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Abstract

The snake-in-the-box problem is a difficult problem in mathematics and computer science

that deals with finding the longest-possible constrained path that can be formed by following

the edges of a multi-dimensional hypercube. This problem was first described by Kautz in the

late 1950’s (Kautz 1958). Snake-in-the-box codes, or ‘snakes,’ are open paths while coil-in-

the-box codes, or ‘coils,’ are closed paths, or cycles. Snakes and coils have many applications

in electrical engineering, coding theory, and computer network topologies. Generally, the

longer the snake or coil for a given dimension, the more useful it is in these applications (Klee

1970). By applying a relatively recent evolutionary search algorithm known as a population-

based stochastic hill-climber, new lower bounds were achieved for (1) the longest-known

snake in each of the dimensions nine through twelve and (2) the longest-known coil in each

of the dimensions nine through eleven.
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Chapter 1

Introduction

The purpose of this research was to determine if there are ways to customize the implemen-

tation of a simple genetic algorithm in order to improve its performance within a specific,

well-researched domain. The domain chosen for this research is a branch of graph theory

that focuses on searching for both open paths, known as ‘snakes,’ and closed paths, known

as ‘coils,’ within multi-dimensional hypercubes. This problem has been widely researched in

discrete mathematics and graph theory for over fifty years. Much progress has been made

over this time by traditional ‘proof-based’ approaches, but more recently new results have

been discovered using techniques which make use of computational artificial intelligence. The

most successful of these computational approaches seems to be the simple genetic algorithm.

This thesis describes, over the course of three papers, the results of research into cus-

tomizing the genetic algorithm to hunt for snakes and coils in hypercubes of dimensions nine

through twelve. This research grew out of an assignment in the Computational Intelligence

course taught at the AI Center. Upon the completion of the initial assignment, the snake-

hunting algorithm was a simple genetic algorithm capable of using probabilistic, tournament,

or rank-based selection, enhanced edge-recombinative crossover, and random XOR-mutation

on a population of snakes in node-based representation. Each chromosome could contain

multiple snakes within it and the longest within each chromosome would be detected and

used to calculate that chromosome’s fitness. The fitness function for this early version was

based only on the length of the snake. While the results of using this algorithm to hunt for

snakes in dimension eight were somewhat successful, finding a snake of length 89, I became

obsessed with the idea that there must be some way to improve its performance. Before the

1
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official deadline of the assignment, the first steps of the algorithm’s customization were taken.

Crossover was eliminated and the crossover operator was replaced with a growth operator

that allowed one end of the snake to grow to an adjacent node in the hypercube. In this

early version, the growth operator was naive and allowed snakes in the population to grow

to nodes that violated global adjacencies, resulting in their elimination. With just these two

early modifications, snakes of length 90 and 91 were found in dimension eight. Convinced

that other improvements in the algorithm could be found, I decided to spend the summer of

2004 in the AI Center’s computer lab, hunting for snakes.

The next, and one of the most important, changes of the snake-hunting algorithm, came

with a new fitness function. Many different ways were attempted to incorporate the idea of

‘tightness’ into the fitness function, but eventually it was realized that due to the divergence

of the multi-objective function of fitness between length and tightness, one of them must be

allowed to dominate. The choice was made to allow length to dominate tightness within the

fitness function. This choice required further changes to ensure the entire population would

always have the same length during the selection process. To accommodate this new require-

ment, we made changes to the chromosomal representation. Though still an integer array,

instead of allowing snakes to exist anywhere in the chromosome and performing a computa-

tion to find the snake within the chromosome, the new representation has the zero node as

its first element and, by only allowing the snake to grow to adjacent nodes that do not vio-

late global adjacencies, maintains a single, valid snake throughout the evolutionary process.

At the same time, the original XOR-mutation scheme was also modified to a conditional

XOR-mutation. In this new form, instead of picking a random node to mutate, a number of

copies of the snake are made and a different index is XOR-mutated for each snake. If any

of these mutations result in an improved fitness, then the best of them is used to replace

the original snake in the population. The results of these changes were very promising and

snakes through length 96 were found in dimension eight.
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After all these changes, however, the algorithm had still not produced a snake of length 97,

which is the longest-known snake for dimension eight. After discussions with my committee

about the failure to find any length-97 snakes, it was decided to generalize the algorithm to

hunt for snakes in higher dimensions. After modification, runs were undertaken in dimen-

sions nine through twelve, using the best results of each dimension to seed the next-higher

dimension’s runs. Within a period of weeks, new lower bounds for the longest-known snake

were broken in each of these dimensions. Further review of the literature revealed a straight-

forward technique to convert a snake hunter into a coil-hunter and trials in this more-difficult

venture were begun. Over the following months new lower bounds for longest-known coils

were found for dimensions nine through eleven. The current incarnation of this snake/coil-

hunting algorithm has evolved into a population-based stochastic hill climber and, as the

following results will attest, has proven to be an extremely competent snake and coil hunting

technique.



Chapter 2

New Lower Bounds for the Snake-in-the-Box Problem: Using Evolutionary

Techniques to Hunt for Snakes1

1Casella, D. A., and W. D. Potter. 2005. Accepted by the 18th International Florida Artificial
Intelligence Research Seminar, FLAIRS ’05. Reprinted here with permission of publisher.
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Figure 2.1: Three-dimensional hypercube with embedded snake.

2.1 What is a Snake?

Hunting for ‘snakes,’ or achordal induced paths, in an n-dimensional hypercube deals with

finding the longest path, following the edges of the hypercube, that obeys certain constraints.

First, every two nodes, or vertices that are consecutive in the path must be adjacent to each

other in the hypercube, and second, every two nodes that are not consecutive in the path

must not be adjacent to each other in the hypercube. A third constraint, whether the path

is open or closed, determines if the path is a ‘snake’ or a ‘coil.’ While coils have received

the most attention in the literature (Harary, Hayes, and Wu 1988), both snakes and coils

have useful applications. This paper deals primarily with searching for open paths, or snakes,

where the start node is not adjacent to the end node.

An n-dimensional hypercube contains 2n nodes that can be represented by the 2n n-tuples

of binary digits of the hypercube’s Gray code. As illustrated in Figure 2.1, by labeling each

node of the hypercube with its Gray code representation, adjacencies between nodes can

be detected by the fact that their binary representations differ by exactly one coordinate
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Table 2.1: Maximum lengths of snakes and coils.

Dim Snake Coil

1 1 0
2 2 4
3 4 6
4 7 8
5 13 14
6 26 26
7 50 48

(Harary, Hayes, and Wu 1988). Using this fact, one can immediately detect if any two nodes

in the hypercube are adjacent by performing the logical exclusive-or, hereafter referred to

as XOR, operation on them and confirming that the result is an integer power of two.

Using this information, a strategy for detecting, as well as generating, node adjacencies can

be generalized to any dimension. In Figure 2.1, the bold line segment represents an open

path, or snake, through the three-dimensional hypercube. This path, {0, 1, 3, 7, 6} in integer

representation and {000, 001, 011, 111, 110} in binary representation, is one specific example

of a longest-possible snake for a three-dimensional hypercube. The length of this snake is

four, as the length of a snake always refers to the number of transitions, or edges, in the

path.

Table 2.1 shows the maximum lengths of snakes and coils for dimensions one through

seven. These values have all been proven, through exhaustive search, to be the longest-

possible snakes and coils for their respective dimension.

2.2 Previous Snake-Hunting Approaches

Traditionally, mathematical approaches to the snake-in-the-box, hereafter referred to as SIB,

problem have involved two fundamental strategies. The first is a method of construction uti-
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lizing the tools of logic, discrete mathematics, and graph theory, while the second makes use

of mathematical analysis to reduce the search-space followed by a computationally exhaus-

tive search of the remaining, tractable, search-space. These techniques have been successful

in determining the longest-possible snakes for hypercubes of dimensions one through six as

shown in Table 2.1. For dimension seven, the lower bound for longest-possible snake (Potter

et. al. 1994) was found independently using both a genetic algorithm and an exhaustive

search, while the lower bound for longest-possible coil (Kochut 1996) was found using only

an exhaustive search.

But even as mathematical approaches to solving this problem have been strengthened

through the use of computational techniques, the combinatorial explosion in the size of the

search-space as the dimension number increases has become a barrier for these methods. For

dimensions eight and above, even with currently available hardware, an exhaustive search

remains impractical. This has opened the door for less-traditional, heuristic-based computa-

tional search techniques. One increasingly popular branch of these search techniques is known

as stochastic search algorithms. This area includes stochastic hill-climbers, tabu search, sim-

ulated annealing, evolutionary strategies, genetic algorithms, and hybrids of these particular

types such as memetic algorithms.

One example of a stochastic search algorithm that has been used to hunt for snakes in

dimension eight is the genetic algorithm, hereafter referred to as the GA. Developed by John

Holland (Holland 1975), the GA is based on the simulation of Darwinian evolution and uses

an evolutionary loop composed of fitness-based selection of individuals from a population,

crossover of these individuals’ genetic material, and mutation of these individuals’ genes.

The GA performs a search-space reduction through the use of a heuristic in determining

the fitness of an individual within the population and through the inherent parallelism of a

population-based approach. This technique has met with success and, by finding, what were

at that time, record-breaking snakes in dimensions seven and eight (Potter et. al. 1994),

proved its effectiveness for snake hunting.



8

Another stochastic search algorithm that has proven successful in traveling salesperson-

type problems, such as the SIB problem, is the stochastic hill-climber (Kingdon and Dekker

1995). A population-based stochastic hill-climber, hereafter referred to as PBSHC, is very

similar in structure and operation to the simple GA with a few key differences in the evo-

lutionary cycle. The first difference is the absence of a crossover operator. Where the GA

models sexual reproduction, the PBSHC models asexual reproduction in that the children in

each generation are created directly from the parents of the previous generation without the

exchange of genetic material between them. The second difference is the addition of a growth

operator. The growth operator is the component that does the actual ‘hill-climbing’ as it

chooses randomly from the nodes available to extend each snake’s path by one edge along

the hypercube. The absence of crossover, broadly considered the most important operator

of the GA, can sometimes leave the PBSHC at a relative disadvantage. However, due to the

trouble most crossover schemes have in dealing with global adjacencies, the lack of crossover

did not seriously degrade the PBSHC’s performance, relative to the GA, in the case of the

SIB problem.

2.3 Evolutionary Cycle of the Snake-Hunting PBSHC

Each individual in the population consists of a sequence of integers that represents the node

sequence of a snake, or valid path through the hypercube, in the dimension being searched.

These individuals are initialized as either a snake of length zero, that is consisting of only

the zero node, or seeded with a pre-existing snake of choice. Following initialization, the evo-

lutionary cycle begins its first generation. Each generation begins with a fitness evaluation.

The fitness function used is based on both the length of the snake and the ’tightness’ of the

snake. The tightness of a snake is a measure of how many nodes are left available in the

hypercube after subtracting all those nodes that are disqualified either by already being in

the snake or by being adjacent to a node, other than the end node, that is already in the

snake. The choice of tightness as a component of the fitness function was inspired by the
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idea that tighter snakes might tend to be longer snakes. Since all snakes that were able to

grow in the previous generation have the same length in the current generation, tightness

becomes the only distinguishing factor of the fitness function.

After the individual fitness of each of the snakes in the population is determined, the pop-

ulation is subjected to selection based upon each snake’s fitness. Three fundamental selection

types were considered. Preliminary trials were conducted using roulette-wheel, tournament,

and rank-based selection methods. Roulette-wheel, or probabilistic selection, proved the least

effective, and most computationally expensive. Tournament selection was more effective than

roulette-wheel at producing longer snakes, on average, over multiple runs. Rank-based selec-

tion out-performed both roulette-wheel and tournament selection, by maintaining a more

diverse population throughout the evolutionary cycle. In rank-based selection, after first

ranking the population by fitness, selection takes place based on a set percentage of the

population.

After selection, the growth operator grows each snake in the population by one step each

generation, connecting each snake’s end node to an adjacent node in the hypercube that

has not been disqualified by already being in the snake, or by being adjacent to some node

that is in the snake. Both unidirectional and bi-directional growth were implemented, with

bi-directional growth allowing each snake to grow from either end. This operator can be seen

to perform a stochastic hill-climbing process on each snake in the population as the choice of

which adjacent node to connect to is based on random selection from the available nodes. A

choice was made early to grow all snakes in the population instead of only the snake of best

fitness (note: typically, enhancing the best individual in a population is a standard approach

used in hybrid genetic algorithms (Potter et. al. 1992)). This choice was also based on results

of a comparison of these two approaches in an earlier GA implementation. Growing all the

individuals within the population works well in conjunction with the fitness function, but

does require that all snakes in the population be of the same length in order to function

properly. The fitness function consists of the sum of the snake’s length and normalized
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tightness. This results in the fitness function simplifying to a function of tightness alone as

the length component of the fitness value will dominate for snakes of different lengths, yet

cancel for snakes of the same length. This also results in the automatic elimination of snakes

that can no longer grow, allowing their place in the population to be reallocated to other

snakes that are still capable of growth.

After growth, the mutation operator acts on each snake in the population. The mutation

operator we experimented with is an enhancement of a basic XOR-mutation scheme (Brown

2004). In the standard XOR-mutation scheme, a node is chosen at random from within the

snake, excluding the start node and the end node. The chosen node’s neighboring nodes

are XOR’d and that result is then XOR’d with the chosen node in order to exchange it

with a different node that maintains local adjacency requirements with the original node’s

neighbors. The enhancement of this operator is referred to as iterative-conditional XOR-

mutation and is somewhat more computationally expensive, but also more effective. Instead

of choosing a node at random, each node in the snake, with the exception of the start node

and the end node, is mutated and tested for any improvement in fitness within a copy of

the original snake. If any improvement is found, that mutation is added to a mutation pool.

Upon testing of all nodes within the snake, the snake of best fitness from the mutation pool

is substituted for the original snake. If any improvement was found through mutation, the

entire process is repeated until no further improvement is found. This scheme ensures that

only constructive mutation is allowed, and that undergoing mutation can never reduce an

individual’s fitness. By making this mutation conditional, it has also become a ‘hill-climbing’

component of the evolutionary cycle. However, left to iterate without bounds this scheme

may lead to prohibitive run-times. Restricting the number of iterations in this scheme to five

or less keeps the advantages of a local hill-climber and also keeps the runtime under control.

It turns out that this enhancement did not influence our results because the operator was

turned off in order to prevent changes in the high-quality root-snakes used when seeding

results from lower to higher dimensions.
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2.4 Parameter Settings for the Snake-Hunting PBSHC

The choice of parameter settings was found to be of key importance to the performance of the

PBSHC and these settings were tuned extensively in dimension eight before being modified

to run in dimensions nine through twelve. Our previous experience with genetic algorithm

snake hunters supported the application of lower dimension parameter settings to higher

dimensions. The fitness function is set to the sum of length and normalized tightness. Nor-

malized tightness was defined as the number of nodes remaining available divided by the total

number of nodes in the n-dimensional hypercube. Rank-based selection was chosen in order

to maximize diversity within the population. While both unidirectional and bi-directional

growth were used in the dimension-eight trials, the relatively memory-conservative unidi-

rectional implementation was chosen for these experiments in order to maximize potential

population sizes for dimensions nine through twelve. Because this particular implementa-

tion’s chromosome size is constant, the use of unidirectional growth instead of bi-directional

growth allowed the required memory for each population size to be reduced by half. Popula-

tion sizes from one hundred through ten thousand were run in trials using mutation. Larger

populations were prohibitively time-consuming using mutation, especially for dimensions

eleven and twelve.

2.5 Results of the Snake-Hunting PBSHC

The best results to date were achieved using population sizes of ten thousand, a selection

percentage of ninety percent, and by seeding each population at startup. Using a technique

where the best snakes found in each dimension were used as seeds for the next higher dimen-

sion (Potter et. al. 1994), the PBSHC was able to find snakes longer than the previously

known longest snakes for dimensions nine through twelve, as highlighted in Table 2.2. How-

ever, to generate good seeds for dimension nine, a bootstrap solution was used. This method

involved cutting a dimension-eight, length-97 snake (Rajan and Shende 1999) back to its
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Table 2.2: Comparison of old and new lower bounds for snakes.

Dim Previous Best PBSHC

8 97 97
9 168 186

10 338 358

11 618 680

12 1236 1260

length-50 root, corresponding to a longest-possible snake in dimension seven, and running

an exhaustive search on that snake to generate a pool of seventeen distinct length-97 snakes.

These snakes were then used to seed the dimension-nine runs. Subsequently, the best snakes

found in each dimension were used as seeds for the next dimension’s runs. In conjunction with

this technique, mutation was shut off in order to preserve the high-quality seeds generated

from each previous dimension. This also reduced the runtime allowing larger populations to

be run over a much shorter time-frame.

In Table 2.2, for dimension eight, the lower bound for longest-known snake (Rajan and

Shende 1999) was found using traditional mathematical proof and construction techniques

aided by computational search (i.e., construction based on lower dimension long snake char-

acteristics). For dimensions nine through twelve, the previous best-known lower bounds were

derived by calculation from the lower bounds for longest-known coils in each dimension. Any

coil can be converted to a snake by removing one node. This results in a snake whose length

is two less than the original coil, as removing one node removes the two edges connecting it

within the coil. The previous best-known lower bounds were 168 for dimension nine (Abbott

and Katchalski 1991), and 338, 618, and 1236 for dimensions ten through twelve, respectively

(Paterson and Tuliani 1998). The transition sequences representing the new lower bounds

for longest-known snakes in dimensions nine through twelve are listed in Appendix A.
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2.6 Conclusions

The results of using a PBSHC to search for SIB codes are very encouraging. As computational

hardware improves over time, this technique should prove useful in even higher dimensions.

Further improvements using this implementation of the PBSHC are anticipated including the

return to bi-directional growth, the addition of a mid-snake growth operator, and a parallel

virtual machine implementation of the PBSHC. Preliminary trials using this technique to

search for coils, or closed paths, have begun and we have already discovered new lower bounds

for coils in dimensions nine (180), ten (344), and eleven (630); details to be reported in a

future paper.
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Figure 3.1: Three-dimensional hypercube with embedded coil.

3.1 What is a Coil?

Hunting for ‘coils,’ or achordal induced cycles, in an n-dimensional hypercube deals with

finding the longest cycle, following the edges of the hypercube, that obeys certain constraints.

First, every two nodes, or vertices that are consecutive in the cycle must be adjacent to each

other in the hypercube, second, every two nodes that are not consecutive in the cycle must

not be adjacent to each other in the hypercube (Harary, Hayes, and Wu 1988). Closed paths,

or cycles satisfying these two constraints are known as ‘coils,’ while open paths satisfying

them are known as ‘snakes.’

An n-dimensional hypercube contains 2n nodes that can be represented by the 2n n-tuples

of binary digits of the hypercube’s Gray code. By labeling each node of the hypercube with

its Gray code representation, adjacencies between nodes can be detected by the fact that

their binary representations differ by exactly one coordinate (Harary, Hayes, and Wu 1988).

Using this fact, one can immediately detect if any two nodes in the hypercube are adjacent

by performing the logical exclusive-or, hereafter referred to as XOR, operation on them and



17

confirming that the result is an integer power of two. Using this information, a strategy for

detecting, as well as generating, node adjacencies can be generalized to any dimension. In

Figure 3.1, the bold line segment illustrates a cycle, or coil, through the three-dimensional

hypercube. This cycle, {0, 1, 3, 7, 6, 4, 0} in integer representation and {000, 001, 011, 111,

110, 100, 000} in binary representation, is one specific example of a longest-possible coil for

a three-dimensional hypercube. The length of this coil is six, as the length of a coil always

refers to the number of transitions, or edges, in the coil.

3.2 Previous Coil-Hunting Approaches

Traditionally, mathematical approaches to the coil-in-the-box, hereafter referred to as CIB,

problem have involved two fundamental strategies. The first is a method of construction uti-

lizing the tools of logic, discrete mathematics, and graph theory, while the second makes use

of mathematical analysis to reduce the search-space followed by a computationally exhaustive

search of the remaining, more-tractable, search-space. These techniques have been successful

in determining the longest-possible coils for hypercubes of dimensions one through six as

shown in Table 1. For dimension seven, the lower bound for longest-possible snake (Potter

et. al. 1994) was found independently using both a genetic algorithm and an exhaustive

search, while the lower bound for longest-possible coil (Kochut 1996) was found using only

an exhaustive search.

But even as mathematical approaches to solving this problem have been strengthened

through the use of computational techniques, the combinatorial explosion in the size of the

search-space as the dimension number increases has become a barrier for these methods. For

dimensions eight and above, even with currently available hardware, an exhaustive search

remains impractical. This has opened the door for less-traditional, heuristic-based computa-

tional search techniques. One increasingly popular branch of these search techniques is known

as stochastic search algorithms. This area includes stochastic hill-climbers, tabu search, sim-
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ulated annealing, evolutionary strategies, genetic algorithms, and hybrids of these particular

types such as memetic algorithms.

One example of a stochastic search algorithm that has been used to hunt for snakes

and coils in dimensions seven and eight is the genetic algorithm, hereafter referred to as

the GA. Developed by John Holland (Holland 1975), the GA is based on the simulation of

Darwinian evolution and uses an evolutionary loop composed of fitness-based selection of

individuals from a population, crossover of these individuals’ genetic material, and mutation

of these individuals’ genes. The GA performs a search-space reduction through the use of a

heuristic in determining the fitness of an individual within the population and through the

inherent parallelism of a population-based approach. This technique has met with success

and, by finding, what were at that time, record-breaking snakes in dimensions seven and

eight (Potter et. al. 1994), proved its effectiveness for snake hunting.

Another stochastic search algorithm that has proven successful in traveling salesperson-

type problems, such as the CIB problem, is the stochastic hill-climber (Kingdon and Dekker

1995). A population-based stochastic hill-climber, hereafter referred to as PBSHC, is very

similar in structure and operation to the simple GA with a few key differences in the evo-

lutionary cycle. The first difference is the absence of a crossover operator. Where the GA

models sexual reproduction, the PBSHC models asexual reproduction in that the children

in each generation are created directly from the parents of the previous generation without

the exchange of genetic material between them. The second difference is the addition of a

growth operator. The growth operator is the component that does most of the actual ‘hill-

climbing’ as it chooses randomly from the nodes available to extend each snake’s path by one

edge along the hypercube. The absence of crossover, broadly considered the most important

operator of the GA, can sometimes leave the PBSHC at a relative disadvantage. However,

due to the trouble most crossover schemes have in dealing with global adjacencies, the lack

of crossover did not seriously degrade the PBSHC’s performance, relative to the GA, in the

case of the CIB problem.
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3.3 Evolutionary Cycle of the Coil-Hunting PBSHC

Hunting for coils is a much more difficult problem than hunting for snakes due to the added

constraint of having to be a closed path. Two approaches were attempted in our effort to

evolve populations of coils. The first approach was made using an operator that allowed each

coil in the population to replace a random node with three nodes that maintained a valid

coil while becoming two edges longer in the process. A second approach used a previously

developed algorithm for the evolution of snakes by allowing the snakes to become coils,

recording them, and then removing them from the population. The second approach, which

proved to be much more effective, was subsequently chosen as the method we used to hunt

for coils in dimensions nine through twelve and is described in this section.

Each individual in the population consists of a sequence of integers that represents the

node sequence of a snake, or valid open path through the hypercube, in the dimension

being searched. These individuals are initialized as either a snake of length zero, that is

consisting of only the zero node, or seeded with a pre-existing snake of choice. Following

initialization, the evolutionary cycle begins its first generation. Each generation begins with

a fitness evaluation. The fitness function used is based on both the length and the ’tightness’

of the snake. The tightness of a snake is a measure of how many nodes are left available in

the hypercube after subtracting all those nodes that are disqualified either by already being

in the snake or by being adjacent to a node, other than the end node, that is already in the

snake. The choice of tightness as a component of the fitness function was inspired by the

idea that tighter snakes might tend to be longer snakes. Since all snakes that were able to

grow in the previous generation have the same length in the current generation, tightness

becomes the only distinguishing factor of the fitness function.

After the individual fitness of each of the snakes in the population is determined, the pop-

ulation is subjected to selection based upon each snake’s fitness. Three fundamental selection

types were considered. Preliminary trials were conducted using roulette-wheel, tournament,

and rank-based selection methods. Roulette-wheel, or probabilistic selection, proved the least
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effective, and most computationally expensive. Tournament selection was more effective than

roulette-wheel at producing longer snakes, on average, over multiple runs. Rank-based selec-

tion out-performed both roulette-wheel and tournament selection, by maintaining a more

diverse population throughout the evolutionary cycle. In rank-based selection, after first

ranking the population by fitness, selection takes place based on a set percentage of the

population.

After selection, the growth operator grows each snake in the population by one step each

generation, connecting each snake’s end node to an adjacent node in the hypercube that has

not been disqualified by already being in the snake, or by being adjacent to some node that

is in the snake. Modifications were made to the growth operator in order to grow coils from

the population of snakes. This modification allows for the selection of end nodes that are

adjacent to the current snake’s start node, forming a coil. When this happens, the coil can

no longer be extended under this algorithm. In order to keep the entire population eligible

for extension, the fitness function was modified to record any coils found, and then set their

fitness to zero so that they would be replaced with snakes in the next generation, allowing

the snake-evolving algorithm to function properly. The result of these modifications is that

the same effective operators could be used to hunt for both snakes and coils, simultaneously.

Unidirectional growth was chosen for implementation. This operator can be seen to perform

a stochastic hill-climbing process on each snake in the population as the choice of which

adjacent node to connect to is based on random selection from the available nodes. A choice

was made early to grow all snakes in the population instead of only the snake of best fitness

(note: typically, enhancing the best individual in a population is a standard approach used

in hybrid genetic algorithms (Potter et. al. 1992)). This choice was also based on results

of a comparison of these two approaches in an earlier GA implementation. Growing all the

individuals within the population also works well in conjunction with the fitness function

which requires that all snakes in the population be of the same length in order to function

properly. The fitness function consists of the sum of the snake’s length and normalized
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tightness. This results in the fitness function simplifying to a function of tightness alone as

the length component of the fitness value will dominate for snakes of different lengths, yet

cancel for snakes of the same length. This also results in the automatic elimination of snakes

that can no longer grow, allowing their place in the population to be reallocated to other

snakes that are still capable of growth.

After growth, the mutation operator acts on each snake in the population. The mutation

operator we experimented with is an enhancement of a basic XOR-mutation scheme (Brown

2004). In the standard XOR-mutation scheme, a node is chosen at random from within the

snake, excluding the start node and the end node. The chosen node’s neighboring nodes

are XOR’d and that result is then XOR’d with the chosen node in order to exchange it

with a different node that maintains local adjacency requirements with the original node’s

neighbors. The enhancement of this operator is referred to as iterative-conditional XOR-

mutation and is somewhat more computationally expensive, but also more effective. Instead

of choosing a node at random, each node in the snake, with the exception of the start node

and the end node, is mutated and tested for any improvement in fitness within a copy of

the original snake. If any improvement is found, that mutation is added to a mutation pool.

Upon testing of all nodes within the snake, the snake of best fitness from the mutation pool

is substituted for the original snake. If any improvement was found through mutation, the

entire process is repeated until no further improvement is found. This scheme ensures that

only constructive mutation is allowed, and that undergoing mutation can never reduce an

individual’s fitness. By making this mutation conditional, it has also become a ‘hill-climbing’

component of the evolutionary cycle. However, left to iterate without bounds this scheme

may lead to prohibitive run-times. Restricting the number of iterations in this scheme to five

or less keeps the advantages of a local hill-climber and also keeps the runtime under control.

It turns out that this enhancement did not influence our results because the operator was

turned off in order to prevent changes in the high-quality root-snakes used when seeding

results from lower to higher dimensions.
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3.4 Parameter Settings for the Coil-Hunting PBSHC

The choice of parameter settings was found to be of key importance to the performance

of the PBSHC and these settings were tuned extensively in dimension eight before being

modified to run in dimensions nine through twelve. Our previous experience with genetic

algorithm and PBSHC snake hunters supported the application of lower dimension para-

meter settings as a baseline for higher dimension runs. The fitness function is set to the

sum of length and normalized tightness. Normalized tightness was defined as the number

of nodes remaining available divided by the total number of nodes in the n-dimensional

hypercube. Rank-based selection was chosen in order to maximize diversity within the popu-

lation. While both unidirectional and bi-directional growth were used in the dimension-eight

trials, the relatively memory-conservative, unidirectional implementation was chosen for the

higher-dimensional runs in order to maximize potential population sizes for dimensions nine

through twelve. Because this particular implementation’s chromosome size is constant, the

use of unidirectional growth instead of bi-directional growth allowed the required memory

for each population size to be reduced by half. Population sizes from one hundred through

ten thousand were run in trials using mutation. Larger populations were prohibitively time-

consuming using mutation, especially for dimensions eleven and twelve.

3.5 Results of the Coil-Hunting PBSHC

The best results to date were achieved using population sizes of ten thousand, a selection

percentage of ninety percent, and by seeding each population, with snakes, at startup. While

the goal of these particular runs was to hunt for coils in particular, due to the implemen-

tation of the PBSHC’s operators, coils cannot be used for seeding the population. Using a

technique where the best snakes found in each dimension were used as seeds for the next

higher dimension (Potter et. al. 1994), the PBSHC was able to find coils longer than the

previously known longest coils for dimensions nine through eleven, as highlighted in Table
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Table 3.1: Comparison of old and new lower bounds for coils.

Dim Previous Best PBSHC

8 96 90
9 170 180

10 340 344

11 620 630

12 1238 1236

3.1. In order to generate good seeds for dimension nine, a bootstrap solution was used. This

method involved cutting a dimension-eight, length-97 snake (Rajan and Shende 1999) back

to its length-50 root, corresponding to the longest snake in dimension seven, and running an

exhaustive search on that snake to generate a pool of seventeen distinct length-97 snakes.

These snakes were then used to seed the dimension-nine runs. Subsequently, the best snakes

found in each dimension were used as seeds for the next dimension’s runs. In conjunction with

this technique, mutation was shut off in order to preserve the high-quality seeds generated

from each previous dimension. This also reduced the runtime allowing larger populations to

be run over a much shorter time-frame.

In Table 3.1, for dimension eight, the lower bound for longest-known coil (Abbott and

Katchalski 1991) was found using traditional mathematical proof and construction tech-

niques. The previous best-known lower bounds were 170 for dimension nine (Abbott and

Katchalski 1991), and 340, 620, and 1238 for dimensions ten through twelve, respectively

(Paterson and Tuliani 1998). The transition sequences representing the new lower bounds

for longest-known coils in dimensions nine through eleven are listed in Appendix B.
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3.6 Conclusions

The results of using a PBSHC to search for CIB codes are very encouraging. As computational

hardware improves over time, this technique should prove useful in even higher dimensions.

Further improvements using this implementation of the PBSHC are anticipated including

the return to bi-directional growth, the addition of a mid-coil growth operator, and a parallel

virtual machine implementation of the PBSHC. Previous trials using this technique to search

for snakes, or open paths, have already discovered new lower bounds for snakes in dimensions

nine (180), ten (344), eleven (630), and twelve (1260) as reported in our previous paper

(Casella and Potter 2005).
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Figure 4.1: Three-dimensional hypercube with embedded snake.

4.1 Snake and Coils in Multi-Dimensional Hypercubes

Hunting for ‘snakes’ and ‘coils’ in an n-dimensional hypercube deals with finding the longest

path, following the edges of the hypercube, that obeys certain constraints. First, every two

nodes, or vertices, that are consecutive in the path must be adjacent to each other in the

hypercube, and second, every two nodes that are not consecutive in the path must not be

adjacent to each other in the hypercube. A third constraint, whether the path is open or

closed, determines if the path is a snake or a coil. While coils have received the most attention

in the literature (Harary, Hayes, and Wu 1988), both snakes and coils have useful applications.

This paper details our attempt to hunt for both snakes and coils using evolutionary search

algorithms.

An n-dimensional hypercube contains 2n nodes that can be represented by the 2n n-

tuples of binary digits of the hypercube’s Gray code as illustrated in Figures 4.1 and 4.2. By

labeling each node of the hypercube with its Gray code representation, adjacencies between

nodes can be detected by the fact that their binary representations differ by exactly one
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Figure 4.2: Three-dimensional hypercube with embedded coil.

coordinate (Harary, Hayes, and Wu 1988). Using this fact, one can immediately detect if any

two nodes in the hypercube are adjacent by performing the logical exclusive-or, hereafter

referred to as XOR, operation on them and confirming that the result is an integer power of

two. Using this information, a strategy for detecting, as well as generating, node adjacencies

can be generalized to any dimension.

In Figure 4.1, the bold line segment illustrates an open path, or snake, through a three-

dimensional hypercube. This path, {0, 1, 3, 7, 6} in integer representation and {000, 001,

011, 111, 110} in binary representation, is one specific example of a longest-possible snake

for a three-dimensional hypercube. The length of this snake is four, as the length of a snake

always refers to the number of transitions, or edges, in the path.

In Figure 4.2, the bold line segment illustrates a closed path, or coil, through a three-

dimensional hypercube. This path, {0, 1, 3, 7, 6, 4, 0} in integer representation and {000,

001, 011, 111, 110, 100, 000} in binary representation, is one specific example of a longest-

possible coil for a three-dimensional hypercube. The length of this coil is six, as the length

of a coil always refers to the number of transitions, or edges, in the cycle.
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Each of these paths can also be represented in the form of a transition sequence, such

as {0, 1, 2, 0} for the snake and {0, 1, 2, 0, 1, 2} for the coil. Here each number in the

sequence is the coordinate of the Gray code bit which is being changed to generate the next

node of the snake or coil. Transition sequence representations can start from either zero

or one, but in this paper we follow the convention of starting with zero as it both seems

more intuitive and simplifies the mathematics when converting between node sequences and

transition sequences. All snakes and coils listed in this paper will follow the form of transition

sequence representation in order to conserve as much space as possible.

4.2 Previous Approaches to Hunting for Snake and Coils

Traditionally, mathematical approaches to the snake-in-the-box, as well as the coil-in-the-

box problems, hereafter referred to collectively as the path-in-the-box, or PIB, problem

have involved two fundamental strategies. The first is a method of construction utilizing

the tools of logic, discrete mathematics, and graph theory, while the second uses mathemat-

ical analysis to reduce the search-space followed by a computationally exhaustive search of

the remaining, more-tractable, search-space. These techniques have been successful in deter-

mining the longest-possible snakes and coils for hypercubes of dimensions one through six as

shown in Table 1. For dimension seven, the lower bound for longest-possible snake (Potter

et. al. 1994) was found independently using both a genetic algorithm and an exhaustive

search, while the lower bound for longest-possible coil (Kochut 1996) was found using only

an exhaustive search.

But even as mathematical approaches to solving this problem have been strengthened

through the use of computational techniques, the combinatorial explosion in the size of the

search-space as the dimension number increases has become a barrier for these methods. For

dimensions eight and above, even with currently available hardware, an exhaustive search

remains impractical. This has opened the door for less-traditional, heuristic-based computa-

tional search techniques. One increasingly popular branch of these search techniques is known
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as stochastic search algorithms. This area includes stochastic hill-climbers, tabu search, sim-

ulated annealing, evolutionary strategies, genetic algorithms, and hybrids of these particular

types such as memetic algorithms.

One example of a stochastic search algorithm that has been used to hunt for snakes

and coils in dimensions seven and eight is the genetic algorithm, hereafter referred to as

the GA. Developed by John Holland (Holland 1975), the GA is based on the simulation of

Darwinian evolution and uses an evolutionary loop composed of fitness-based selection of

individuals from a population, crossover of the individuals’ genetic material, and mutation

of the individuals’ genes. The GA performs a search-space reduction through the use of a

heuristic in determining the fitness of an individual within the population and through the

inherent parallelism of a population-based approach. This technique has met with success

and, by finding, what were at that time, record-breaking snakes in dimension seven and eight

(Potter et. al. 1994), proved its effectiveness for snake hunting.

Another stochastic search algorithm that has proven successful in traveling salesperson-

type problems, such as the PIB problem, is the stochastic hill-climber (Kingdon and Dekker

1995). A population-based stochastic hill-climber, hereafter referred to as PBSHC, is very

similar in structure and operation to the simple GA with a few key differences in the evo-

lutionary cycle. The first difference is the absence of a crossover operator. Where the GA

models sexual reproduction, the PBSHC models asexual reproduction in that the children

in each generation are created directly from the parents of the previous generation without

the exchange of genetic material between them. The second difference is the addition of a

growth operator. The growth operator is the component that does most of the actual ‘hill-

climbing’ as it chooses randomly from the nodes available to extend each snake’s path by one

edge along the hypercube. The absence of crossover, broadly considered the most important

operator of the GA, can sometimes leave the PBSHC at a relative disadvantage. However,

due to the trouble most crossover schemes have in dealing with global adjacencies, the lack
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of crossover did not seriously degrade the PBSHC’s performance, relative to the GA, in the

case of the PIB problem.

4.3 Evolutionary Cycle of the PBSHC

Each individual in the population consists of a sequence of integers that represents the node

sequence of a snake, or valid path through the hypercube, in the dimension being searched.

These individuals are initialized as either a snake of length zero, that is consisting of only

the zero node, or seeded with a pre-existing snake of choice. Following initialization, the evo-

lutionary cycle begins its first generation. Each generation begins with a fitness evaluation.

The fitness function used is based on both the length and the ’tightness’ of the snake. The

tightness of a snake is a measure of how many nodes are left available in the hypercube after

subtracting all those nodes that are disqualified either by already being in the snake or by

being adjacent to a node, other than the end node, that is already in the snake. The choice of

tightness as a component of the fitness function was inspired by the idea that tighter snakes

might tend to be longer snakes.

Initial attempts of integrating both length and tightness into a fitness function met with

limited success. Many combination of linear and non-linear factors of length and tightness

for the fitness function were tried. While they each would perform well in some periods

of evolution, they would inevitably perform worse in others. Once the average fitness of

the population slowed, the diversity of the population would fall and the fitness function

would converge to a local optimum. Our first attempt at solving this problem was to develop

an adaptive fitness function that would balance between the importance of tightness and

length, using the diversity of the population as the balancing factor. This technique also

failed, reacting to changes in diversity too quickly in some cases and not quickly enough in

others. Our second attempt was a more simplistic compromise between the two objectives.

Length was set as the overriding objective within each generation, and tightness delegated

to an ordered ranking factor of the rank-based selection within each generation. Since all
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snakes that were able to grow in the previous generation have the same length in the current

generation, tightness becomes the only distinguishing factor of the fitness function.

After the individual fitness of each of the snakes in the population is determined, the pop-

ulation is subjected to selection based upon each snake’s fitness. Three fundamental selection

types were considered. Preliminary trials were conducted using roulette-wheel, tournament,

and rank-based selection methods. Roulette-wheel, or probabilistic selection, proved the least

effective, and most computationally expensive. Tournament selection was more effective than

roulette-wheel at producing longer snakes, on average, over multiple runs. Rank-based selec-

tion out-performed both roulette-wheel and tournament selection, by maintaining a more

diverse population throughout the evolutionary cycle. In rank-based selection, after first

ranking the population by fitness, a predetermined percentage of the population is selected

to carry over to the next generation. In order to keep the population constant throughout

the entire run, the remaining places available in the population of the next generation are

filled starting again with the most fit individuals. For example, if the selection percentage

is 90%, the individuals are ranked by fitness and the first 90% are selected. This still leaves

10% of the next generation empty, so the first 10% from the current generation are used to

finish the selection operation.

After selection, the growth operator grows each snake in the population by one step each

generation, connecting each snake’s end node to an adjacent node in the hypercube that

has not been disqualified by already being in the snake, or by being adjacent to some node

that is in the snake. A modification was made to the growth operator in order to grow coils

as well as open-path snakes. This modification allows for the selection of end nodes that

are adjacent to the current snake’s start node, resulting in the formation of a coil. When

this happens, the coil can no longer be extended under this algorithm. In order to keep

the entire population eligible for extension, the fitness function was also modified to record

any coils found, and then replace them with snakes of zero fitness that will be replaced in

the next generation. The result of these modifications is that the same effective operators
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could be used to hunt for both snakes and coils, simultaneously. While bi-directional growth

was used during preliminary trials in dimension eight, unidirectional growth was chosen for

this implementation to best allocate computational resources. This operator can be seen to

perform a stochastic hill-climbing process on each snake in the population as the choice of

which adjacent node to connect to is based on random selection from the available nodes. A

choice was made early to grow all snakes in the population instead of only the snake of best

fitness (note: typically, enhancing the best individual in a population is a standard approach

used in hybrid genetic algorithms (Potter et. al. 1992)). This choice was also based on results

of a comparison of these two approaches in an earlier GA implementation. Growing all the

individuals within the population also works well in conjunction with the fitness function

which requires that all snakes in the population of a given generation be of the same length

in order to function properly. The fitness function consists of the sum of the snake’s length

and normalized tightness. This results in the fitness function simplifying to a function of

tightness alone as the length component of the fitness value will dominate for snakes of

different lengths, yet cancel for snakes of the same length. This also results in the automatic

elimination of snakes that can no longer grow, allowing their place in the population to be

reallocated to other snakes that are still capable of growth.

After growth, the mutation operator acts on each snake in the population. The mutation

operator we experimented with is an enhancement of a basic XOR-mutation scheme (Brown

2004). In the standard XOR-mutation scheme, a node is chosen at random from within the

snake, excluding the start node and the end node. The chosen node’s neighboring nodes are

logically XOR’d and that result is then XOR’d with the chosen node in order to exchange it

with a different node that maintains local adjacency requirements with the original node’s

neighbors. The enhancement of this operator is referred to as iterative-conditional XOR-

mutation and is somewhat more computationally expensive, but also more effective. Instead

of choosing a node at random, each node in the snake, with the exception of the start node

and the end node, is mutated and tested for any improvement in fitness within a copy of
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the original snake. If any improvement is found, that mutation is added to a mutation pool.

Upon testing of all nodes within the snake, the snake of best fitness from the mutation pool

is substituted for the original snake. If any improvement was found through mutation, the

entire process is repeated until no further improvement is found. This scheme ensures that

only constructive mutation is allowed, and that undergoing mutation can never reduce an

individual’s fitness. By making this mutation conditional, it has also become a hill-climbing

component of the evolutionary cycle. However, left to iterate without bounds this scheme

may lead to prohibitive run-times. Restricting the number of iterations in this scheme to five

or less keeps the advantages of a local hill-climber and also keeps the runtime under control.

It turns out that this enhancement did not influence our results because the operator was

turned off in order to prevent changes in the high-quality root-snakes used when seeding

results from lower to higher dimensions.

Hunting for coils is a much more difficult problem than hunting for snakes due to the

added constraint of having to be a closed path. Two approaches were attempted in the effort

to evolve populations of coils. The first approach was made using an operator that allowed

each coil in the population to replace a random node with three nodes that maintained a

valid coil while becoming two edges longer in the process. A second approach used the snake-

hunting algorithm and then allowed the snakes to become coils by permitting the snakes to

grow to nodes that were adjacent to the start node, recorded the resulting coils, and then

removed them from the population. The second approach, which proved to be much more

effective, was subsequently chosen as the method we used to hunt for coils in dimensions

nine through twelve.

4.4 Parameter Settings for the PBSHC

The choice of parameter settings was found to be of key importance to the performance of the

PBSHC and these settings were tuned extensively in dimension eight before being modified

to run in dimensions nine through twelve. Our previous experience with genetic algorithm
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Table 4.1: Comparison of old and new lower bounds for snakes and coils.

Dim Previous Best Snake SHPBSHC Previous Best Coil CHPBSHC

8 97 97 96 90
9 168 186 170 180

10 338 358 340 344

11 618 680 620 630

12 1236 1260 1238 1236

snake hunters supported the application of lower-dimension parameter settings as a baseline

for higher-dimension runs. The fitness function is set to the sum of length and normalized

tightness. Normalized tightness was defined as the number of nodes remaining available

divided by the total number of nodes in the n-dimensional hypercube. Rank-based selection

was chosen in order to maximize diversity within the population. While both unidirectional

and bi-directional growth were used in the dimension-eight trials, the relatively memory-

conservative, unidirectional implementation was chosen for the higher-dimensional runs in

order to maximize potential population sizes for dimensions nine through twelve. Because this

particular implementation’s chromosome size is constant, the use of unidirectional growth

instead of bi-directional growth allowed the required memory for each population size to

be reduced by half. Population sizes from one hundred through ten thousand were run in

trials using mutation. Larger populations were prohibitively time-consuming using mutation,

especially for dimensions eleven and twelve.

4.5 Results of Hunting Snakes and Coils with the PBSHC

The best results to date were achieved using population sizes of ten thousand, a selection

percentage of ninety percent, and by seeding each population with highly-fit, lower-dimension

snakes at startup. In Table 4.1, a comparison is made between the previously-known lower
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bounds for snakes and coils and the results achieved using the snake-hunting and coil-hunting

PBSHCs. Using a technique where the best snakes found in each dimension were used as

seeds for the next higher dimension (Potter et. al. 1994), the PBSHC was able to find new

lower bounds for snakes in dimensions nine through twelve and new lower bounds for coils

in dimensions nine through eleven, as highlighted in Table 4.1.

In order to generate good seeds for dimension nine, a bootstrap solution was used. This

method involved cutting a dimension-eight, length-97 snake (Rajan and Shende 1999) back

to its length-50 root, corresponding to the longest snake in dimension seven, and running an

exhaustive search on that snake to generate a pool of seventeen distinct length-97 snakes.

These snakes were then used to seed the dimension-nine runs. Subsequently, the best snakes

found in each dimension were used as seeds for the next dimension’s runs. In conjunction with

this technique, mutation was shut off in order to preserve the high-quality seeds generated

from each previous dimension. This also reduced the runtime allowing larger populations to

be run over a much shorter time-frame.

Although the PBSHC performed well in hunting for both snakes and coils, it failed to

match or raise the lower bounds on coils for dimension eight or twelve, demonstrating that

hunting for coils is an inherently more difficult problem than hunting for snakes. One factor

to consider at this point is that by starting each run with lower-dimension seeds of high

fitness means that the search space is restricted to branches having those seeds as their root,

eliminating the huge number of potentially long snakes that do not extend from that branch.

This limitation may be the reason that the PBSHC could not match or improve upon the

lower bounds for coils in dimensions eight and twelve.

For dimension eight, the lower bound for longest-known snake (Rajan and Shende 1999)

was found using traditional mathematical proof and construction techniques aided by com-

putational search (i.e., construction based on lower dimension long snake characteristics).

For dimensions nine through twelve, the previous best-known lower bounds were derived by

calculation from the lower bounds for longest-known coils in each dimension. Any coil can
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be converted to a snake by removing one node. This results in a snake whose length is two

less than the original coil, as removing one node removes the two edges connecting it within

the coil. The previous best-known lower bounds were 168 for dimension nine (Abbott and

Katchalski 1991), and 338, 618, and 1236 for dimensions ten through twelve, respectively

(Paterson and Tuliani 1998). The transition sequences representing the new lower bounds

for snakes in dimensions nine through twelve are listed in Appendix A.

For dimension eight, the lower bound for longest-known coil (Abbott and Katchalski 1991)

was found using traditional mathematical proof and construction techniques. The previous

best-known lower bounds were 170 for dimension nine (Abbott and Katchalski 1991), and

340, 620, and 1238 for dimensions ten through twelve, respectively (Paterson and Tuliani

1998). The transition sequences representing the new lower bounds for coils in dimensions

nine through eleven are listed in Appendix B.

4.6 Conclusions

The results of using a PBSHC to search for PIB codes are very encouraging. As compu-

tational hardware improves over time, this technique should prove useful in even higher

dimensions. Further improvements using this implementation of the PBSHC are currently

being considered. We anticipate that this technique would work well as a distributed process,

with each thread searching a specific sub-region of the hypercube for a linear factor increase

in search speed.
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Chapter 5

Conclusion

By finding new lower bounds for (1) the longest-known snakes in each of the dimensions nine

through twelve, and (2) the longest-known coils in each of the dimensions nine through eleven,

we have shown that there are, indeed, benefits to modifying stochastic search techniques to

their particular domain of application. These results also testify to the effectiveness of hybrid

approaches that can combine the strengths of different strategies. While the population-

based stochastic hill-climber, by strict definition, is no longer a simple genetic algorithm, the

modifications necessary for the transformation from the GA to the PBSHC were identified

by realizing which genetic operators were not ideally matched to the specific problem domain

and finding suitable replacements. Once this step had taken place, the remaining changes

were undertaken to tailor the architecture of the evolutionary cycle for maximum efficiency.
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Appendix A

Transition Sequences Of New Lower Bound Snakes

A.1 dim 9 : 186

0 1 2 3 4 5 3 2 1 0 3 2 5 3 1 2 3 4 5 2 3 1 0 3 2 6 0 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2

3 7 2 0 5 2 4 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 6 2 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2 8

7 3 2 4 5 3 1 0 3 4 5 3 1 5 2 1 0 3 4 5 3 0 1 3 5 6 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 1 7 6 2 5 4

3 5 1 3 2 5 3 0 1 3 5 6 2 5 4 3 5 0 1 3 5 4 3 0 5 2 0 1 5 4 1 0 3 5 6 2 3 5 0

A.2 dim 10 : 358

0 1 2 3 4 5 3 2 1 0 3 2 5 3 1 2 3 4 5 2 3 1 0 3 2 6 0 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2

3 7 2 0 5 4 2 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 6 2 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2 8

7 3 2 4 5 3 1 0 3 4 5 3 1 5 2 1 0 3 4 5 3 0 1 3 5 6 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 1 7 6 2 5 4

3 5 1 3 2 5 3 0 1 3 5 6 2 5 4 3 5 0 1 3 5 4 3 0 5 2 0 1 5 4 1 0 3 5 6 2 3 5 0 9 5 1 0 7 8 0 5 2 1

0 3 4 5 3 0 1 3 2 0 5 3 1 0 3 4 5 2 6 3 0 2 5 3 4 5 0 3 1 0 2 5 1 0 3 1 2 4 5 0 8 1 6 2 3 0 1 3 2

5 4 3 5 1 3 2 5 3 0 1 5 3 6 0 3 1 0 2 5 0 3 4 2 3 0 1 2 0 7 3 4 2 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0

3 6 5 0 4 5 3 2 5 1 3 5 0 2 3 5 4 0 8 2 1 3 4 5 0 3 1 0 2 3 5 0 2 4 5 2 3 1 0 3 6 2 0 5 2 3 1 4 2

1 0 5 2 0 3 1 2 0 5 4 2 8 5 6

A.3 dim 11 : 680

0 1 2 3 4 5 3 2 1 0 3 2 5 3 1 2 3 4 5 2 3 1 0 3 2 6 0 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2

3 7 2 0 5 4 2 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 6 2 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2 8

7 3 2 4 5 3 1 0 3 4 5 3 1 5 2 1 0 3 4 5 3 0 1 3 5 6 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 1 7 6 2 5 4
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3 5 1 3 2 5 3 0 1 3 5 6 2 5 4 3 5 0 1 3 5 4 3 0 5 2 0 1 5 4 1 0 3 5 6 2 3 5 0 9 5 1 0 7 8 0 5 2 1

0 3 4 5 3 0 1 3 2 0 5 3 1 0 3 4 5 2 6 3 0 2 5 3 4 5 0 3 1 0 2 5 1 0 3 1 2 4 5 0 8 1 6 2 3 0 1 3 2

5 4 3 5 1 3 2 5 3 0 1 5 3 6 0 3 1 0 2 5 0 3 4 2 3 0 1 2 0 7 3 4 2 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0

3 6 5 0 4 5 3 2 5 1 3 5 0 2 3 5 4 0 8 2 1 3 4 5 0 3 1 0 2 3 5 0 2 4 5 2 3 1 0 3 6 2 0 5 2 3 1 4 2

1 0 5 2 0 3 1 2 0 5 4 2 8 5 6 10 8 7 9 3 2 0 5 2 1 0 3 4 5 3 0 1 3 2 0 5 3 1 0 3 4 5 2 6 3 0 2 5

3 4 5 0 3 1 0 2 5 1 0 3 1 2 4 5 0 8 1 6 2 3 0 1 3 2 5 4 3 5 1 3 2 5 3 0 1 5 3 6 0 3 1 0 2 5 0 3 4

2 3 0 1 2 0 7 3 4 2 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 6 2 3 1 0 3 4 5 3 1 5 2 3 5 4 3 1 8 2 1 3 4

5 0 3 1 0 2 3 5 0 2 4 5 2 3 1 0 3 6 2 0 5 2 3 1 4 2 1 0 5 2 0 3 1 2 0 5 4 2 7 9 1 5 2 0 5 4 3 0 5

2 0 3 6 2 3 1 0 2 5 3 0 2 4 0 7 4 5 0 2 3 5 2 1 0 5 2 3 5 4 3 0 8 4 0 1 5 2 0 1 3 2 6 3 0 2 5 0 3

4 2 0 5 2 6 8 0 2 6 3 0 2 5 3 4 5 0 3 1 0 5 2 1 0 3 1 2 4 3 7 0 5 2 0 6 1 0 2 8 6 2 0 3 6 2 5 4 3

0 1 3 5 0 2 3 1 0 3 5 4 3 1 0 6 3 2 0 1 4 5 0 3 1 0 2 5 3 7 2 5 0 4 2 3 0 5 2 6 0 3 4 2

A.4 dim 12 : 1260

0 1 2 3 4 5 3 2 1 0 3 2 5 3 1 2 3 4 5 2 3 1 0 3 2 6 0 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2

3 7 2 0 5 4 2 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 6 2 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2 8

7 3 2 4 5 3 1 0 3 4 5 3 1 5 2 1 0 3 4 5 3 0 1 3 5 6 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 1 7 6 2 5 4

3 5 1 3 2 5 3 0 1 3 5 6 2 5 4 3 5 0 1 3 5 4 3 0 5 2 0 1 5 4 1 0 3 5 6 2 3 5 0 9 3 5 2 6 3 0 2 5 3

4 5 0 3 1 0 2 5 1 0 3 1 5 6 2 0 5 3 1 5 2 3 5 4 3 1 0 4 7 1 3 5 2 3 1 0 2 3 5 4 0 8 3 1 0 3 4 5 3

0 1 3 2 0 5 3 1 0 3 4 5 3 1 0 2 3 7 2 0 5 4 2 0 3 5 2 0 1 3 0 5 4 3 5 2 0 1 6 4 1 0 2 5 1 3 5 2 7

3 5 1 0 3 1 2 3 5 1 3 0 5 4 3 5 2 0 3 1 2 8 4 0 5 4 3 2 1 0 3 2 4 3 0 5 2 0 1 4 6 1 0 2 3 6 2 1 7

5 8 1 5 2 0 3 5 1 8 3 10 9 4 2 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 6 2 5 4 3 0 1 3 5 0 2 3 1 0 3 5

4 3 0 1 2 5 0 7 4 1 0 3 2 5 3 1 2 3 4 5 2 3 1 0 3 2 6 0 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 9

4 1 3 0 5 4 3 5 2 0 3 6 2 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 8 9 2 1 0 3 4 5 3 0 1 3 2 0 5 3 1

0 3 4 5 2 6 3 0 2 5 3 4 5 0 3 1 0 2 5 1 0 3 1 2 4 5 0 9 6 0 2 3 1 0 2 5 3 4 5 0 3 1 0 2 3 5 6 2 3

1 5 2 3 4 5 3 0 1 3 8 4 1 3 0 1 5 3 7 2 5 3 1 5 2 0 1 5 4 1 2 5 3 0 2 6 3 2 5 3 4 5 0 3 1 0 2 5 1

0 3 4 1 0 8 1 4 5 3 2 5 1 3 5 0 2 3 5 4 1 2 9 0 3 4 5 0 3 1 0 2 5 1 0 3 1 2 4 5 2 3 1 0 3 6 2 0 5

4 3 0 5 2 0 3 1 2 0 5 4 9 1 4 5 0 3 1 5 3 2 1 3 0 1 4 9 0 2 5 0 9 1 2 0 3 6 2 0 11 5 0 9 4 3 0 5
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10 6 5 0 3 4 5 0 6 1 7 4 0 2 3 1 0 3 5 4 3 0 1 2 5 1 3 5 4 3 0 1 2 6 1 0 3 1 2 3 5 1 3 0 5 4 3 5

2 0 3 1 2 8 1 5 4 3 0 5 2 0 1 5 6 1 3 5 2 3 1 0 2 7 6 2 0 1 3 0 5 4 3 5 2 0 3 6 2 5 4 3 0 1 3 5 0

2 6 10 1 3 0 2 5 0 3 4 5 0 2 6 3 2 5 3 4 5 0 3 1 5 3 4 5 0 7 4 0 2 3 1 0 3 5 4 3 0 1 2 0 4 1 0 3

4 5 2 6 3 0 2 5 3 4 5 0 3 1 5 3 2 1 3 0 1 5 3 10 2 5 4 6 1 5 3 2 0 1 3 5 6 7 2 4 9 10 2 1 3 0 1 5

2 0 1 3 0 5 4 3 5 2 0 3 6 2 3 5 2 0 3 4 5 3 2 5 1 3 5 0 2 3 5 7 1 3 5 2 0 5 4 3 5 2 0 1 2 4 0 2 3

5 6 2 3 1 5 2 0 1 3 4 10 1 3 0 2 5 3 4 5 0 3 1 0 2 5 1 0 3 1 6 5 3 1 0 3 5 4 3 0 1 2 0 4 1 0 3 4

5 1 8 2 3 1 0 2 5 3 4 5 0 3 1 0 2 3 5 6 2 3 1 5 2 0 3 1 7 6 2 0 5 4 8 1 4 5 0 2 5 3 0 1 3 5 6 1 3

2 5 0 4 3 5 0 1 9 2 6 5 1 3 0 1 2 5 0 9 4 0 5 8 6 5 1 3 0 5 4 3 5 2 0 3 6 2 3 5 2 0 3 4 5 3 0 10

9 1 3 2 0 5 4 7 1 4 5 0 3 1 0 2 3 5 6 2 5 0 2 1 3 0 2 5 0 3 4 5 0 2 6 3 0 1 3 5 1 4 3 1 6 4 2 5 9

4 1 3 0 5 4 3 5 2 0 3 6 2 3 5 2 0 3 4 5 3 2 5 1 3 5 0 2 5 6 1 3 0 1 4 8 5 2 3 1 2 5 0 3 2 1 3 10

8 3 2 4 6 1 3 4 6 0 5 1 10 6 3 2 7 9 0 5 2 1 0 3 4 5 6 2 5 4 3 0 5 4 1 0 5 2 1 0 3 1 2 4 5 0 9 4

5 2 1 4 3 0 1 3 10 6 9 1 4 5 6 3 1 5 4 1 0 3 4 1 2 4 3 5 2 10 8 0 2 5 0 3 4 2 6 3 1 0 3 4



Appendix B

Transition Sequences Of New Lower Bound Coils

B.1 dim 9 : 180

0 1 2 3 4 5 3 2 1 0 3 2 5 3 1 2 3 4 5 2 3 1 0 3 2 6 0 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2

3 7 6 3 2 1 0 3 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 3 6 2 4 3 5 1 0 3 5 4 3 1 2 4 1 0 3 5 4 8 2 5

4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 6 3 5 4 3 2 1 3 5 2 3 0 1 2 3 5 4 3 2 1 3 4 7 6 5 0 2 5 3 1

2 5 0 2 3 5 4 3 2 1 5 2 0 1 3 2 0 6 4 0 2 3 1 0 5 4 3 0 1 3 2 1

B.2 dim 10 : 344

0 1 2 3 4 5 3 2 1 0 3 2 5 3 1 2 3 4 5 2 3 1 0 3 2 6 0 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2

3 7 2 0 5 4 2 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 6 2 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2 8

7 3 2 4 0 2 3 1 0 3 5 4 3 0 1 2 5 1 3 5 4 3 0 1 2 7 1 0 3 1 2 3 5 1 3 0 5 4 1 3 6 5 0 1 3 5 4 3 0

5 2 0 3 1 2 0 5 2 7 5 3 2 0 1 3 0 5 4 1 0 5 2 3 1 0 3 7 5 3 0 1 4 7 1 3 4 9 0 4 5 3 0 1 3 5 7 1 3

0 1 2 5 0 1 3 0 5 4 1 8 4 5 0 2 3 1 0 2 5 0 3 4 5 3 1 5 2 1 0 3 5 7 3 0 1 3 2 5 4 3 5 0 2 3 5 4 3

2 1 3 4 5 0 2 5 3 0 6 5 0 1 3 2 0 5 4 8 1 4 5 0 2 5 3 1 2 5 0 2 3 5 7 8 5 3 2 0 5 2 1 3 5 2 0 5 4

3 5 2 0 1 3 2 0 8 4 0 2 3 1 0 2 5 0 3 4 1 3 2 1 0 3 5 0 6 3 0 1 3 7 2 3 1 6 2 0 1 3 5 8 1 5 2 3 5

5 4 2 8 5 6

B.3 dim 11 : 630

0 1 2 3 4 5 3 2 1 0 3 2 5 3 1 2 3 4 5 2 3 1 0 3 2 6 0 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2

3 7 2 0 5 4 2 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 6 2 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2 8

7 3 2 4 5 3 1 0 3 4 5 3 1 5 2 1 0 3 4 5 3 0 1 3 5 6 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 1 7 6 2 5 4
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3 5 1 3 2 5 3 0 1 3 5 6 2 5 4 3 5 0 1 3 5 4 3 0 5 2 0 1 5 4 1 0 3 5 6 2 3 5 0 9 5 1 0 7 8 0 5 2 1

0 3 4 5 3 0 1 3 2 0 5 3 1 0 3 4 5 2 6 3 0 2 5 3 4 5 0 3 1 0 2 5 1 0 3 1 2 4 5 0 8 1 6 2 3 0 1 3 2

5 4 3 5 1 3 2 5 3 0 1 5 3 6 0 3 1 0 2 5 0 3 4 2 3 0 1 2 0 7 3 4 2 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0

3 6 5 0 4 5 3 2 5 1 3 5 0 2 3 5 4 0 8 2 1 3 4 5 0 3 1 0 2 3 5 0 2 4 5 2 3 1 0 3 6 2 0 5 2 3 1 4 2

1 0 5 2 0 3 1 2 0 5 4 2 8 5 6 10 4 3 5 8 2 1 5 2 3 6 2 5 4 3 5 2 0 3 6 2 5 4 2 6 1 2 4 3 6 5 0 3

4 0 2 3 6 9 1 0 2 5 0 3 4 5 3 1 0 5 3 4 5 2 7 3 2 0 1 3 2 9 3 0 2 5 0 1 6 2 1 0 9 7 0 1 2 3 4 5 2

3 1 0 3 6 5 3 0 1 3 8 1 9 2 4 3 0 5 2 0 3 6 2 3 1 5 3 2 9 5 3 1 0 3 5 4 3 0 1 2 5 1 3 5 4 3 0 1 6

5 0 1 3 0 5 4 3 5 2 0 1 9 6 1 0 2 3 6 2 7 4 9 3 0 1 3 2 0 5 2 7 9 2 5 0 4 9 0 2 7 3 9 4 2 5 6 3 5

0 2 3 1 0 2 9 0 3 2 5 3 1 2 3 4 5 2 3 1 0 3 2 6 0 3 1 5 0 6 5 8 1 6 2 0 1 3 2 5 4 2 6 5 2 0 1 7 5

4 7 1 9 0 5 2 3 1 0 3 2 6 0 3 1 0 5 2 1 0 3 6 8 5 2 3 1 5 2 6 4 3 2 4 0 1 6 3 8 0 9


