

NON-MONOTONIC KNOWLEDGE REPRESENTATION AND REASONING FOR

NATURAL DESCRIPTION OF GOTHIC CATHEDRALS

by

TYLER GREGG CARLSON

(Under the Direction of Walter D. Potter)

ABSTRACT

 The goal of the Architecture Represented Computationally (ARC) project is to transform

user input or scholarly written descriptions of Gothic cathedrals into logical representations,

allowing consistency validation, query-answering, and generation of precise descriptions or

visualizations. The work of this thesis is the design and implementation of the first major step of

this project, the ARC Logic system, which logically represents domain knowledge and performs

inference on this knowledge. The ARC Logic system is domain independent; all domain

information is entered by users through input methods, allowing the user to add terminology

definitions, facts, and complex rules, without knowing Prolog. This system has a non-monotonic

knowledge representation and inference engine, so the system can work with uncertain

information, and fill in the information not explicitly stated with background knowledge,

narrowing the gap between the logical knowledge representation and natural description in

Gothic cathedrals and other real-world domains.

INDEX WORDS: Prolog, Gothic cathedral, Defeasible reasoning, Architecture, Non-

monotonicity, Natural description, Domain-independence

NON-MONOTONIC KNOWLEDGE REPRESENTATION AND REASONING FOR

NATURAL DESCRIPTION OF GOTHIC CATHEDRALS

by

TYLER GREGG CARLSON

BA, Wartburg College, 2009

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2012

© 2012

Tyler Gregg Carlson

All Rights Reserved

NON-MONOTONIC KNOWLEDGE REPRESENTATION AND REASONING FOR

NATURAL DESCRIPTION OF GOTHIC CATHEDRALS

by

TYLER GREGG CARLSON

 Major Professor: Walter D. Potter

 Committee: Stefaan Van Liefferinge

 Michael A. Covington

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2012

iv

TABLE OF CONTENTS

Page

LIST OF TABLES ... vi

LIST OF FIGURES ..vii

CHAPTER

 1 INTRODUCTION ... 1

 2 THE ARC PROJECT ... 5

 2.1 LOGICAL STRUCTURE OF CATHEDRALS .. 5

 2.2 DEFAULTS IN DESCRIPTION OF GOTHIC CATHEDRALS 9

 2.3 ARC LOGIC IMPLEMENTATION ... 11

 3 EXAMPLE OF ARC LOGIC SYSTEM FLOW... 13

 3.1 INPUT DOMAIN KNOWLEDGE ... 14

 3.2 INFERENCE ... 16

 3.3 QUERYING THE KNOWLEDGE BASE .. 18

 4 KNOWLEDGE REPRESENTATION AND INPUT METHODS 23

 4.1 FACT ASSERTION ... 25

 4.2 TERM DEFINITION ... 28

 4.3 CONSTRAINT CREATION .. 36

 5 NON-MONOTONICITY ... 42

 5.1 NATURAL DESCRIPTION .. 42

 5.2 NON-MONOTONIC LOGICS ... 44

v

 5.3 DEFEASIBLE REASONING .. 45

 6 IMPLEMENTATION OF DEFEASIBILITY... 50

 6.1 DEFEASIBLE KNOWLEDGE REPRESENTATION.................................. 51

 6.2 DEFEASIBILITY-PRESERVING INFERENCE ... 56

 6.3 CONFLICT RESOLUTION ... 60

 7 SCOPE AND THE USE OF DEFAULT DESCRIPTIONS 72

 7.1 DESCRIBING DEFAULT AND SPECIFIC CATHEDRALS 72

 7.2 SCOPE AND CONTAINERS .. 74

 7.3 DEFAULT DESCRIPTION HIERARCHIES ... 76

 8 CONCLUSION ... 79

 8.1 EXTENSIONS OF THE ARC LOGIC IMPLEMENTATION 79

 8.2 USE AS COMPONENT IN THE ARC PROJECT 82

 8.3 APPLICATION TO OTHER DOMAINS ... 86

REFERENCES ... 89

APPENDICES

 A QUICK REFERENCE ... 91

 B TUTORIAL EXAMPLES .. 93

vi

LIST OF TABLES

Page

Table 1: Defeasible Fact Comparison. ... 62

vii

LIST OF FIGURES

Page

Figure 1: Floor Plan of Chartres Cathedral .. 6

Figure 2: Example Column.. 13

Figure 3: ARC Logic System Diagram. ... 22

Figure 4: Bay in Chartres Cathedral. ... 95

1

CHAPTER 1

INTRODUCTION

The goal of the ARC project is to allow users to easily create and use logical descriptions

of Gothic cathedrals, and eventually to have an automated process by which usable logical

descriptions can be extracted from natural language textual descriptions [2] [3]. This thesis

comprises the development of the logical system that underlies the approach, called the ARC

Logic system. The ARC Logic system, implemented in Prolog, contains a way to logically

represent all the useful knowledge from a description or descriptions, and an engine to perform

logical inference on this knowledge.

The first major component of the ARC Logic system is the ability to logically represent

both the knowledge contained in a description and the knowledge of the domain as a whole. The

domain of the ARC project is the description of Gothic cathedrals, and the knowledge

representation of the ARC Logic system allows for description of Gothic cathedrals, in a way

that is simple for the user, while also providing the functionality to make accurate and complete

logical descriptions. To make a system that is both simple to use and fully functional, the ARC

Logic system took cues for its design from natural descriptions of Gothic cathedrals and natural

descriptions in general.

The ARC Logic system contains no information about Gothic cathedrals itself; it is

domain-independent. Information about Gothic cathedrals in general and information about

specific Gothic cathedrals are treated the same by the ARC Logic system. All of this information

is called domain information, and it is all entered by the users of the system. This domain

2

information comes in only three forms, which are developed to coincide with the ways in which

natural description would convey information about a cathedral or the domain of cathedrals. This

domain information includes the defining of terminology for relationships, like "above," and

objects, like "column," and ascribing logical properties to the words to match their implicit

meaning. It also includes facts about objects and the relationships between those objects, like

"this column has a base." Thirdly, the ARC Logic system has constraints, which are general and

specific rules about objects in a cathedral and how they relate to each other, like "all columns

have a base." With this domain information, the user can create descriptions of specific

cathedrals, down to the smallest level of detail desired.

These three types of domain information are easy to use partially because they closely

resemble the way information in conveyed in a natural description, but they are also easy to use

because of their corresponding input methods. The ARC Logic system contains input methods

the user calls to input their knowledge, about a specific cathedral or cathedrals in general, in the

form of term definitions, facts, and constraints. These input methods allow the user to enter this

domain information by following a simple syntax, and do not require the user to know Prolog or

complicated programming principles.

The entering of domain information in the ARC Logic system is simpler, more efficient,

and provides more functionality because the knowledge representation allows for the

representation of non-monotonic knowledge. Non-monotonicity means that additional

information can contradict and therefore remove already-known information, which opens the

possibility for the users to work with assumptions when pieces of domain information, both facts

and constraints, are uncertain. There are many approaches to non-monotonic reasoning, but the

ARC Logic system is built on the concepts of defeasible reasoning. The system keeps track of

3

the certainty with which information is known, and can handle contradictions. This approach

allows the user to enter domain information in a manner closer to natural description. The user

can write constraints that apply in general, even if they are not true in all circumstances, and then

write constraints that are exceptions to the other constraints. This functionality is used to fill in

the gaps of a generally-sparse specific description with information about the domain in general.

The second main aspect of the ARC Logic system is the inference engine itself. The

inference engine finds and explicitly asserts all the facts that can be inferred from the

information provided, and enforces logical consistency. A key component to this is the custom

call predicate, which is not only truth-preserving, but defeasibility-preserving because it keeps

track of the certainty of information used to prove some conclusion.

Chapter 2 of this thesis provides the background on the ARC project, including the

direction and goals of the research, the choice of domain, and components of the ARC project

outside the scope of the work of this thesis. This chapter also explains how the ARC Logic

system fits into the larger implementation goal. Chapter 3 illustrates the general flow of the ARC

Logic system and provides a tutorial example of a user describing a single column. The

knowledge representation and the user input methods are discussed in detail in Chapter 4.

Chapters 2-4 eschew discussion about the non-monotonic nature of the knowledge representation

and inference for the sake of simplicity. This non-monotonicity is introduced in Chapter 5, which

discusses the relevant aspects of natural description, how this pertains to non-monotonic logic,

and specifically to defeasible reasoning. Chapter 6 also amends the previously-illustrated

knowledge representation to briefly explain how defeasibility of knowledge is represented.

Chapter 6 also explains the custom call predicate, d_call, used by the inference engine, which

extends the basic functionality of Prolog to prove goals while also determining the defeasibility

4

of the proof. Defeasible knowledge representation and inference is useful because the system can

appropriately handle most situations with conflicting facts and constraints. Chapter 6 ends with

an explanation of the way conflicting facts and constraints are handled by the ARC Logic system.

Finally, Chapter 7 moves beyond the basic column example to explain how the ARC Logic

system works at the full cathedral level and how default descriptions can be combined and used

to create complete and efficient logical descriptions of Gothic cathedrals.

5

CHAPTER 2

THE ARC PROJECT

The Architecture Represented Computationally (ARC) project is a group venture

researching and implementing an artificial intelligence approach to natural description of Gothic

cathedrals. The goal is to automatically convert natural descriptions of Gothic cathedrals into

machine-useable data, and then perform logical reasoning on this data in order to achieve a

deeper and richer level of understanding of the cathedral described.

Gothic cathedral architecture is the focus of the ARC project for two main reasons. First,

the logical nature of Gothic cathedrals and their descriptions makes them a fitting domain for

research in logical representation of natural description. Second, implementation will be useful

for architectural historians and others to produce and analyze logical descriptions, and to convert

the vast and varied historical and current writings on these cathedrals into machine-usable

information. This chapter briefly introduces both of these attributes of Gothic cathedral

architecture domain and where this thesis project fits into the overall goals of the ARC project.

2.1 LOGICAL STRUCTURE OF CATHEDRALS

Architecture in general is a domain governed by rules and principles, many of which

have been or can be formalized into logic descriptions. Describing architecture is possible with

standard logical knowledge representation of axioms, facts, rules, and standard methods of

inference [4]. While many domains can be modelled to some degree with these logical principles,

6

Mitchell's work shows the relative directness with which the real-world domain of architecture

can be analyzed logically [4].

These principles are especially present and obvious in large comunal buildings, such as

Gothic cathedrals. Because these types of buildings often follow basic principles of symmetry

and modularity, with heavy repetition of elements, they are especially suited for description via

axioms, rules and facts, and logical inference [4].

Because architecture in general and Gothic

cathedrals in particular are relatively formal and

logical domains, it is not surprising that

descriptions often, possibly unintentionally, are

written in a logical manner. One way this is done

is by replacing repetitive explicit descriptions of

similar elements with rules describing a pattern.

Instead of saying "the first column has a base, the

second column has a base, the third column has a

base, etc. etc.," the description would often talk

about columns as a concept, and that part of the

concept of a column is that it has a base. To know

that some particular column had a base would then

require the use of inference. Finding all the

explicit facts contained indirectly in the rule-heavy natural descriptions of Gothic cathedrals

requires the use of a critic, or method for critical analysis.

Figure 1. Floor Plan of Chartres Cathedral [1]

7

Mitchell describes the critic as consisting of three parts [4]. First, the critic has facts and

rules relevant to the domain. Second, the critic has a set of observations about a design proposal.

These two elements are stored together in a knowledge base like that in Prolog and other logic

programming languages [4]. Third, reasoning with this knowledge base entails a set of true

assertions about the design [4].

The implementation of the ARC Logic system generally follows Mitchell's description of

a critical analysis system. The critic is the ARC Logic system itself, which provides analysis for

descriptions of Gothic cathedrals. The design proposals are the natural language text descriptions

about specific Gothic cathedrals. The set of observations of these design proposals is the

information that is extracted from the natural language text and entered through the input

methods of the ARC Logic system. The information in these input methods is transformed into

Prolog facts and rules and entered into the database. Additionally, this database contains other

facts and rules which make up the background knowledge for the domain. Though this is not

necessarilly the case in Mitchell's description, in the ARC Logic system, the background

knowledge is entered through the same input methods as observations from specific cathedral

descriptions. When the inference engine is run on this knowledge base, all the facts that can be

derived are explicitly dervied, so knowledge base plus inference engine entail all the true facts

about the design [4].

The practical goal of the ARC project is to build a complete system by which user input

or scholarly written descriptions of Gothic cathedrals are automatically transformed and

represented logically. The ARC Logic system does not handle natural language text, but it takes

input of term definitions, constraints, and facts, and converts these into correct Prolog facts and

8

rules. Once the information is in this usable form, inference can be performed, queries can be

answered, and consistency of the description can be checked by the ARC Logic system.

The ability to answer queries is a useful tool for architectural historians, students, and

anyone else interested in the architecture of Gothic cathedrals. Having descriptions encoded into

Prolog allows users to interact with the description in a more dynamic manner, moving away

from the experience of reading a book, and closer to the experience of interacting with an expert.

The ARC Logic system allows the description to be queried to answer specific questions about

the cathedral, can retrieve particular sections or aspects of the cathedral for examination, and can

even compare entirely separate cathedrals against each other. Different descriptions of the same

cathedral can also be compared to find patterns in style as they vary by author, time, or other

factors, as well as be combined together to create more complete descriptions.

The ability to check consistency of the logical description is another valuable aspect of

the system. The ARC Logic system can highlight or automatically correct inconsistencies within

a description. The ability to identify problems in a description as it is being created is an

important feature. This kind of feedback would be especially useful for students learning the

structure of cathedrals, or professionals working on complex descriptions. Consistency checking

could also be used to fix inaccurate or incomplete historical descriptions, highlight changes to a

cathedral over time, or even help architectural historians translate descriptions from another

language [2]. Consistency checking can also provide useful feedback for an automated natural

language processing system. If the NLP system interprets some piece of text incorrectly, and it is

entered as input to the ARC Logic system, if this incorrect interpretation leads to an

inconsistency, the ARC Logic system can point this out or handle the conflicting information

automatically.

9

2.2 DEFAULTS IN DESCRIPTION OF GOTHIC CATHEDRALS

Even though natural descriptions of Gothic cathedrals generally follow a logical structure,

these descriptions can be very complex. This complexity arises because these descriptions often

exploit human abilities of understanding that are difficult to computationally recognize and

understand. A natural description of a Gothic cathedral can convey a large and complex logical

structure with a relatively small amount of text. There are a number of reasons why natural

descriptions are so efficient. First, this efficiency is partially accomplished by the human ability

to combine propositions and leave out redundant identifying information. The sentence "the

column has a capital and base" is a shortening of "the column has a capital and the column has a

base." Since natural descriptions are written by human beings for human beings, the describer

can make the assumption that the receiver will have the same understanding of the longer version.

Sorting out the structure to clarify subject-predicate-object relationships is a general task for

natural language processing. This same feature can apply over whole sections of a description as

well. In natural descriptions of Gothic cathedrals, the subtle shifting of context is also common,

such as talking about a cathedral in particular sections of the building instead of as a whole, or

moving back and forth between descriptions of two cathedrals for comparison. This shifting

context is also generally easy for humans to follow but difficult for natural language processing.

The ARC Logic system includes a specific functionality called scope, which allows the user to

set the context so that it does not have to be explicitly included in each piece of input. The use of

assumptions within the text to write and speak succinctly by avoiding repetitive information

certainly factors into the complexity of natural language processing, but it is not the major reason

why a short natural description can represent a massive amount of logical information.

10

The principle reason for the efficiency of natural description is the use of assumptions

about things that are left out completely. In a natural description of any scene, an overwhelming

majority of the information needed to understand that scene is not explicitly present in the

description. To understand any description requires background information, and the more

common knowledge or experience shared between the describer and the person receiving the

description, the more is left to implicit assumptions. Not only would two architectural historians

talk about a cathedral with jargon that is unfamiliar to the layperson, they can also avoid

explaining the basic rules of Gothic architecture to each other.

The ARC project requires capturing the information present in natural descriptions as

accurately as possible in order to build the logical model for understanding the description. It

was clear to the ARC research group, before the work of this thesis was started, that some way to

fill in the gaps of the description, to use background information, in order to create a complete

logical model was necessary. The domain of Gothic cathedral architecture is a good domain for

exploration of these techniques. Though individual cathedrals can vary in quite significant ways,

the concept of Gothic cathedrals has a default model, and the necessary background can be

limited to a finite amount of useful information. Even to the layperson with minimal exposure to

Gothic cathedrals, simply knowing that a building is a Gothic cathedral evokes many descriptive

details of that building. The symbolic nature of the design, strict rules surrounding religious

worship and the use of the space to facilitate this worship, and careful considerations for the laws

of physics, are all likely factors in their adherence to a common model.

The specific implementation of the ARC Logic system allows the user to create default

models, or use default models written by others, that fill in the gaps in descriptions. The ARC

Logic system uses non-monotonic knowledge representation and reasoning, which lets the users

11

work with assumptions. The ability to make assumptions, which hold unless there is a reason not

to hold them, creates a simple method for combining descriptions with background information.

2.3 ARC LOGIC IMPLEMENTATION

The ARC Logic system was designed to work as a usable standalone program, but also

designed to be easily incorporated into a larger software package. Currently only the ARC Logic

system is implemented, but work is underway with the ARC project for considerable extension

of the ARC Logic system, on both the input and output side.

The ability to automatically extract the useful information from natural textual

descriptions is a major goal of the ARC project. Deep and accurate natural language processing

is extremely difficult, but the ability to do this well opens up many possibilities for examining

Gothic cathedrals, and could also progress NLP research in general. Another goal of the ARC

project is the ability to use precise logical descriptions of cathedrals to generate two or three-

dimensional visualizations [2] [3], either as strict output or as an interactive system that allows a

user to modify the logical model graphically.

While the eventual goal of the system is to allow for the automatic processing of natural

language and output to visualization software, the system is designed to interface directly with

users. Users enter information in a simple logical syntax, which is then converted into Prolog

code, so that users can run inference on the system and query the knowledge base for results.

The ARC Logic system is designed with usability in mind, both for users working with

the program as a standalone tool, and compatibility with other pieces of software, like natural

language processing and visualization software. A main aspect of this usability is that the system

is designed to be a black box; the specific implementation does not need to be understood to

operate the system. Instead, the user or other software calls specific input methods to add rules

12

and facts to the Prolog knowledge base, and the output is a simple form that can be queried or

transferred to other programs. The ARC Logic system is domain-independent; it has no built-in

rules, facts, or terminology about cathedrals or any other domain. All information about the

domain is entered through the limited set of methods, so there is no need for the user to alter the

ARC Logic code unless they desire additional or modified functionality.

Not only can users remain ignorant of the inner workings of the ARC Logic code, they

can be generally ignorant of the Prolog programming language and programming languages in

general. Writing input methods requires following some basic syntax, but it does not require any

understanding of Prolog or software engineering concepts. The input methods use basic logical

properties and logical statements, which are automatically turned into correct Prolog code. This

is a valuable feature both because of the implementation and the target user base. Prolog is

especially suited for this kind of logical inference, but the language is not as widely-known as

many "general purpose" procedural languages such as C or Java, and it works in a significantly

different way than those procedural languages. Writing automated programs or interfaces to

work with the ARC Logic system is made much simpler by the non-Prolog specific input and

output methods. Even more basically, the ARC Logic software is designed to be used as a

standalone product by architectural historians, students, and laypersons interested in architecture,

some of whom have little to no experience with programming. The modular, black box, and

domain independent nature of the ARC Logic system allow it to be integrated with other

software as easily as it can be used directly by an end-user.

13

CHAPTER 3

EXAMPLE OF ARC LOGIC SYSTEM FLOW

This chapter will explain, in the form of a tutorial example, a very basic use of the ARC

Logic system. Generally, the ARC Logic system takes input from the users, creates the proper

Prolog rules and facts from this input, performs inference with those rules and facts, and allows

the user to query the results. This chapter briefly discusses how this system works as a whole,

and subsequent chapters explain the details of each individual component of the system. To

demonstrate the functionality of the system in a general

overview, this chapter will use a rather simple example of

a single column (Figure 2). The ARC Logic system treats

a single column in the same manner as an entire cathedral,

so a single column can be used to illustrate the features of

the program in a scaled-down example. Similarly, a

software program, or multiple users, can interact with the

ARC Logic system in the same manner as a single user, so

for the sake of simplicity the example will assume there is

a single user operating the ARC Logic system as a

standalone application.

Figure 2. Example Column.

14

3.1 INPUT DOMAIN KNOWLEDGE

The first step for the user is to create the domain information to add to the ARC Logic

system. Of course, information must be added to the system before it can be used for inference or

querying, but there is no strict ordering of the "add information" and "use information" steps.

Information can be added, inference can be performed on this information to create new facts,

and then additional information can be added, some of which could contradict the earlier facts.

This information comes in three main forms: term definitions, constraints, and facts. Each of

these forms has corresponding input methods so that the user can input this information in a

format that is understandable for those without programming knowledge. The information

entered through the input methods is automatically transformed by the ARC Logic system into

the appropriate Prolog rules and facts.

First, term definitions give the system a vocabulary with which to operate. Terminology

specific to the domain is not built in to the ARC Logic system; the names and definitions for the

relationships between objects must be defined with the user input methods. In order to create a

useful complete description of a column, the user would describe the relations between the parts

of the column. An obvious relationship would be "above." Relationship definitions let the user

indicate that the ARC Logic system should treat above as a relationship. Definitions are more

than just listing out words; they are a way to ascribe the desired behaviors to the relationships.

For example, "aboveness" is transitive; if a is above b and b is above c, then a is above c. It is

possible to express this semantic quality so that the ARC Logic system can derive information

from the implied semantic value of terminology. This terminology is added, without any

programming ability required, with the relationship definition methods. All it takes to signify

15

that "above" is a relation with the expected behavior is: define_relationship(above, [transitive])

(followed by a period).

The second type of information is facts. Facts include object facts like object(capital, 2)

and object(shaft, 3), which mean that the unique ID of 2 represents an object of type capital,

and 3 is an object of type shaft. There are also facts about relationships, such as above(2,3),

which means that object 2 is above object 3. The user will likely add a majority of the

information through definitions and constraints instead of asserting facts directly. The inference

engine uses the term definitions and constraints to create most of the facts, and it does so by

using the same fact assertion method internally. In the case of this column example, only the

column itself needs to be created by the user. Object instances can be given a non-number name

or else they are auto-assigned a unique ID number for a name. User-created names must be

Prolog atoms, which begin with lower case letters or are in single quotes. In this example, the

column will be name ex_column, and objects created by inference will automatically be given a

number. The user calls the assert_object_instance predicate with the optional parameter of a

name filled in, which looks like: assert_object_instance(column, 0, ex_column). The next

chapter contains a detailed explanation of this method, including the use the second argument,

which is the pre-existing object to which the new object belongs.

The user could describe ex_column by asserting additional details as facts. Since our

example column includes a capital, a shaft, and a base, these three objects should be included in

this example description. The user could enter this information in the same way as the column,

by typing assert_object_instance(column, ex_column, ex_capital). The user could also

directly assert relations by using the input method to say assert_fact(above(ex_capital,

ex_shaft)) and assert_fact(above(ex_shaft, ex_base)). The user, however, does not need to

16

explicitly assert all these facts. Gothic cathedral architecture is especially suited for logical rules

and inference because there are many repeating elements. The pieces that constitute the column

and the relations between these pieces apply to every column, so making specific assertions for

more than one column is redundant, and describing each individual column in an entire cathedral

would be very tedious.

The ARC Logic system has a way to express the knowledge that certain types of objects

always contain certain parts or that certain relationships hold between types of objects. This third

and final type of information is called a constraint. Constraints can range in complexity, but

expressing that every column must have a capital is done by create_constraint(column, must,

has, capital). Additional constraints for shaft and base are created the same way. Instead of

asserting facts for each user-defined relationship between object instances, the user can also

write constraints for these. The user can say create_constraint(capital, must, above, shaft)

and create_constraint(shaft, must above, base) to express those relationships. All the term

definitions, facts, and constraints used in this example are shown in Appendix B, along with

more complex examples.

3.2 INFERENCE

Inference is the second main function of the ARC Logic system. Prolog facts and rules

are created automatically from the term definitions, constraints, and fact assertions, and are

added to the knowledge base (KB), along with the operational code for the ARC Logic system

itself. When the user tells the system to run the inference engine, every fact that can be inferred

from the rules and facts is added to the KB. This inference engine continues until everything that

can be inferred is in the knowledge base as an explicit fact.

17

Returning to the column example, assume that only the column was directly asserted, and

the five constraints mentioned were created. Before the inference engine is run, the knowledge

base (KB) has only the fact object(column, ex_column), and a number of rules created from

the constraints and term definitions. The user will type inference and the inference engine will

find everything it can from the facts and rules, and add them to the KB. Since there is a column

fact in the KB, the constraints about columns are applied, and the inference engine automatically

asserts a capital object, a shaft object, and a base object, and a has relationship fact for each

showing they are part of ex_column. The column was given a name ex_column, but the

assert_object_instance method will automatically assign a new object a unique number if a

name is not given, which is what happens when the inference engine automatically asserts new

objects. The creation of a capital, shaft, and base object, is all that is done in the first round of

inference, but since the inference engine found some new facts, the inference continues another

round automatically.

On this second round, since the KB contains capital, shaft, and base objects, constraints

that apply to capitals, shafts, and bases will also be enforced. Because the user entered

create_constraint(capital, must, above, shaft), the inference engine creates the facts for the

above relationship between the capital and the shaft, like above(1,2). The same applies to the

relationship between shafts and bases.

In the next round of inference, since there are new facts about the above relation in the

KB, rules from term definitions about above are enforced. Because the user defined above as

being transitive, and the KB has the facts above(1,2) and above(2,3), the inference engine also

asserts above(1,3), signifying that the capital object is above the base object, even though a

constraint was never written for this relationship, and it was never asserted as a fact.

18

The inference engine has to complete one full cycle without any new facts found so that it

knows it has exhausted all possible avenues of inference. When the inference engine is done, all

the information that can be derived from the user input has been derived, and the information is

available to be printed in its entirety, queried, or used by some other software component. The

information in the knowledge base can also at this point be added to or amended. A new call to

the inference engine ensures that all new information is properly inferred and anything that is no

longer known derivable is removed from the knowledge base.

3.3 QUERYING THE KNOWLEDGE BASE

After entering domain knowledge and running the inference engine, the knowledge base

will be full of all the facts that can be inferred from the information the user entered. The final

step is retrieval of this information. There are a number of predicates that can be used to retrieve

all facts, all constraints, and all terms (see Appendix A), but generally a user would want to run

queries on the data. A query is a set of conditions that have to be met, so any query-answering

function will return either a piece of data that matches the query or indicate that there is nothing

that matches the query.

The user might want to write a query to return all objects in the knowledge base, now that

constraints have been added and inference performed. The user can simply write q(object(X,Y)).

The capital letters are variables that values can match to. When the user presses the ENTER key,

the first match is returned, and the display will look similar to:

?- q(object(X,Y)).

(indefeasible)

X = base,

Y = 1

19

For now, the (indefeasible) part can be ignored. The query found the first matching

values in the KB, and shows the data that matches the X and Y variables. The output did not end

with a period, signifying there are other possible results. Typing a semicolon signals the Prolog

query to check for other possible results. This can be pushed multiple times until all results have

been found, resulting in:

(indefeasible)

X = capital,

Y = 2 ;

(indefeasible)

X = column,

Y = ex_column ;

(indefeasible)

X = shaft,

Y = 3.

Queries are based on simple principles, but with these principles a user can easily write

more complex queries. If the user wanted to query all the capitals, they could use the same query

but with more information provided: q(object(capital,X)) would return X = 2. A query can be

performed to find all objects that belong to ex_column by writing q(has(ex_column, X)).

The q method is over-loaded, so it works differently depending on the type and number

of arguments. A query can be written with a second argument that is left as a variable (that is not

already in use), and a set of all the matches will be returned as that variable:

?- q(object(X,Y), Z).

Z = [(object(base, 1), indefeasible), (object(capital, 2), indefeasible), (object(column, ex_column),

indefeasible), (object(shaft, 3), indefeasible)].

20

Multiple clauses can be written in a single query. Any number of clauses, separated by

commas, can be entered as a query as long as the query itself is surrounded by parentheses. This

enclosing in a set of parenthesis is necessary for Prolog to treat the multiple clauses as one

argument. The comma in Prolog is equivalent to the AND logical connective. Obviously,

conjunctive clauses can be used to query with more precision. The user could for example write

q((object(capital,X), has(ex_column,X))) to find all capital objects that are part of

ex_column, but no other capital objects (if there were any in the knowledge base).

Additional clauses might also be added not to limit the query results, but to ensure the

desired information is returned. In the example of q(has(ex_column, X)), only the names/ID

numbers are returned. If the user wanted to know the object types corresponding to each of these

ID numbers, the query could be written as q((has(ex_column, X), object(Type, X))).

The user can also query with disjunctions. Disjunctions are done in standard Prolog with

a semicolon instead of a comma, and the q function of the ARC Logic system also handles the

semicolon this way. The user can write q((object(capital, X) ; object(base, X))) to return for X

every capital and base object. This disjunctive predicate is a 2-arity predicate, so everything

before and everything after the semicolon must be a single clause or enclosed in parentheses.

In addition to the conjunctive and disjunctive logical connectives, the user can also query

with negation. For example, the user may want to know every object that is part of ex_column,

except capitals. This can be done with the predicate unless/1. The user could write

q((has(ex_column, X), unless(object(capital, X)))), which will return the name for the shaft

and the base in the example. Anything that can be written as a query can be written inside an

unless clause; the same rule about enclosing within a set of parenthesis applies.

21

The comma is equivalent to logical conjunction and the semicolon to disjunction, but the

unless function is not equivalent to the logic negation function. Standard Prolog does not have

explicit negation. There is no way to prove something is false because Prolog works with Horn

clauses, which cannot express negative information [5]. When a Prolog query returns true, it

means that the goal was proven. When Prolog returns false, it means that the goal could not be

proven. Using unprovability as a form of negation is called negation by failure, designated by a

built-in predicate \+. Unless one is working with a closed-world assumption, where everything

that can be known is already in the knowledge base, negation-by-failure is logically different

than proving the goal is false [6]. A query of \+ some_goal could be true, and then be false

when information is added to prove some_goal. The q predicate handles \+ the same way as

unless, but the term unless, which can be read as "unless it is provable that," was chosen for this

implementation to clearly distinguish this concept of negation-by-failure from explicit negation.

Figure 3 illustrates the system as a whole. Input queries are those that call input methods,

which add facts and rules to the domain knowledge. The inference engine uses facts and rules of

domain knowledge, but only creates new facts. Other Queries, such as q(object(X,Y)), return

matching facts. Together this basic framework provides all the functionality of the ARC Logic

system.

22

Figure 3. ARC Logic System Diagram.

23

CHAPTER 4

KNOWLEDGE REPRESENTATION AND INPUT METHODS

A useful knowledge representation is able to hold, in a structured way, all the information

from the natural descriptions that is necessary for the logical description. Special concern was

taken with the ARC Logic system to ensure that the knowledge representation is as close to

natural description as possible while also being formal enough for inference. One way that it

follows natural description is the three types of knowledge in this system, collectively referred to

as domain information. Terminology automatically follows implicit logical behaviors, and

constraints describe objects and the relations between them close to the way two human beings

would communicate rules. The knowledge representation of the ARC Logic system also closes

the gap between logical description and natural description by allowing for non-monotonic

reasoning, which will be discussed in detail in Chapter 5.

The original conception for the knowledge representation of domain information for the

ARC project was that domain information would be entered as Prolog rules such as [3]:

immediately_above(X,Y) :-

necking(X),

shaft(Y),

has(ParticularColumn, X),

has(ParticularColumn, Y).

While this approach allows those experienced with Prolog and intimate with the system

the flexibility to create any rule that is acceptable in Prolog, it has a number of downsides. Most

obviously, a user wanting to add rules would need to be proficient enough in Prolog to write a

24

rule in the correct syntax, ensure the rule actually reflects the intended semantics, and be aware

of any problems, such as infinite loops, that could be caused by inference on that rule.

The ARC Logic system contains no domain information; all domain information is input

data to the system. This feature has two main advantages: severability of the code from domain

knowledge and control over the way domain information is encoded into the knowledge base.

First, the domain-independence means the file with the ARC Logic code is not messy

with code for specific domain rules, and users do not need to alter the ARC Logic code in order

to alter domain information. All domain information is entered as calls to a limited set of input

methods. There are input methods corresponding to each type of domain knowledge, such as

assert_fact and create_constraint.

Since all domain information is entered as data in the input methods, the ARC Logic

system has control over the way in which domain information enters the knowledge base. The

use of specific input methods means the ARC Logic system can enforce a standardized method

for representing knowledge, instead of trying to use whatever specifications the user decided to

use for each rule. The uniformity and predictability of the syntax of the Prolog rules is necessary

for some of the more complex functions of the ARC Logic system, like constraint comparison,

which will be covered in a later chapter. This standardization also allows for the knowledge

representation to be designed in conjunction with the inference engine in order to avoid any

possible loops from infinite recursion.

The use of set input methods simplifies the coding process extensively, but it also

simplifies the use of the system for the end-user. The input methods are designed so that a user

with no knowledge of Prolog, or programming in general, can assert facts, define terminology,

and create constraints to match their own knowledge of the domain. A user need only follow a

25

simple syntax and have a basic understanding of logical properties, like transitivity, to build

complex ontologies. This feature is made possible by the use of meta-programming techniques.

Meta-programming, or programming programs, allows a program to process other pieces of the

program like data, and turn data into part of the program, so that the new program can then

process additional data. The nature of Prolog makes meta-programming easy, as there is no strict

boundary between the program structure and the data. The knowledge base stores all the code for

the program, but the knowledge base is also dynamic, and facts and rules can be added to or

removed from the KB directly by the user or by other pieces of code. The input methods of the

ARC Logic system take the data input to the arguments of an input method, and convert this

information into Prolog rules and facts, which are then asserted to the knowledge base, so that

they become part of the program itself. This chapter describes each of these three types of

domain knowledge, how to use their corresponding input methods, and briefly how the data from

these input methods are translated into Prolog facts and rules.

4.1 FACT ASSERTION

While the majority of fact assertions are made by the inference engine, the user can assert

facts directly, and will at the minimum need to assert one object instance, such as a column or a

cathedral. The term "fact" in general Prolog parlance is simply an entry in the knowledge base

without an implication (:-). ARC facts are stored in the KB as Prolog facts, but they are not

stored directly, like above(4,3) or object(column, 3). ARC facts are encapsulated by another

predicate, fact/3 (meaning a predicate named fact with three arguments). The first argument of

fact/3 is the fact itself, such as above(4,3) or object(column, 3), and the other two arguments

26

are metadata about the fact which are important for the non-monotonic nature of the knowledge

representation.

The ARC Logic system has facts about relationships. The fact object(column,3) can be

considered a combination of two separate facts: isType(3,column) and exists(3). In this

implementation, all constants must be typed objects and if an object does not exist, there is no

reason to ascribe it a type, so there is little need for severability of these two concepts. The

syntax for object facts is meant to simplify the system for the user.

The input method for adding facts, assert_fact(+Fact,+Defeasibility,-Asserted), is

used for both relationship facts and object facts, and is also used by the ARC Logic inference

engine to assert every fact that is inferred. Clearly Fact here is the fact itself (like above(1,2) or

object(column,1)). The concept of defeasibility will be introduced later, and the value from this

argument becomes one of the two pieces of metadata about the fact.

The Asserted argument returns either a list with a fact in it, or an empty list. Just

because the assert_fact method is called does not guarantee the fact will be asserted. One

common reason for a fact not being asserted is that the fact is already in the knowledge base. The

other possibility is a conflict is found when the fact is compared with the information that is

already known. If the value in the Fact argument is actually asserted, that value is returned in

Asserted. This functionality is important for the ARC Logic system to keep track of new facts,

so that it knows when to continue and when to stop the inference engine. For user simplicity,

assert_fact can be called with just one or two arguments: assert_fact(+Fact,+Defeasibility)

and assert_fact(+Fact). Knowing whether or not the fact was asserted is generally not an issue

for the user, and if Defeasibility is left out, it defaults to indefeasible.

27

Object facts are also asserted by assert_fact, but an additional fact must be asserted

along with the object fact. For this reason, there is a special input method for objects:

assert_object_instance(+Type,+IsPartOf,?Name,+Defeasibility,-Asserted). This method

actually just calls two assert_fact methods: assert_fact(object(Type, Name)) and

assert_fact(has(IsPartOf, Name)). A has relation must accompany every object because each

object must be contained within something else. By default the root container is 0, but the user

can designate the root container as 0, or the_world, or 'France', or whatever the user wants. The

value given for IsPartOf, such as 0 or 'France', does not need to be an object, and of course the

top-level container(s) can't be an object, because each object needs to be part of something else.

The Type argument is of course the object type of the object to be created. Defeasiblity

and Asserted works the same way, except Defeasibility applies to both facts and Asserted is a

combination of the Asserted values from the two assert_fact methods it calls.

The Name argument can be instantiated or left as a variable. If it is instantiated, then the

object is created with whatever atom is given. While there is good reason to treat proper names

as values tied to the real constants [7], it is unlikely a user would want to name an object after it

has been created, so in this system names are used directly for instances. If the user does not

name the specific object, or create_object_instance is called internally by the inference engine,

the object is given a unique ID number, which is matched to the Name argument.

The identification of objects by unique number constants or names is a change from

previous conceptions by the ARC project [2]. Originally, the idea was that object instances could

be given a proper name, which is allowed in the ARC Logic system, or would be Skolemized [2].

Skolemization replaces an existential quantifier with a Skolem function that returns unique

names for each instance [2]. The use of Skolemization in the ARC project creates a hierarchical

28

system that served as an address for a specific instance of an object. A capital for example could

look like: base_inst(column_inst(arch_inst(nave_inst(cathedral_inst, 1), 1), 6), 2), 1),

meaning the first base of the second column in the sixth arch in the first nave of the first

cathedral [2]. This approach has the benefit of the constant being an address. Instead of a unique

but arbitrary number, it is more clear which real world object this constant is mapped to. All of

this information is available, however, in the ARC Logic system in a more flexible way; a basic

Prolog function can be written to trace the "address" of a unique ID number back through its has

relations, which can be formatted in whatever manner is desired. Also, the query q(contains(X,

ex_base), object(Y,X)), would return all the objects (with their types) up to the top level which

contain the object named ex_base.

The conception of Skolemization for the ARC project was used to enforce existence of

objects belonging to another object. This duty is taken care of with constraints, which allow the

user to state that an object of some type must have any number of objects of another type inside

it. Individual Skolemization functions are replaced with the single function that returns unique

ID numbers by incrementing each time a new number is needed. This process also keeps the

system more in line with traditional database structures that have unique keys, which also adds to

the usability and versatility of the system.

4.2 TERM DEFINITION

In order for a user to develop an ontology for some domain, they must first establish a

vocabulary. In the ARC Logic system, this vocabulary is necessary for the relationships that hold

between constants and for object types. Relationship terms must be defined explicitly before they

can be used correctly. Object types can be used without being defined, but explicit definitions

29

add extra versatility. There are three definition methods for inputting information:

define_relationship/2, define_metarelationship/3, and define_object/3. Each of these

predicates takes the name or names of the relationships/objects being defined, and the logical

properties that apply, and asserts all the necessary Prolog rules to the knowledge base at run-time.

4.2.1 Relationships

The Prolog rules for relationships can be created with

define_relationship(+Name,+List). This predicate requires a Name for the relationship and a

List of logical properties. The syntax for a Prolog list is brackets surrounding a number of items,

which are separated by commas, such as [item1, item2]. For each of the logical properties in the

list, one or more Prolog rules are created. There are three distinct logical properties, and the list

can contain any number of these properties. If a relationship has no logical properties, an empty

list is used, which is just the two brackets []. The three basic logical properties that can appear in

the list are symmetric, reflexive, and transitive.

If a relation includes the attribute symmetric, the following rule is added to the

knowledge base, where name is the value given for the Name argument:

name(B, A) :- d_ground(name(A,B)).

If a relation includes the attribute reflexive, the following rules are added:

name(A, A) :-
 d_ground(name (A, _)).

name (A, A) :-
 d_ground(name (_, A)).

The reflexive rule could be applied in general with the fact 'name(A, A).', but it is being

used in a more limited way. What these rules say is that if some object has any relation of type

name to anything, it has that relation to itself as well.

30

If a relation includes the transitive attribute, the following rule is added:

name (A, C) :-
 d_ground(name (A, B)),
 name (B, C).

Each of the rules made for logical properties of relations include the predicate d_ground,

which is not built in to standard Prolog. The d_ground predicate does not have its own rule or

fact anywhere in the knowledge base; it is a signal for d_call, a custom call predicate that will be

described in detail in a subsequent chapter. d_ground(X) signals d_call to ensure that X is a fact

in the KB. This approach puts a depth limit on d_call to ensure the avoidance of infinite loops.

Each of the relationship definitions is recursive, and recursive rules are susceptible to entering

infinite loops. If d_ground was not used, Prolog would try to prove the

some_symmetric_relationship(X, Y) by proving some_symmetric_relationship(Y, X). To

prove some_symmetric_relationship(Y, X), Prolog would use the same rule and the new goal

would again be some_symmetric_relationship(X, Y). There are a number of approaches to

cycle detection, such as keeping track of past goals, or space-saving variants of this. The ARC

Logic system handles infinite recursive loops, and other issues, by having an inference engine

that loops, so that not all steps have to be taken at once. Because of this, d_ground can be used,

and all the facts can be found even though it moves only one step at a time. For example, if the

KB includes above(1,2), above(2,3), and above(3,4), then the inference engine will find,

because of the transitive rule of above, above(1,3) and above(2,4) on the first round of

inference and above(1,4) on the second round.

There are two types of variations on the logical properties. One of these variations is

defeasible versions of the properties, which will be discussed in a subsequent chapter. The other

variation is negated versions of the properties. As explained in the previous chapter, Prolog does

not have explicit negation. Because explicit negation is not allowed, the system does not have the

31

full power of first order logic [5]. Negation-by-failure (the unless predicate) is very useful for

the system, and the functionality requires almost no additional cost [5], but for the ARC Logic

system to have the desired functionality, it needs explicit negation. Explicit negation is done with

a rather simple trick of creating regular facts that are marked as negative. These facts, such as

not_above, are indistinguishable from other facts, like above, to the Prolog engine, but they are

treated as negative by the ARC Logic system and the user. A simple predicate negate/2

interchanges a predicate between the positive and negative forms by adding or removing a not_

from the front of the name.

A user can include any of the negative versions of the logical properties: asymmetric,

irreflexive, and intransitive. Negative rules are created the exact same way as their positive

counterparts, except the name used for the head is changed to the negative version. Instead of the

negated relationship being their own completely separate predicate, the negated versions are

dependent on the existence of positive relation facts.

Asymmetric:
not_name(B, A) :- d_ground(name(A,B)).

Irreflexive:
 not_name(A, A) :-

 d_ground(name (A, _)).

not_name (A, A) :-

 d_ground(name (_, A)).

Intransitive:
not_name (A, C) :-

 d_ground(name (A, B)),

 name (B, C).

The column example from the previous chapter can now be extended. The user could add

the relation immediately_above and ensure it is treated as explicitly intransitive by entering

32

define_relationship(immediately_above,[intransitive]). If the knowledge base contains the

facts immediately_above(a,b) and immediately_above(b,c), then the inference engine will

assert not_immediately_above(a,c) to the knowledge base.

A user could work with a taxonomy that avoids explicit negation altogether. If

immediately_above, for example, is created without any version of transitivity, the program

would still not be able to infer immediately_above(a,c) in the above scenario. Adding

intransitive to immediately_above, just like adding asymmetric and irreflexive to the above

relation definition, is not necessary, but will increase the thoroughness of the procedure for

checking consistency.

4.2.2 Meta-relationships

In addition to defining relationships between constants, the user can also define the

relationships between these relationships with define_metarelationship/3. The first argument is

either antonym or implies, and the next two arguments are previously-defined relationship

terms.

Implication allows the user to express if-then relationships between the relationships.

define_metarelationship(implies, immediately_above, above) allows the system to infer

above(a,b) from immediately_above(a,b), but not the other way around. With the definition

of immediately_above from the previous section, and this meta-relationship, instead of writing

the constraints create_constraint(capital, must, above, shaft) and create_constraint(shaft,

must above, base), the user can be more exact by writing create_constraint(capital, must,

immediately_above, shaft) and create_constraint(shaft, must immediately_above, base).

The ARC Logic system will then infer that the capital in the example is immediately above the

33

shaft and the shaft is immediately above the base. Once this information is in the knowledge base,

the inference engine will find that the capital is above the shaft and the shaft is above the base. It

will then infer that the capital is above the base, but not immediately above the base.

Antonymy in this implementation designates a converse relation, such that

define_metarelationship(antonym, above, below) allows the system to infer below(b,a)

from above(a,b), and vice-versa. Unlike explicit negations, the antonym of a relation is not an

atom manipulation function, so the antonym pairs are actually stored in the KB and are used

when checking fact assertions and constraint creations for conflicts. Synonymy is another logical

meta-relation, but since it only creates a simple redundancy, the user, or a natural language

processing system, should decide on one naming convention for each relationship.

4.2.3 Built-In Relationships

It should be clear that even though the ARC Logic system is domain-independent, the

system makes some assumptions about the domain. Object types and hierarchies are built into

the system because they are especially useful for describing architecture and similar domains.

For objects to work correctly in the ARC Logic system, two special relationships are built into

the system.

The has relation is built into the inference engine, because it works differently than user-

defined objects, and is necessary for the connection between objects. The has relation represents

an immediate containment (parent) of one object by another. The next section explains how the

has relationship is used for checking the conditions of constraints, and how the constraints with

has as their relationship work differently than those which have a user-defined relationship like

above.

34

The has concept is also extended by the contains relationship. Each object contains

itself, as well as all objects that it has, and all objects those objects has, etc. etc. The contains

relation could be created with define_relationship(contains, [transitive, reflexive]), and

define_metarelationship(implies, has, contains), but it is implemented differently. Creating

the contains relation like a normal relationship means that contains facts are added to the KB.

This would add a lot of likely unnecessary explicit facts to the KB, and the creation of these facts,

which makes one transitive inference at a time, means the system has to do many loops of the

inference engine, which can extend the time of the inference significantly. Instead, the special

relationship between has and contains is exploited, so that contains has a non-looping transitivity

rule like the classic ancestor-parent problem [6].

4.2.4 Object Definitions

Objects are not created with semantic value from logical properties, like relationship

terms are. The system could have been designed where objects have implicit semantic value; it

seems very reasonable after all to include in to the definition of a column that it is made of a

capital, a shaft, and a base. Term definitions however, are reserved for those behaviors that are

implicit in the word itself; rules such as "every column has a capital" is possible with constraints.

Because all the information that might be implicit in an object type can be entered by constraints,

there is no need to define objects before using them, like there is with relationships.

The define_object method is actually a variation on the define_metarelationship

method, as it defines the relationships between object types. The define_object method allows

the user to designate supertypes and subtypes of objects, which work similar to the implies meta-

relationship. For example, in Gothic cathedral architecture, there are two types of supports:

35

columns and piers. Columns and piers share many features, so the taxonomy of architecture uses

a general type, support, to apply to both. Though the column example from the previous chapter

is about a single column, the user may want to ensure that the features which are shared between

columns and piers are written as features of supports, so that in the future, the user can add a pier

and not have to rewrite the same constraints for piers. To tell the ARC Logic system that a

column is a type of support, the user simply writes define_object(subtype, column, support)

or define_object(supertype, support, column). This information is kept in the KB like

antonyms. Whenever any Prolog rule applies to supports, it must apply to columns and piers, but

rules applying to columns or piers are not applied to supports. Instead of

create_constraint(column, must, has, shaft), the user could say create_constraint(support,

must, has, shaft). Since the ARC Logic inference engine knows that column is a type of

support, it will make sure that the ex_column has a shaft.

The subtype relationship is the same as the implication meta-relationship in theory, but is

implemented in a very different way. If the user inputs define_metarelationship(implies,

immediately_above, above), and immediately_above(1,2), then above(1,2) is also inferred.

Having both of these relationship facts in the KB is not problematic at all. Object facts, however,

are a combination of a fact about the type and a fact about its existence. It would be acceptable to

say that object 3 is of type support and type column, but it is problematic to say both a support

and a column of the same number exist. In this implementation each existing constant

corresponds to one and only one real world object. Instead of creating a rule like implication, the

subtypes are noted, and whenever d_call requires the proof of an object, it will look for the proof

of that object, or any subtype of that object. When d_call has to prove the goal of a support, it

can do so with a fact for a column. This means the user can write constraints with supertypes in

36

the conditions, and they will apply to any subtypes. The query function also uses d_call, so any

queries for supports will return relevant information about columns and piers. A user does not

need to use any type hierarchy and inheritance; this feature is just for efficiency, and brings the

logical description closer to natural description.

4.3 CONSTRAINT CREATION

The final type of domain knowledge used by the ARC Logic system is constraints.

Constraints are statements that enforce existence of objects or relations between objects. When

create_constraint is called, its arguments are automatically transformed into Prolog rules which

are asserted to the knowledge base.

Like term definitions, constraints are designed with the intention of striking a balance

between versatility and usability for those without Prolog experience. Like term definitions,

which require understanding basic logical properties such as transitivity and implication,

constraint creation also requires a basic use of logical concepts. The syntax for

create_constraint falls between writing a First Order Logic sentence and writing out the

intended rule naturally. The complete create_constraint/7 method has seven arguments, but

this method, like most of the input methods in the ARC Logic system, is overloaded, and the user

will often be able to enter a create_constraint with lower arity. When an input method with

lower arity is used, it calls the complete version, with default values filled in. Appendix A shows

the different forms of create_constraint that are available, and what default values are used.

In the overview chapter, one constraint used was "every column has a capital," which was

added to the system with create_constraint(column, must, has, capital). This 4-arity version

of create_constraint calls the full version which looks like:

37

create_constraint(X, object(column, X), must, has, 1, 1,capital), which can be read as:

"For all X: if X is of type column, then X has a minimum and maximum of one capital."

The constraint follows the basic structure of a First Order Logic sentence. The first

argument is a universal quantifier and the main connective is a conditional (if-then), which is the

common accompaniment for a universal quantifier. If the antecedent is matched, then the

inference engine also enforces the consequent, by asserting facts about objects and relations.

The full constraint begins with a universal quantifier. The user can enter any variable for

this argument, but must ensure that the same variable is used in the second argument to designate

what the constraint applies to. The second argument is called the condition clause, and can be

considered the antecedent of the conditional connective. When an object type is the only

condition, this clause is very simple, but the condition clause can be expanded with all the same

complexity as is possible with a query, including conjunction, and unless. This similarity

between the condition clause and a query is not a coincidence. The condition clause serves the

same function as a query, in that it selects all and only the information in the knowledge base

that matches. The only difference between the condition clause and a query is that the user must

ensure the variable for the universal qualification clause matches the variable in the condition

that will be matched with the constant (object instance) that the consequent of the constraint

applies to. For example, if the user wanted to write a condition that only applied to columns that

are contained inside the arcade (the lowest tier of a Gothic cathedral), they could write the

condition as (object(column, X), contains(Y, X), object(arcade, Y)). It is important that the

first argument of the constraint, the universal quantifier, is X. If the value of the first argument

was set to Y, the constraint would instead apply to all arcades that contain a column.

38

The antecedent part of the constraint works the same no matter what the consequent of

the constraint is. While the antecedent looks and acts like part of a first-order logic sentence, the

rest of the arguments of create_constraint/7 are meant to follow a closer-to-natural-language

syntax and use. This is advantageous for usability, as writing "there exists exactly one" or "there

exists a minimum of 3 and a maximum of 6" becomes more complex in FOL. Instead, the

constraints have more limited functionality, but are easier to understand and write.

The fourth argument of create_constraint/7 is the relation clause. As explained in the

previous section, the built-in has relationship works slightly differently than the user-defined

relations, like above. The main difference is the head of the rule that is created by the two kinds

of constraints.

When the user enters create_constraint(column, must, has, capital), it is translated

into:

object_to_assert(capital, A) :-

 label(A, [object(column, A), contains(0, A)], indefeasible, has, 1, 1, capital),

 [object(column, A), contains(0, A)],

 indefeasible,

 unless(min_is_met(A, has, 1, capital, [])),

The second line (starting with label), the second item in the list in the third line, and the fourth

line can be ignored for now.

It should be clear that the first part of the third line is taken directly from the condition

clause. Recall that the inference engine queries the knowledge base to find every fact that it can,

and then attempts to assert these facts. In order to prove the goal of object_to_assert(capital,

A), the call predicate needs to prove every clause in the body. Since the condition clause from

the constraint is a clause in the body, the call predicate needs to prove this first. If the call makes

39

it past the conditions, then the variable A has been matched to some appropriate constant.

Working with the same example knowledge base that has been used so far, the variable A gets

matched to the constant ex_column.

The other clause that must be proven is the unless(min_is_met(...)) clause.

min_is_met counts the number of objects of the type matching the seventh argument (capital in

this case) that are had by the constant (ex_column in this case) selected by the condition clause.

If min_is_met finds at least the minimum number of these objects, then it succeeds. If

min_is_met succeeds, then unless(min_is_met(...)) fails. This means that if ex_column

already has a capital object, the goal of object_to_create(capital, ex_column) fails, so no new

capital object is created for ex_column. If min_is_met fails, then that means there are not

enough objects to meet the minimum, so unless(min_is_met(...)) succeeds.

If all the clauses in the body of the rule succeed, then the instantiated head of the rule is

returned to the inference engine as a success, and the inference engine then tries to assert that

head, and all other goals it could prove, with assert_fact. The head of this rule,

object_to_assert(capital, A), is a special designation so that the program calls

assert_object_instance(capital, A), which then calls assert_fact for the two appropriate facts.

Constraints can be written for any user-defined relation as well, and though they work

almost the same way, there are a few notable changes.

create_constraint(capital, must, above, shaft) is translated into:

above(A, B) :-

 label(A, [object(capital, A), contains(0, A)], indefeasible, above, all, all, shaft),

 [object(capital, A), contains(0, A)],

 indefeasible,

 unless(min_is_met(A, above, all, shaft, [])),

 find_object_target(A, above, shaft, B).

40

Clearly the first change is the head. The goal for user-defined relationship constraints is

slightly more straightforward. If the goal is proven, then the inference engine attempts to assert it

as a fact.

The second change is the way that the minimum clause works. In user-defined

relationship constraints, the value for minimum and maximum can be, and will default to if not

given explicitly, the value all. The all signals that the relation holds for any number of objects

matching the conditions. When the minimum value is all, the min_is_met goal always fails, so

the unless(min_is_met(…)) goal always succeeds. If the minimum value is a number, the

min_is_met clause works in a similar way to has constraints. The difference is that instead of

counting "children" objects like the has relation does, it looks for "sibling" objects of the correct

type and that have a fact for the relationship between the two, which essentially looks like:

(has(X, Sibling1), has(X, Sibling2), above(Sibling1,Sibling2)).

Finally, the non-has constraints have a final clause of find_object_target/4. This is used

to find a sibling object of the correct type, but where the relationship between the two objects is

not already asserted to the knowledge base. find_object_target fails when there are no more

objects of the necessary types to create relationship facts for. This happens if constraints

determine that a column only has one shaft, but another constraint says the capital is above two

shafts. This constraint will also inevitably fail when the all amount is used for minimum and

maximum, because this ensures that it applies to each object it could apply to no matter the

quantity. If the user-defined relationship constraints created new objects, the use of all as a

quantity would not make any sense, just as it makes no sense for has constraints.

With constraints, term definitions, and the ability to assert facts, the user has all the basic

functionality of the ARC Logic system. The system could be used, as it has been described so far,

41

to do classical logical inference, where every proposition is either true or false. The next chapter

introduces, and the rest of this thesis is built on, aspects of the non-monotonic knowledge

representation and inference that moves the system past classical logic and closer to natural

description.

42

CHAPTER 5

NON-MONOTONICITY

The goal of the ARC project is to allow users, or natural language processing software, to

easily create and use logical descriptions of Gothic cathedrals. The closer the logical system is to

encapsulating the natural style of description, the more efficient and accurate it can be. For this

reason, the ARC Logic system was designed with considerations of natural description, and the

non-monotonic nature of the program addresses a significant element of natural description.

Chapter 2 briefly explained that much of the efficiency of natural descriptions is a result of all

the things that are not said explicitly, but are implied. Natural description relies heavily on

assumptions and the ability to logically model this requires some way of working with

assumptions. This chapter begins with a section providing background on the way natural

description is non-monotonic. The second section explains the concept of monotonic and non-

monotonic logics directly. The final section briefly explains defeasible reasoning, and how this is

used by the ARC Logic system.

5.1 NATURAL DESCRIPTION

Natural descriptions do not exist in a void; they are informed by all the other relevant

information related directly or indirectly to what is being described. Description of a formal

domain, like mathematics, can start with a finite set of axioms and move from there. Outside of

contrived domains, description of a domain is significantly more complicated. Information about

43

the domain can come from many, possibly conflicting, sources and methods over a long period

of time. Also, determining the boundaries of information in a given domain is messy, as domains

all bleed together, and can be related in complex webs of hierarchical relationships.

A natural description of any object or scenario in a real-world domain will likely

explicitly say very little in comparison to all the information that is assumed. A typical natural

description is not only light on explicit description for the sake of efficient communication;

verifiable information that fits implicit assumptions is likely to go completely unnoticed because

of the inclination to ignore consistent attributes. Someone may describe a Gothic cathedral, or

any building, without any explicit mention of the floor. If the describer was asked about the

cathedral having a floor, the answer would likely fall along the lines of "Of course it did! If it

didn't have a floor, I would have noticed and said something about it."

Natural descriptions take into account the assumptions from generic models or sets of

norms, and tend to only describe how a specific case varies from these generalities [8]. To model

the way natural descriptions takes these assumptions for granted, the ARC Logic system allows

users to create this background information by making general constraints about columns, naves,

or entire Gothic cathedrals, and then allowing more specific rules to override the general rules.

This method requires the ability to hold rules that apply to a set of constants (object instances),

while holding conflicting rules that apply to some subset of that set, and then reason with all of

these rules appropriately. In classical logic, contradicting information cannot be handled, so

overgeneralizations cannot be made. Instead, each possible exception needs to be made explicit

so that no rules could lead to both P and ~P. The ARC Logic system allows users to write

overgeneralizations and exceptions, which requires a different type of knowledge representation

and reasoning than is provided by classical logic.

44

5.2 NON-MONOTONIC LOGICS

Monotonicity, an attribute of classical logic, is insufficient for modeling natural

descriptions, so the ARC Logic system incorporates a non-monotonic knowledge representation.

Monotonic functions are those that only increase or only decrease as the input to the function is

increased or decreased. As the input to a monotonic function increases, there are only two

possible behaviors for output: either the output is non-decreasing throughout, or it is non-

increasing throughout. In monotonic logics, the entailment function is monotonic, so new

information can only mean additional sentences, or nothing new, can be entailed. Nothing can be

taken away that was previously entailed. If some set of sentences A entails a sentence p, then p is

entailed by the union of A with any additional sentences.

Describing Gothic cathedrals monotonically would be very unnatural. If one were to

make a statement about Gothic cathedrals in general, such as "Gothic cathedrals have four

levels/tiers of elevation in the nave," then this rule, plus the fact that "Chartres is a Gothic

cathedral," would entail "Chartres has four levels of elevation in the nave." However, human

beings create rules for generalizations which do not apply to every scenario. Natural description,

like human reasoning in general, can use imperfect knowledge to draw reasonable and useful

conclusions. A fact could come from direct observation, such as "Chartres does not have four

levels of elevation in the nave." These are two contradictory facts, and classical logic has no way

to meaningfully handle such contradictions.

Natural descriptions often involve making generalized statements that do not always hold

for every case. This is acceptable because humans are not as incorrigible as monotonic logic.

Instead, most knowledge is held in a state of "X can be considered true unless there is a reason

not to believe X." Based on the general 4-level rule, someone would assume Chartres has four

45

levels, but would likely have little trouble reconciling this assumption with additional

information about the specific cathedral. For the ARC Logic system to have this ability, it must

be able to reason non-monotonically and handle contradictions, which inevitably arise when

using uncertain information. There are many different non-monotonic reasoning systems, but

each has the ability to work with uncertain information. To use uncertain information and handle

contradictions accordingly, non-monotonic systems have some way of keeping track of certainty

of facts and rules.

5.3 DEFEASIBLE REASONING

Defeasible reasoning is one of the non-monotonic methods of logical reasoning. In

defeasible reasoning, there are defeasible and indefeasible reasons. Indefeasible reasons logically

entail their conclusions [9]. Indefeasible rules are often called strict rules because no exceptions

can be made to the rule, and under no conditions could information from strict rules be

contradicted. If just indefeasible premises are used, the logic system would be classical logic.

Defeasible reasons do not logically entail their conclusions. Instead, they provide a reason to

believe some conclusion, but allow for the possibility that some additional information could

give a reason not to believe that conclusion. Defeasible reasoning is useful for logically

modeling assumptions. The set {P, "defeasibly P Q"} d╞ (defeasibly entails) Q. If both of the

sentences in the set are true, one should assume Q unless some additional information provides a

reason not to.

The concept of "assume Q is true unless there is reason to believe otherwise" should

sound familiar. Recall that Prolog's form of negation, negation-by-failure, is simply a measure of

whether or not something can be proven true. If some_goal cannot be proven true, then \+

46

some_goal, or unless(some_goal) is true. Since this implementation, like many

implementations, operates in an open world scenario, new information could be added to the

knowledge base that proves some_goal is true. Prolog therefore has a built-in implementation

of defeasible falsity. The next chapter will explain that in practical usage, implicit defeasibly

false is still different than explicit defeasibly false, because the explicit version cancels out

something being defeasibly true. The use of negation-by-failure as an implicit defeasible falsity

is very useful in this implementation, but the ARC Logic system also requires a way to use

defeasible reasoning to show something is defeasibly true.

The ARC Logic system implements these principles of defeasible reasoning in a manner

specific to the aim of modeling natural description. The ARC Logic system uses the concept of

defeasible knowledge as its measure of certainty. A fact in this implementation is indefeasibly

true, defeasibly true, defeasibly false, or indefeasibly false. Rules are either defeasible or

indefeasible. Some types of non-monotonicity have a scale of certainty of information. In

probabilistic logics for example, a proposition q could be true with 87% likelihood. Defeasibility

in the ARC Logic system is not a measure of how certain some information is, or how much

credence to give some fact or rule; it is simply a binary of either known with certainty or not.

This binary certainty level allows for reasoning to work very similarly to classical logics, as will

be explained in the section on the certainty-preserving call predicate.

Defeasibility has no measure for deciding under what conditions something should be

assumed. If the user decides that P should be assumed, and P Q should be assumed, then the

ARC Logic system will also assume Q. The ARC Logic system makes no determinations about

the adequacy of the justifications for an assumption. Determining this would be extremely

complex; it would involve determining the credibility of sources of information, where the

47

burden of proof lies, and many other factors. The justification for assumption is therefore left to

the user. If a user adds a general rule to the ARC Logic system that says "all Gothic cathedrals

have one fire-breathing dragon," the ARC Logic system will create a fire-breathing dragon

instance for each Gothic cathedral instance unless it has a reason not to. This is of course no

different from classical logic. {cathedrals have dragons, Chartres is a cathedral} ╞ (entails)

Chartres has a dragon in classical logic. Logic reasoning is truth-preserving; true arguments

must lead to only true conclusions. Defeasible reasoning in the ARC Logic system is truth-

preserving and defeasibility-preserving; indefeasibly true premises lead to only indefeasibly true

conclusions, and reasonably-assumed premises lead to reasonably-assumed conclusions. The

ARC Logic system has a simple but precise method for determining the defeasible truth value of

a conclusion that directly parallels classical logic. This defeasibility-preserving inference is

explained in the next chapter. The ARC Logic implementation of defeasible knowledge is only a

minor expansion from classical logic, but it is enough of an expansion to allow the desired

natural description ability of using overgeneralizations and exceptions.

The concept of P as a defeasible reason for Q is rather straightforward; if P, then assume

Q, unless there is reason not to. It is the "unless" clause, the manner in which it is determined if

Q is defeated, that adds complexity. Defeaters are types of reasons that do not allow a new

conclusion to be drawn, but instead give reasons to not believe some assumption. John Pollock

famously identified two different kinds of defeaters for defeasible reasons [9]. A rebutting

defeater gives a reason to deny the conclusion, Q. An undercutting defeater attacks the reasoning,

'if P then defeasibly Q', itself, and therefore the deriving of Q from it [9]. The ARC Logic

system uses, with liberties, the concept of rebutting and undercutting defeaters to compare

conflicting constraints, which will be explained in detail in the next chapter.

48

Unlike a general extension of Prolog for defeasibility, like d-Prolog [10] [11], the ARC

Logic system can take advantage of the general domain and the specific type of description used.

In a defeasible reasoning system, two separate lines of inference can lead to conflicting

conclusions. The most common example of this is called the Tweety triangle [10]. In the Tweety

triangle, the following information is in the knowledge base:

bird(X) -defeasibly flies(X)

penguin(X) -defeasibly not_flies(X)

penguin(X) bird(X)

penguin(tweety)

This situation allows for both not_flies(tweety) and flies(tweety) to be derived. When a

conflict arises, argumentation is necessary. Argumentation is a way to reason about a claim

based on the arguments for and against it [12]. Deciding which rules take priority over other

rules can be complex. The domain of natural description makes this prioritization much easier. In

the example of three and four storied Gothic cathedrals, it was intuitive and obvious that the

person trusted the information specifically about Chartres over the conflicting information about

Gothic cathedrals in general. There is a natural and useful bias to assume that more specific

information takes precedence over less specific information. It is a justifiable assumption of the

ARC Logic system that specificity is useful for choosing which piece of conflicting defeasible

information to use.

The d-Prolog system makes the same assumptions about specificity as a natural way to

resolve conflicts between defeasible rules [10]. d-Prolog determines specificity by checking if

one chain of reasoning entails another. With the indefeasible information that penguin is a type

of bird, the system concludes the rule saying penguins do not fly is more specific than the rule

49

saying birds fly, so this line of reasoning takes precedence and it is determined that Tweety does

not fly.

d-Prolog is written for very general logic programming. The ARC Logic system has the

advantage of a specific domain, so alternative approaches for determining specificity can be

used. The domain of description as implemented in the ARC Logic system has a very straight-

forward way of measuring specificity. A constraint about the number of levels in Chatres is

clearly more specific than a rule about the number of levels in Gothic cathedrals. Determining if

one constraint is more specific than the other requires determining if the set of possible constants

the first constraint applies to is a subset of the set of possible constants the second constraint

applies to, if they both apply to the same set, or if the first constraint is a superset of the second.

The following chapter explains the method used to determine if one constraint is more specific

than the other.

The term rebut is used in the ARC Logic system to refer to conflicting constraints that

apply to the same set, because the constraint defeats the old conclusions drawn. When one

constraint applies to a subset of the other, this is referred to as undercutting in the ARC Logic

system. The more-specific constraint defeats the reasoning of the over-generalizing constraint,

and the over-generalizing constraint is modified appropriately. The exact approach of the ARC

Logic's rebutting and undercutting of constraints, and how this differs from Pollock's use of the

terms, is also explained in detail in the following chapter.

50

CHAPTER 6

IMPLEMENTATION OF DEFEASIBILITY

In classical logic and traditional Prolog, proven consequents can be separated from their

consequence relations. The set {P, P Q} ╞ Q, so Q can then be used without consideration of

the set that entailed it. In a defeasible system however, the consequents of rules may "not be

detachable even when their antecedents are derivable," as one of these detached consequents

could be defeated by additional information [10]. In the Tweety triangle example, the reasons to

believe that Tweety flies and the reasons to believe that Tweety does not fly are necessary to

determine how the conflict should be resolved. Without this information, there is no information

that distinguishes the justification for the two conclusions.

The ARC Logic system has defeasibility functionality as a result of three components.

First, ARC's logic system has a way to hold meta-information about facts and rules. It is not

enough to say some P is true or false; the system needs to know the certainty of the truth value of

P. Secondly, the system has a defeasibility-preserving method of inference that uses this meta-

information of premises to determine the defeasibility of conclusions. Thirdly, the system has a

method for comparing conflicting lines of reasoning. This chapter explains how these three

components are implemented in the ARC Logic system, and briefly discusses how they differ

from other conceptions of defeasible reasoning in order to fit the domain and demands of this

implementation.

51

6.1 DEFEASIBLE KNOWLEDGE REPRESENTATION

Chapter 4 discussed the knowledge representation in the ARC Logic system, but

intentionally ignored the aspects of the representation that are only necessary for defeasibility

functionality. This section augments chapter 4 by explaining how these functions are built into

all three types of domain knowledge: facts, constraints, and term definitions.

6.1.1 Defeasibility of Facts

In defeasible reasoning, consequents may not be detachable from their consequence

relations, which is problematic for a forward-chaining inference system like the ARC Logic

system. A forward-chaining system makes all derivable information explicit, instead of waiting

for a goal to match. In a backward-chaining program, a goal (query) must be determined first,

then the system works backwards to prove all the goals necessary to prove that first goal. Prolog

is a backward-chaining system, requiring a goal up front, and technically, any program written in

Prolog requires backward chaining to solve a goal or goals. The ARC Logic inference engine is

itself essentially just a query. The ARC Logic system can be said to be a forward-chaining

system because it fills the knowledge base with all the information that can be inferred, in the

form of facts. To do so requires detaching the derivable consequents from their antecedents, but

a complete detachment is not possible in a defeasible reasoning system [10]. This

implementation circumvents the need to keep facts tied to their method of proof, by holding two

important pieces of metadata for each fact in the knowledge base.

The first piece of metadata is the defeasibility of the fact, which can either be defeasible

or indefeasible. The input method for asserting facts is assert_fact(+X, +Defeasibility, -

Asserted). If the user writes an assert fact input with only one argument, such as

52

assert_fact(above(2,3)), then the ARC Logic system defaults to indefeasible. The difference

between defeasible and indefeasible should be clear, and the way these two are compared will be

clear later in this chapter.

The other piece of metadata, the origin, is necessary to allow for removal of defeasible

facts that should no longer be assumed. Because the system is non-monotonic, facts in the

knowledge base are not necessarily "safe" from new information. If some fact or rule is modified,

removed from, or added to the knowledge base, the system needs a way to expunge all the facts

that were consequents of the no-longer-usable information, or those facts that were consequents

of the lack of some information that is now added. Assume the KB contains {P, R, P Q, (R

unless S) T}. From these, Q and T are inferable. If P is removed from the KB, then Q no

longer follows, and it is important that the ARC Logic system recognizes this. The same is true

for T if R is removed. The (R unless S) T implication also means that if some new information

S is added, then T does not follow. In the ARC Logic system's implementation of defeasible

reasoning, information that is a consequent of any defeasible fact or rule is itself defeasible.

Since only defeasible rules and facts can be modified or removed from the knowledge base, all

the information in the knowledge base that could potentially become inderivable is also

defeasible.

When the inference engine is called, before it forward-chains to finds everything

derivable from the current knowledge base, it clears away anything that could possibly be

incorrect in light of the new information by retracting all facts that are defeasible. After the

retractall is used, the KB will only contain facts that have justification, but will not necessarily

contain all the facts that have justification. Even after inference takes place, there is still the

possibility that not all facts that are justified are in the KB. Facts can be justified based on their

53

derivability (defeasible or classic entailment), but they are all justified if they are entered by the

user directly.

In a classical, monotonic, logic system, if P is in the knowledge base, then the system

treats P as true. The logical inference makes no claims to the truth of P, only what can be

derivable assuming P is true. In the ARC Logic system the user can directly input a defeasible

fact, which has the justification to be assumed true unless there is some reason not to. If the only

condition for a fact falling under the axe of retractall is that it is defeasible, it will also remove

user asserted defeasible facts. Unlike inferred defeasible facts, they will not return when the

inference engine is run. The function to retract all the facts must be slightly more precise to

ensure that every fact that is justified, whether from inference or because it was added directly, is

in the knowledge base. The second piece of metadata stored with each fact is the origin of the

fact, which can be either inferred or explicit. When the assert fact input method is called, it

checks the value of the origin flag and uses this value to as the second piece of metadata, which

is the third argument, for fact/3. The origin flag is set to explicit by default, and changed to

inferred temporarily whenever the inference engine is run, since this inference process uses the

same assert fact input methods. Instead of retracting all defeasible facts at the beginning of a

call to the inference engine, the ARC Logic system retracts only those facts that are defeasible

AND inferred.

The defeasible parts of the ARC Logic system's knowledge representation are rather

generally straightforward. One point of complexity arises in the use of objects. Object facts are

designed, for simplicity, to be a hybrid of one fact about type and one about existence. The

certainty of the type of an object is generally an irrelevant concern in this domain. It is unlikely

that a user would want to create an object instance for some object without knowing what the

54

object is. It is very possible that one would want to create constraints for uncertain types of

objects, such as "each arch is above two supports," without needing to say that these objects are

columns or piers. The current implementation of the ARC Logic system does not allow for this.

For balance between simplicity and versatility, constraints are designed so that a simple type is

used as the last clause. Supertypes are only to be used in the condition clause of constraints and

queries. For the sake of simplicity, assumptions were made in the ARC Logic system that each

object instance has a type, that this type is certain, and that there is no reason to have information

about the type of some instance if that instance does not exist. In this system, the certainty of the

type is irrelevant, but the certainty of the existence of the object instance is crucial, and it is this

value that is reflected in the defeasibility metadata for an object fact.

6.1.2 Defeasibility of Constraints

In the use of the ARC Logic system, most facts will be inferred from constraints and term

definitions entered by the user. Both of these types of domain information allow the user to

express aspects of defeasibility. These indications of defeasibility are used when the constraints

and logical properties of terms are converted into rules, and are used by d_call to ensure the

facts derived from these rules are asserted with the correct defeasibility.

When create_constraint was explained in a previous chapter, the third argument was

ignored. This argument represents the defeasibility of the constraint. When the value of the third

argument is must, the constraint is considered indefeasible. When the value is d_must,

generally, or presumably, the constraint is considered defeasible. The defeasibility of a

constraint matters for two related but separable reasons. First, it matters in the way conflicting

constraints are compared, as discussed later in this chapter. Secondly, the defeasibility of the

55

constraint is a factor in the determination of the defeasibility of the consequents from the

constraint. The third line in the body of a rule made from create_constraint will say either

defeasible or indefeasible, which, when called by d_call, will always be defeasibly true or

indefeasibly true, respectively.

6.1.3 Defeasibility of Term Definitions

In the ARC Logic system, terms are considered global and monotonic. The assumption is

that a term has the same meaning for the duration of a session and in all contexts within a session.

Term definitions therefore are indefeasible; they cannot be contradicted or excepted. If above is

defined as transitive, asymmetric, and irreflexive, the assumption made by this implementation

is that above should hold this behavior throughout. Aboveness has the same implied behavior

when talking about parts of a column or the vaults and the floor.

The concept that terms, both relationship terms and object terms, have one meaning in

one context and a separate meaning in another context is understandable, but implementing this

would likely add more confusion than functionality. If a user wants to define terminology that

works differently in different contexts, this can be done by making an adjustment in taxonomy

rather than by adding defeasibility to terminology. Term names are defined by the user, so if a

term has a different semantic value in two different contexts, a naming convention can be

devised to separate these into two or more distinct concepts with different names, similar to the

tutorial's use of above and immediately_above.

While term definitions themselves contain no defeasibility functionality, individual

logical properties of terms do. Unlike the create_constraint method, which creates only one

new Prolog rule for the KB, the define_relationship method creates one or more rules for each

56

logical property in the list. It is the individual logical properties, and the Prolog rules that follow

from them, which can be defeasible or indefeasible reasons. While defeasible logical property

rules cannot be modified like defeasible constraints, they both allow for the user to indicate the

defeasibility of the reasoning itself. The six logical properties already listed for

define_relationship/2 in chapter 4 are indefeasible. The transitivity of above, for example,

would be indefeasibly true in almost any possible usage. There may be some logical properties of

relations however that would be useful to assume, but that are not certainties. The user can create

relationships with defeasible variations of any of the positive or negative logical properties, by

using the same property atom but starting with a "d_." For example, a user may want to represent

a relationship for 'bears', as in 'bears some of the weight of'.' If a bears some of the weight of b, b

bears some of the weight of c, the user may want the system to automatically infer that a

defeasibly bears some of the weight of c. This can be done by entering

define_relationship(bears, [d_transitive]). The defeasibility aspect of the creation of Prolog

rules from logical properties works the exact same way as with constraints; either an always-

defeasible or always-indefeasible clause is added to the body of the rule. The same principle and

method works for define_metarelationship. For example, the user could include

define_metarelationship(d_implies, below, bears), since it might be useful to assume, but

not certainly true, that if an object is below another object it is bearing the weight of that object.

6.2 DEFEASIBILITY-PRESERVING INFERENCE

The previous section explained the way metadata holds information about facts, and the

way defeasibility is included in the rules from constraints and the logical properties of term

definitions. To use this information to prove goals, while also tracking the certainty of the proof,

57

requires a valid method of reasoning. In classical logic, a method of reasoning is valid if it is

truth preserving. The reasoning method of the ARC Logic system must be both truth-preserving

and certainty-of-truth-preserving.

Prolog proves some_goal by backward-chaining to prove any other goal that could lead

to the proof of some_goal. When this inference system of Prolog needs to be called explicitly, it

is done with the call/1 predicate, such as call(some_goal). The ARC Logic extends the

inference capability of Prolog with the predicate d_call/2. When the user runs the query

q(object(X,Y)), they are making a call to the d_call predicate, and when the inference engine

finds everything derivable it also uses the d_call function.

It is because of the work of the d_call function that the rules created from constraints and

logical properties of terms look so simple. These rules do not need to extract facts from their

encapsulation in metadata, or concern themselves with assigning the right defeasibility to the

head of the rule; this is all done by the d_call function. It is important to note that the d_call

predicate does not replace the inference system built in to Prolog, nor does it break the rules of

this system. The d_call predicate itself is called by the standard Prolog inference. Defeasibility is

added to Prolog in a manner similar to the way explicit negation is added. Prolog considers

not_above(1,2) to be true, which is only considered by the users and the ARC Logic extension

as equivalent to above(1,2) being explicitly false. In the same way, Prolog inference considers

fact(above(1,2), defeasible, inferred) in the knowledge base to be simply true. As far as the

Prolog system itself is concerned, it is certainly true that (above(1,2) is uncertainly true). The

extension of the explicit negation and defeasibility in the ARC Logic system is a maneuver to

make Prolog behave as though it had explicit negation and defeasibility, without changing the

way Prolog itself works.

58

Since the d_call predicate is only a slight extension of the way the standard call predicate

works, it is rather simple to implement and understand. In standard Prolog, a fact such as

bird(tweety) is just a shorthand version of bird(tweety) :- true. To prove flies(tweety), the

Prolog inference works its way through the knowledge base, unifying with heads of rules and

taking each clause in the body as a new goal to be proven. flies(tweety) is matched with the

head of flies(X) :- bird(X), so the new goal becomes bird(tweety). If the goal (or each goal in a

conjunction) leads to a true, then flies(tweety) can be validly inferred.

d_call works the same way standard Prolog inference does, but keeps track of one

additional piece of information as it goes. If d_call succeeds, it unifies the defeasibility of the

success with a variable in the second argument. When d_call uses an ARC fact to prove a goal, it

takes the defeasibility metadata about that fact as the certainty of the reason to support the goal.

Of course the d_call predicate also uses Prolog rules, created from constraints and logical

properties of terms, in order to prove goals. If above is in the ontology and is defined as

transitive, then the following rule is in the knowledge base:

above(A, C) :-

 d_ground(above(A, B)),

 above(B, C),

 indefeasible.

To prove above(A,C), each clause in the body becomes a goal that has to be proven, just

like in a regular Prolog call. Instead of simply determining if a clause can be proven, d_call

determines if a goal can be proven and the defeasibility of that proof. When a conjunction of

clauses is needed to prove a goal, the goal is given the same defeasibility as the weakest link; if

any one of the clauses is only provable defeasibly, the new fact must also be defeasible. The

d_call function uses a predicate that returns all the alternatives from back-tracking, just like

59

pushing the semicolon on a query to see all possible matches. If through backtracking, alternative

proof methods are found, then the strongest defeasibility amongst these is assigned to the new

information, because if a fact can be proven through a defeasible chain of reasoning and an

indefeasible chain of reasoning, then it is known indefeasibly. This is also true for queries and

constraint conditions that include disjunction directly with a semicolon.

In the ARC Logic implementation, indefeasible vs. defeasible of d_call/2 works

theoretically the same as true vs. false in classical logic. One false/defeasible clause makes a

conjunction false/defeasible, and one true/indefeasible clause makes a disjunction

true/indefeasible. In the ARC Logic implementation, no matter how much defeasible information

is required to prove a goal, the goal is considered defeasibly true.

There are special cases where the d_call predicate does not function as stated above. The

clause that simply says indefeasible (left out of the examples in chapter 4) always succeeds with

the defeasibility of indefeasible. Of course, if the clause were defeasible, it always succeeds

defeasibly. With this clause, the defeasibility of the logical property itself can play its part in

determining the defeasibility of above(A,C). If above was defined with d_transitive, then the

proof of above(A,C) would be always be defeasible, even if above(A,B) and above(B,C) can

both be proven indefeasibly. Defeasible rules from constraints and logical properties can only

lead to defeasible facts, while an indefeasible rule could prove facts as indefeasibly true, as long

as all the other clauses of the body can be proven indefeasibly true.

The d_call predicate is designed to work only with the domain data itself, which is in the

form of pure Horn clauses. Prolog has procedural predicates that cannot be written as pure Horn

clauses. When the d_call encounters predicates like print(X) or =< (less than or equal to), the

d_call predicate just calls these clauses with the standard call predicate. An important procedural

60

function in Prolog is the cut (!), which prevents back-tracking. While none of the rules from

domain information use a cut directly, they may call predicates that require using cuts, so d_call

calls these methods with standard Prolog inference, and the methods explicitly include code that

performs the duties of assessing defeasibility that are generally left to d_call. The cut is needed

for the negation-by-failure unless clause. Because negation-by-failure is defeasibly false, when

unless(X) succeeds (because X fails), it does so only defeasibly. The only exception to this is

when the unless predicate is used to call min_is_met, which makes no claim of defeasibility.

6.3 CONFLICT RESOLUTION

This thesis has so far explained how users enter defeasible domain information with input

methods, how this information is translated into Prolog rules and facts, and how the defeasibility-

preserving d_call predicate works. Together these allow for all the information in the knowledge

base to be labeled correctly as defeasible or indefeasible. This thesis has yet to demonstrate,

however, the use of this defeasibility information. The ARC Logic system is non-monotonic and

defeasibility-preserving so that it can appropriately handle conflicting information. This section

explains how conflicts, in facts and constraints, are resolved.

The ARC Logic inference engine queries the KB for all the facts it can, and then calls

assert_fact (or assert_object_instance which ends up calling assert_fact for two separate

facts). This is the same method the user can use to enter facts about relations and objects directly.

Calling assert_fact(X) does not guarantee that X will be asserted to the knowledge base. When

assert_fact is called, the candidate fact is compared to the information in the KB to check for

conflicts, and handle the conflicts if there are any. The first subsection explains how fact

comparison and conflict resolution work. When the user writes constraints with

61

create_constraint, these are also compared to the KB. The check and conflict resolution of

constraints is explained in the second subsection of this section.

6.3.1 Fact Comparison

Whenever assert_fact(some_fact) is called, the knowledge base is checked for

matching and conflicting facts. If some_fact is already in the knowledge base, then the metadata

of the matching facts are compared. If the new version of the fact is indefeasible and the old one

is defeasible, the old one is retracted and the new version of the fact is asserted. Just like with

d_call, the strongest proof of a disjunction is used. If there are any defeasible facts that were

derived using the replaced fact, these facts will also have the opportunity to be replaced with

indefeasible versions, because the inference loop is run until it performs a complete cycle

without asserting any new facts to the knowledge base.

 In addition to checking the defeasibility, the origin is also checked for matching facts. If

the origin of the new version is explicit, and the origin of the old version is inferred, then the new

version replaces the old. The origin only matters when a fact is defeasible, and it is important

that the strongest (the stronger being explicitly asserted) origin is used. If a defeasible fact P is

only known through inference, then P is removed from the KB if there is no longer the ability to

derive P. However, if P is explicitly stated it is not removed on this condition. A defeasible

explicitly stated fact can only be removed by an explicit conflict.

The advantage of defeasibility is that it can (sometimes) handle P and ~P, depending on

the justifications for each. When new fact assertions are checked, they are also compared to any

fact they conflict with. Facts can conflict because one is the negated version of the other, such as

above(1,2) and not_above(1,2), or because they are antonyms, such as above(1,2) and

62

below(1,2). If, in the process of assert_fact, a conflict is found, there are four possible

outcomes of resolution/irresolution.

The following chart shows these four simply:

Newly Asserted
defeasible indefeasible

Already in KB

defeasible Both facts removed
Old fact removed

New fact asserted

indefeasible New fact ignored Requires manual fix

Table 1. Defeasible Fact Comparison.

If the new fact being asserted is defeasible and the conflicting fact in the knowledge base

is indefeasible, the new fact is ignored. If the new fact being asserted is indefeasible and the one

in the knowledge base is defeasible, then the new fact is asserted to the knowledge base, and the

defeasible fact is retracted. If both of the conflicting facts are defeasible, then the best resolution

is to assume neither one to be the case, so the fact already in the knowledge base is retracted and

the new one is ignored. If the conflicting facts are both indefeasible, this is the same problem that

arises with contradictions in classical logic. ARC's logic system cannot automatically resolve this

problem, and instead warns the user, because an indefeasible contradiction signals that either the

user's ontology is self-inconsistent, or is constructed in a way that does not meet the

specifications of the program.

63

6.3.2 Constraint Comparison

When create_constraint is called, the ARC Logic system compares it against all the

constraints already in the KB in order to check for conflicting constraints. In fact assertion,

redundant facts are not allowed; only one version, the strongest version, of each fact ended up in

the knowledge base. Constraints that cause the inference engine to find redundant facts are not

problematic, as they ultimately result in fact assertions anyways, where redundant facts are taken

care of. The user can have a constraint say "all columns defeasibly have a necking" and then say

"all columns in the clerestory certainly have a necking." Here, both constraints would apply to

some column that is in the clerestory, but the indefeasible version will override the defeasible

version when they are asserted to the knowledge base. The only time such redundancy is

problematic is with object_to_assert facts. After the inference engine is finished querying, it

has gathered all the facts to be asserted, and at this step it checks that there are not two or more

identical object_to_assert facts, and only uses the strongest defeasibility if there is more than

one.

Unlike fact assertions, which are checked for both matches and conflicts, constraints only

have to be checked for conflicts. The ARC Logic system can resolve conflicting facts as long as

at least one of the facts is defeasible; the same is true for constraints, but the procedure for

handling conflicting constraints is more complex. There are two different ways in which

constraints can conflict, and the terminology of rebutting defeaters and undercutting defeaters is

borrowed from Pollock [9] to describe these two types of conflict in the ARC Logic system.

With this approach there is no need for the user to indicate a constraint is undercutting or

rebutting; the program automatically discovers if either is the case and deals with the constraints

appropriately.

64

For constraints to conflict in either way, they must have the same object type for the

consequent, and the minimum of one constraint must be greater than the maximum of the other

or the relations must be explicit contradictions (either negation or antonym). This check is the

only time that the maximum value is used in the ARC Logic system. The minimum could be

considered a rule about positives, "at least this many need to exist," and the maximum is a

negative rule "no more than this number can exist." This is why the inference engine is only

concerned with ensuring the minimum is met.

For constraints to be in conflict, they also need to potentially be applicable to the same

instances. The comparison between the condition clauses of the constraints determines whether

conflicting constraints are considered rebutting or undercutting. When the condition is exactly

the same, the constraints rebut each other. To check for exact sameness, which is used also for

matching constraints, =@=/2 is used instead of the standard unification. The use of variables in

constraint conditions should not be considered the same as using specific atoms. For example

(object(column, X)) should not be considered equal to (object(column, ex_column)), but they

are unified with the standard unification, so =@= is used instead of standard unification to check

for matching constraint conditions. Rebutting constraints are dealt with in the same way as

conflicting facts; as long as at least one is defeasible it can be resolved.

The ability to assume one thing, and then claim just the opposite, as is done with

rebutting constraints, can be useful, but in order to match the style of natural descriptions, which

often overgeneralizes and then makes exceptions, the ability to create generalizing constraints

and exception constraints is necessary. If one constraint applies to a set A, where A includes

every instance that meets some condition, and a conflicting constraint applies to only a subset of

A, then this second constraint undercuts the first.

65

Returning to the column example, assume constraint(X, object(column,

X),presumably, has, 1, 1, base) is already in the KB, and create_constraint(X,

(object(column, X), contains(Y,X), object(arcade, Y)), presumably, has, 0, 0, base) is

called. These two constraints translate to "it should be assumed that each column has a base" and

"columns in the arcade level do not have a base." The latter constraint is clearly more specific

than the former, and since it is also in conflict, the latter constraint undercuts the former. This

undercutting is only possible if the constraint being undercut is defeasible. The defeasibility of

the constraint doing the undercutting does not matter, but of course an undercutting defeasible

constraint can itself be undercut.

As explained in the previous chapter, the ARC Logic system works with the natural

assumption that the conclusion of a more specific rule should override a conflicting conclusion

from a more general rule. Because of the particular nature of Gothic cathedrals and similar

domains, specificity can be determined with a simpler process than it can be in the general

system of d-Prolog [10]. If one condition undercuts another, every possible instance that can be

matched to the more specific condition can also be matched to the general condition.

To programmatically determine if (object(column, X), contains(Y,X), object(arcade,

Y)), (now on referred to as condition A), is more specific than object(column, X) (condition B),

the ARC Logic system goes through each clause in condition B, and checks if it is "in" the

condition for constraint A. This is a straightforward process with just a couple of exceptions. The

basic functionality is similar to the built-in predicate member(?Elem,?List), which is true if

Elem is in the List, but there is one important difference. member uses unification, so it can

match a variable to an atom. When determining if one clause of a condition is inside another

condition, the unification of a variable to an atom is only acceptable if the variable is in the

66

general condition and the ground version is in the specific condition. Clearly object(column, X)

should be considered more general than object(column, my _column), but not the other way

around, and the ARC Logic system is careful in its matching.

While this matching is used for most clauses, there are two special exceptions that are

considered. The first exception for consideration is the use of subtypes. The condition

object(column, X) is more specific than the object(support, X), assuming that the subtype

relationship is defined. The other special kind of clause is the contains clause. The importance

of determining specificity of contains clauses will be clear in the next chapter when scope is

introduced. To know if contains(2, X) is more specific than contains(1, X), the predicate which

checks for sub-conditions checks if contains(1, 2). This approach to determining specificity

requires the use of additional information not present in the two clauses being checked, similar to

the way d-Prolog solves the Tweety triangle [10].

The function which checks for sub-conditions also returns the difference between the two

conditions. When conditions A and B are entered, the difference is ((contains, Y, X),

object(arcade, Y)). This difference is used to resolve undercutting constraints. The more

specific constraint is added to the knowledge base without modification. The more-general

constraint is retracted and modified before it is asserted back to the knowledge base. The

modification is an addition of the difference contained inside an unless clause. After this

modification, condition B looks like: (object(column, X), unless((contains, Y, X),

object(arcade, Y))).

After the comparison, modification, and assertions, the knowledge base from this

example contains two constraints (in their Prolog rules format) corresponding to constraint(X,

(object(column, X), contains(Y,X), object(arcade, Y)), presumably, has, 0, 0, base) and

67

constraint(X, (object(column, X), unless((contains(Y,X), object(arcade, Y)))),

presumably, has, 1, 1, base). If some fact for object(column, ex_column) is in the KB, and

d_call cannot prove (defeasibly or indefeasibly) that ex_column is contained in an arcade object,

then a base is created that belongs to ex_column. Every time the inference engine is run, it starts

by retracting all the facts that are defeasible and inferred. Each time, the facts for the base object

and has relation, which are defeasible and inferred, are retracted, then added back because of the

constraint. If some information is added which shows with certainty, or provides for the

assumption, that ex_column is contained in an arcade object, then upon inference the base and

has facts will be removed, and will not be asserted back by the inference engine as they are no

longer derivable.

Consider what happens if create_constraint(X, (object(column, X), contains(Y,X),

object(arcade, Y)), presumably, has, 2, 2, base) is called. This constraint rebuts the

constraint already in the knowledge base. If a defeasible constraint is rebutted by another

defeasible constraint, then neither constraint is used, so the only constraint remaining in the

knowledge base is constraint(X, (object(column, X), unless((contains(Y,X), object(arcade,

Y)))), presumably, has, 1, 1, base). If there is a column object, then a base is created for it,

unless that column is in an arcade, in which case, there is no justification to assume anything

about the column.

The user can also write constraints with unless clauses in the condition, and the

undercutting works correctly. The ARC Logic system allows users to create constraints without

explicitly including all possible exceptions, but the user can add these anyways. This might be

useful if an exception is known, but the constraint applying to the exception is unknown. The

user could write a constraint that applies to every Gothic cathedral except Chartres. The general

68

condition object(cathedral, X) is undercut by the more specific object(cathedral, X),

unless(object(cathedral, chartres)). When the first condition is modified, it becomes

object(cathedral, X), unless(unless(object(cathedral, chartres))). An unless clause inside

an unless clause works the way one would expect a double negation to work, except no values

are matched to variables on success. The double negation is automatically changed by the

program to a positive version so that future comparisons do not need to take the double negation

equivalency into consideration. Therefore, the modified condition ends up as object(cathedral,

X), object(cathedral, chartres) and it will only be applicable to Chartres cathedral.

The primary reason for using defeasibility to model natural language is the ability to

write general and exceptional rules, in a way that does not require explicitly making all

exceptions. The ARC Logic system gives users this ability, while ensuring that the KB contains

no overgeneralizations. All the exceptions the user would need to make explicitly in a monotonic

language are automatically added explicitly by the system itself, to ensure that no constant can

match the conditions for contradictory constraints. This is one more way the ARC Logic system

extends Prolog by converting defeasible logic concepts into facts and rules that can be handled

by Prolog's internal system.

The method for defeasible knowledge representation, inference, and the use of defeaters

is adapted from formalized descriptions of defeasibility to fit the ARC Logic system's particular

implementation. In this implementation, the facts themselves hold a measure of defeasibility,

allowing them to be separated from the consequence relations they came from, and allowing

users to directly assert defeasible facts in order to work with uncertain information. A valid

defeasibility-preserving inference in this implementation holds, no matter how much defeasible

information is used in order to prove the goal. Finally, the terminology for defeasible reasons is

69

adapted from their formalized descriptions for this implementation. The ARC Logic system's

defeasible constraints are equivalent to 'prima facie reasons' [9], or 'backing clauses' [12] in other

conceptions of defeasible reasoning. For example, {P, P (d) Q}╞ dQ, such that the backing

clause combined with proof for the antecedent entails the defeasible assumption of the

consequent.

The concept of defeaters is used in the ARC Logic system but this concept is adapted for

this domain and the goals of ARC Logic implementation. Defeaters only provide a reason

against the use of some defeasible reasons. Defeaters do not allow anything new to be derived;

they only provide a reason to avoid making a bad assumption. In the ARC Logic system, there

are not explicit defeaters. Because explicit negation is added to the system as a work-around of

Prolog's internal inference, explicitly-false facts are treated by Prolog the same as explicitly-true

facts. In the same way, the ARC Logic system does not have explicit defeaters, only constraints

that can conflict with other constraints. Even these negative constraints vary from the idea of

defeaters because they can potentially be a reason to add new facts to the knowledge base.

Because defeaters are implemented differently in the ARC Logic system, the terminology

for undercutting and rebutting defeaters is also adapted from Pollock's version [9]. Rebutting

defeaters are those that attack a conclusion that comes from defeasible reasons [9]. In the ARC

Logic system, if one constraint says "capitals are defeasibly above bases" and another constraint

says "capitals are defeasibly not above bases," the constraints rebut each other. They draw

opposite conclusions and together provide a reason to not assume either conclusion. If one of

these rebutting constraints was indefeasible, it would remain in the knowledge base, and could

derive new facts.

70

Pollock distinguishes rebutting defeaters from undercutting defeaters, which attack the

reasoning that lead to the conclusion, instead of attacking the conclusion itself [9]. In the ARC

Logic system, constraints are only undercut because they overgeneralize; the constraint makes

assumptions about entire sets when the constraint cannot be applied to the entire set. If the

constraint "all columns defeasibly have a base" (constraint A) is in the KB and a new constraint

is added saying "all columns in the clerestory defeasibly do not have a base" (constraint B), then

constraint B undercuts constraint A. In the ARC Logic system, the more-specific constraint does

not give a justification for no longer using the general constraint. If object(column, 1) is in the

KB and there are no facts saying it is contained in a clerestory, then object(base, 2) and

has(1,2) will be added to the KB because of constraint A. Constraint B does not provide any

reason to not assume object(base, 2) and has(1,2), it only provides a reason to deny the

overgeneralizing reason of constraint A.

Constraint undercutting could be considered a two-step process in theory. The first step is

in line with Pollock's conception of undercutting defeaters, because the undercutting constraint B

attacks the reasoning behind constraint A. Constraint B does so by providing justification for

believing that constraint A is overreaching in its implication. The implication about bases in

clerestory columns is wrongfully lumped in with an implication about bases for columns in

general. To resolve this overreach, constraint A is split, along the known fault line, into "all

columns in the clerestory defeasibly have a base" (constraint A1) and "all columns unless they

are in the clerestory have a base" (constraint A2). The second part of constraint undercutting is

close to rebutting, because constraint B provides a reason against constraint A1. Even though

constraint B is defeasible (indefeasible constraints can be undercutters also), it has justification to

be used because it was explicitly created, unlike A1, and because of the priority of specificity.

71

The ARC Logic system's implementation of defeasibility allows the user to assert

uncertain facts and uncertain constraints. It also allows the user to write overgeneralizing

constraints and then write constraints that are exceptions to other constraints without any need to

indicate or even notice when this is being done. These non-monotonic aspects bring the ARC

Logic system a step closer to natural description than is possible with monotonic logic and

conventional Prolog.

72

CHAPTER 7

SCOPE AND THE USE OF DEFAULT DESCRIPTIONS

Throughout this thesis, the majority of examples have been limited to columns. The

column case study allowed for the explanation of the knowledge representation, input methods,

fact and constraint comparison, the inference engine, and querying the knowledge base. Now that

all of these components have been explained, they can be combined, and the purview can be

expanded, with a brief introduction to the description of an entire Gothic cathedral. This chapter

demonstrates how all the components of the ARC Logic system already discussed can be scaled

up to the level of entire cathedrals and beyond, and introduces the scope method which facilitates

the use of the ARC Logic system on a large scale.

7.1 DESCRIBING DEFAULT AND SPECIFIC CATHEDRALS

The ARC Logic system is developed to be flexible, and it is adaptable to serve different

uses, different ontologies, and even different domains. The choices made in the example

description of a column may have seemed like the obvious choices, but even in something as

small as a column there is possible variation of description. Depending on what aspects of the

description a user is focused on, their taxonomy, and the default assumptions they choose to

work with, methods for describing the same scene can still vary significantly. This is true with

columns, but it is especially true with entire Gothic cathedrals. This chapter will provide the start

73

of a description of a cathedral simply to highlight the methods available to the user, not to

designate a standardized way in which Gothic cathedrals must be described.

The number of stories in the nave of a Gothic cathedral is an important part of an

architectural description, but this number varies from cathedral to cathedral. A description of a

generic, default, Gothic cathedral could say that a cathedral indefeasibly has a nave, and that a

nave indefeasibly has an arcade and clerestory, and defeasibly has a gallery and triforium,

because these levels are not necessarily present in every Gothic cathedral. The vertical sections

created split by columns that run along the side of the nave are called bays, and these can also

vary in number depending on the cathedral. The default cathedral could say that there are

indefeasibly a minimum of 4 and a maximum of 10 bays along the side, because it is known that

the number of bays in every Gothic cathedral falls within this range, or because if an object falls

outside this range it should not be classified as a Gothic cathedral. Even though there has to be at

least 4 bays, the generic model could say that the nave defeasibly has exactly 8 bays running

along the side. The ARC inference engine will create 4 indefeasible bays and an additional 4

defeasible ones.

If the user wants to describe a specific cathedral, they can load all of these constraints

written for the default cathedral into the knowledge base, and then write constraints for those

things where the specific Gothic cathedral varies from the default model. To describe the

cathedral in Chartres, the user would assert an object instance of a cathedral named chartres.

Then, any constraints that are specifically about Chartres, will contain in the condition argument,

the clause contains(chartres, X), or whatever variable is used for the universal quantifier.

To describe the three-story cathedral in Chartres, the user would likely want to create a

constraint, either defeasible or indefeasible, saying that Chartres has no gallery. The constraint

74

which said cathedrals defeasibly have a gallery is undercut by the more specific rule that pertains

to just Chartres. The user can next enter a constraint that Chartres has 7 bays along the side of the

nave. This constraint does not conflict with the indefeasible constraint that says there is a

minimum of 4 and a maximum of 10 bays, but it does conflict with the defeasible constraint

which says there are exactly 8 bays. Since the constraint pertains only to Chartres it is more

specific so it undercuts this constraint it conflicts with. If inference has already been run after the

Chartres cathedral object was asserted, there are defeasible facts for 4 bays in Chartres in the KB.

These defeasible facts will be retracted when inference is run again, and instead 3 bays will be

added to the KB because of the undercutting constraint about bays in Chartres.

7.2 SCOPE AND CONTAINERS

The constraints specifically about Chartres undercut the default constraints because they

are more specific. The assumption is that one would add contains(chartres, X) to the conditions

of each of the constraints. Manually including this information in each constraint about the

specific cathedral is awkward and unintuitive. To correct this, the ARC logic system includes a

way to alter the scope of the conversation. In natural description, the scope of the description is

often explicitly stated or at least implied. It is often very clear if a description is referencing a

concept in general or a specific instance that fits that concept. In the same way, a natural

description may be implicitly limited to a particular section of a cathedral or particular object,

and it is implied that the same rule cannot be applied everywhere throughout the cathedral. The

scope can be considered a "zooming" function that allows one to designate that the following

constraints describe only a particular area of a cathedral, just as they can designate that some

constraints only apply to the cathedral in Chartres or Notre Dame de Paris.

75

The user accesses this ability with the predicate set_scope/1. The scope indicates the

outermost container that is being described. Whenever a constraint is created, a contains(Scope,

X) clause, referred to from here on as the scope clause, is added to the condition, where Scope

is the current scope set in the knowledge base and X matches the universal quantifier (the first

argument) of the constraint.

When describing a default model, the user can call set_scope(default), or any other

name to give to the default model, then create constraints, which will automatically include

contains(default, X) in their conditions. In this case, default is not the name of any object, but is

rather just the name of a container. When object facts were described in an earlier chapter, it was

explained that all objects must belong to some other object or a container, and that the very top-

level (which is 0 by default) could not be an object because then it would require something to

belong to. A container designates a level at which constraints hold, and each object instance that

is contained in the container inherits the properties of these constraints, though these constraints

may be undercut.

To use the default model, the user needs to assert a cathedral object, either named default,

or named anything but have default as the value for the IsPartOf argument. The contains

relationship is reflexive, so an object contains itself. If the user creates a cathedral called default,

any constraints that include contains(default, X) in the conditions will be applicable.

To describe Chartres Cathedral, the user would write

assert_object_instance(cathedral, default, chartres). This indicates that the specific

cathedral of chartres is contained in the container default, so chartres will inherit all the rules

that apply to the default cathedral. Then the user can set_scope(chartres) and all the

constraints written from this point forward (until the scope is changed) will only be applicable to

76

chartres. Any constraints that conflict with the default constraints will undercut those

constraints because the constraints about Chartres are more specific.

7.3 DEFAULT DESCRIPTION HIERARCHIES

The notion that an implementation of the ARC project's goals would require some way to

fill in background information, and that this would require the use of a default cathedral, came

early in the research of the project. The original conception for the default cathedral was quite

different however. The original conception was to have a single default description file, which

would be used to fill in the gaps wherever they result from a user's description of a specific

cathedral. The work of this thesis started under the assumption that the logic engine would

require melding a default description with a user description, but it became clear that the non-

monotonic power was being wasted with this approach. In a description of a Gothic cathedral,

there is not just a split between the general cathedral and a specific cathedral; there are splits

between the general and the specific throughout. If a user can make assumptions about a generic

cathedral object, which can be excepted appropriately, there is no reason why the user should not

be able to do the same with a generic column object, or a generic nave, or clerestory, or base.

Because of familiarity with Object Oriented concepts, the idea of the default cathedral being the

cathedral class, and any specific cathedral, like Chartres, being an instance of that class, was

difficult to overcome. Instead, Chartres Cathedral and a default Gothic cathedral are just like any

other objects in the ARC Logic system.

The breaking of the class/instance model to use a flexible multi-level approach opens up

many possibilities for variation in user description. Just as one can use generalization and

exception with the objects inside the Gothic cathedral, constraints can be written at levels much

77

more general than Gothic cathedrals. The user for instance, could set_scope(generic_bulding),

and then create a description for a generic building with constraints such as "all buildings have a

floor," "all buildings have a ceiling," "the ceiling must be above the floor," etc. The user can then

set_scope(generic_gothic_cathedral). By using assert_fact(has(generic_building,

generic_gothic_cathedral), the user designates that the container generic_gothic_cathedral

is inside the container generic_building, so all constraints about generic_building will apply to

objects contained in generic_gothic_cathedral. If the user adds define_object(subtype,

cathedral, building), then all the constraints that apply to buildings will apply to cathedral

objects, so it will be inferred that each cathedral object has a floor and ceiling. Additional

constraints can be written at this generic_gothic_cathedral level, but only those aspects of a

Gothic cathedral that vary from a generic building need to be written exclusively. With this

description of a generic Gothic cathedral, the user could write a description for a specific

cathedral like Chartres, which will inherit constraints from the generic Gothic cathedral level and

the generic building level. The concept of a class/instance dichotomy is no longer present, but

the concept of class hierarchy and inheritance is. Just as classes can have multiple subclasses,

higher-level descriptions can be used by separate, more-specific, descriptions. A user could

create a generic building object, a generic Gothic cathedral object, a Chartres Cathedral object,

and a Notre Dame de Paris object, all in a single session.

The ability to have many levels of hierarchy of description, branching sub-containers for

description, and the ability to create any number of instances of different objects at different

levels allows the user the freedom for comparing logical models of just about anything. The user

could compare two or more different cathedrals, or compare a cathedral(s) against the default

cathedral. The user could also compare different versions of the same cathedral over time, as

78

many have been modified extensively for various reasons. If the user is working with a

description of Chartres from 1312 for example, they could set the scope to chartres_1312, and

add constraints, then set the scope to chartres_1593 to add constraints from a description from

that year. Then the user could create a cathedral object named chartres_1593 and one named

chartres_1312, and run queries comparing the two.

The ARC Logic implementation allows for a high degree of flexibility in the method used

for description and comparison of Gothic cathedrals. Constraints automatically undercut and

rebut, so users need not concern themselves with conflicting constraints, and the scope function

allows users the ease of shifting the context under which those constraints hold. The ARC Logic

system's implementation eschews the use of a single default model for filling in background

information of an incomplete description in favor of a more fluid method. The ARC Logic

system can be used in a manner reflecting the original conception of a single default model, but

the focus on a cathedral object is an arbitrary choice from the vantage of the ARC Logic system.

A description of a default Gothic cathedral works the same way as a description about a column,

or a description of the physical world in general, and all the necessary background information

can be constructed within a hierarchy of inheriting descriptions.

79

CHAPTER 8

CONCLUSION

The ARC Logic system can be extended in a number of different ways. This final chapter

will first discuss additional features that could be added to the ARC Logic system, and introduce

possible modifications to improve the time complexity of the system. The ARC Logic system

can be used as a standalone program, but the intention from the beginning is that it would be

extended to include input components, like natural language processing of natural text

descriptions, and output components, such as three-dimensional renderings of the logical

structure of a described cathedral. The second section of this chapter will explain how these

components, particularly the natural language processing component, will integrate with the

ARC Logic system, and how the nature of the ARC Logic implementation facilitates accurate

natural language processing. Finally, the third section will briefly highlight some possible

domains outside of Gothic cathedrals that ARC Logic system can be used for with little or no

modification.

8.1 EXTENSIONS OF THE ARC LOGIC IMPLEMENTATION

The goal of ARC Logic system is a useful and feature-rich implementation, which is not

too complicated. To achieve this, decisions were made to favor some aspects of simplicity of use

over greater expressive power. While this thesis touches on the justifications for these decisions,

80

they are certainly not the only approach; there are numerous ways the ARC Logic system's

implementation can be modified or extended with other features.

One aspect of the ARC Logic system that required balance between simplicity and

versatility is the use of constraints. Constraints allow users to write complex rules about the

relationships and object without needing to understand Prolog, but the types of constraints that

can be written are restricted. There are only two types of constraints: "any object matching some

condition has a minimum and maximum number of object of a particular type" and "any object

matching some condition shares a relation with a minimum and maximum number, or all, of

sibling objects of some particular type." These two types of constraints have almost endless

customizability and make up the majority of what would be described in a cathedral, but there

could be a good reason for the ARC Logic system to allow expression of additional types of

constraints. The use of constraints could be extended to allow for user-defined relationships

between non-sibling objects, for example. Chapter 4 includes a brief justification for this

limitation to sibling objects in the ARC Logic implementation, but it is possible for this to be

extended for some particular purpose. One difference between has constraints and user-defined

relationship constraints is that only has constraints create new objects. The constraint

implementation could be extended to include a way to indicate that "each capital is above a

shaft" is existence-enforcing, so that a shaft is created for each capital if it were not already

present. With more expressive power of constraints, the create_constraint input method would

likely also increase in complexity.

In Chapter 6, the inability to use supertypes in the consequent of a constraint, or assert

them directly, was discussed. A constraint stating "each arch is above two supports" is not

possible in the current implementation of the ARC Logic system. This is a not a result of the way

81

constraints work, but rather comes from the assumptions made about objects. If the fact about the

type of an object were separated from the fact about existence of the object, then defeasibility of

type could be implemented, and the system could work with objects while being uncertain of

their type.

Chapter 6 also explained the reasoning for keeping relationship term definitions global. If

there was some need for relationship terms to have different behaviors in different contexts, then

the ARC Logic system could be altered to do this in a way almost identical to the rebutting and

undercutting of constraints. Relationships in the ARC Logic system are always binary

relationships, but the system could be extended to include adjectives, which are either unary

relationships, or binary relationships between some object and a value. Adjectives have been

avoided in the ARC Logic implementation for two reasons. First, it has not been determined that

adjectives would add any useful expressiveness to the logical description of Gothic cathedral

architecture. Second, there are numerous methods by which one can represent adjectives, and

finding an optimal implementation would require some specification of the way they would be

used in the domain.

One very dramatic addition to the ARC Logic system would be the ability to model the

knowledge representation of multiple agents. The ARC Logic system implements defeasibility

by moving outwards one meta-level, in order to not only talk about what is known, but what is

known (the certainty) about what is known. While the ARC Logic system can be very useful for

comparing different descriptions of the same cathedral, the ability to logically represent the

descriptions (as agents) and their knowledge brings the logical description ability out another

level. The user could model information like "every description of a cathedral (defeasibly) states

that cathedrals (defeasibly) have 4 stories" and "John's description of a cathedral (indefeasibly)

82

states that cathedrals (defeasibly) have 3 stories." Some functionality along these lines could be

very useful for an examination of the method of description itself, comparing the way description

differs between people, periods of time, or even how description of Gothic cathedrals varies from

descriptions of other domains.

Each of these possible extensions to the ARC Logic system would add some level of

functionality, and also likely add some complexity for operating the system. There are some

possible modifications to the ARC Logic system that do not change the functionality, but could

improve the implementation. The concern of this implementation has been functionality over

optimization of space or time, and there are likely some places for optimization. The exception

of the contains relationship from the forward-chaining of facts was one implementation decision

made partially for consideration of time. The component of the system that could potentially be

sped up by a modification is of course the inference engine. The ARC Logic system's

implementation of the inference engine is a looping system. On each loop through the system,

the inference engine uses d_call, which is also used by the q for the user to query the KB. All

facts that can be derived, even those that come directly from facts in the KB, are returned in a set,

and then an assert_fact is attempted on each one of these. The time of the inference is linearly

proportional to the number of loops through the inference engine that must be made before there

are no new facts to assert. Some modification that would cut the search space, or the number of

assert_fact calls, would increase the speed of inference.

8.2 USE AS COMPONENT IN THE ARC PROJECT

The examples throughout this thesis have used the ARC Logic system as a standalone

program, but from the beginning the intention was to use the ARC Logic system as a component

83

of a larger implementation. To work in both these ways, the ARC Logic system was designed to

be very modular. The ARC Logic system is designed be work as a black-box. The user needs to

use the correct syntax for input methods and understand what the system does in a very general,

theoretical sense, in order to use the system.

Output from the system is simply the listing (or query-answering) of the facts derivable

from all the domain information that was entered into the system. One goal of the complete ARC

project implementation is the inclusion of software which takes the logical fact output and

creates two-dimensional or three-dimensional graphical renderings of the description. The ARC

Logic system outputs facts in line with the original conception of a logical inference engine for

the ARC project, and there is nothing particular to this implementation that would help or hinder

the creation of visualization software or any other use of the output data.

Though the output of the ARC Logic system works the way it was originally conceived,

the type and method of input is significantly different than the original conception. A major goal

of the ARC project is the creation of a natural language processing system that automatically

extracts all the relevant information, and turns it into input for the ARC Logic system. The

knowledge representation and method of input is of major significance to the design of a natural

language processing component, and how it would fit into the system.

 The most basic way the ARC Logic implementation helps facilitates accurate input from

the natural language processing component is by finding logical inconsistencies. Natural

language processing is a difficult task because of the complexity and range of natural language,

so incorrectly processed information is inevitable. Pointing out logical inconsistencies in the

extracted information is one of the main benefits to performing inference on the information. If

84

at least one of the conflicting facts is defeasible, the ARC Logic system can handle the

inconsistencies automatically, and avoid asserting facts that do not follow from the description.

In the original conception for the ARC project system flow, natural language descriptions

are converted to a simpler and limited set of English, the domain-specific Architectural

Description Language (ADL) [2] [3]. ADL allows the user to enter sentences like "A column is

a type of support. Every column has a base, a shaft, and a capital. Most columns have

a plinth. The base is above the plinth, the shaft is above the base, and the capital is

above the shaft." [3] This simple subset of English would then be converted into Prolog rules

and be asserted into the knowledge base.

The work of the translation from ADL to Prolog rules is achieved by the ARC Logic's

input methods. The create_constraint method for instance, would enter the equivalent of the

ADL proposition "Every column has a base" with create_constraint(column, must, has,

base). ADL could potentially be an easier method of input, so the system could be extended to

use this. The mapping from ADL to the ARC Logic system's input methods would be

straightforward. The standardized arguments of input methods available in the ARC Logic

system could be more useful than an ADL system, especially with other types of input, like a

graphic user interface that would allow the user to create constraints by selecting values from

options for each argument.

The main difference between the original conception, with the use of ADL, and the ARC

Logic implementation is that the ARC Logic implementation encapsulates the translation from

natural input to Prolog rules within the knowledge representation and inference system. Because

all domain information is entered through the input methods, the format of the information is

85

predictable, so it can be checked, compared, and modified easily. The ability to compare

constraints in this implementation is only possible because they are created in a uniform manner.

The conversion from input methods to Prolog rules is tightly intertwined with the

knowledge representation and inference engine of the ARC Logic system, but this system can

also potentially facilitate the use of a natural language processing component. The output of a

natural language processing component to integrate with the ARC Logic system would be the

information from the natural text in the form of ARC Logic input methods. A user using the

ARC Logic implementation as a standalone program enters input methods to add domain

information, as would a natural language processing (NLP) program or some other input

component. All the tools of the ARC Logic system available to the user are available to the NLP

program as well.

The defeasible reasoning system, with automatic rebutting and undercutting of

constraints, pushes the knowledge representation much closer to the natural language description,

allowing an easier or more accurate translation of the natural descriptions. A user can write an

overgeneralizing constraint and later (or first) write and exception constraint without having to

notice, much less deal with, the issue. When an NLP program extracts constraints from the

natural text descriptions, it does not need to analyze if these constraints are overgeneralizing,

because constraint comparison in the ARC Logic will take care of possible conflicts.

Defeasibility is also a good way to handle "most," "some," "generally," and other terms that

imply uncertainty. Certain indications in the text, or even headings of sections, can provide a

reason for the NLP program to shift the focus of the description to certain sections or aspects of a

Gothic cathedral, and the scope function facilitates this setting of context.

86

Finally, the ARC Logic system's approach to filling in missing information of a

description can be beneficial for a natural language processing component. The shift away from

the concept of the default model as a cathedral class and a specific cathedral as an instance of

that class, to a more fluid inheriting hierarchy model, allows the NLP component to use multiple

descriptions easily. The ARC Logic system allows multiple descriptions to be combined and

checked for consistency in a manner that is no more complex than a single description.

Combining different textual descriptions about specific cathedrals can create more complete

logical models of those cathedrals. Conflicts arising in the combination of cathedral descriptions

could highlight conflicts in the descriptions themselves, or highlight problems with the

translation by the NLP program into input methods.

The use of descriptions, even with a natural language processing component, would

likely need to coincide with some manually-created default model or models. A useful function

of a natural language component would be the ability to take a large number of descriptions

about general and specific Gothic cathedrals, and somehow combine their logical models to

automatically create complete default descriptions. The ability to automatically create complete

default descriptions for a domain would be very useful and have implications beyond the scope

of the ARC project.

8.3 APPLICATION TO OTHER DOMAINS

The ARC Logic system is essentially domain-independent because, aside from some

assumptions about the way objects and object-containment relationships work, all domain

information comes from the user through input methods. The input methods limit the format in

which information can enter the system, but there are no limitations on the information itself. A

87

user does not just have the ability to create and work with customized ontologies in the domain

of Gothic cathedrals; the ARC Logic system can be used for any domain that is similar. Any

domain which can be completely or shallowly expressed with the same types of domain

information can be rendered by supplying the ARC Logic system the appropriate inputs.

Anatomy, for example, is similar in many respects to architecture, and if one wanted to examine

logical connections between the pieces of the body they could do so with the ARC Logic system.

One could also use the system to model things quite different from Gothic or bodily

architecture, such as modeling sociopolitical interactions. Instead of architectural objects like

columns, or bodily objects like bones, the ARC's objects could be used to designate different

individuals, social groups, nations, cultures, occupations, economic classes, polit ical parties, etc.

Then the abundant relations between these groups/individuals/concepts could be created with

constraints. In descriptions of social interactions between groups and individuals, the

overgeneralization and specific exceptions are especially common. The defeasible nature of ARC

Logic system would be a powerful way to represent the highly generalized, assumption-filled,

domain of sociology and politics. The ability to use the input methods to write defeasible

domain knowledge, particularly the creation of constraints in an inheritance hierarchy, could be

very useful for logically modeling such a domain.

The ARC Logic system, whether it is used in the domain of Gothic cathedrals or some

other, similar, domain, contains the functionality to create and use logical models of the domain

to analyze natural descriptions. The ARC Logic system allows users, or other applications, to

add domain-specific knowledge to create a custom ontology for a domain, as well as any number

of default and specific descriptions, at different levels. These descriptions allow the user to

model uncertain information, and conflicting rules and constraints are handled automatically by

88

the ARC Logic system. All of this information is added through a few input methods, which do

not require expertise in Prolog or programming in general. The inference engine can be run,

which adds all information that can be derived to the knowledge base, along with the certainty of

each piece of information. This inference also checks for consistency, and ensures that only

derivable information is still available in the knowledge base. This knowledge base of facts can

then be queried or written to other output programs. The ARC Logic system is designed to be as

expressive yet simple as possible; a goal it attempts by pushing the logical domain as close to

natural description as possible. The ARC Logic implementation can be used directly in an

intuitive manner, and forms a solid foundation of knowledge representation and inference for

future extensions of the ARC project, as well as ventures into other related domains.

89

REFERENCES

[1] E.-E. Viollet-le-Duc, Dictionary of French Architecture from 11th to 16th Century, Paris:

Libraries-Imprimeries R´eunies, 1856.

[2] C. Hollingsworth, S. Van Liefferinge, R. A. Smith, M. A. Covington and W. D. Potter,

"Artificial Intelligence Techniques for Understanding Gothic Cathedrals," Proceedings of

the 2011 International Conference on Artificial Intelligence. Vol I. Worldcomp '11, pp. 175-

178, 2011.

[3] C. Hollingsworth, S. Van Liefferinge, R. A. Smith, M. A. Covington and W. D. Potter, "The

ARC Project: Creating logical models of Gothic cathedrals using natural language

processing," Proceedings of the 5th ACL-HLT Workshop on Language Technology for

Cultural Heritage, Social Sciences, and Humanities., pp. 63-68, 2011.

[4] W. J. Mitchell, The Logic of Architecture, Cambridge, MA: The MIT Press, 1990.

[5] L. Naish, Negation and Control in Prolog (Lecture Notes in Computer Science), Berlin:

Springer-Verlag, 1986.

[6] M. A. Covington, D. Nute and A. Vellino, Prolog Programming in Depth, Upper Sadle

River, New Jersey: Prentice Hall, 1997.

[7] M. A. Covington, D. Nute, N. Schmitz and D. Goodman, "From English to Prolog via

Discourse Representation Theory," Advanced Computational Methods Center, The

University of Georgia, 1988., 1988.

[8] G. Antoniou, "A Tutorial on Default Logics," ACM Computing Surveys, vol. 31, no. 3, pp.

337-359, 1999.

90

[9] J. L. Pollock, "Defeasible Reasoning," Cognitive Science, vol. 11, no. 4, pp. 481-518,

October 1987.

[10] D. Nute, "Defeasible Prolog," AAAI Fall Symposium on Automated Deduction in

Nonstandard Logics, pp. 105-112, 1993.

[11] D. Nute and M. Lewis, "A User's Manual For d-Prolog," University of Georgia, Athens,

1986.

[12] A. Cohen, A. J. Garc´ıa and G. R. Simari, "Backing and Undercutting in Defeasible Logic

Programming," in 11th European conference on Symbolic and quantitative approaches to

reasoning with uncertainty, Belfast, 2011.

[13] BjornT, "Triforium Chartres," Internet:

http://commons.wikimedia.org/wiki/File:Triforium_Chartres.jpg, 2006 [April 2012].

91

APPENDIX A

QUICK REFERENCE

INPUT METHODS:

TERM DEFINITIONS

define_relationship(+Name, +List)

List looks like [+Attribute1, +Attribute2,] or [] if no attributes.

Attributes are: transitive, reflexive, symmetric

Negative versions: intransitive, irreflexive, asymmetric

Defeasible versions: add a d_ to the beginning of any attribute

define_metarelationship(+Metarelation, +Relation1, +Relation2)

 Metarelation can be: implies or antonym

define_object(subtype, +SubType, +SuperType)

define_object(supertype, +SuperType, +SubType)

CONSTRAINT CREATION

create_constraint(+Vx,+Cond,+Must,+Rel,+Min,+Max,+Type)

Overloaded versions of create_constraint:

create_constraint(Type1,Must,Rel,Min,Max,Type2)

Type1 is changed to two arguements: X, object(Type1, X)

create_constraint(Vx,Condition,Must,has,Type)

92

 Min and Max both default to 1

create_constraint(Vx,Condition,Must,Rel,Type)

Min and Max both default to all

create_constraint(Type1,Must,Rel,Type2)

 Uses Min and Max defaults in respect to Rel, and converts Type1

FACT ASSERTION

assert_fact(+X, +Defeasibility, -Asserted)

assert_fact(+X,+Defeasibility)

assert_fact(+X)

Defeasibility defaults to indefeasible

assert_object_instance(+Type, +IsPartOf, ?Name, +Defeasibility, -Asserted)

assert_object_instance(+Type, +IsPartOf, ?Name, +Defeasibility)

assert_object_instance(+Type, +IsPartOf, ?Name)

assert_object_instance(+Type, +IsPartOf)

MASS INFORMATION RETRIEVAL

all_relations(-Relations)

all_constraints(-Constraints)

all_facts(+Type, ?Def, ?Process, -Facts)

all_facts(?Def, ?Process, -Facts)

all_facts(-Facts)

all_facts_rm/4, all_facts_rm/3, all_facts_rm/1

Same as all_facts but does not include metadata.

93

APPENDIX B

TUTORIAL EXAMPLES

This appendix lists the input methods for each tutorial example used. Each line is entered

in the Prolog query prompt. Alternatively, one or more .pl files can be saved and consulted that

contain the following lines.

SIMPLE COLUMN EXAMPLE (From Chapter 3)

?- define_relationship(above, [transitive]).

?- create_constraint(column , must, has, capital).

?- create_constraint(column, must, has, shaft).

?- create_constraint(column, must, has, base).

?- create_constraint(capital, must, above, shaft).

?- create_constraint(shaft, must, above, base).

?- assert_object_instance(column, 0, ex_column).

EXTENDED COLUMN EXAMPLE (Chapter 4)

?- define_relationship(above, [transitive]).

?- define_relationship(immediately_above, [intransitive]).

?- define_metarelationship(antonym, above, below).

?- define_metarelationship(implies, immediately_above, above).

?- define_object(subtype, column, support).

?- create_constraint(support, must, has, shaft).

?- create_constraint(support, must, has, base).

?- create_constraint(column , must, has, capital).

94

?- create_constraint(column , d_must, has, necking).

?- create_constraint(capital, d_must, immediately_above, shaft).

?- create_constraint(capital, must, above, shaft).

?- create_constraint(capital, must, immediately_above, necking).

?- create_constraint(necking, must, immediately_above, shaft).

?- create_constraint(shaft, must, immediately_above, base).

?- assert_object_instance(column, 0, ex_column).

Possible additions and their results:

?- create_constraint(column , must, has, 1, 1, necking).

 Creates indefeasible neckings for each column.

?- create_constraint(column , must, has, 0, 0, necking).

This can be defeasible or indefeasible. Removes the constraint for necking, so no necking

is created for any column.

?- create_constraint(X, object(column, ex_column), must, has, 1, 1, necking).

This can be defeasible or indefeasible and any number of necking. Constraint only

applies to this particular column.

?- assert_object_instance(necking, ex_column).

 Asserts an indefeasible necking object that overrides the defeasible fact for the object.

95

CHARTRES BAY EXAMPLE

Moving up slightly in scope, the user can create a default bay in a nave. The term bay is

used to designate a vertical slice, generally between columns, windows, or some other separating

object. For this description a bay will be considered the space between the large supports that

stretch from the ground to the very top of the interior of the nave. Figure 4 shows a bay in

Chartres Cathedral.

This is an example description of the visible interior face of one bay in the nave of

Chartres Cathedral.

?- set_scope(chartres).

?- create_constraint(bay, must, has, main_arcade_level).

?- create_constraint(bay, must, has, triforium_level).

Figure 4: Bay in Chartres Cathedral. [13]

96

?- create_constraint(bay, must, has, clerestory_level).

?- create_constraint(triforiumn_level, must, immediately_above,

main_arcade_level).

?- create_constraint(clerestory_level, must, immediately_above, triforiumn_level).

?- create_constraint(main_arcade_level, must, has, arch).

?- create_constraint(main_arcade_level, must, has, 2, 2, column).

?- create_constraint(triforium_level, must, has, 5, 5, column).

?- create_constraint(triforium_level, must, has, 4, 4, arch).

?- create_constraint(arch, must, above, 2, 2, column).

?- create_constraint(clerestory_level, must, has, 2, 2, lancet_window).

?- create_constraint(clerestory_level, must, has, rose).

?- create_constraint(clerestory_level, must, has, formeret_arch).

?- create_constraint(rose, must, above, lancet_window).

?- create_constraint(formeret_arch, must, above, rose).

?- assert_object_instance(bay, chartres).

This is a small example, and is of course one of an almost unlimited number of ways to

describe a bay. Here the user could create 8 bays in the nave, and each bay object will contain

the information for all 3 levels. Instead, the user could create 3 levels in the nave, and then

describe the horizontal information in each level, not even using the concept of bays, creating a

completely different hierarchy of the description.

