
 

 

A SITUATED PLANNING AGENT  

FOR THE VIRTUAL WORLD ENVIRONMENT 

by 

DAVID CLAYTON CROUCH 

(Under the direction of Donald Nute) 

ABSTRACT 

 The following paper describes an agent designed for the Virtual World 

environment, based upon the principles of situated cognition.  Situated or embedded 

cognition is an idea in opposition to the Physical Symbol System Hypothesis as to how 

intelligent agents are to be constructed.  Agents based on these principles employ task-

based decomposition rather than function based, and do not rely on explicit symbolic 

representation, centralized representation schemes, or centralized control.  This project 

aims to demonstrate the fitness of the situated approach in a problem domain designed for 

symbolic agents, and to demonstrate that situated agents are not limited to mere reactive 

behavior by presenting a situated agent capable of plan construction and execution, as 

well as mapping and navigating behaviors.   
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CHAPTER 1:  A NEW APPROACH TO INTELLIGENCE 

 

Throughout much of the history of Artificial Intelligence, efforts to produce autonomous 

agents capable of interacting with dynamic and complex environments have been based 

on metaphors derived from digital computer architectures.  This approach has resulted in 

the tendency to divide intelligence along functional boundaries.  The separation of input, 

output, data storage and processing in computers has manifested in artificial agent design 

as barriers of abstraction between sensing, acting, knowledge representation, and control 

systems.  The dominance of this model of intelligence is apparent in the structure of the 

discipline itself.  Many of the sub-fields of Artificial Intelligence were created to solve 

pieces of the puzzle as dictated by the digital computer metaphor.  Knowledge 

Representation, Computer Vision, Computational Intelligence, Logic Programming, and 

Natural Language Processing, among others, all seek to provide working parts of an 

agent possessing the capabilities of a human intellect.  The assumption underlying this 

effort, that these parts when combined will produce a functioning entity, is left largely 

unspoken. 

Newell and Simon (1976) provide an explicit formulation of this model of 

intelligence in the Physical Symbol System Hypothesis.  Briefly, this formulation 

describes intelligence as the operation of a reasoning system on sets of arbitrary symbols.  

This model implies that data relevant to the agent are represented as symbols, which are 
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then manipulated according to a set of rules to produce other sets of symbols, which are 

then converted into actions.  The influence of the digital computer metaphor is evident in 

the separation of sensing, representing, reasoning, and acting. However, the assumption 

that the separately designed modules will produce human-level intelligence when linked 

together continues to be made without supporting evidence from experimentation or from 

structural knowledge of natural intelligence.  There is nothing to suggest that such 

boundaries of abstraction exist in that which is being modeled, or that such a modular 

system has any hope of duplicating the desired effects.  In addition to theoretical 

problems, this approach has also resulted in several practical difficulties that will be 

discussed later in this work.   

Some scientists in the field are beginning to look at problems encountered in 

Artificial Intelligence research as inherent in the approach, rather than in the subject 

matter.  New lines of inquiry are being suggested that discard assumptions of modularity 

and explicit symbolic representation.  Researchers at MIT have offered the Physical 

Grounding Hypothesis, a model arising from rejection of these and other assumptions, as 

an alternative to the Physical Symbol System Hypothesis (Brooks, 1990).  This model 

states that the flexible and adaptive behavior considered indicative of intelligence 

emerges from the manner in which inputs, or sensors, are connected to outputs, or 

actuators.  Representation and reasoning are held to be implicit properties of the 

interactions between inputs and outputs, rather than separate functional components of 

the system.  Inspired by insights from the examination of biological intelligence and by 

analysis of the failures of symbol-system-based agents, this model rejects explicit 
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symbolization and explicit reasoning on the grounds that they are unnecessary and 

detrimental to the effort to produce agents capable of intelligent behavior. 

The agent presented in this work is intended to be a demonstration of the Physical 

Grounding Hypothesis.  The Virtual World domain, for which the agent was designed, is 

a development environment for agents employing planning, reasoning, and learning 

strategies based on the Physical Symbol System Hypothesis.  The agent's performance in 

this domain will serve to demonstrate both the agent's effectiveness in achieving the goals 

of the domain, and the particular benefits of agents based on the Physical Grounding 

Hypothesis.  The rest of this chapter will examine the Physical Symbol System 

Hypothesis and the Physical Grounding Hypothesis in greater depth, exploring the 

strengths and weaknesses of both and examining how the latter arose as a solution to 

some of the problems that plague the former. 

 

1.1 THE PHYSICAL SYMBOL SYSTEM HYPOTHESIS 

 
In order to understand the motivation for the Physical Grounding Hypothesis, it is 

important to examine the paradigm from which it departs.  The following sections 

examine the history and particulars of the Physical Symbol System Hypothesis in order to 

make apparent the need for a new approach to the duplication of intelligent behavior. 

 

1.1.1  Inspiration 

The Physical Symbol System Hypothesis was proposed by Newell and Simon in order to 

offer a computer scientist's perspective on the nature of intelligence and to suggest an 

approach for duplicating it with computers.  This hypothesis makes strong claims about 

 3



what an intelligent system, whether natural or artificial, must consist of, and equally 

strong claims about the path that must be taken by the field of computer science in order 

to eventually create artificial systems with the cognitive power of human intelligence.  

The Physical Symbol System Hypothesis was inspired by the observation that other areas 

of science have been revolutionized by the discovery of laws of qualitative structure.  The 

germ theory of disease, the doctrine of atomism in chemistry, the theory of plate tectonics 

in geology, and the cell doctrine in biology are all examples of paradigms that provided 

quantitative units by which one can explain observations and draw meaningful 

conclusions about the subject matter.  One can identify and treat the disease by 

identifying the germ, understand the terrain in terms of the tectonic plates that gave it 

form, know the properties of the solution by knowing the properties of the ingredients, 

and understand the functioning of the organism by the composition and interactions of 

the cells from which it is built.  Newell and Simon sought to provide a similar 

quantitative principle from which to understand intelligent systems.  Accordingly, they 

developed the concept of the physical symbol system, a system realizable on physical 

architectures that contains some number of symbols that can represent any expression and 

a set of processes to create, modify, reproduce, or destroy these symbols.  The symbols 

themselves are arbitrary physical patterns whose meanings can be designated and 

interpreted by the rules of the system.  Any system having these properties "...has the 

necessary and sufficient means for general intelligent action" (Newell and Simon, 1976). 
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1.1.2  Support 

The evidence for the necessity and sufficiency of the Physical Symbol System 

Hypothesis is empirical rather than theoretical.  At the time that this hypothesis was 

formalized, the viewpoints it encompasses had already been in use for several decades in 

the fields of Artificial Intelligence and Cognitive Science.  Numerous small victories had 

been won by researchers in both fields.  Artificial systems that were able to solve specific 

problems, such as playing chess and constructing simple plans, with some degree of 

intelligence were taken as evidence toward the sufficiency of the hypothesis.   Symbol-

system based models of human cognition that were able to duplicate certain human 

behaviors, such as solving simple problems and understanding natural language 

utterances in limited domains, were taken as evidence toward the necessity of the 

hypothesis.  Just as finding the specific germs responsible for specific diseases led to a 

general theory of germs and diseases, proponents of the Physical Symbol System 

Hypothesis hoped that successful handling of specific problems would lead one day to a 

general knowledge of how intelligent systems operate.  It is worth noting that this 

justification offers the Physical Symbol System Hypothesis as an interim model of 

intelligence, and assumes that it will be eventually replaced by a model that produces not 

just specific solutions to specific problems, but a general understanding of the 

functioning of intelligence.  The formulators of this model of intelligence were also 

encouraged by the lack of any viable competing model (Newell and Simon, 1976). 
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1.1.3  Ramifications 

The Physical Symbol System Hypothesis makes a number of strong claims about the 

nature of human intelligence and the effort to produce artificial intelligence.  According 

to this hypothesis, any system intended to display a level of intelligence anywhere near 

that of human beings must be designed as a physical symbol system, and any natural 

system that displays such a level of intelligence must have a physical symbol system as a 

basis for behavior and decision-making.  This implies that any generally intelligent 

system will have a physical symbol system as the basis for its reasoning.  It also implies 

that physical symbol systems are capable in and of themselves of producing the kind of 

general-purpose problem solving behavior exhibited by human beings, given the proper 

set of operators for creating, destroying, duplicating, and manipulating symbols.  The 

search for such a set of operators, or for principles dictating what characteristics such a 

set of operators must have, has been the preoccupation of the majority of researchers in 

Artificial Intelligence since its emergence as a cohesive sub-field of Computer Science.  

While this endeavor has resulted in advancements in the handling of specific problems, as 

well as minor advances in the search for general purpose decision making algorithms, 

there does not seem to be definite progress in the direction of systems with capabilities 

similar to human beings. 

The Physical Symbol System Hypothesis also implies that human beings 

themselves reason using operations on arbitrary physical symbols that represent objects 

or expressions.  Structural knowledge of the human brain available at the time may not 

have been able to confirm or deny this assertion.  Twenty-six years of advancement in 

psychology and neuroscience, however, have yet to demonstrate the presence of discrete 
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individual entities that might correspond to the symbols described by the hypothesis 

(Brooks, 1991).  While the brain does employ electrical signals in its operation, there is 

no conclusive evidence that these signals designate objects or properties in the sense 

implied by the Physical Symbol System Hypothesis.  That the brain represents reality and 

the objects in it in some fashion is apparent from the effectiveness of the decisions and 

actions that the brain generates, but there is no indication of explicit representation on the 

level of description suggested by Newell and Simon.  There is also no indication of a 

separation in the human brain between representations and operators that create, destroy 

or modify them.  Even if we oversimplify brain function by describing two patterns of 

activation as two separate thoughts, we must observe that the only characteristics that 

make them distinct are the signal strength and the paths taken through the brain.  Both of 

these characteristics are determined by the existent structure of the brain, which in turn is 

determined and modified by the signals.  The signals themselves have no individual 

identity aside from how they are shaped by the medium.  Thus, there are no explicit 

operators that manipulate symbols in the brain, indicating that the hardware-software 

distinction borrowed from digital computers cannot be usefully applied to the brain above 

a certain level of description.  While this alone does not invalidate the Physical Symbol 

System Hypothesis or explain its failure to duplicate human-level intelligence, it does 

suggest that a model of cognition that takes the structure of biological computing 

architectures into account may be more successful at fulfilling this goal. 
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1.1.4  Practical Difficulties 

Researchers in Artificial Intelligence working within the Physical Symbol System 

Hypothesis have encountered a number of barriers to progress toward the eventual goal 

of a generalized intelligent system.  One of the implications of the Physical Symbol 

System Hypothesis is the necessity of heuristic search as a component of generalized 

intelligence.  The concept of heuristic search is here applied as generating and modifying 

symbol structure so as to produce a symbolization of the solution to a problem.  Since the 

Physical Symbol System Hypothesis holds that it is necessarily constituent of any 

intelligent system, all systems must generate intelligent behavior through the operation of 

heuristic search on symbol systems.  Unfortunately, there are several problems that arise 

when one tries to apply the notion of heuristic search to such a broad goal as the creation 

of generally intelligent systems. 

The dependence of heuristic search on knowledge about the solution space 

presents a problem for artificial systems, particularly when the solution space is 

extremely complex or broad in scope.  The effectiveness of heuristic search, as opposed 

to simpler methods such as brute-force exhaustive search, derives from information about 

the search space that allows the search routine to focus its efforts in directions that seem 

more productive.  While this is not an insoluble problem in specific domains that are well 

understood, it presents difficulties when dealing with complex and dynamic environ-

ments.  The knowledge needed to direct a heuristic search is not always available, and it 

is not always readily apparent what knowledge is needed.  We do not always know what 

information we ourselves use in certain types of problem solving, since much of the 

reasoning process takes place without full conscious awareness.  The difficulty of 
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identifying the type of information needed, and of making that information available to 

the heuristic search routine, imposes limits on its effectiveness as a tool for creating 

generalized intelligence.  The fact that heuristic searches frequently require much more 

knowledge of their domains than most biological intelligences are equipped with to 

produce the same level of performance is also a concern, from the viewpoint of 

duplicating the effectiveness of natural systems. 

Effective heuristic search also requires a meaningful symbolization of the solution 

space in order to be effective.  Whatever the problem at hand, it must be presented to the 

search routine in such a way that a series of incremental steps connects the beginning 

state with the solution state.  The solution space must be presented such that the operators 

available to the routine can identify the best direction at each increment of the search 

process.  This requires considerable analysis on the part of the designers before the 

problem is given to the search routine, even in the case of specific, well understood 

domains.  To produce an artificial system whose capability for intelligent action spans 

across even similar domains would require a symbolizing component with as much or 

more intelligence than one should expect from the program as a whole.  If the 

symbolization is done by human designers, then the end result cannot be properly 

considered a generally intelligent artificial system.  It would be merely a specialized tool 

for a given domain, an aid to human intelligence rather than an intelligent system in its 

own right.  Any reference to a trans-domain symbolizing routine that may or may not be 

developed in the future is merely postponing the problem.  Heuristic search cannot be a 

necessary or sufficient component of generalized intelligence if external assistance is 

required to prepare the problem space.  The goal is to eventually match the capabilities of 
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human intellects, and that requires the system to handle a broad range of problem 

domains as they are. 

Heuristic searches run into considerable difficulties when faced with dynamic 

environments.  The effectiveness of a heuristic search hinges on a suitable symbolization 

of the solution space.  In any but the simplest of domains, rendering the beginning state, 

the solution, and the intervening search space as a cohesive and organized set of symbols 

requires some effort on the part of the program itself or the designers of the program.  

When the problem-solving environment changes overtime, this task increases in 

difficulty proportional to the rate and extent of the changes in the environment.  The more 

work that must be done to interpret the environment to the heuristic search routine, the 

more trouble the routine is going to have keeping up with changes in the environment.  

This problem has caused researchers to look forward to the development of computer 

vision systems and other artificial modes of input capable of swiftly symbolizing the 

problem environment.  Such ideal systems, however, have not appeared, and show no 

signs of doing so any time soon.  The difficulty faced by such systems, as observed in the 

paragraph above, lies in the interpretation that must be performed on raw data to make it 

useful to the search routine.  Relying upon input routines that maintain up-to-the-minute 

symbolic representations of the domain does not seem to be an option, and without such 

assistance heuristic searches cannot hope to function effectively in environments that 

change over time. 
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1.1.5  Methodological Difficulties 

There is also a potential flaw lurking in the very heart of the methodology underlying the 

Physical Symbol System Hypothesis.  The inspiration for the importance of symbols in 

this model derives from the development of logic, which offers a means separating the 

process of reasoning from the subject matter.  It was this facet of logic that led Newell 

and Simon to formulate the Physical Symbol System model as a system of operators 

manipulating sets of symbols that could stand for any object or expression (Newell and 

Simon, 1976).  The division between the structure and content of reasoning allows for the 

rigorous analysis of methods and strategies for manipulating expressions before these 

methods and strategies are implemented.  The use of formal logic provides a degree of 

certainty that is otherwise not available.  To those working within the Physical Symbol 

System Hypothesis, it seems only natural to attempt to impart that clarity and precision of 

thought to artificial reasoning systems.  It is here that a methodological mistake is being 

made.  Observation of biological intelligence, the phenomenon that Artificial Intelligence 

aims at modeling and understanding, does not suggest that certainty is a design priority.  

On the contrary, natural intelligent systems seem prone to sacrifice certainty in favor of 

quickness of action.  From human beings down to the simplest microscopic organism, 

nature seems to prefer a "good enough" decision-making strategy to one that makes 

perfect choices.  Perfect choices take time and resources, and natural selection has 

apparently found brevity superior to certainty.  While the prevalence of sub-optimal 

strategies of natural intelligence does not eliminate the possibility of perfectly rational 

intelligent systems being designed, it may suggest that imperfect reasoning is good 

enough for, and possibly essential to, the sort of broad-scope effective decision-making 
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that is the goal of Artificial Intelligence.  Duplicating the capabilities of systems that exist 

seems a much more sensible mission than attempting to build systems that improve on 

phenomena that we are only beginning to understand.   

Logic can be described as a formalization of the subset of human cognitive 

strategies that most consistently produce solutions that turn out to be accurate.  While an 

artificial system built to reason with capabilities similar to those of humans may 

reasonably be expected to have the capacity to use logic, it is impractical at the current 

stage of exploration and development to require our creations to perform better than we 

do.  Logic is a grand achievement resulting from the endeavor to advance human 

reasoning and avoid the pitfalls to which human cognition, left to itself, is prone.  

However, what capability we have for rational thought arises from the same cognitive 

infrastructure that gives us the fallibility that logic was created to prevent.  We cannot 

hope to duplicate the full scope of the intellectual power of our species by ignoring that 

which does not meet the high standards that we as scientists set for ourselves.  The 

majority of Artificial Intelligence researchers are guilty of attempting to design not 

systems that think as we do, but systems that think as we feel we should.  This error of 

intent, while understandable, must be corrected if the field of Artificial Intelligence is to 

achieve its goals of understanding human cognition and improving the reasoning 

capabilities of computing devices.  Hidden assumptions and subconscious motivations 

must be identified and clarified if we are to avoid becoming trapped in an endless search 

for an ideal to the detriment of our goal. 
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1.1.6  Conclusion 

To the extent that one views the Physical Symbol System Hypothesis as an interim 

explanation and a research program, the support given for it is sufficient.  However, the 

success of this hypothesis at providing solutions to small problems in specific domains 

does not justify its permanent acceptance as dogma for the field of Artificial Intelligence.  

A theory whose application allows researchers to build systems capable of duplicating 

specific isolated effects is not a general theory of intelligence.  Likewise, attempting to 

improve upon the performance of the object of study should not precede successful 

duplication of it.  The Physical Symbol System Hypothesis was intended to guide 

research to discover a more general theory of the functioning of intelligence.  The 

paradigm has experienced successes and failures, both of which have increased our 

understanding of intelligence and made us more aware of the remaining gaps in our 

understanding.  The following section presents a discussion of the Physical Grounding 

Hypothesis, an alternative paradigm that may, given some exploration and development, 

prove to be successful in guiding the attempt to produce artificial systems with the 

intelligence of human beings. 

 

1.2  THE PHYSICAL GROUNDING HYPOTHESIS 

 

The Physical Grounding Hypothesis offers an alternative approach to the duplication of 

general-purpose intelligence, inspired in part by the methodological and empirical 

failures of the Physical Symbol System Hypothesis.  Advocates of the Physical 

Grounding Hypothesis, also known by other names such as situated cognition or 
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embedded cognition, note that the concept of intelligence need not be restricted in scope 

to include only the most advanced tasks of which humans are capable.  Tasks such as 

playing chess, generating proofs in first-order logic, and communicating via human 

languages represent the highest degree of intelligence available for observation, but this 

does not mean that simpler tasks do not involve some level of intelligence worthy of 

study.  The duplication of intelligence using computers may be more feasible if we 

approach it one step at a time, instead of attempting to duplicate the most complicated 

behaviors first.  The Physical Grounding Hypothesis implies that a broader concept of 

intelligence may be advantageous to the attempt to understand it and to reproduce its 

effects.   

The central idea of this hypothesis is that, in order for a system to be intelligent, it 

must employ representations that are grounded in the real world.  This idea contrasts with 

the architecture of most systems designed using the Physical Symbol System Hypothesis, 

in which the representations take the form of a set of symbols representing an ontology of 

objects and properties.  By using the world as its own model, the agent avoids the need 

for complicated representation schemes and the imposition of artificial categories when 

dealing with the external environment.  The Physical Grounding Hypothesis discards the 

notion that intelligent agents must have a single representation and a single control 

system, as well as the assumption that the two functions must be separate.  The metaphor 

of the digital computer is done away with, reducing such concepts as representation and 

control system to terms of convenience rather than structural guidelines.  Functional 

decomposition, in which sensing, acting, representation and control are handled by 

separate modules, is replaced by behavioral decomposition, in which each behavior is 
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handled by a separate subsystem, and the functions formerly made explicit by the 

Physical Symbol System Hypothesis emerge as the result of the way in which sensors are 

connected to actuators (Brooks, 91). 

The Physical Grounding Hypothesis aims to remedy several assumptions, 

techniques, and habits of thought that have dominated much of the research and ideas in 

Artificial Intelligence to its detriment.  The Physical Symbol System Hypothesis offered 

a way to understand the way intelligence works by comparing it to the workings of a 

digital computer.  This viewpoint has since become the way to view intelligence, to the 

extent that research on brain function has been influenced by the tendency to look for 

structures corresponding to familiar computer components.  While the assumptions upon 

which the Physical Symbol System Hypothesis is based were educated guesses that 

deserved to be explored, the limitations that the approach has encountered signal the need 

for a change of paradigm.  The next few sections elaborate on the design methodology of 

the Physical Grounding Hypothesis by describing how this approach handles problems 

that the Physical Symbol System Hypothesis has encountered. 

 

1.2.1  Implicit vs. Explicit Symbolization 

One of the barriers to progress within the Physical Symbol System Hypothesis stems 

from reliance upon explicit symbolization.  The desire to build intelligent machines based 

upon the proven techniques of logic is understandable, given the origin of Artificial 

Intelligence in the field of Computer Science, which in turn has its roots in mathematics.  

While building an intelligent system based on explicit symbols and operations on 

symbols does ensure that its inner workings will be intelligible to observers, this is at the 
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very least not a necessary component of intelligent action (Brooks, 1991).  At worst, 

insisting upon this intelligibility can add difficulty to an already difficult task.  The use of 

identifiable representational units acted upon by a separate and domain-independent set 

of operators requires computationally expensive interpretation to be performed at every 

step.  All input and output must be converted to the language of arbitrary symbols, so that 

the various functional modules of a symbol-system based agent can communicate.  This 

added computational burden reduces the speed and overall reasoning capacity of the 

system.  While an internally intelligible system would be beneficial from the perspective 

of understanding the process of intelligence and debugging the systems while they are 

being constructed, such an arrangement still sacrifices processing power for the sake of 

an entirely separate goal from what the system is designed to achieve.  An artificially 

intelligent system may not be something that one can plug a monitor and keyboard into. 

Systems designed according to the Physical Grounding Hypothesis avoid the cost 

of internal symbolization by avoiding it entirely.  Since this viewpoint identifies 

intelligence as a property of the interaction between an agent and its environment, rather 

than as a property of the agent's internal workings, explicit representation of inputs and 

outputs becomes unnecessary.  The connections between the agent's sensors and actuators 

can be designed such that the strength of a signal from a sensor, or the rate of activation, 

or how it is connected in order to excite or inhibit other sensors, actuators, and pathways 

in between can convey all of the information necessary for the agent to choose an 

appropriate action quickly.  In behavior-level decomposition, each set of connections 

manipulates the flow of information in a manner specialized to a given behavior.  This 
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eliminates the need for a common language between components or for a domain-

independent central decision-making process. 

 

1.2.2  Distributed Data Handling vs. Categorization 

Explicit symbolization creates further problems that are ontological, rather than practical, 

in nature.  Symbolic logic, an important component of the physical symbol system 

described by Newell and Simon, is a language of objects and properties, and of truth or 

falsity.  While this language is typically how humans speak and think consciously about 

the world, it is not the same manner in which we interact with the world.  The first kind 

of knowledge is propositional, containing discrete categories.  The second kind, which 

implicitly underlies the first and allows it to be adequate for communication, is 

operational knowledge, which manifests primarily in behavior and takes into account that 

everything is a matter of degree.  There is no easy way to put into words how one 

maintains one's balance, or judges distance, or decides whether something is round.  An 

ontological system based on discrete categories cannot easily represent a world with no 

sharp boundaries.  What defines an edge?  Does an apple with a slice cut out of it still 

constitute an apple?  In order to handle such a world, a symbol system must draw 

artificial lines of abstraction, which inevitably obscures some information about the 

world.  A symbol system that draws more lines to capture the in-between states may be 

more perceptive, but it will be slower as a result.  A symbol system that works quickly by 

drawing less lines and creating more general categories will lose more information 

contained in the grey areas of reality. 
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A further problem with the categorization required by a symbol system-based 

reasoner is that there is more to be known about the world than simply what is in it.  

Much of the information that is useful to agents interacting with the real world concerns 

relationships among objects in the world, or between objects in the world and the agent 

itself.  A banana peel on the floor to your left is qualitatively different from a banana peel 

under your foot.  The problems with this sort of knowledge are that it is difficult to 

express concisely, and difficult to express completely (Brooks, 1990).  Instructing a 

system never to drop a lighted match does not tell it what happens if it allows the match 

to touch something flammable while holding it.  To impart that information by giving a 

system causal knowledge of objects in the world is a task of such overwhelming 

difficulty that no one has attempted it on a general scale.  Designing systems that infer 

any portion of the full complexity of the world is similarly difficult, in part because we 

the designers cannot call to mind everything we know, nor explain how we came to know 

it.  A symbol system by definition must carve up the world into categories, and 

information is always lost in the process.  

Physically grounded systems circumvent this difficulty by exchanging centralized 

control and representation for distributed control and representation.  Categories are tools 

of communication, not tools of action.  The fact that each behavior in a physically 

grounded system implicitly includes control structures and representational schemes 

specialized to that behavior eliminates the need for the system to have general knowledge 

of the world, or to organize that knowledge into hierarchies for easier handling.  While 

consistency of action may imply some operational knowledge of categories, such as in 

the case of a robot that cleans up empty soda cans (Brooks, 1990), grounding 
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representation in the physical world avoids the need for making categories explicit.  Since 

no behavior need interact with another behavior other than through excitation or 

inhibition, there is no need for any behavior module to speak any language but its own, or 

to render its knowledge of the world propositional.  This strategy allows different 

modules to employ different priorities in observing and behaving, so that no relevant 

information has to be sacrificed in the name of centralized representation. 

 

1.2.3  Uninterpreted vs. Interpreted Visual Data 

Another troublesome assumption implicit in the Physical Symbol System Hypothesis is 

the very possibility of general-purpose symbolizing of information about the agent's 

environment.  Symbol-system based reasoners, in order to produce meaningful outputs, 

require symbolization of inputs that captures the data relevant to the task at hand.  In any 

process of representation, there are trade-offs to be made.  In vision systems, representing 

color with a high degree of accuracy means less resources to devote to the representation 

of texture, or orientation in space, or any other perspective.  While this problem does not 

arise as much in the handling of specialized domains at which symbol system-based 

programs excel, it does present a barrier to the creation of general-purpose intelligence 

within this paradigm.  There is too much data in an environment as complex as the real 

world to symbolize all of it, with its multitude of objects, characteristics, and 

relationships.  Choices must be made about what to include and what to leave out, and 

everything that is left out decreases the agent's scope of ability.  Richness of detail, 

variety of purpose, and keeping track of changes on a regular basis must all be taken into 

account.  A system that, in addition to these three priorities, must also balance the time 
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and resources needed to translate its output into the language spoken by other 

components of the system cannot represent reality with the speed and richness necessary 

for general-purpose intelligence (Brooks 1991). 

The behavior-level decomposition of agents based on the Physical Grounding 

Hypothesis rescues this methodology from some of the difficulties of general-purpose 

computer vision.  Since every behavior in the repertoire of a physically grounded agent is 

a separate subsystem, the vision system does not have to decide what to do with the 

information or how to interpret it.  Each separate subsystem can take whatever 

information is relevant to it from the sensors, with little or no manipulation required.  

Thus the system avoids the time investment, resource usage, and general difficulty of 

converting input from a data-rich environment into a representation language that works 

for a variety of purposes.  With behavior-level decomposition, the data can be passed to 

the subsystems unrefined, to be implicitly interpreted as each subsystem handles the data 

in a manner specialized to the behavior it governs.  While symbol system-based vision 

becomes more and more ponderous as the representation scheme is scaled up to satisfy a 

greater variety of behaviors, the same increase in generality in a physically grounded 

system requires only that new behavioral connections be properly integrated with existing 

connections.  Scaling this methodology up to the level of human functionality will not be 

an easy task, but as a research direction it does seem capable of circumventing the 

practical barriers that the Physical Symbol System Hypothesis has run up against.   
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1.3  A SITUATED AGENT IN A SYMBOLIC ENVIRONMENT 

 

In practice, Physical Grounding Hypothesis-based, or situated, agents tend to display 

greater flexibility, greater responsiveness, and more effective handling of uncertainty, 

noise, and change in the environment than their symbol system-based counterparts.  What 

is not immediately apparent at first glance, however, is how an architecture based on 

distributed, direct connections between sensors and actuators can be anything other than 

reactive.  Appropriately, a significant amount of research has gone into answering that 

question since the inception of the Physical Grounding Hypothesis roughly twelve years 

ago.  Meeting the challenge of building agents capable of executing plans and keeping 

track of location, while retaining the benefits granted by tight coupling between sensing 

and acting, is an important step in determining the limits of this new paradigm.  The 

agent presented in this paper is intended to solve problems that require planning and 

mapping, both of which require non-reactive longer-term decision-making strategies, 

while deviating as little as possible from the principles of modular behaviors connecting 

sensing to acting and using the agent's environment as its own representation.   

The Virtual World Environment, in which the agent operates, was designed to aid 

in studying and creating agents that plan, learn, and navigate based on techniques derived 

from work within the paradigm of the Physical Symbol System Hypothesis.  Situating the 

agent in this arena allows for a direct qualitative comparison between its performance and 

that of agents using symbol system-based strategies.  The purpose of the agent presented 

here is to succeed where symbolic agents have succeeded, while demonstrating both the 

practical benefits of environmental grounding of representation and a greater degree of 

 21



resemblance to the behavior patterns of biological agents.  This demonstration will 

hopefully show that the Physical Grounding Hypothesis has the potential to greatly 

advance the field of Artificial Intelligence toward the goal of duplicating general-purpose 

human level intelligence, thereby understanding the inner workings of intelligence and 

increasing the capabilities of computers. 

The next chapter discusses the Virtual World environment, as a development 

environment and a testing ground for navigating agents, planning agents, and learning 

agents, as well as the structure of several symbol system-based planning agents that have 

successfully completed the tasks presented in the planning environment.  The third 

chapter will discuss the implementation of the agent presented here, and the fourth will 

discuss the results of that implementation and other possible applications for the 

principles whose validity the agent is intended to illustrate. 
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CHAPTER 2:  THE VIRTUAL WORLD  

DEVELOPMENT ENVIRONMENT 

 

2.1  PURPOSE 

 

Virtual World, or V-World, is a simulated environment into which artificial rational 

agents can be placed in order to observe and test their capabilities.  As a development 

environment, this program is suited to the design of agents using insights from the 

Physical Symbol System Hypothesis.  The Physical Symbol System Hypothesis assumes 

that the component modules of intelligence implied by a functional decomposition 

approach can be built and debugged separately, then connected to create an intelligent 

agent.  The V-World environment provides researchers with an arena in which to develop 

the component responsible for tasks related to reasoning, planning, and learning. 

Researchers following the Physical Symbol System Hypothesis tend to see the 

problem of creating human-level intelligence as one that can be solved in large functional 

increments (Brooks, 1997).  First design, debug, and perfect the component modules of 

intelligence, such as perception, reasoning, and representation, then connect the modules 

and test in a static and artificial environment free of noise, so that the interfaces between 

the modules can be debugged.  After this is done, subject the system to dynamic and 

noisy environments for further testing and debugging.  The idea was to avoid dealing 

with the issues of noise and complexity inherent in a dynamic environment by focusing 
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first upon development of the modules themselves and the interfaces between them.  It 

was thought that handling change in the environment and lack of crisp perception and 

action would be easier once a fully functional intelligent agent was available that was 

capable of navigating simplified domains.  To this end, a number of testing environments 

have been built that allow the problem of intelligent action to be solved one component at 

a time. 

The V-World Program provides an environment in which researchers can focus 

on developing strategies for building the reasoning component of intelligent agency.  

Information about the surroundings of a V-World agent is given to the agent in pre-

symbolized form.  This saves the designer from having to create an artificial vision 

system that translates the environment into a meaningful and useful symbolic language, a 

problem that still has yet to be solved.  The agent's actions in its environment also occur 

in symbolic form.  The agent program delivers one of a small set of symbols to the V-

World program itself, without the need for building separate systems responsible for 

translating the agent's decisions into behavior in the environment.  This arrangement 

allows the researcher to focus on the problem of determining which behavior is best 

suited to a given set of environmental circumstances or global goals.  The pre-symbolized 

format of inputs and outputs isolates the problem of reasoning from other problems such 

as perception and effective locomotion, so that the development of effective planning and 

learning strategies need not wait for breakthroughs in other sub-fields. 

V-World provides a means to create artificial environments for the purpose of 

developing techniques for learning, planning, and navigating.  The individual world 

environments can be set up to provide challenges in any of these domains.  Learning 
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worlds present agents with unfamiliar phenomena with which the agent must determine 

how to interact.  Planning worlds provide the agent with a global goal that can only be 

accomplished through the orderly execution of a series of sub-goals, which requires that 

the agent be capable of formulating, carrying out, and sometimes modifying plans.  

Navigation, which partakes somewhat of planning and learning, is required for the 

survival of the agent in any world, as the agent must locate useful or necessary resources 

and find paths to them as needed.  The variety of possible agent environments enables the 

study and development of artificial reasoning techniques that can later be combined with 

the other components of intelligence to produce functioning agents possessing human-

level intelligence. 

 

2.2  STRUCTURE 

 

The V-World program creates a two-dimensional grid of squares, in which the agent and 

other actors can move and interact.  V-World generates a series of discreet spaces having 

pre-specified geographical configurations based on the configuration of the current 

world, which can be designed by the user to create environments tailored to the problem 

one wishes to model.  The survival or continued execution of the agent program is 

dependent on two factors, strength and damage.  Strength is expended during each move 

by the agent, whether that move consists of changing position, pushing on something, or 

sitting still.  Strength can be replenished by various means, which are specified in the 

world file.  Death results if the agent's strength reaches zero.  Damage is accumulated by 

contact with actors or situations that are defined as harmful in the world file.  The amount 
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of damage which is fatal to the agent and means by which to reduce accumulated damage 

are also specified in the world file. 

 

Figure 1:  The V-World Planning Domain 

2.2.1  The Worlds 

V-World provides the developer with a variety of options for constructing problem 

spaces.  The squares in the grid can be occupied by several different types of content.  

The more fundamental types include empty space, which allow the presence and passage 

of agents or actors, and walls, which do not.  The squares may also be occupied by trees 

and crosses, which can be assigned properties, such as healing or replenishment of 

strength, that characterize their interaction with the agent.  The squares may contain 
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collectible objects, which alter the agent's capabilities, and can be added to the agent's 

inventory by occupying the square.  Finally, a given square may contain an animate actor, 

which may be harmful or beneficial to the agent, depending on what parameters are 

specified for the world. 

These varied possibilities allow worlds to be constructed with a variety of goals in 

mind for the agent.  For example, a world in which the agent's task is survival, 

necessitating strategies for locating and remembering sources of strength and healing, 

might contain a cross which heals damage, a tree which produces fruit that increases 

strength when collected, and a hornet, an animate actor which increases the agent's 

damage if the agent comes in contact with it.  An agent being tested in such a world must 

be able to find the tree and the cross, and to remember the location such that they can be 

found again as needed.  V-World also supports worlds designed around much more 

complex goals, such as rescuing a princess and returning her to a throne.  This sort of task 

can involve numerous sub-goals, necessitating an agent capable of creating and executing 

a plan.  Worlds can also be designed in such a way that the agent does not know the 

effects of the various actors, which allows for the implementation and testing of learning 

strategies. 

 

2.2.2  The Agents 

A V-World agent has access to data concerning the contents of its immediate 

surroundings, as well as information about its own internal state.  The agent's 

perceptions, or inputs, consist of twenty-four atoms that signify the contents of the 

twenty-four squares around it.  Any given type of object or creature is always signified by 
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the same atomic symbol.  The agent also knows on each turn how much strength it has 

remaining, how much damage it has accumulated, what direction it moved in the last 

turn, and the contents of its inventory.  The agent's action, or output, may be to move in 

one of eight directions, to sit still, or to remove an item from its inventory.  These actions 

are also represented by a set of symbols, which are passed to the program by the agent 

subprogram.  The agent and the other animate actors in the world make one move or 

perform one action on each turn.  The agent code itself determines how the perceptual 

information available to the agent is used to decide which of the ten actions is most 

appropriate to take. 

In addition to perceptual and state information, the agent may also be provided 

with further resources based on the operation of the agent's program.  An agent may be 

designed to keep track of visited terrain by adding geographical information to its 

knowledge base.  In the case of planning agents, the goal state, as well as information on 

how to order the preconditions in order to reach the goal state, may also be contained in 

the agent's code.  Knowledge of how to properly interact with other entities in the world 

is generally built into the agent, unless the purpose of the agent is to learn the properties 

of things in the world.  The agent uses the information given to it by the V-World 

program, combined with information stored implicitly or explicitly in the agent's 

decision-making process, to determine what action to return to the program as its next 

move.  The challenge to the designer of the agent is to create a program to allow the 

agent to reason well enough to stay alive, learn about the environment it is in, or to 

accomplish whatever goals have been specified. 
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2.3  A SITUATED AGENT IN V-WORLD 

 

The agent presented in the next chapter is situated in a world with a global goal that must 

be accomplished.  The agent is designed to determine if there are preconditions that must 

be met before this global goal is achieved, and to order and achieve those sub-goals if 

they exist.  The agent has no explicit knowledge, but it is composed of several levels of 

behavioral pathways whose configuration implicitly contains data on how to handle what 

it encounters.  It knows the global goal of the world, as well as the characteristics of all of 

the atoms and actors in the world, but does not initially know the geography or what 

preconditions the global goal may have.  

The agent's task is to rescue the princess by returning her to the throne.  This may 

involve obtaining gold to ransom the princess from a hag that may be guarding her.  

Obtaining the gold may require slaying a dragon, which means finding the bane.  The 

agent may have to slay a troll, which requires finding a 

sword.  Some of these sub-goals can be preconditions 

for others.  The structure of sub-goals leading to the 

fulfillment of the primary goal of rescuing the princess 

is not known to the agent at the beginning of the 

simulation.  The agent's behavior must be structured 

such that it can fulfill the sub-goals in the appropriate 

order no matter what that structure turns out to be.  

Along the way, the agent must locate sources of food to 

m

  

 

Figure 2:  The agent collects 
apples for food 
aintain its strength, since the strength is decreased for every action taken by the agent.  
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The agent must also locate a source of healing, since the presence of hostile actors in the 

world will lead to an increase in damage, too much of which can be fatal to the agent.  In 

order to fulfill all of these requirements, the agent must map the terrain as it moves, in 

order to remember the location of important resources or dangers and to find its way back 

to them or away from them. 

Most V-World agents take advantage of the symbolic structure of the 

environment to employ heuristic search as encouraged by the Physical Symbol System 

Hypothesis (Newell and Simon, 1976).  The arrangement of the terrain of the world in 

discreet squares lends itself to the use of graphs or arrays in representing the geography 

of the world internally, as well as to pathfinding using well-established heuristic search 

algorithms.  The categorical consistency of entities in the world, which are represented as 

whole symbols that always stand for the same set of properties, make advantageous the 

use of explicit symbolization in planning and reasoning.  Several successful planning 

agents have been designed for the V-World planning environment that use these 

techniques to achieve the goals set by the domain (Bridger, Crouch, and Nute, 2000).  

These characteristics make the V-World environment particularly challenging for a 

situated agent, which by definition cannot partake of the pre-symbolization of inputs and 

outputs, nor of the discreet grid structure of the world itself.  A situated agent also cannot 

make use of heuristic search, although this would be easier given the arrangement of the 

geography of the world, because heuristic search requires explicit symbolization of a 

centralized representation made use of by a centralized reasoning system.  An agent 

based on the ideas of situated cognition is required to navigate the V-World domain using 

the implicit knowledge contained in layers of behavioral pathways, allowing the 
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interaction between numerous distributed control systems to determine the correct output.  

Likewise, such an agent cannot store geographical knowledge in symbolic form as 

previous agents have done, but must add task modules whose interaction allows the 

agent's behavior to take geographical relationships between things in the world into 

account.  

This agent will employ the strategies of internal situatedness, spreading 

activation, and behavior set modification, which will be expanded upon in the next 

chapter, to produce a level of effectiveness on par with the symbol system-based agents 

previously developed for this 

domain.  The agent will also 

demonstrate the increased 

flexibility and fault-tolerance 

that arises from distributed 

representation distributed 

control.  The Virtual World 

development environment was 

designed around the use of 

symbol system-based 

techniques for planning, 

learning, and search.  The purpose of creating a situated agent for this domain is both to 

test a combination of navigating, planning, and decision-making strategies that have been 

developed for systems inspired by the Physical Grounding Hypothesis, and to show the 

effectiveness of the methodology itself.  The V-World domain provides an ideal setting 

Figure 3:  The agent rescues the Princess 
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for demonstrating the potential of the situated approach to agent design because the very 

structure of the domain favors agents designed in accordance with the Physical Symbol 

System Hypothesis.  It has already been established that symbol-system based agents 

encounter considerable difficulty in real-world domains due to the restrictions imposed 

by centralized control, centralized representation, and the rigid category structure 

inherent in explicit symbolization of inputs and outputs.  By achieving the goals of the V-

World domain in a more effective and lifelike manner than the symbol system-based 

agents for which it was designed are able to achieve, the agent is intended to demonstrate 

the potential that situated cognition has both to produce more intelligent artificial systems 

and to unravel the mysteries of human cognition. 
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CHAPTER 3:  IMPLEMENTATION 

 

3.1  THE PROBLEM OF NON-REACTIVE SITUATED COGNITION 

 

A criticism frequently leveled at advocates of the Physical Grounding Hypothesis and 

related ideas concerns the tendency of these approaches to produce agents that are mostly 

reactive in nature (Maes, 1990).  Researchers investigating these approaches are focusing 

on simple actions such as moving and navigating, rather than complex tasks such as 

playing chess or constructing proofs, in the hopes that these techniques can eventually be 

scaled up to produce more intelligent behavior.  The strength of this architecture derives 

from creating connections from inputs to outputs that are as direct as possible, with 

minimal interpretation of incoming and outgoing data.  As a result, researchers in other 

sub-fields of Artificial Intelligence have raised the question of how such a system can 

produce non-reactive behavior without falling back on some sort of explicit symbol-

based representation of knowledge.  Reactive agents can pursue only those goals within 

immediate perception.  Anything more advanced would seem to require the same kind of 

data interpretation and centralized processing that advocates of the Physical Grounding 

Hypothesis have rejected in order to produce effective cognition over simple tasks.  This 

concern has caused some researchers to pursue hybrid systems (Malcom and Smithers, 

1990). 
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3.1.1  Internal Situatedness 

One solution to this problem is to retain the idea of situatedness in its entirety, but to 

carry it further, into the inner workings of the system.  The principle idea of the Physical 

Grounding Hypothesis is that systems should be designed around a task-based 

decomposition, rather than a function-based decomposition as is found in symbol system-

inspired agents.  This implies that every connection between sensors and actuators 

represents a particular behavior, saving the agent from the onus of centralized control and 

centralized representation.  Each behavior is grounded in the agent's environment, and the 

agent is seen as the connection between external circumstances and the external result.  

However, an added level of capability can be achieved by grounding the inputs of certain 

behaviors in the outputs of others.  Thus, for some behavioral pathways, the output from 

other behaviors becomes the world, or part of the world, in which they are embedded.  

Representation and control remain task specific, even as the behavior produced by one 

pathway becomes the perception of another.  In this way, the idea of embedded cognition 

removes the boundaries of abstraction between the agent and the world, just as it 

removed those between input, output, processing, and storage.  The agent's representation 

of the world extends out into the world itself, and the world with which the behaviors 

interact extends inward to pathways that interact with each other directly.   

This meta-leveled arrangement of behaviors allows a number of behaviors the 

choice of activating the particular task to which they are dedicated in response to the 

output of a single pathway, rather than in response directly to the external world.  What 

this achieves is to allow the agent to carry on some interpretation of the raw data, albeit in 

a distributed fashion that avoids the trap of centralized control and representation.  A 
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single task module can be dedicated to taking in certain information from the external 

world, and delivering it to the perception of a group of behaviors for whom it is 

specialized.  Thus, complex representation and processing of data can take place without 

the necessity for all incoming data to be translated into an explicit symbolic language that 

all behaviors must share.  Situatedness and distribution of representation and control are 

maintained, and the agent is given the capability to perform computations of greater 

complexity than before. 

 

3.1.2  Spreading Activation 

Another element that allows a physically grounded system to carry out behaviors 

requiring non-reactive goal orientation is to employ changes of state in the behavioral 

pathways themselves that persist over some length of time.  A system can be constructed 

so that individual  behaviors compete for the privilege of dictating the behavior of the 

whole agent.  Such a system works in situations where a reactive strategy is most 

appropriate, as the behavioral pathway focused on handling a certain stimulus is more 

likely to activate in the presence of that stimulus and produce the action appropriate to 

that stimulus.  The system can then be given the ability to pursue longer-term goals by 

introducing the idea of spreading activation (Maes, 1990).  This technique, based on 

higher-level models of human cognitive functioning, gives behavioral pathways a 

parameter of duration that allows them to continue reacting to a stimulus that may not be 

directly perceived.  Acting on some perceptions, such as the observation that one is out of 

milk, requires removing one's self from the situation in which the problem condition is 

immediately observable.  Going to the store to buy more milk means that one is no longer 
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able to directly observe the absence of milk in the refrigerator.  Spreading activation 

allows behavioral modules to remain competitive in the action-selection process and to 

affect other behavioral modules for a duration appropriate to the priority of the goal 

represented by that behavior.  This innovation enables goal-oriented actions such as 

creating and executing plans to take place by removing the restriction of reactivity and 

immediacy from situated agents.  The keystones of embedded systems, namely 

distributed control and distributed representation, are maintained, since the agent’s 

decisions still arise from an architecture divided up into behaviors whose structures 

determine what response will arise in any given situation.  Spreading activation provides 

situated agents with the capability to pursue long-term goals and enables them to have a 

computational structure sufficient to reason through meaningful sequences of actions.  

 

3.1.3  Adding or Modifying Behavioral Pathways 

A third means of endowing situated agents with the capacity for greater behavioral 

effectiveness involves structuring the agent so that behavioral modules can be created, 

destroyed or modified.  While the task of enabling a system to add behaviors to its 

repertoire without knowing in advance what those behaviors will be is daunting, it 

becomes easier when the new behaviors are of a certain type and differ only with regard 

to a limited number of specific parameters.  Adding modules to the system increases the 

agent's knowledge and scope of ability to interact with its environment without the need 

for an explicit representation language.  Since behavioral pathways can interact as much 

or as little as is required by the designer, the process of adding new pathways needs not 

limit or impede the operation of existing pathways involved in other behavioral decisions.  
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Combined with the idea of internal situatedness and the concept of behaviors competing 

for activation, this technique provides greater representational flexibility to an internal 

environment that other pathways can interact with in order to produce effective behavior 

with respect to the external environment.  The internal environment in which inner 

behaviors are situated represents, in a distributed and non-symbolic fashion, the agent's 

perspective on the incoming data.  In the case of navigation, pathways connected directly 

to the agent's external perceptions can see what is around the agent, and compete to 

provide internal behaviors with the knowledge of whether this location is known and how 

it relates to other places that the agent may want to go (Mataric, 1990).  Allowing the 

agent to modify its repertoire of behaviors provides a way to implement effective 

navigation in a situated agent. 

 

3.2  THE FLOW OF INFORMATION THROUGH THE AGENT 

 

The agent described in this paper is embedded in a world consisting of symbols.  

Perceptual data and information about the state of the agent is given to the agent in the 

form of alphabetical or numerical symbols, and the program that constructs the world 

looks to the agent program for alphabetical symbols representing the agent's chosen 

behavior.  In order to incorporate the advantages of distributed control and distributed 

representation, this agent uses a distributed perception system and a distributed acting 

system.  This allows the agent to provide behavioral pathways with data about the world 

that is unsymbolized, and can therefore be interpreted by the interaction of those 

pathways, rather than by formal operations over symbolic expressions.   
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The external environment in which the agent is embedded consists of the contents of the 

world that the agent inhabits, the agent's state of health, the list of objects in its inventory, 

and the interaction of goal modules that are pre-programmed according to the task that 

the agent was designed to achieve.  All of these factors make up the world in which the 

agent is situated.  The goal modules can be considered part of the agent, but they are also 

sources of information about the world.  Because of this, they can also be considered a 

part of the environment, particularly by the inner behavioral pathways of the agent. 

The agent's decision as to which of eight possible actions to take is made by a set 

of ten behaviors that compete with each other for activation.  Each of the ten is fed 

activation by other behaviors on the basis of where 

the agent is, what is around the agent, and where t

agent needs to go to assure its survival or to fulfill 

the goals of the domain. All of the factors relevan

to the decision are evaluated at once, as each exer

a pull on the agent in one or more of the eight 

possible directions.  This continues until the 

activation level of one of the eight output behaviors 

passes a predetermined threshold, at which point it 

activates.  In this way, the agent's decision is a 

vector sum of all of the forces exerted by active behavioral p

task of these eight behaviors is to send a symbol representing

the V-World program, which moves the agent and updates th

info  

he 

t 

ts 
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Figure 4:  The flow of 
rmation through the agent
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e world accordingly.   



The agent can be viewed as a collection of behavioral pathways, that interact in 

order to determine what the agent's action will be.  The next several sections explain how 

the agent uses awareness of its internal and external environment to make this decision.  

The idea of layers is not a part of the design philosophy, but is a convenient way to 

explain the functioning of the agent's various behaviors as they interact in the decision-

making process. 

 

3.2.1  Perception/Input Layer 

The task of the behaviors in the perception layer is to take in data from the environment 

and distribute it appropriately to other behaviors.  The V-World domains for which this 

agent was designed are made up of combinations of twenty object types.  This list 

includes seven terrain objects such as walls and empty space, 

hostile animate actors such as the troll, the princess that must be 

rescued, and objects necessary to the agent's goals, such as the 

tree and the throne.  The agent views the objects that make up its 

environment twenty-four at a time, essentially viewing a five-

square-by-five-square section of the world with itself at the 

center.  The perception layer is a bundle of 480 individual 

behaviors, each of which represents the presence of a specific object at one of the twenty-

four possible positions in the agent's perceptual field.  For each of the twenty-four 

squares that the agent can see, there are twenty nodes, each firing if the object type it 

represents is occupying that square.  One such behavior, for example, might become 

Figure 5:  The 
agent's 24-square 
visual field 
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active if there is a wall in the upper left corner of the agent's field of vision, while another 

might activate when there is a troll directly to the right.   

On each turn, the agent observes the environment, and twenty-four perceptual 

pathways become active.  The process of observation by the agent is just the process of 

one percept node becoming active for each of the twenty-four observable squares, to tell 

the rest of the agent's pathways what object is in that position relative to the agent.  The 

perceptual pathways are essentially binary, remaining dormant if the object they represent 

is not present in their space, and activating other processes down the line if it is.   

One of the roles of the perception layer is the handling of reflex actions.  The 

agent's distributed control architecture precludes central controls that clamp down on the 

reasoning process when a quick decision is required.  Since each decision by the agent is 

a vector sum of all of the agent's concerns at 

that point, it is possible for the agent to react 

incorrectly to an immediate threat or 

opportunity due to indirect influences pulling 

it in other directions.  The agent's reflex 

behaviors exist to counteract this tendency.  

Perceptual pathways representing objects that 

present the agent with a threat, such as trolls 

and dragons, or opportunities, such as the tree 

or the gold, are connected directly to the eight 

action-generating behaviors in such a way as 

to strongly influence the agent's decision and to d
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Figure 6:  Perceptual behaviors 
activate the appropriate decision 
behaviors, guiding the agent away
from the dragon and toward the 
apple 
rown out influence from other concerns.  



If the agent detects a troll immediately to the left, the perceptual pathway that responds to 

the troll in that position sends a large amount of activation to the output behaviors 

representing motion in the opposite direction.  If the agent needs the gold to ransom the 

princess and the gold is directly above it, the percept node representing gold in that 

position directly activates the output behavior corresponding to motion in the direction of 

the gold.  This strategy allows immediate concerns to raise a preferred direction above 

the decision threshold before less critical or direct influences have a chance to dilute or 

outcompete this preferred direction.  Thus, the agent can focus on immediate concerns 

when necessary, without the need for a central executive module to adjudicate between 

behaviors. 

The perception layer is also responsible for making information about the agent's 

surroundings available to the behaviors that determine which goals to pursue, and those 

that determine where the agent is.  The percept nodes that make up the perception layer 

are linked to nodes in the map layer and the goal layer.  The goal layer uses perceptual 

information to determine if anything in the agent's immediate surroundings is needed for 

survival or fulfillment of one of the agent's current goals.  The map layer uses perceptual 

information to determine whether the agent's location matches a place the agent has been 

before.  Perceptual information is used to update the behavioral representation of a given 

location if there have been changes since the agent was last there, or to create new 

navigation behaviors if the agent is in a new location.  The agent program itself provides 

links between the percept behaviors and the appropriate behaviors in the goal layer and 

the map layer. 
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3.2.2  Goal Layer 

The function of behaviors in the goal layer is to keep track of concerns beyond the agent's 

immediate perception.  The goal layer provides the agent with another source of 

information about the state of the world by combining the agent's observations over time 

with knowledge about the goals of the domain.  The output of perceptual behaviors help 

to determine which goals are active at any given point, and dictate the strength of that 

activation in comparison to other influences on the decision-making process.  The agent's 

strength, damage, and inventory also provide information to the goal behaviors.  Each 

behavioral pathway in this layer represents the desire to perform a certain task, and each 

task competes with the others for activation which is used to influence the spreading 

activation process in the map layer, or the competition between the output behaviors that 

determine the agent's actions.  This goal resolution architecture is inspired by Maes' work 

in the use of spreading activation for goal resolution in situated agents (Maes, 1990). 

Factors relevant to the agent's survival in the world take the form of goals, and are 

handled by the goal layer along with the rest of the agent's long-term priorities.  Some 

survival concerns, such as avoiding nearby enemies and partaking of immediately 

available resources, are governed by the reactive behaviors in the perception layer.  

However, tasks such as moving to a distant tree to obtain fruit, traveling to a cross to be 

healed, and tracking down an enemy to destroy it in order to provide a safe path for the 

princess cannot rely on immediate perception to keep the agent focused.  Survival tasks 

that require more than reactive thinking on the part of the agent are structured as 

behaviors in the goal layer, in the same way as the tasks that the agent must perform in 

order to be successful in the domain.  This arrangement allows the agent to prioritize 
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maintenance activities on the same scale as goal-related activities.  It also provides a 

means for governing reactive behavior.  The agent should use the tree to obtain fruit if the 

tree is nearby, but there must be a point at which the agent decides that it has eaten 

enough.  Otherwise, it is possible for the agent to spend all its time eating, to the 

detriment of its goals.  The amount of activation accumulated by survival-related goals 

determines how reactive the agent is to immediate threats or opportunities.  While life-or-

death situations are best handled reflexively by the perception layer, the goal layer allows 

for in-between states where reactive thinking may not be necessary, but is beneficial up 

to a point.  If the agent is on its way to rescue the princess, and it passes near a tree, it 

makes sense to obtain some food, but not to abandon the previous goal.  This 

arrangement of survival concerns allows for this flexibility of action by the agent. 

The goal layer is also responsible for determining what sub-goals must be fulfilled 

in order to satisfy the primary goal of rescuing the princess, and deciding in what order to 

fulfill these sub-goals.  Rescuing the princess may involve paying gold to the hag, and 

obtaining gold may require slaying a troll or a dragon.  Defeating these hostile actors 

requires the sword and the bane, respectively.  This presents the agent with a range of 

possible scenarios, in which an unknown series of sub-goals must be performed in the 

proper order.  To fulfill the requirements of the domain, the agent must be able to 

discover what the goal structure of the particular situation is, and must be flexible enough 

to rescue the princess no matter what the combination of sub-goals turns out to be.  The 

goal layer provides the agent with this flexibility by implementing each goal as a 

behavior that interacts with other goal behaviors.  These goal behaviors become active, 
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and activate or inhibit other goals, based on state information or observations by the 

agent. 

For example, when a dragon is nearby, the perception behaviors responsible for 

detecting dragons become active, and activate the goal behavior dedicated to avoiding the 

dragon and finding the bane.  When not being activated by perception behaviors, the 

dragon-handling goal behaviors activate the dragon-detecting perceptual behaviors to see 

if these behaviors have formed links to location behaviors.  If they have, then the agent 

has encountered a dragon, and the dragon-handling behaviors activate the goal behavior 

dedicated to finding the bane.  If the bane is currently in the agent's inventory, the bane-

finding goal behavior inhibits dragon avoidance, and activates dragon hunting.  Goal 

behaviors relating to the dragon and other such threats can also be influenced by input 

from the agent's observation of its own level of damage. 

This arrangement similarly governs the agent's central goal of returning the 

princess to the throne.  The agent is constantly motivated by the princess-rescuing goal 

behavior to go to the throne once it encounters the 

princess.  However, if the agent detects or has in past 

turns detected a hag, it activates the links between 

hag-detectors and princess-detectors to see if the 

position-representing behaviors that the two link to 

are adjacent.  If this is so, then the agent is influenced 

to seek the gold.  If the agent encounters a dragon or a 

troll on the way to the gold, it is influenced by other 

goal behaviors to seek out and make use of the 

 

 

Figure 7:  When the agent 
sees the princess and the hag
and has the gold, it is 
motivated to pay the hag 
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appropriate tools for defeating them.  If the agent already possesses the gold upon 

encountering the hag with the princess, the agent is influenced by the hag-paying goal 

pathway to pay the hag and ransom the princess. 

In this way, the interactions of the agent's goal behaviors determine what 

influence goal-related concerns will have on the agent's decisions.  Contradictory goals 

inhibit each other, goals that depend on sub-tasks activate those sub-tasks, and survival-

related goals activate or inhibit each other depending on the magnitude of the threat to the 

agent's well-being.  The goal behaviors can either be activated by the output of other 

behaviors, or can generate their own activation which allows them to activate other 

behaviors and influence the output of the agent accordingly. 

Because the control architecture of the agent is distributed rather than centralized, 

several goals may be active at once.  In order to influence the decision process, a goal 

behavior must achieve an output that equals or surpasses a certain threshold.  Those that 

do not pass the threshold do not act on the mapping layer, where decision-making takes 

place.  Any number of goals that do pass the threshold, however, may be simultaneously 

active.  All active goal behaviors that pass the threshold send activation through links to 

the decision layer, where they affect the interactions of navigating behaviors in order to 

influence the agent's decision as to where to move during each turn.  The goal-resolution 

is partially carried out during the interaction of the goal behaviors, prior to the imposition 

of the threshold.  Those that clear the threshold compete via spreading activation with 

influences from the perception layer to guide the agent's course. 

The agent's goal behaviors have links to behaviors in the mapping layer that allow them 

to affect the decision-making process.  Each goal that passes the threshold injects its 

 45



activation into the mapping layer, which is organized geographically.  The representation 

of the appropriate change in the agent's behavior to bring about each goal is contained in 

the links between the goal layer and the mapping layer.  These links ensure that activation 

from the goals is routed to the appropriate behavioral pathway in the agent's 

representation of the terrain, to guide the agent's course toward objects or locations that 

will enable the fulfillment of that goal.  When several active goals pass the threshold, 

each injects its activation into the appropriate part of the mapping layer, where the goals 

compete by making certain areas of the map more active and influencing the agent to 

move to these areas.  The activation from goals that pass the threshold competes and 

interacts with activation from other behaviors to influence the agent to move in the 

direction that simultaneously satisfies as many goals and concerns as possible. 

 

3.2.3  Mapping/Navigation Layer 

The mapping layer of the agent handles the dual functions of representing the terrain the 

agent has visited, and serving as the arbitration medium for influences from the 

perceptual and goal behaviors.  This layer is made up of behaviors representing positions, 

or discrete geographical spaces that the agent can occupy, and moves, which carry the 

agent from one geographical space to another.  This strategy is inspired by Mataric's 

work in distributed landmark-based navigation (Mataric, 1990). 

The position behaviors represent all of the spaces in the world that the agent has 

occupied.  Each position behavior is linked to up to twenty-four perceptual behaviors.  

This is the set of perceptual behaviors that were active when the agent first occupied this 

space.  Each time the agent moves, one perceptual behavior becomes active for each of 
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the twenty-four squares that the agent can see.  The perceptual behavior that becomes 

active for each square represents the presence in that square of one of the twenty object 

types that make up the world.  Each active perceptual behavior then sends activation 

down links to position behaviors that it was previously associated with.  The position 

behavior that receives the most activation above a threshold of twenty is assumed to 

represent the agent's current location, and this position behavior becomes active.  The 

function of the active position behavior is to determine which eight move behaviors 

represent moves that the agent can actually make from where it currently is.  The position 

behaviors associate a set of objects with a location in the agent's distributed internal map.  

They also allow other behaviors, such as goal pathways, to determine where on the map a 

given object type is located. 

The move behaviors represent moves that take the agent from one position to 

another.  Each move behavior has its origin in a position behavior and its destination in a 

different position behavior, a stationary object type, or the frontier behavior.  Those that 

terminate in stationary objects, such as trees or crosses, represent moves that do not 

change the position of the agent.  Those that terminate in the frontier behavior guide the 

map updating process, and serve as targets for activation from the exploration goal 

pathway.  The move behaviors receive activation from perceptual behaviors, goal 

behaviors, and from other move behaviors.  Each move behavior outputs activation to the 

eight move behaviors whose destination position is the same as the activating move 

behavior's position of origin in most cases, or outputs to one of the eight decision 

behaviors if the activating move node is one of the eight surrounding the position 

behavior representing the agent's current location. 
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Navigation presents a particular challenge to designers of situated agents, because 

we as humans are accustomed to thinking about geographical knowledge in the language 

of symbols.  Conscious cognition in humans frequently takes a form that is better suited 

to communication than to action, and thinking about locations and how they relate to 

each other is no exception.  However, geographical knowledge can also be represented 

behaviorally, demonstrated by the fact that most of the navigating we as humans do is 

done without conscious thought or reference to explicit directions or images.  Moving 

from one's kitchen to the living room is done with the same sort of unthinking familiarity 

with which one plays piano or rides a bicycle, suggesting that the knowledge is stored in 

behavioral pathways that operate with no need for explicit symbolization.  This kind of 

behavioral navigation can be implemented in a situated agent by creating new behaviors 

to represent areas of the terrain.  Combined with the strategies of internal embeddedness 

and behavioral competition as described above, this technique results in an agent 

possessing a number of navigational behaviors that compete among themselves to 

represent the agent's current location. 

The process of deciding where to move begins with input into the mapping layer 

from the goal and perception layers.  The input layer injects activation into the eight 

active move behaviors in order to influence the agent in response to immediate threats or 

immediate opportunities.  This can mean, among other possibilities, activating the 

pathway representing motion to the north to avoid a troll immediately to the south, or 

activating the pathway to move southwest to collect fruit directly to the southwest.  The 

goal pathways can activate move nodes that terminate in a necessary resource, such as a 

tree, sword, or cross, wherever the resource is located, or move nodes that terminate in a 
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position behavior that is linked to perceptual behaviors representing something important, 

such as the princess or the throne.  The non-active move behaviors, which are not 

adjacent to the agent's current position and therefore cannot directly activate the decision 

behaviors, spread activation backwards to move 

behaviors whose destination matches the origin of the 

activating move behavior.  The level of activation of a 

move behavior represents a desire to make that particular 

move.  When the agent is hungry, the move behaviors 

terminating in trees become active, demonstrating the 

agent's intention to push against a tree to produce fruit.  

This move behavior, in turn activates move behaviors that 

would result in the agent being in a position that would 

make that move possible, representing the agent's desire 

to move to a point from which it can make use of the 

move to the tree.  In this way, activation spreads backward until one or more of the active 

move nodes, the eight that surround the agent and are candidates for activating a decision 

behavior, receives activation from it.  This process occurs in cycles, with each move 

behavior that has an activation greater than zero passing its activation backwards to its 

neighbors once during each cycle.  The goal and perceptual behaviors also re-inject their 

activation at the beginning of each cycle.  After some number of cycles, the activation 

level of one of the eight active move behaviors will pass a threshold, at which point it 

activates a decision behavior which outputs the direction that it represents to the world 

program itself. 

Figure 8:  Tree and cross-
finding goal behaviors (T & 
C) activate position 
behaviors, which spread 
activation toward the agent 
(A) through move behaviors 
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The effect of this strategy is to produce concentric waves of activation spreading 

out from locations on the internal map to which the agent should travel.  These waves 

eventually reach the agent's perceived location on its internal map, at which point the 

activation combines with reflexive motivation delivered directly to the active move nodes 

from the perception layer.  The fact that multiple goals and multiple reflexive perceptual 

impulses can be simultaneously active allows each decision that the agent makes to be a 

vector sum representing the combined influence of all of the agent's current concerns.  

This allows the agent to be both efficient and opportunistic.  If the requirements for 

fulfilling two goals lie to the west, and the object necessary for one goal lies to the east, 

the activation from the west will overlap and combine, encouraging westward motion.  If 

the agent is somewhat hungry and passes near a tree while en route to another location, it 

will detour slightly to fill up on fruit before continuing, rather than traveling to its 

destination and then traveling all the way back to the tree.  If multiple routes exist to a 

given objective, the agent will be encouraged to take the one that passes near unexplored 

territory, or a food source, or any other objective that can be completed on the path to 

another.  The capability to evaluate multiple goals simultaneously and to make decisions 

that fulfill multiple goals simultaneously is one of the principle advantages of a 

distributed decision-making architecture. 

The agent adds behaviors to the map layer in situations where no position 

behavior passes the threshold activation necessary for it to be considered the agent's 

current location.  This occurs when the agent moves into a space that it has not previously 

occupied, or when it moves into a space that has been previously occupied but has 

changed significantly.  When no position behavior is able to become active, a new 
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position behavior is generated from a template and is linked to the twenty-four percept 

nodes currently active.  This process associates the new location behavior with the 

objects observed around it, so that the agent will be able to identify the location if it is 

encountered again.  Move behaviors are then generated to and from any adjacent 

locations that are already represented as position behaviors.  The agent determines 

whether adjacent locations are on the map by re-activating the perceptual pathways that 

the current location has in common with the adjacent location.  If the adjacent location 

passes a threshold, lower than that used to determine current location, then move nodes 

are created to and from that location to reflect the agent's ability to traverse from one to 

the other.  If the adjacent location is not identified, a move behavior is generated from the 

current location that has the frontier behavior as its destination.  When the exploration 

goal pathway is active, all move nodes with frontier as a destination receive activation 

from it, and spread that activation through the network of move behaviors to guide the 

agent toward unexplored territory.  The exploration goal pathway is active by default, and 

is inhibited when a goal behavior related to the other goals of the agent becomes active.  

This means that when the agent does not know the location of resources necessary to 

fulfill the current goal, the exploration goal pathway becomes active and drives the agent 

to expand its representation of the terrain. 

Some of the objects in the agent's environment are animate actors that move 

around, which requires that they be handled differently by the agent's map updating 

process.  Objects such as the princess, the hag, the troll, and the dragon activate 

perceptual pathways dedicated to them, which link to the map updating process in such a 

way that the squares occupied by these animate actors are mapped as empty traversable 
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space, one of the other terrain object types.  This means that the agent will be unable to 

perfectly represent the terrain observable from certain positions.  However, the consensus 

strategy used to determine current location allows for a certain margin of error.  The 

agent is able to determine its location even if not all of the same perceptual pathways are 

active as there were the last time the agent visited that space.  When this is the case, the 

agent updates the links to a position node to reflect the activation of perceptual pathways 

currently in use, to keep the map up to date and as correct as possible.  The ability to 

make decisions with partial or less-than-perfectly-reliable data is a key benefit of 

distributed navigation strategies. 

 

3.2.4  Decision/Output Layer 

The function of the decision layer is to interact with the V-World program by outputting 

a symbol representing the agent's chosen direction.  Each of the eight decision behaviors 

is linked to one of the eight active move behaviors adjacent to the agent's representation 

of its current location.  When one or more of these active move behaviors passes a preset 

threshold, the one with the highest activation enables the decision pathway to which it is 

linked.  This pathway then returns a directional symbol to the V-World program.  The 

purpose of the decision layer is to interact with the symbol-based architecture, allowing 

the rest of the agent to operate as much as possible without recourse to symbol 

manipulation. 
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3.3  CONCLUSION 

 

The implementation of the concept of internal situatedness provides this agent with a 

means for filtering and interpreting external data without the need for logical operations 

on symbol sets or monolithic representation.  The perceptual pathways are dedicated to 

specific aspects of the environment, which allows them to organize information about 

external conditions for delivery to other pathways that are designed to react only to 

certain circumstances.  The perceptual behaviors make up the environment in which 

behaviors in the map layer and the goal layer are situated.  The goal layer itself provides 

part of the environment external to the map layer, which in turn acts as the medium in 

which the decision layer is embedded.  The concept of situatedness or embeddedness is 

extended into the agent architecture itself, allowing for greater specialization of 

behavioral pathways, and a greater variety of information handling possibilities for the 

agent as a whole.  Behaviors do not always have to originate and terminate in the 

environment external to the agent.  Internal situatedness allows the essence of situated or 

embedded cognition to be preserved, along with the benefits thereof, while granting a 

greater range of behavioral capabilities to the agent. 

The use of spreading activation allows the agent to continually provide inward 

behavioral pathways with goal-related activation, even when goal related stimuli are 

unavailable to externally embedded pathways.  This technique is a key element in 

overcoming the barrier of reactivity that is frequently thought to be a limitation on 

embedded agents.  Spreading activation provides the agent with a form of representation 

that persists over time, and can be used to maintain goal-directed behavior in the absence 
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of immediately observable triggers in the environment.  This concept also provides 

situated agents with a substitute for heuristic search techniques, allowing agents to 

engage in pathfinding computations without the need for explicit representation or 

symbolic techniques.  The pathfinding technique employed in this agent finds not only 

the shortest valid path to any given goal, but the path that encompasses as many goals as 

possible simultaneously.  Spreading activation both provides situated agents with 

pathfinding techniques equal to symbol system-based agents, and offers the added bonus 

of effective resolution among multiple goals. 

The agent is able to overcome the limitation of a static body of behavioral 

knowledge through modification of the set of behavioral pathways.  The perceptual 

pathways form new links to behaviors representing geographical position in order to 

associate external landmarks with internal information about the relative positions of 

objects in the world.  The agent also creates new position and move behaviors to 

represent paths that can be taken from place to place, and to create a medium for 

decision-making and pathfinding via spreading activation.  The capability of adding to 

the existing behavior set gives the agent the capability to reason about areas of its 

environment that are not immediately perceivable.  Storing geographical knowledge in 

the form of behaviors that interact with each other and with other elements of the agent 

gives the agent the ability to use this knowledge without symbolic operations such as 

heuristic search, and to find multiple paths or paths to multiple objectives in parallel. 

The strategies implemented in this agent are intended to allow it to display goal-

directed behavior, to make effective decisions involving multiple concerns, and to 

successfully navigate a varied and dynamic environment without recourse to explicit 
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symbolic representation or centralized control.  This experiment is meant to demonstrate 

the capability of situated agents to rise above the limitation of simple reactivity, by 

substituting an ontology of behaviors for an ontology of symbols.  The next chapter 

presents the results of the implementation of this architecture, and provides some 

discussion of the implications of these results. 
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CHAPTER 4:  RESULTS AND CONCLUSIONS 

 

This chapter concerns the results of the implementation and execution of the agent.  

Discussions follow concerning design choices made during implementation, details of the 

agent's performance, and problems encountered during execution.  The conclusion is a 

summary of the agent's success both in the achievement of the goals of the domain, and 

in the demonstration of the effectiveness of situated cognition as a model for agent 

design. 

 

4.1  DESIGN CHOICES 

 

This agent is intended as a demonstration of the effectiveness of agent architectures based 

upon the principles of situated cognition.  When an agent inspired by these principles is 

physically manifested, such as in a mobile robot, it is possible to build an architecture 

that is actually parallel and completely embedded in its environment.  This project, 

however, concerns a simulated agent operating in a simulated environment made up of 

discrete, explicit symbols.  This being the case, not every element of situated cognition is 

implemented explicitly.  The next few sections detail departures from the ideal of 

embedded design that became necessary due to environmental or computing constraints.  

The agent itself holds true to the intent of situated cognition in essence, but the following 

deviations should be noted. 
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4.1.1  Implicit Parallelism 

The serial nature of the physical computers available to run this agent in V-World proved 

to be a significant design constraint.  A situated agent is in essence a parallel 

computational architecture, and implementation of parallel architectures on computers 

with serial processors requires that the calculations be performed one at a time to 

reproduce the effect of parallel computation.  Ideally, the structure of the agent code 

would be identical to the theoretical structure suggested by task-based decomposition.  

Each behavior would be represented as a module of the program, and each could be 

processed in turn to produce the appropriate output.  However, the interconnectedness of 

the behavioral modules themselves means that they cannot be activated one at a time, or 

they will have no opportunity to interact with each other during computation.  It was 

therefore necessary to represent some of the behavior modules implicitly, interleaving the 

lists of commands that made up the computational structure of the modules themselves in 

order to ensure interactivity. 

Each goal behavior, for example, is split into an input segment and an output 

segment.  The input segments of all of the goal behaviors are processed as a group, so 

that each can determine based on perceptual and state information whether or not it will 

become active.  Each of the input segments that becomes active then calculates the 

excitatory or inhibitory effect that it will have on other goal nodes, and to what extent it 

will activate its own output segment.  In the second phase of goal activation, the 

excitatory influences, inhibitory influences, and activations are applied to the appropriate 

goal output segments.  The output segments are then checked to determine which, if any, 
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pass the goal threshold.  Those output segments that pass the threshold then exert their 

influence upon the map layer to guide the decision making process.   

 

4.1.2  Low-Level Centralized Control 

In this implementation, the behavioral pathways are represented by data structures that 

are acted upon by the agent program to simulate a completely distributed control 

architecture.  While it would have been more structurally accurate to represent the 

pathways as executable modules, it would have been difficult to achieve the necessary 

parallelism and interaction between modules using this method.  The essence of situated 

agency is preserved by the fact that the flow of information is organized in terms of 

behavioral pathways, rather than in terms of component modules dictated by a functional 

decomposition.  The patterns of the agent's behavior demonstrate that the benefits of the 

situated design strategy do arise despite the separation between the knowledge possessed 

by the agent and the control structures that make use of it. 

 

4.1.3  Symbolic Input to Goal Behaviors 

In the description of the flow of information through the agent, the goal behaviors are 

described as drawing upon the input of the behaviors in the perception layer.  In the 

implementation of the agent, however, the goal behaviors directly query the symbolic 

input from the environment.  Since the environment itself is made up of discrete symbols 

inhabiting discrete geographical spaces, this change makes no difference in how the agent 

operates.  This alteration to the original plan was made to save processing time, which is 

of significant concern given the computational burden of running simulated parallel 
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decision-making structures on a serial device.  The goal nodes themselves employ 

distributed interaction to adjudicate among themselves, so the spirit of the project is 

implicitly preserved, if departed from explicitly. 

 

4.2  PERFORMANCE OF THE AGENT 

 

Agent architectures based on the principles of situated cognition offer several benefits 

that cannot be practically implemented in symbol system-based agents that rely on 

centralized control and centralized symbolic representation.  Among these benefits are 

decision-making oriented toward several goals simultaneously, life-like patterns of 

behavior, graceful failure, and greater flexibility in the face of incomplete or incorrect 

information about the environment.  Traits such as these are a primary motivation for 

research in situated cognition and embedded agency.  Designing systems with these 

abilities will both improve the usefulness of technology based on autonomous agent 

architectures and our understanding of the workings of intelligence in natural agents.  The 

following sections describe the performance of the agent presented here from the 

perspective of these four traits, with the goal of showing that the agent not only 

completes the task for which it was designed, but also displays characteristics that 

demonstrate the potential of situated cognition. 

 

4.2.1  Multiple Goal Orientation 

The agent's behavior demonstrates the ability to make decisions that fulfill multiple goals 

at the same time.  In instances where the agent is confronted with a threat such as a troll 
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or dragon, the agent is compelled to move to one of the three spaces in the opposite 

direction.  The agent's choice among the three is made according to other goal influences.  

The agent moves away from the troll in the direction of a tree if it is hungry, or in the 

direction of the sword that will allow it to destroy the troll.  This tendency is also 

displayed in the agent's route to distant objectives.  When the agent catches sight of the 

princess and the hag, the gold-finding behavior becomes active.  Since the gold is usually 

located at the other end of the world from the princess and the hag, the agent must plot a 

course across the world.  If the agent is damaged, its travel path tends to take it to the 

cross that is located slightly off the path.  If the agent is hungry at all, the path between 

the princess and the gold will be bent toward the tree, where it can replenish its strength.  

Behaviors such as these indicate that the agent is capable of working to achieve multiple 

goals at once.  This is made possible by the fact that all of the active goal behaviors 

compete to influence the vector sum that determines the agent's next action. 

 

4.2.2  Life-like Behavior Patterns 

The behavior of the agent also displays greater similarity to that of natural agents than 

previous V-World agents have shown.  When the agent is located between two 

unexplored areas, or is equally drawn to two resources that are currently needed, it 

sometimes oscillates back and forth for a few turns before making its way to one of the 

alternatives.  While this does not contribute to the agent's effectiveness at performing the 

tasks for which it was designed, it does suggest that the distributed decision-making 

architecture may hold promise as a tool for understanding natural cognition.  When the 

agent's priorities change due to some new internal or external circumstance, the agent 
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does not immediately discard previous priorities, as symbol system-based V-World 

agents tend to do.  Instead, the new priority adds its influence to the decision-making 

process, and the agent's movement is biased in that direction.  If the new priority changes 

the agent's direction or focus, other priorities will still remain active and attempt to guide 

the agent to resources that satisfy their demands en route to the new destination.  Previous 

V-World agents tend to pursue one goal at a time, completely ignoring previous concerns 

if a new goal becomes relevant.  The greater adherence to natural patterns arising from 

this architecture may mark it as useful in the development and testing of theories 

concerning cognition and decision making in humans and animals, leading to an increase 

in the understanding of intelligence as a whole.  The ability of this design to evaluate and 

pursue multiple goals simultaneously may also have applications in the field of intelligent 

control systems for dynamic environments. 

 

4.2.3  Graceful Failure 

When the agent experiences a malfunction in one of its components, or finds itself in 

circumstances not foreseen by the designer, it does not fail completely as other agents are 

prone to do.  Instead, the parallel design of its decision-making architecture allows it to 

determine an action no matter what the conditions.  The action may not be the best 

choice, but the agent will continue to operate.  This characteristic, known as graceful 

failure, is a much sought-after virtue of embedded systems, particularly those designed 

for dynamic or noisy environments.  Typical systems rely on the ability to make black-

and-white distinctions when evaluating the environment.  They also tend to handle noise 

poorly, and depend upon every sub-component in the organization of their internal 
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hierarchies functioning perfectly (Mataric, 1997).  The ability to handle failure gracefully 

means that the agent can recover from significant external change or internal malfunction 

to the extent that it is able to continue functioning to the best of its ability.  The binary 

distinction between working and not working typical to most artificial systems is replaced 

with functionality that is roughly inversely proportionate to the extent of the change or 

mishap.  If one part of the agent ceases to work, other parts carry on.  This agent 

displayed this capability during the debugging process, once the decision-making 

infrastructure was in place.  When one or more behavioral pathways were malfunctioning 

or inactive, the agent continued to move around in the world, using the set of behaviors 

that were unaffected by the current bug.  When an incorrectly functioning behavior sent 

the wrong type of signal to the decision-making process, the outputs of behaviors 

dedicated to other goals were unaffected.  The only problems capable of completely 

stopping the agent were those that occurred in the control processes that governed the 

behaviors themselves.  Since the purpose of these processes is to simulate a physically 

manifested parallel control structure, they would not be present in a truly embedded 

system.  The fact that these processes are the sites of the agent's only catastrophic failures 

demonstrates the strength of the parallel architecture that they support. 

 

4.2.4  Flexibility 

The grounding of the agent's representations in the environment in which it operates 

provides the agent with a greater degree of behavior flexibility when dealing with 

unknown circumstances, incorrect data, or changes in the environment.  The implicit 

distributed representation scheme frees the agent from the need to rely on certainty or 
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predictability.  The agent's environment contains animate actors that move around, as 

well as collectible objects such as the sword, the bane, and fruit from the tree that 

disappear when the agent picks them up.  This means that the agent's representation of 

locations by the network of mapping behaviors is not always completely accurate.  

Enough change to a given location means that the agent may be unable to recognize it.  

When this happens, the agent is able to create new behaviors to represent the modified 

location, and attach them appropriately to the existing network so that the collection of 

mapping behaviors continues to function as a decision-making component.   

The agent displays similar flexibility in the handling of hostile animate actors.  

Links between perception behaviors dedicated to sensing trolls and position nodes 

activate behaviors dedicated to finding the sword, then destroying the troll so that it will 

not present a threat to the princess.  To find the troll once the sword is in its possession, 

the agent activates the perception-to-location links to activate the location behavior where 

the troll was last seen.  If the troll is not there, the agent is able to wait until the troll 

appears again to pursue and destroy it.  In the version of the planning domain used to test 

the agent, the troll guards the bane, which is used to repel the dragon.  This arrangement 

means that finding the sword with which to destroy the troll can become a sub-goal of 

obtaining the bane with which to defeat the dragon.  However, in one trial, the agent saw 

the opportunity to slip past the troll and get the bane.  Having seen the troll, the agent 

later obtained the sword and defeated it, but it was able to rearrange its goal-oriented 

behavior to reflect the achievement of a goal despite not fulfilling what had been a sub-

goal. 

 63



The agent further displayed its capability for flexible behavior in a later run, when 

it caught sight of the hag guarding the princess on the other side of a wall that the agent 

couldn't cross.  Once the agent saw the hag, its gold-finding behavior became active, 

leading it to the gold.  After obtaining the gold, the agent returned to the spot from which 

the hag was visible, despite the fact that there was no way to get to the hag from that spot.  

However, once this became apparent, the agent was able to shift its priorities to finding 

the princess, who was not visible from that location.  The agent took another route to the 

princess, encountered the hag, and paid the ransom.  The agent was then able to lead the 

princess to the throne.  The agent's flexibility in working toward solutions to its goals 

allowed it to circumvent a problem area not anticipated even by the designer. 

 

4.3  PERFORMANCE PROBLEMS 

 

The agent completed the goal of rescuing the princess successfully in most trials.  The 

agent was able to adjudicate between goals, to execute necessary sub-goals in the proper 

order, and was successful at navigating the domain and maintaining a usable idea of its 

location and the locations of other objects and entities in the environment.  A few 

problems arose, however, that may be the focus of further work on the subject.   

 

4.3.1  Slow Execution 

The most prominent difficulty encountered during testing was the slowness of the agent 

program itself.  Even on a computer equipped with an 850-Megaherz processor, the 

completion of successful trials took over an hour, where typical V-World agents are able 
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to complete the domain requirements in roughly ten minutes.  The agent's computational 

architecture is parallel in structure, but this is achieved through a simulation that is 

executed on a serial physical computer, as most desktop computers are.  While a 

physically manifested parallel architecture would avoid much of this problem, parallel 

computing devices are far behind serial systems in terms of sophistication and 

development.  The time taken by the agent for each move tends to increase consistently 

with the size of the agent's internal map.  Each new location that the agent remembers 

means another nine behaviors added to the decision making process, and every behavior 

is necessary for the agent to evaluate all currently relevant factors.  Decisions went from 

taking less than a second at the beginning of each successful trial to taking as much as 

thirty seconds by the end of the trial.  This implies that the focus of the problem is in the 

representation of each location square in the environment as a set of programs that 

interact with the rest of the agent.   

Reducing the amount of code used to represent the behavioral pathways did speed 

the process up somewhat.  Changing the numerical representation of signals within the 

agent from floating-point to integer also sped up the decision-making process.  Further 

speed was achieved by not running pathways in the decision-making layer that had not 

exceeded an activation level of zero, which had no effect on the agent's effectiveness 

since modules with zero activation were not a part of the evaluation process.  Much of the 

time expended does seem to be due to the problem of running a parallel decision-making 

program on a serial machine.  The slowness of the agent program remains a practical 

difficulty, but does not reflect on the usefulness or validity of the ideas manifested in the 

design of the agent. 
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4.3.2  Oscillating Between Goals 

The oscillation mentioned in the discussion of the agent's performance above is 

somewhat of an issue concerning the effectiveness of the agent.  While the agent does 

eventually succeed in the achievement of the goals of the domain, it occasionally spends 

ten or twelve turns moving back and forth between two goals of roughly equivalent 

influence.  These cycles end when the level of influence for one of the goals changes, or 

when another goal passes the goal threshold and begins exerting its influence on the 

decision-making process, or when some change in the environment presents the agent 

with a new threat or opportunity.  For example, when the agent is exploring, it may 

vacillate between two unexplored areas of equal size and distance from the agent.  If it 

does this for long enough, its hunger increases to the point at which its decision-making 

process is affected, and it moves toward the tree, breaking out of the dilemma.  The 

problem is partially caused by the manner in which activation spreads through the 

decision-making network of behaviors.  On each activated move behavior spreads a small 

percentage of its activation to the eight move behaviors terminating in its point of origin, 

to represent encouraging the agent to move to the point where that move behavior 

becomes viable.  This means that a given move behavior between the agent and a relevant 

goal location receives activation from the nodes between it and the goal, and from nodes 

to either side of that path that have also become active.  Thus, if an agent moves toward a 

goal, the activation toward that same goal will seem to build more slowly, and may be 

overcome by the activation from a goal in the opposite direction.  This phenomenon 

contributes to the oscillation.  The problem can also be considered the result of a life-like 
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decision-making architecture, in the manner of the proverbial donkey starving between 

two piles of hay. 

This problem may be solvable by changing the manner in which the move 

behaviors activate each other so that the total influence on the agent from any goal is 

more a function of distance than of time.  It might also be possible to add a behavior or 

strategy that causes and maintains fixation on one goal in cases where two competing 

goals are judged to be of nearly equivalent importance.  Regardless, this problem occurs 

infrequently, in a very specific set of circumstances, and has not been shown to 

detrimentally affect the agent's performance to a great degree.  It is, however, an area of 

possible improvement for future attempts along these lines. 

 

4.3.3 Getting Cornered by Hostile Actors 

The most significant performance issue that has arisen thus far is the agent's tendency to 

get into situations involving hostile animate actors from which it cannot escape.  The 

agent's motivation to explore often takes it into confined spaces guarded by the dragon or 

the troll.  In several trials, the agent was unable to extricate itself from these situations 

without being reduced to zero damage, which results in death for the agent.  In V-World, 

damage is accumulated when the agent occupies spaces immediately adjacent to hostile 

animate actors, or from pushing on them by attempting to occupy the square in which 

they are located.  This problem tends to occur in areas of the world three or fewer squares 

in one dimension, with a way out that is one square across.  Typically, the agent avoids 

the proximity of hostile actors unless it carries the means to defeat them, such as the 

sword in the case of the troll or the bane in the case of the dragon.  However, these actors 
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are often not visible to the agent upon entry into one of these confined spaces.  This is 

particularly problematic when the agent encounters the dragon, since one turn spent in a 

space adjacent to the dragon removes fifty damage points, out of a possible maximum of 

one hundred.  The agent has several times encountered the situation of having been 

damaged by the dragon, with no way out that does not take it past the dragon again.  

Similar problems have occurred less frequently with the troll, due to the troll's smaller 

damaging effect. 

One solution that was attempted was the implementation of negative spreading 

activation from the location from which a hostile actor had been observed.  The intended 

effect of this strategy was to cancel out the positive goal influence emitted in the agent's 

decision layer by objects or unexplored spaces near a threat, influencing the agent away 

from dangerous areas until it had the means to combat them.  Unfortunately, even small 

quantities of negative activation emitted per turn were sufficient to flood the decision 

layer and warn the agent away from that entire half of the world.  Since animate objects 

are not represented by the mapping behaviors, the source of negative activation was the 

location from which the agent first saw the hostile actor, which made focusing the effect 

on a small geographical area impossible.  At present there does not seem to be a way to 

mark certain areas of unexplored territory as dangerous without resorting to explicit 

symbolic labeling, since all move behaviors representing new terrain are essentially the 

same to the agent. 

The use of move behaviors that terminated in the actors themselves was also 

attempted.  These move behaviors did not tend to spread exploration activation, which 

kept the agent from venturing into these areas until the necessary counter-measures were 

 68



in its possession.  The problem with this solution arose when the threat was defeated.  

The agent is not currently equipped to recognize the persistence of objects in the world.  

It is therefore difficult for the agent to tell when a hostile actor has been defeated, as 

opposed to when it has moved out of sight.  There does not 

seem to be an appropriate trigger that the agent can 

recognize for changing the threat-related move behaviors 

into normal move behaviors, and any other means would 

violate the intent of the situated design strategy employed.  

There may be a way of introducing qualitative connections 
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Figure 9:  The agent is 
trapped by the dragon 
between position and move behaviors in a given area and 

he types of objects that inhabit that area.  It should also be possible to give the agent t

oncept of persistence, to allow it to handle objects and actors in a manner more 

esembling that of living organisms.  Within the scope of the current project, however, 

his remains a problem, if an infrequent one.  Difficulty handling hostile actors does not 

ignal a failure of the ideas manifested in this agent, but it does suggest areas for 

mprovement of the design. 

he 

.4  CONCLUSION 

he agent successfully completes the primary goal of the V-World planning domain, that 

f returning the princess to the throne.  In the process of doing so, it effectively completes 

ub-goals as they become apparent, in the order required for the fulfillment of the central 

oal.  It is able to reliably navigate the geography of the domain, employing a ''good 
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enough'' strategy to recognize familiar locations and to determine the position of various 

locations relative to each other in order to locate and travel to necessary resources and 

entities.  The agent tends to run slowly, but this is not detrimental to its effectiveness in 

the arena of goal fulfillment.  The agent's tendency to oscillate between goals could 

conceivably present a problem in conditions involving extreme hunger, extreme damage, 

or proximity to a threat, but has not itself resulted in the agent's failure to date.  The 

problem of becoming stuck in threatened spaces has resulted in several unsuccessful 

trials, but this occurs infrequently, and offers several possible solutions. 

 The agent represents an attempt to solve a problem designed for agents based on 

the Physical Symbol System Hypothesis, and to display greater opportunism, 

adaptability, flexibility, and fault tolerance while doing so.  The agent is able to fulfill the 

domain requirements, and does display the desired characteristics.  The effectiveness of 

this agent suggests that the principles of situated cognition have much to offer the field of 

Artificial Intelligence, particularly in the domain of autonomous rational agents.  The 

ideas presented here may also have significant ramifications for other domains within 

Artificial Intelligence, such as the design of intelligent control systems.  The concepts of 

distributed control systems that do not fail all at once, separate implicit representation 

schemes for separate tasks that need not all speak the same symbolic language, and 

modes of perception that do not impose artificial boundaries of abstraction on the 

external environment all have important ramifications for practical concerns such as 

robotics or the design of autonomous vehicle control systems.  The patterns of behavior 

displayed by the agent also suggest that this approach to agent design might be a useful 

direction in which to conduct research as to how living organisms think and act.  Such a 
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research direction may discover that a model of natural cognition based on task 

decomposition and decentralized representation and control is more effective for 

understanding and duplicating natural intelligence than previous attempts based upon 

symbol ontologies. 
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