linked patterns     

and    . 

A closer examination of the presence of an     reveals the path that is orbiting a 

central skin node. To demonstrate, we begin with an instance of the minimum length 

ladder pattern,    . The focus of the orbit is established as the skin node most used by the 

    pattern. In the  -cube in Figure 8, this is node 010, which is shared by nodes 000, 

011, and 110. At this point, the path is 0 1 2 0. Hooking a second     to the first is 

enough to begin to see the orbit. The path is now 0 1 2 0 3 2, and forms an     hook. 
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If taken to an extreme—with multiple nested     patterns hooked one after the 

other—the orbit is even more visible. Figure 11 illustrates this extreme example. 

The hook is not an efficient use of  -cube space. This is likely why it fails to 

appear in      for      . There is simply too little space within these lower 

dimensional  -cubes for longest maximal paths featuring hooks to occur.  

 

Figure 11: Snake of hooks orbiting a single skin node. Here nodes of an      -cube 

are laid out in a line. Only nodes and edges specific to the example are pictured. Solid 

dots are nodes and are correctly numbered. Solid lines are edges. Letter symbols 

indicate a chain of hooked ladder patterns. The TS correlating to the numbered nodes 

is 0 1 2 0 3 2 4 3 5 4 … 

 


