
Uli Bubenheimer

YALL — Yet Another Latin Lemmatizer:
A Morphological Analyzer for Latin and
A Reimplementation in Java

(Under the direction of Michael A. Covington)

This thesis describes a morphological analyzer for Latin and its reimplementation

in the Java programming language. The analyzer is divided into two parts, the

analysis of endings and a lexicon. Both components rely on tries (character–trees),

data structures for efficient lexical lookup. For the analysis of endings, a directed

acyclic graph (DAG) is used in place of the usual tree structure. The tries are

complemented by feature structures that include disjunction and negation. Graph

unification for feature structures is used as a main processing mechanism. The

deficits of the analyzer’s previous implementation in the C++ programming language

are pointed out, a comparison of C++ and Java is undertaken, and a description of

the new implementation is given.

Index words: Latin, morphological analyzer, inflectional morphology,

lemmatizer, trie, character–tree, letter–tree, Java, C++

YALL — Yet Another Latin Lemmatizer

by

Uli Bubenheimer

A Thesis Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Master of Science

Athens, Georgia

1999

c© 1999

Uli Bubenheimer

All Rights Reserved

YALL — Yet Another Latin Lemmatizer

by

Uli Bubenheimer

Approved:

Major Professor

Date

Approved:

Graduate Dean

Date

Acknowledgements

Many thanks go to Michael Covington for his ongoing support and assistance. In

addition, I want to thank Donald Nute and Rick LaFleur for their time and effort

with this thesis. I am also grateful to the Artificial Intelligence Center at The

University of Georgia for providing a stimulating research environment.

iv

Contents

Acknowledgements . iv

1 Introduction . 1

2 Theory . 3

2.1 Introduction . 3

2.2 Analysis of endings . 4

2.3 Lexicon . 11

2.4 Summary . 20

3 Java versus C++ . 21

3.1 Problems of the original implementation 21

3.2 Some advantages of Java over C++ 24

3.3 The reimplementation process . 33

3.4 New and improved program features 34

4 Conclusions and Outlook . 45

4.1 Theoretical refinement . 45

4.2 Practical refinement and reengineering 46

4.3 Future extensions . 46

Bibliography . 48

Appendices

A Unification with Negation and Disjunction 51

B A Feature System for Latin Morphology 53

v

vi

C More Examples of Standard Lexical Entries 58

D Inflection Tables . 60

D.1 Verbs . 61

D.2 Nouns . 65

D.3 Adjectives . 66

E Endings Trie . 67

F Source Code . 72

G YALL Class Documentation . 135

G.1 Overview . 135

G.2 Package yall . 136

G.3 Class Yall . 138

Chapter 1

Introduction

This thesis describes YALL (Yet Another Latin Lemmatizer), a morphological ana-

lyzer and lemmatizer for Latin and its reimplementation in Java. Part of this thesis

describes why the Java implementation is superior to an earlier implementation in

C++ and summarizes the experiences made in the reimplementation process; it also

includes a comparison of Java and C++ features from a software development point

of view. In addition, the thesis has served as an opportunity for me to widen my

knowledge and to learn Java, which has been widely talked about for a number of

years. Java has a number of interesting features like its combination of traditional

imperative programming with object–orientation, interpreted execution, platform–

independence, and Internet accessibility. At the same time, Java is supposed to be

similar to C++, which makes an investigation into their differences interesting.

Work on YALL started in the summer of 1994, leading to the first implementa-

tion in C++ described in Bubenheimer (1995). Since then, YALL has been refined,

leading to an improved theoretical basis and a better approach to its implementation

(through the stronger theory and by learning from mistakes made in the previous

implementation). Most of this thesis describes the results of the refinement, with

additional supplements translated from Bubenheimer (1995). One of the basic ideas

behind YALL, namely to approach Latin morphology with tries (character–trees,

letter–trees) was also discovered independently by Covington at about the same

time as my original implementation took place (see Covington, 1999).

1

2

This thesis does not focus on how Latin morphology can be described in terms

of the theory to be presented. This task has been done earlier and the result can be

found in Bubenheimer (1995). However, the theory will be illustrated by extensive

examples in Chapter 2 and Appendices B, C, D, and E. These appendices are largely

based on German materials from Bubenheimer (1995), and represent an introduction

in English to how exactly Latin morphology is described in terms of the theory.

Chapter 2 describes the present theory of YALL. Basic knowledge of Latin mor-

phology will be helpful to understand this chapter. Chapter 3 analyzes some prob-

lems with the previous implementation, compares differences of Java and C++, and

describes the reimplementation in Java. The chapter presupposes basic knowledge

of programming languages, object–oriented programming concepts, and of the C++

and Java programming languages. The final Chapter 4 attempts an evaluation of the

present state of development and possible future changes and improvements. Sev-

eral appendices follow which primarily give additional examples and elaborations of

concepts described earlier.

Chapter 2

Theory

2.1 Introduction

The morphological analyzer described in this thesis analyzes inflected Latin word

forms and returns a description of a form’s morphological properties and provides

the word’s base form, the lemma. Only inflectional word structure is analyzed, not

derivational structure. Since the program deals with written Latin, vowel lengths

are ignored. A sample run of the analyzer is given in Section 3.4.4, page 42.

To combine the goals of a linguistically sound morphological analysis and effi-

cient execution, tries (also known as character–trees or letter–trees) are used as the

main data structure to store and process both the system of Latin endings and the

program’s lexicon.

The morphological analysis is divided into two parts. The analysis of endings

(Section 2.2) analyzes and strips off a word’s inflectional ending. The remaining

word stem is then looked up in the lexicon (Section 2.3). Typically, the analysis

of endings, which does not have access to the lexicon, produces a great number of

analyses, many of which are only hypothetical and rely on non–existent vocabulary.

Lexical lookup then filters out those analyses that are legitimized by the existence

of appropriate word stems and matching morphological features.

3

4

2.2 Analysis of endings

2.2.1 Features

Latin is a richly inflected language. At the same time, Latin inflection is almost

exclusively restricted to the end of words and shows very regular inflectional patterns.

For example, the final -m in silv-a-m (from silva, forest) and fili-u-m (from filius, son)

indicates accusative case and singular number. -a- and -u- indicate a–declension

(also named first declension) and o–declension (or second declension), respectively.

Furthermore, nouns of a–declension can only have masculine or feminine gender,

while there are examples for nouns in every gender for o–declension (Allen and

Greenough, 1903).

To represent these insights formally, features in the form of attribute–value pairs

are used (Johnson, 1991). For the task at hand, attributes represent morpholog-

ical categories, while values represent elements from their corresponding categories.

Appendix B describes the system of features used by the morphological analyzer.

Attribute–value structures (feature structures) are sets of attribute–value pairs.

To represent the above examples, appropriate feature structures are:

[
case : acc
num : sg

]
(for -m)


decl : o

gen :


masc
fem
neutr


 (for -u-)

decl : a

gen :
{

masc
fem

} (for -a-)

5

The curly brackets in the second and the third example mark disjunctions of

feature values. Such disjunctions can be expanded distributively into equivalent

disjunctions of whole feature structures. This is demonstrated by the following

rewriting of the last feature structure from above, where ∨ denotes logical “or.”

Expanded feature structures like these will be used again in Section 2.3.3.

[
decl : a
gen : masc

]
∨
[

decl : a
gen : fem

]

As can be seen from a comparison of the expanded with its unexpanded form,

attribute–value structures with disjunctions of feature values allow to keep the rep-

resentation more compact and make it faster to process.

2.2.2 Unification

To combine features from different parts of the ending like -a- and -m in silv-a-m,

unification, or more specifically, graph unification for attribute-value structures can

be used (Johnson, 1991; Karttunen, 1984). For feature structures with disjunctions

of feature values and only constants as elements of those disjunctions, unification is

easy to sketch. To facilitate the following explanations, a single feature value will

now more generally be considered a disjunction with a single element.

Two feature structures A,B are unified (A tB) in the following way, resulting,

if successful, in a new feature structure:

• If an attribute occurs in exactly one of A,B, add it to the result, together with

its value disjunction.

• If an attribute occurs in both A and B, compute the intersection of its two

value disjunctions from A and B, and add the attribute to the result, together

with the value intersection. If the intersection is empty, unification fails.

6

For example,


decl : o
num : sg

gen :
{

masc
fem

}
 t


decl :

{
a
o

}
case : acc

gen :
{

masc
neutr

}
 =


decl : o
case : acc
num : sg
gen : masc



2.2.3 Tries

Tries (Knuth, 1973; Sproat, 1992) are one of the main concepts of the morphological

analyzer. Tries are commonly described as trees (in a graph–theoretical sense) whose

non–root nodes are annotated with letters. A trie stores a set of words which are

represented in the paths from the trie’s root node to its leaf nodes (Figure 2.1). One

7

a p

b d e r

or

Figure 2.1: A simple trie representing the Latin prepositions ab (from), ad (to), per
(through), and pro (for). Every path from the root node to a leaf node represents a
word.

The second generalization is that nodes are annotated with strings of characters,

not just single characters. This makes the representation of Latin endings more

meaningful. The idea is that a node’s feature structure approximately represents

the morphological “meaning” of the node’s string (or morph). The bottom half of

Figure 2.3 shows good examples.

An additional goal in the development of the endings trie was not only to design

a trie that accurately reflects endings, but which does so in a manner that captures

the regularities of Latin endings and contains as little redundancy as possible. To

this end, several nodes (annotated with empty character strings, ε) only serve to

represent certain morphological features, and the trie’s arcs define how they relate

to other nodes, morphs, and features. For example, nodes 98 through 104 in Figure

2.2 ensure valid gender for nouns and adjectives; e.g. for a–declension (node 108),

adjectives can only have feminine gender, while nouns can have feminine or masculine

gender.

8

106 ε

[
decl : o

]
108 ε

[
decl : a

]

102 ε

[
gen : fem

]
103 ε

[
gen :

{
masc
fem

}]
104 εgen :

mascfem
neutr




100 ε

[
gen :

{
masc
neutr

}]

98 ε

[
pos : noun

]
99 ε

[
pos : adj

]

115 -u-

[]
114 -o-

[]
118 -a-

[]

131 -s-
case : nom
num : sg

gen :

{
masc
fem

}


141 -m-
case : acc
num : sg

gen :

{
masc
fem

}


143 -e-
case : voc
num : sg

gen :

{
masc
fem

}


128 -m-
case :

nomacc
voc


num : sg
gen : neutr



132 -i-

[
case : gen
num : sg

]
135 ε

[
case : dat
num : sg

]
130 ε
case :

{
nom
voc

}
num : sg

gen :

{
masc
fem

}


133 -e-case :

{
gen
dat

}
num : sg



142 ε

[
case : abl
num : sg

]

0 ε

[]

Figure 2.2: A trie representing the regular singular declensional endings of nouns and
adjectives from a–declension (first declension) and o–declension (second declension).
It is a detail of the complete analysis trie. Each node contains a character string, a
feature structure, and a reference number (for documentation purposes here). The
character string can be empty (marked by ε).

9

0 ε

[]

1 ε

[
pos : verb

]

2 ε

[
stem : present

]

11 -a-

[
conj : a

]
12 -e-

[
conj : e

]

29 -ba-

[
tense : past
mode : ind

]
24 ε

[
tense : present
mode : ind

]
33 -bi-

[
tense : future
mode : ind

]

68 -mus-person : 1
num : pl
voice : active


70 -mur-person : 1
num : pl
voice : passive



Figure 2.3: Representation of first person plural in the present stem tenses for a–
and e–conjugation.

10

However, empty character strings can also designate actual manifestations of

morphological structure (often called null morphs) which are expressed by the

absence of a morph on the surface. An example is node 24 in Figure 2.3.

2.2.4 Algorithm

The program analyzes word endings from right to left. Consequently, the endings

trie is traversed along its arcs from the leaf nodes at the bottom toward the root

node at the top. The ending substrings of the nodes are matched with the analyzed

word’s ending from right to left in a linear manner. If a node’s string does not

match the word ending in the right place, an analysis using the path that led to this

node from a leaf node is not possible. An analysis is accepted if it reaches the root

node. In general, several alternative analyses (i.e., alternative paths) are found for

an ending.

While the trie is traversed, the feature structures from the visited nodes are

unified with each other, providing one single, unified feature structure per analysis.

If unification fails on some node, then an analysis along the present trie path is not

possible, similarly to a mismatch of node substring and ending substring described

above.

For a valid analysis, the part of the word that is matched in the trie is the word’s

ending, the unmatched part is its stem. The stem, together with the analysis’ feature

structure, is subsequently matched against the lexicon to eliminate invalid analyses

(cf. Section 2.3).

As an example, consider the previously mentioned silvam. One successful analysis

leads through nodes 141, 118, 108, 103, 98, and 0. It finds silv- as the word stem,

and the following morphological feature structure description:

11



pos : noun
decl : a
case : acc
num : sg

gen :
{

masc
fem

}



Another valid path is < 141, 118, 108, 102, 99, 0 >

12

vir-


pos : noun
decl : i
gen : fem
num : pl

 ¬
[
case : acc

]
gener-

pos : noun
decl : cons
gen : neutr

 ¬

case :

nomacc
voc


num : sg

 vis-
pos : noun
decl : i
gen : fem

case :

{
nom
voc

}
num : sg



vires-
pos : noun
decl : i
gen : fem
case : acc
num : pl


genus-

pos : noun
decl : cons
gen : neutr

case :

nomacc
voc


num : sg



v-
pos : noun
decl : i
gen : fem
num : sg

case :

{
acc
abl

}
g

e

n

ue

r

v

i

r s

e

s s

Stem Trie

Figure 2.4: A sample lexicon trie with stems for vis, force, and genus, gender. The
dashed lines indicate connections between word stems in the trie and their stem
entries (in a separate file). vis is listed with four stems in this lexicon (v-, vis-, vir-,
and vires-), genus with two (genus- and gener-). Each stem is associated with a
feature specification, described in Section 2.3.4.

13

2.3.3 Unification with negation

Lexical entries can be made more concise by using negation in feature structures

(Karttunen, 1984; Pereira, 1987; Johnson, 1991), even though the same information

can be expressed more elaborately without negation. Negation in a feature structure

specifies for which forms the feature structure is not suited; it does not make a direct

statement for which forms the feature structure is suited.

Unlike other aspects of unification, if an intuitive semantics for negation is used,

results can vary depending on the time when a negation is evaluated (cf. Pereira,

1987). Fortunately, this limitation does not pose a problem here, since the lexicon

component evaluates negations as the very last step, on feature structures that do

not become further instantiated afterwards.

It turns out that in the case of Latin morphology, no relevant loss of expressive-

ness is encountered when negation is limited to be applied to entire feature structures

rather than parts of them, as in the following:

¬
[

case : acc
gen : fem

]
(2.1)

Unification of this negative feature structure with a regular, positive feature

structure only succeeds if the latter does not contain accusative case and feminine

gender. For feature structures without disjunctions of feature values, unification of

a positive feature structure P and a negative feature structure N fails if and only

if the set of features in N is a subset of the set of features in P (for the restricted

kinds of feature structures that are used here). For example, unification of negative

feature structure (2.1) with the feature structure below fails:

decl : i
case : acc
gen : fem



14

positive negative 1

vir–


pos : noun
decl : i
gen : fem
num : pl

 ¬
[

case : acc
]

Figure 2.5: Lexical entry for the stem vir- of the noun vis; the negative feature struc-
ture indicates that this entry is not applicable to the accusative plural (because the
rare form vir-is is assumed not to occur). For the purpose of this and following exam-
ples, which only illustrate formal properties of the analyzer and do not necessarily
represent optimal analyses of Latin morphology, I assume an analysis of vis which
leaves out the uncommon forms vis and vi for gen. and dat. sg., and assumes a single
form vir-es for acc. pl. (and not the less common vir-is from regular i–declension, cf.

15

Subsequently, the lexicon is searched for an entry containing the found stem. This

search is efficient due to the lexicon’s trie structure. If no appropriate entry is found,

the analysis is discarded. If one is found, the entry’s positive feature structure is

unified with the feature structure from the analysis. If this unification succeeds,

each of the lexical entry’s negative feature structures are unified with the result. If

one of the unifications fails, then the analysis is discarded, otherwise the final result

of all unifications is a validated analysis.

For example, suppose that the following feature structure, together with a stem

vir-, is found in the endings trie when the word virium is analyzed:3



pos : noun
decl : i
case : gen
num : pl

gen :


masc
fem
neutr




(2.2)

vir- is then looked up in the lexicon, and the entry from Figure 2.5 is found. Uni-

fication of feature structure (2.2) and the lexical entry’s positive features produces:


pos : noun
decl : i
case : gen
num : pl
gen : fem

 (2.3)

Unification with the lexical entry’s negative feature structure also succeeds,

approving the analysis with stem vir- and feature structure (2.3) as valid.

3The ending analysis produces a general analysis which is not restricted to a particular
gender. Gender is a paradigm category and peculiar to a noun. It is listed in the lexical
entry. Using this information from the lexical entry, the unification process restrains the
original analysis to the right gender.

16

2.3.5 Paradigm entries

A word paradigm comprises all word forms that belong to a particular base form.

A paradigm also comprises one or more word stems from which its word forms are

built. While the previous sections took a simplified view on the lexicon’s structure

to highlight other concepts, the lexicon structure is actually a little more complex

than described so far to take care of common properties that members of the same

word paradigm share.

The lexicon lists information common to a word paradigm in a single paradigm

entry. In addition, stem entries list information specific to particular word stems

and the word forms built from them. Figure 2.6 sketches a lexicon consisting of a

trie for stem entries and a trie for paradigm entries.

This differentiation into two kinds of lexical entries reduces redundancy (just

compare the feature structures for stems in Figure 2.4 with those in Figure 2.6)

and is in accordance with a linguistic distinction of paradigm and unit categories.

Features from paradigm categories like part of speech or — for nouns — declension

and gender are intrinsic to a whole word paradigm; their values do not vary. They

are stored in paradigm entries. Values of features from unit categories like number

or — for nouns — case are imposed by inflection. Stem entries specify which stem

is appropriate for particular values of unit categories. Figure 2.7 shows the complete

lexical entry for the word paradigm vis. It contains the paradigm entry together

with all its stem entries.

The division of entries into a stem part and a paradigm part is transparent

(invisible) to other components. When the lexicon component is queried to return

the (composite) entry for a particular stem, the stem entry is looked up in the stem

trie and combined with its corresponding paradigm entry (which is found through

the link from the stem entry as illustrated in Figure 2.6). The positive feature

17

v

i

s

vires-reg : −
case : acc
num : pl



genus
reg : +
pos : noun
decl : cons
gen : neutr



vispos : noun
decl : i
gen : fem

 ¬

case :

{
gen
dat

}
num : sg



v-

[
reg : +
num : sg

]
¬
[

case :

{
nom
voc

}]

vir-

[
reg : +
num : pl

]
¬
[
case : acc

]

vis-
reg : +

case :

{
nom
voc

}
num : sg



genus-case :

nomacc
voc


num : sg



gener-

[]
¬

case :

nomacc
voc


num : sg



g

e

n

ue

r

v

i

r s

e

s s

g

e

n

u

s

Stem Trie

Paradigm Trie

Figure 2.6: A lexicon consisting of a trie for paradigm entries and a trie for stem
entries. The dashed lines indicate the connections between lexical entries and their
stems or lemmas in the trie. The dotted lines denote links between stem entries and
paradigm entries. Each paradigm (entry) is connected to one or more stem entries.
The feature reg is explained in Section 2.3.7.

18

positive negative 1

vis

pos : noun
decl : i
gen : fem

 ¬

case :
{

gen
dat

}
num : sg



vis–


reg : +

case :
{

nom
voc

}
num : sg


v–

[
reg : +
num : sg

]
¬
[

case :
{

nom
voc

}]
vir–

[
reg : +
num : pl

]
¬
[

case : acc
]

vires

reg : −
case : acc
num : pl



Figure 2.7: Lexical entry for the word paradigm vis. The first row shows the
paradigm entry, the following rows show the stem entries. See Figure 2.5 for assump-
tions about the analysis of vis here. Section 2.3.7 explains the meaning of the reg
(regular) feature.

19

structures of the two entries are unified, and the union of the two negative feature

structure sets is built. The response to the query returns the unified positive feature

structure and the union of negative feature structures.

2.3.6 Additional features and lemmatization

Paradigm entries are also convenient to store additional information of a morpho-

logical or non–morphological nature about a word. External applications can use

this information after the morphological analysis is complete.

Moreover, paradigm entries provide an easy way to do lemmatization (deriving

a word’s base form (the lemma

20

positive negative 1 negative 2

domus

pos : noun
decl : u
gen : fem



dom–


reg : +

case :
{

nom
voc

}
num : sg

 ¬
[

case : abl
num : sg

]
¬
[

case : acc
num : pl

]

domo

reg : −
case : abl
num : sg


domos

reg : −
case : acc
num : pl



Figure 2.8: A lexical entry for the noun domus. See the text for additional explana-
tions.

For all “regular” analyses, the ending analysis adds the feature <regular :+>,

and lexical entries for regular word forms also contain this feature. Figure 2.8 shows

the lexical entry for domus. Figure 2.7 is another example that also demonstrates

how forms with a smaller degree of irregularity are captured by adding additional

“regular” word stems to a lexical entry. Finally, Appendix C contains several more

illustrative (but “regular”) lexical entries.

2.4 Summary

In this chapter, the main ideas underlying the theory of YALL, a morphological

analyzer for Latin, were presented. Trie structures are used for both the analysis

of endings and the representation of the lexicon. They are supported by unification

mechanisms which include handling of disjunctive and negated feature structures.

Several methods help to capture irregular word forms and to avoid overgeneration

of inaccurate analyses.

Chapter 3

Java versus C++

This chapter describes deficiencies in YALL’s original implementation, outlines why

the choice of Java as a programming language alone remedies some of these deficien-

cies, briefly reviews the reimplementation process, and provides some of the more

interesting implementation–specific details.

3.1 Problems of the original implementation

YALL had originally been implemented in C++. While this implementation was a

very functional prototype of the system, it had potential for improvement. Some

problems are described in the following.

• Overly complex C++ code. The C++ code of the original implementation

is quite sophisticated. At the time of implementation, the Gnu C/C++ com-

piler did not yet recognize some concepts now documented in the ANSI C++

standard (ANSI/ISO/IEC), such as exception handling and templates, even

though those concepts had already been implemented in many other C++ com-

pilers. It also had several bugs that had to be circumvented. This made part

of the code appear ugly and difficult to maintain.

In addition, extensive use of advanced C++ features such as multiple inheritance

or friend methods and friend classes made the code harder to understand

and maintain. Even though such concepts are recommended to use for C++

21

22

programs, it seems to me that Java facilitates programming by reducing the

number of such bells and whistles.

Also, standard data structures like lists, sets, and vectors had to be imple-

mented from scratch in YALL (cf. Section 3.2.3). This led to vastly increased

debugging demands. Furthermore, the graphical user interface, due to missing

built–in support for windows and graphical user interface (GUI) programming

(see below), suffered from these same complications of needing much low–level

programming and debugging.

A crucial problem with C++ was loss of memory. Because of C++’s strong

reliance on dynamic memory allocation by the programmer, some allocated

memory is easily overlooked and never deallocated. The final version of YALL

in C++ still suffered from memory losses. Although these were errors on the

part of the programmer, the language made them easy to make and hard to

detect.

• New Insights. During and after the original implementation of YALL, many

ideas for improvements appeared which had not been implemented in the orig-

inal version. Some of these are experiences gained from the first implementa-

tion (e.g., to use standard class libraries for abstract data types, or to use a

different dynamic memory management mechanism); some are consequences

of continued refinement of the theory (e.g., some changes to the endings trie,

or the decomposition of feature structures with value disjunctions into feature

structures without such disjunctions to facilitate the evaluation of negative

feature structures, cf. Section 2.3.3); some are insights from redesigning the

Java implementation (e.g., to use a declarative lexicon specification, or to use

an external file for the endings trie specification; see Sections 3.4.1 and 3.4.3).

23

• Only usable under MS{DOS. Some emphasis had been put on machine

independence during the development of C++–YALL. However, the develop-

ment took place under MS–DOS and despite a relatively machine–independent

programming style, as described elsewhere, some changes would have had to be

made to port the software to a different architecture such as UNIX. However,

such a port has never been attempted.

• Descriptions in German. Program code and documentation of the original

implementation are in German, which is not surprising since the project was

undertaken in Germany. However, this evidently limits the range of people

able to use the software or to adapt the morphological analyzer to their own

needs. To provide wider access to the analyzer, the reimplementation and

documentation in English is helpful.

• Unattractive user interface. YALL was developed under MS–DOS, using

the djgpp C/C++ compiler (D. J. Delorie, 1995), an MS–DOS port of the Gnu

C/C++ compiler gcc. One of YALL’s original goals was to be easily portable

to other platforms. For that reason, the Curses C library, an elementary

graphics and textual input/output library for text terminals, was used for

the user interface. Variants of Curses are available for various platforms,

including MS–DOS and UNIX. However, Curses does not provide the higher–

level functions, such as support to manage windows or a mouse, that are

necessary to develop an attractive and easy–to–use graphical user interface.

The reimplementation in Java seeks to approach some of the problems in the

C++ version. It concentrates on the previous version’s most interesting part, the

morphological analyzer and lemmatizer. Additionally, due to structural changes in

the software, the need for a graphical user interface has vanished.

24

3.2 Some advantages of Java over C++

YALL’s reimplementation in Java appeared considerably easier than the original

implementation in C++. Some of this ease can probably be attributed to the circum-

stance that after a first implementation the problem domain is better understood,

and application design is facilitated by being able to build upon the results and

insights from the previous design and implementation. However, there are also dif-

ferences between the two programming languages that have an effect on implemen-

tation difficulty. This section describes, from an empirical or experience–based point

of view, the differences that have had an important impact on the reimplementation

of YALL . There are certainly other differences between C++ and Java, which can

be found in standard textbooks comparing the two languages (for example, Boone,

1996; Chew, 1998), but those are not relevant in the present context. Remarkably,

C++ has developed further since YALL’s first implementation, but the differences

outlined below are mostly unaffected by these changes.

This section makes use of object–oriented terminology and presupposes knowl-

edge of programming languages in general, and of C++ and Java more specifically.

Readers unfamiliar with these subjects may consider an introduction to object–

oriented programming, such as Stroustrup (1997), which is also the standard intro-

duction to C++. For an introduction to Java, numerous textbooks exist, as well as

a free online course (Sun Microsystems, 1999a). For a general introduction to the

theory of programming languages I recommend Louden (1993).

3.2.1 Better handling of class interface and class implementation

In C++ it is recommended that interface and implementation of a class and its

methods be stored in separate files (typically a header file with extension .h for

the class interface, and an implementation file with extension .cc). The abstract,

25

declarative class interface mainly serves to specify the class’s member functions and

member variables, as well as the class’s integration into a class inheritance hierarchy,

in order to make this knowledge available to the user of the class who can then see

how he is supposed to use the class (comments for the class user should also be part

of the class interface). The class implementation presupposes the class interface and

implements the methods and some variables specified in the interface.

An inherent problem with this approach is that whenever a method or variable

declaration changes, it needs to be changed in two places, which leads to consistency

problems during program development.

Another problem is that all public, protected, and private class members need to

be declared together in the same place. From the perspective of data encapsulation,

this is not very fortunate: since the user of the class should only see public (and

possibly protected) members, he should not have to or be able to view the private

members. And when the internal structure (private members) of a class changes,

there should not be a need to change the public class declaration as in C++, since

the usage of the class remains the same.

Java remedies these problems. A Java class source file (a .java file) is the source

for both the class interface and the class implementation. Primarily, a .java file

constitutes the class implementation. However, the class interface and comments are

generated automatically by the javadoc utility from the class source code, typically

in HTML format. By default, only public and protected classes are documented in

this way, which leaves the documentation unchanged if changes are made that do

not affect the use of the class. An example for documentation generated by javadoc

is the documentation for the Java version of YALL in Appendix G.

Usually, the proper way to design a class in object–oriented programming (on

the code level) is to specify its interface first, and to write the implementation as

the last step. Java takes care of this approach by enabling javadoc to generate class

26

interface files from code stubs in the .java file, which only contain declarations of

member variables and declarations (heads) of member functions. Hence, a Java class

source file should first contain only the information necessary for the class interface.

At a later stage of program development, the interface can be implemented. In

practice, the class interface tends to undergo change at this point due to new insights

and requirements from the implementation. When the programmer makes such

changes in the class implementation, Java takes responsibility for corresponding

modifications to the class interface.

3.2.2 Automatic memory management

C++ offers memory management capabilities that do not go substantially beyond

those of C. Essentially, the only improvement on the surface is the ability to allo-

cate and deallocate heap space for single dynamic objects via the new and delete

operators.

Java’s memory management is more powerful. Java adds a garbage collection

mechanism which includes automatic deallocation of memory for objects that are no

longer in use. The programmer does not need to worry about explicit deallocation

of objects.

This feature is a very beneficial improvement over C++. Object–oriented pro-

gramming relies substantially on the dynamic creation of objects, which also requires

their deallocation at some point. If deallocation has to be done by hand, a very rig-

orous approach to the construction and destruction of objects is required. Objects in

general do not only contain members of primitive data types (for which no memory

allocation in addition to memory for the object itself is needed), but also contain

other objects or references to other objects; these objects require dynamic allocation

and deallocation in turn. In addition, several objects can share identical member

objects which makes the responsibility for deallocation quite sophisticated. In C++,

27

allocation of memory for member objects is usually done in the constructor of the

containing object, a special method called upon creation of the containing object.

Deallocation of memory for member objects is performed in the destructor, a method

called upon destruction of the containing object. However, not all member objects

can be created when the containing object is created (since their content may not

be known yet at the time), and not all member objects can be destroyed when the

containing object is destroyed (due to shared member objects as described above).

Consequently, keeping track of all allocated resources can be extraordinarily error–

prone.

In the C++ version of YALL, it turned out not to be feasible to track down and

remove all such occurrences of “memory leakage.” Even after months of debug-

ging, memory loss was still present. An additional complication in the debugging

of memory leaks is the difficulty in detecting the source of the leak. Memory leaks

only come about in a decrease in available memory during program runs, but except

maybe with sophisticated debugging tools, the point of the leak in the program is

not easy to find. In C++–YALL, many leaks could be detected and removed, but

some still remained.

Java’s automatic memory management consequently has several advantages for

the programmer. Less rigor in memory management is required, memory leaks are

avoided, and debugging is substantially shortened. Having shared member objects

and leaving member objects unspecified after the creation of the containing object

also becomes painless. While the existence of a large number of interacting object

classes can become a complexity problem in C++ due to possible complications in

terms of memory management, there is no such headache in Java, and the use

of objects can be a pleasure, maybe comparable in ease of use to parameterized

procedures in non–object–oriented imperative programming.

28

However, there are also at least two disadvantages in Java’s approach. First,

automatic garbage collection requires some time to execute, which slows down the

execution speed of the software. Second, it can easily lead the programmer to forget

about the overhead involved in dynamic memory allocation and deallocation and

make him program in a style that he might not have used if he had had to undertake

memory allocation more explicitly.

To me, both of these problems seem negligible compared to the benefits. If

memory management slows down execution, then this is a low price paid for improved

software reliability and shortened development time in an age of ever–increasing

speed and ever–decreasing price of processing power. This same counterargument

also applies to the point of a wasteful programming style; and in addition, as known

from program optimization, such a style is usually only critical in crucial places,

frequently executed passages of code; these, if programmed inefficiently, lead to

an over–proportional slowdown of execution. If execution speed is important, it

is often sufficient to simply locate such places with standard software development

tools (profilers) and to optimize them.

3.2.3 Standard libraries and general standardization

Java 2 (or, more specifically, the Java 2 Platform, v. 1.2) provides a rather extensive

set of ready–to–use standard data structures such as sets, maps, lists, and arrays in

many different flavors. In addition, the so–called Swing classes to support graphical

user interfaces are part of the language. Some of these libraries have been part of

Java since the first released version in 1995, but essential parts have been added

more recently, in particular with the introduction of Java 2 in December 1998.

In contrast, the first version of C++ was officially released about 1985 (and docu-

mented in Stroustrup, 1986). A library as part of the language containing standard

data structures has only been added over the last few years, together with the

29

development of an official C++ standard (ANSI/ISO/IEC). It does not contain any

graphical user interface support.

This also illustrates a more general point. Sun Microsystems’ central control over

the development of Java has the advantage that standardization is not a problem.

While there have been several drafts of a proposed ANSI C++ standard over many

years, Sun with their 100% pure Java policy can more easily define the exact Java

language and produce similarly standardized extensions to the “core” Java language

at (reasonable) will.

For application development, this has important consequences. One goal in the

development of YALL in C++ was to keep the code as independent from a particular

development environment and operating system as possible, since a morphological

analyzer naturally does not have much to do with a particular computer system.

In 1994, development of a C++ standard library for abstract data types was only

starting. Many development environments had such libraries, also for graphical user

interface development, but using those would have meant to become dependent on a

particular version of a particular development environment on a particular machine.

Consequently, I had to develop my own data structure classes and graphical (text–

terminal–based) user interface routines, which took some effort.1 In contrast, only

three years after its introduction, Java has already become more mature than C++

in these respects.

There is yet another problem with standardization of C++. While a language

standard has finally been accepted (ANSI/ISO/IEC), there is no guarantee what-

soever that any given compiler adheres to the standard for reasons such as cost

or difficulty in implementing the standard, or incompatibilities of new features in

1Due to a redesign of YALL’s lexicon component and to a focus on the morphological
analyzer and lemmatizer component of YALL in this thesis, a graphical user interface has
become unnecessary for the current implementation. However, future applications based
on YALL will benefit from Java’s provisions for graphical user interface development.

30

the standard with traditional features of the compiler. Hence one needs to study

the exact limitations of the compiler one uses before any code is written (let alone

the need to become acquainted with the proprietary class libraries coming with the

compiler). For example, when YALL was developed with the GNU C++ compiler,

the compiler’s manual claimed support for C++ class templates, a language feature

that had not been part of C++ originally, but which had been around for a while in

1994. After a good portion of the class design had been completed making extensive

use of class templates, the code got to the point to be compiled for the first time.

Surprisingly, the templates as described in Stroustrup (1991) did not compile due to

a different implementation in the Gnu compiler. The effort needed to redesign the

code was disheartening.

Java avoids this problem by having a single “reference” compiler that sets the

standard. When a programmer changes to a different development environment

or hardware platform, the need to relearn the features and limitations of the new

environment is avoided. In addition, code and libraries developed for the old envi-

ronment can quite painlessly be reused, and there is no need to start over from

“near–scratch.”

3.2.4 Additional support from IDE or external libraries

C++ requires considerable proprietary support from a development environment

(often an integrated development environment, IDE) beyond what is defined as part

of the language. One example is debugging of dynamic memory allocation. As

described before, without either an additional automatic garbage collection mech-

anism or strong support for debugging dynamic memory allocation, this task can

overwhelm a developer. Another example concerns more general debugging needs.

C++, as an imperative programming language in the tradition of C, encourages a

31

programming style that makes abundant use of pointers and pointer–based struc-

tures such as arrays. However, as every programmer knows, pointers tend to point

to the wrong places, and array elements tend to be accessed beyond the limits of

the array. In order to easily locate such problems, additional run–time support

is required from the development environment, and the ease of debugging hence

depends substantially on that environment.

Java requires little or no additional support at all from a development environ-

ment. Dynamic memory management is already built into Java and does not pose a

problem. Pointers are not available in Java anymore; they are replaced by references

to objects and more “abstract” arrays that cannot be referenced through pointers

as in C++. Basically, in order to refer to objects, one has to use references; objects

cannot be bound to a variable directly. While in C++ one often has the burden of

deciding between two very similar concepts, namely whether to use a reference or a

pointer to an object (a choice which has to be remembered later when the reference

or pointer is used), Java does not leave this confusing choice between two almost

identical concepts and does not even have variables that stand for objects directly.

This can facilitate object handling considerably. In addition, type–checking at com-

pile time is very strict and restrictive compared to C++, capturing many incorrect

variable assignments early. Later on, typical run–time problems are monitored, such

as references that do not point to proper places.

In general, development environments for Java do not need to provide much;

Sun’s free Java distribution already contains most of what is needed: class libraries,

a compiler, an interpreter, a (command–line) debugger, a documentation tool

(javadoc), several other development tools, and complete documentation of the

language and the distribution. A development environment may just want to inte-

grate these components with a visually appealing and easy–to–use graphical user

interface, and to provide an editor with the additional convenience of source–level

32

debugging.2 All components in the Java distribution are also well–integrated with

each other. An example is the toString method from the Java “root” class Object.

Every class should redefine this method to make a class instance return some kind of

instance “state” in string format. The method can be used by other classes within

the application itself (and YALL does so), but it is also used by the debugger as a

special routine to provide information about the content of objects.

3.2.5 Platform independence and Internet accessibility

Two of the best–known features of Java are its platform independence (“write once,

run anywhere”: code only needs to be written once and runs on all platforms that

support Java) and its usability for Internet–related software development, which is in

part due to its platform independence. As mentioned before, one of YALL’s original

goals has been platform–independence, which makes Java an excellent implementa-

tion language. In case the desire arises to make YALL or an application using YALL

available online, it is already well–equipped for Internet access. C++ does not have

much to offer in these regards.

3.2.6 Java problems

Java also has disadvantages compared to C++. One of the foremost is execution

speed. Java programs tend to run considerably slower than C++ programs. Since

Java is a (partially) interpreted language and uses garbage collection, this disadvan-

tage is unlikely to ever disappear completely. Hence (as usual), the decision on a

programming language depends on the requirements of the developed application.

If a fast application for a specific platform is required, Java should not be used. If

2These low requirements probably explain the abundance of high–quality, free and
commercial development environments available for Java.

33

however speed is not so critical or cross–platform availability is desired, Java brings

along convincing qualities to be the language of choice.

3.3 The reimplementation process

Java is generally said to be similar to C++. Hence I had initially expected to be

able to make a rough automatic translation from C++ to Java, to refine the result

a little further by hand, and then to arrive at acceptable Java code. However, an

attempt to use an automatic translator (Tilevich, 1997) ended in Java code which

was so unsatisfactory that it was easier to reimplement the system, even though the

mentioned translator tool (or rather an earlier version of it) appears to be the most

widely referenced tool of its kind.

I chose to use the newly released Java 2 Platform for the reimplementation, even

though it meant an anticipated risk because of Java 2’s novelty. However, there were

two important reasons in its favor. Java 2 introduces the so–called Collection

classes as part of the standard Java class library (the Java API), which provide

lists, sets, hash–tables, and similar standard data structures. Second, having future

extensions of YALL in mind, I wanted to use the Java version that would remain

current for the longest time, in order to avoid potential incompatibilities with future

Java versions for as long as possible.

The risk in using Java 2 turned out to include missing, incomplete, or error–prone

support for Java 2 from most integrated development environments (IDEs). Sun’s

own Java development environment, Java Workshop (Sun Microsystems, 1998), did

not support Java 2 yet when I started the reimplementation. I eventually turned

to XEmacs (XEmacs), a versatile text editor, in combination with JDE (Kinnucan,

1999), the “Java Development Environment” for XEmacs. Since JDE had not had

a good visual debugger, I later tried a few other IDEs: NetBeans (NetBeans, 1999b)

34

and a new version of Sun’s Java Workshop (Sun Microsystems, 1999b), both of which

claimed to support Java 2. However, both failed to support debugging properly. I

tried a beta version of Gandalf (NetBeans, 1999a), a more recent version of NetBeans,

which seemed to be capable of proper Java 2 debugging, but it was too slow to be

useful. Eventually, I chose Kawa (Tek–Tools, 1999), an unsophisticated but fast IDE

which supports visual debugging of Java 2 code well.

3.4 New and improved program features

The transition from C++ to Java includes a variety of structural changes to the

program. Some of these changes are of minor importance, like the use of different

and more efficient standard data structures, minor improvements to algorithmic

efficiency and structure, or the exact program code (which is given in Appendix F).

Other changes are of great relevance to the user or to the system architecture and

will be described in the following.

3.4.1 Declarative lexicon specification

Previous problems

In the C++ implementation, the user had to enter the system’s lexicon interactively.

Using a sophisticated text–based user interface, lexical entries could be entered by

interactively providing lemma and stem grapheme and specifying the entry’s features

one by one through selection from context–sensitive menus. Changes to lexical

entries had to follow the same procedure. While this ensured syntactically correct

lexical entries (by only providing contextually valid choices to the user), it made the

already sophisticated process of entering correct lexical entries overly tedious and

lengthy by requiring the user to navigate through menus.

35

In addition, the lexicon was stored in a proprietary binary format (namely just

the trie format) which made it difficult to quickly view lexical entries, to check their

validity (displaying lexical entries was only possible by navigating through menus,

basically one feature at a time), to generally display what’s in the lexicon at all,

to make quick changes, or to quickly enter series of words with similar morpholog-

ical characteristics. The lexicon structure also made it harder to convert (import)

other lexicons to YALL’s format or to convert (export) YALL’s format to other

formats. In addition, making modifications to the lexicon storage structure usually

meant having to discard the old lexicon and starting a new lexicon from scratch

(unless appropriate conversion routines were written, see below). Furthermore, a

reimplementation (like the present one) or another software wishing access to the

existing data in the lexicon had to adhere exactly to the existing trie and entry

storage format, even when storage requirements changed (for example, for some

applications a hash table may be preferable over a trie structure) or new, additional

(non–morphological) information needed to be stored in the entries (which was made

impossible). Alternatively, a lengthy conversion program could have been written

to transform the existing lexicon into a new format, or the complete lexicon could

have been reentered.

For these reasons, the present implementation uses an additional declarative lex-

icon definition file containing the entire lexicon in text format. From this declaration

the actual lexicon trie is automatically generated.

The current implementation

The syntax of the declarative lexicon specification is captured by the following

context–free grammar in an extended BNF notation (for BNF, cf. Aho et al., 1986).

The square brackets designate an optional occurrence of the enclosed symbol string,

the curly braces stand for any number (including zero) of iterations of the enclosed

36

symbol string. A string enclosed in single quotes stands for its literal occurrence.

Commas are always used literally, i.e. they are part of the object language (which,

in this case, is the (meta–) language used to specify the lexicon).

lexicon → {lemmaentry}
lemmaentry → ‘[’lemma, posfeatures, negfeaturesets, stementries‘]’

lemma → grapheme

posfeatures → features

negfeaturesets → ‘[’{features}‘]’
features → ‘[’[featurevalue{, featurevalue}]‘]’

stementries → ‘[’{stementry}‘]’
stementry → ‘[’stem, posfeatures, negfeaturesets‘]’

stem → grapheme

grapheme can be a lemma or a stem like laudare or laud. featurevalue is a feature

value such as feminine or subjunctive. It is not necessary to specify category–value

pairs, since each feature value is unique over all categories, and the parser automat-

ically determines the right category for a value.

Instead of giving a precise semantic definition for the grammar symbols above,

their use is illustrated by the following (toy–size) declarative lexicon file (representing

entries for laudare (cf. Appendix C) and vis (cf. Figure 2.7). Whitespace such as

spaces, tabs, or linefeeds is not significant between terminal symbols.

[

laudare,

[regular,verb,a_conj],

[],

[

[

laud,

[prs_stem],

[]

]

37

[

laudav,

[perf_stem],

[]

]

[

laudat,

[sup_stem],

[]

]

]

]

[

vis,

[noun,i_decl,feminine],

[[genitive,dative,singular]],

[

[

vis,

[regular,nominative,vocative,singular],

[]

]

[

v,

[regular,singular],

[[nominative,vocative]]

]

[

vir,

[regular,plural],

[[accusative]]

]

[

vires,

[exception,accusative,plural],

[]

]

]

]

The parser for the grammar is implemented as a recursive–descent parser with

one character lookahead (cf. Aho et al., 1986).

38

Generation of the lexicon trie files from the declarative lexicon specification is

triggered by the command

java Lexicon

This generates six lexicon trie files from the specification file yalllext.txt.

Advantages of the new approach

The declarative definition has several advantages:

• Easy parsing and conversion. Since the declarative lexicon file is based on

a simple context–free grammar, it can be easily parsed and “compiled” into a

trie format or converted into any other desired file format. This allows other

programs besides the morphological analyzer easy access to the lexicon as well.

In addition, if the structure of the trie file format changes in the future, the

lexicon can easily be regenerated in the new format from the declaration.

• Easier conversion of other lexicons. A routine to convert an existing Latin

lexicon into YALL’s format would only need to produce the simple context–

free grammar format, not the more sophisticated trie format. The conversion

into trie format is done by YALL.

• Easy viewing, updating, and inserting. These standard lexicon opera-

tions can now be performed with any text editor or similar text processing

tool, which, for example, could also be used to systematically correct certain

mistakes in the lexicon through the editor’s replacement function. In addition,

one could, for example, come up with a standard entry pattern for, say, nouns

of a–declension, specifying all the standard features. This pattern could then

be copied in the text editor as often as needed, and only lemma and stem

39

graphemes would need to be filled in manually for each entry. As a future

improvement, a small application could be written to automate this use of

templates.

3.4.2 Simplified lexicon structure

The implementation of the lexicon tries in the C++ version was designed to be efficient

in terms of access time as well as in terms of disk space consumption. However, the

methods needed to access the lexicon were very complex. There were three different

kinds of data in the lexicon tries. When a node in the trie had more than five

child nodes, it was stored in an array to achieve optimal access efficiency. The array

contained one element for each letter of the Latin alphabet to designate each possible

child node; “absent” child nodes were marked by a NIL (Not In List) symbol in the

array. With five children or less, a linked list was used with one list element per

child node; this saved memory compared to an array representation. In addition,

a node in the lexicon trie could also represent a list of pointers to lexical entries.

Consequently, the trie access procedures were rather complicated.

A theoretical assessment of the achieved space gain by using this overly com-

plex trie implementation shows that the gain is limited approximately by an upper

constant factor of 27 (26 characters of the English alphabet plus a special element

pointing to entries), but is actually far lower in the average case.

The new implementation generally uses arrays for the storage of each node in the

trie rather than lists and arrays. In addition, the lists of pointers to lexical entries

have been moved to a separate file. From every node there is now a pointer to a

position in that separate file, denoting the beginning of a list of pointers to lexical

entries connected to the trie node in question. The pointer can have the value NIL to

denote an empty list. This approach makes the implementation more straightforward

and less error–prone. The complete lexicon trie structure now consists of six files:

40

the paradigm trie file (yalllexl.yt), the paradigm entry lists file (yalllexl.yel),

the paradigm entry file (yalllexl.ye), the stem trie file (yalllexs.yt), the stem

entry lists file (yalllexs.yel), and the stem entry file (yalllexs.ye).

3.4.3 Simplified endings trie specification

Similarly to the lexicon specification described in Section 3.4.1, the trie for the

ending analysis is also stored in a declarative format. In the C++ version of YALL,

the endings trie had not been stored completely declaratively, but in a kind of

declarative–procedural format, with several lines of program code for every node in

the trie. Here is an illustration of two entries for the personal endings (nodes 68 and

70) from Figure 2.3 (modified to correspond to the figure):

mat[68]=new extaffix(

"mus" ,new featuremap(new feature(plural),new feature(active),

new feature(one),(feature *)0),

mat[24],mat[29],mat[33],(extaffix *)0);

mat[70]=new extaffix(

"mur" ,new featuremap(new feature(plural),new feature(passive),

new feature(one),(feature *)0),

mat[24],mat[29],mat[33],(extaffix *)0);

The main disadvantage of this approach is that it makes the coding of the endings

trie specification into the program quite cumbersome. Not surprisingly, this repre-

sentation had to be completely discarded for the reimplementation, due to Java’s

different (and simplified) syntax. As a consequence, the endings trie is now stored

in its own (data) file, and read in whenever the application is started. This makes

it necessary to be able to read and parse the trie quickly. Consequently, the trie

representation is optimized for speed and simplicity. It is not nice to read, but this

is quite unnecessary since the endings trie does not need to be changed once it is

41

entered correctly.3 The above example now becomes the following (again modified

from the original file to correspond to Figure 2.3):

68

mus

plural

active

one

24

29

33

70

mur

plural

passive

one

24

29

33

The general structure of the endings trie file is defined by the following rules:

1. The file can have any number of entries for nodes, but must have at least one.

2. The last entry is the “start node” of the trie.

3. Each entry consists of several lines:

(a) a textual identifier for the node (some string; currently number strings

are used)

(b) the node’s grapheme

3Because of the simple endings trie file format, it was possible to generate the more
readable specification of the endings trie in Appendix E from the endings trie file semi–
automatically via regular expression replacement.

42

(c) one line for each feature value; as with the lexicon specification, only

feature values need to be specified, no categories; a blank line marks the

end of the feature value list

(d) one line for each successor node identifier; a blank line marks the end of

this list of links

An important difference to the conceptual description in Chapter 2 is that the

trie can now be regarded “upside–down.” When the analysis starts, the traversal of

the trie graph begins at a single leaf node, from where it proceeds to the former leaf

nodes from Chapter 2, and then further into the trie towards the root node. However,

since the root node does not have any purpose left except maybe to “conceptually

dominate” the whole trie, it is now simply left out (which brings the endings trie

even closer to an acyclic directed graph and further away from a tree).

The entire endings trie file is given in Appendix E in a form modified for read-

ability. Compared to the endings trie from Bubenheimer (1995), it also contains

minor corrections in content.

3.4.4 User input and output

The user specifies the word to be analyzed as a command–line argument to the

analyzer, as in the following example to analyze laudare (the command java starts

the Java interpreter, the argument Yall invokes class Yall, and laudare is passed

as an argument to Yall):

java Yall laudare

The output from YALL is a textual display of the found analyses together with

the found word stems and morphological features. For laudare, the output is the

following:

43

Found 2 analyses for laudare.

Lemma: laudare

Stem: laud

[

voice : passive

conjugation : a_conj

mode : imperative

number : singular

tense : present

person : two

partofspeech : verb

regularity : regular

stem : prs_stem

]

Lemma: laudare

Stem: laud

[

infinitivity : infinitive

voice : active

conjugation : a_conj

person : infinite

partofspeech : verb

regularity : regular

stem : prs_stem

]

The displayed feature structures do not contain disjunctions. During the different

unification operations, feature structures with disjunctions of feature values are even-

tually broken up into disjunctions of feature structures without value disjunctions.

This is necessary to check the validity of found feature structures against negative

feature structures from the lexicon (see Section 2.3.3). Even though an attempt

could be made to at least partially “reassemble” split–up feature structures, the

result, in the general case, would only be a partial reassembly and could still contain

a disjunction of feature structures in addition. The example in Appendix A shows

44

a case where it is not possible to obtain a single positive feature structure as the

result of unification with negation.

Chapter 4

Conclusions and Outlook

This thesis provided theoretical and practical refinements of a morphological ana-

lyzer and lemmatizer for Latin, originally developed by Bubenheimer (1995). At

the same time, it demonstrated differences in the use of Java and C++ for software

development, and found a remarkable facilitation of small–scale software develop-

ment with Java. A reimplementation of the morphological analyzer in Java now

serves as a clean basis for future improvements to the analyzer.

4.1 Theoretical refinement

While the original theory behind the analyzer was comparably weak and proprietary,

it has been shown in this thesis that it can be cleanly and uniformly reformulated

in terms of current linguistic theory using tries, feature structures, and graph unifi-

cation.

Tries are used to represent both stems and endings. This leads to a uniform

computational model for Latin inflectional morphology.

Feature structures and unification supplement this model and allow to specify

morphological properties of inflected word forms. They are also fundamental in

providing the connection between analysis of word ending and lexical lookup of

word stems; they ensure that only valid combinations of these two processes are

admitted.

45

46

Feature structures can include disjunctions and negations to provide greater flex-

ibility and more concise expressiveness. These extensions are in line with common

linguistic theory.

4.2 Practical refinement and reengineering

The thesis has presented observations gained from redesign and reimplementation of

the morphological analyzer in Java. The reimplementation was considerably easier

than the original implementation in C++; experiences from the first implementa-

tion helped to avoid mistakes and provided guidance for the reimplementation; in

addition, differences between C++ and Java in their features and their abilities to

facilitate program development were contributing factors. However, an attempt to

automatically convert C++ code to Java failed. The redesign of the morphological

analyzer also brought about greater declarativeness of the used data structures and

a reduction of the user interface from complex semi–graphical user interaction to a

simple command–line tool.

A well–known problem of Java, its execution speed, has not turned out to be a

problem in the present application. The morphological analyzer runs at an accept-

able speed.

4.3 Future extensions

An additional motivation for attempting a reimplementation in Java was to provide

a clean basis for future improvements of YALL. While these improvements could

already have been applied to YALL’s C++ version, and many of them had already

been described as possible extensions in Bubenheimer (1995), I did not feel comfort-

able to add such extensions to a program that suffered from a number of deficiencies

as discussed in Chapter 3.

47

The following extensions could be added to YALL for a more comprehensive

morphological analysis system:

• Complete Latin morphology. The current implementation of the analyzer

handles nouns, verbs, and adjectives in the positive form (as well as non–

inflected particles). The first three parts of speech are crucial to show the

validity of the theory since they provide the most variety in inflection. Further

development must extend the morphological analyzer to the remaining parts

of speech, but this extension is not likely to cause crucial changes in the theory.

More specifically, adverbs, numbers, pronouns, clitics, and comparison of adjec-

tives are still missing from the analyzer. In addition, better support should be

added for a limited number of high–frequency irregular verbs such as esse and

ire as indicated in Appendix B.

• Lexicon. The size of the lexicon, which currently only consists of a few

words for testing purposes, needs to be extended to a large subset of Latin

vocabulary to make the morphological analyzer useful. The most promising

approach appears to be to convert an existing Latin lexicon to YALL’s format.

Entering the lexicon manually does not seem appealing.

Bibliography

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison–Wesley, Reading, Mass., 1986.

J. H. Allen and J. B. Greenough. New Latin Grammar. Aristide D. Caratzas,
New Rochelle, New York, 1903.

ANSI/ISO/IEC. Information Technology — Programming Languages — C++.
American National Standards Institute (ANSI), International Organization for
Standardization (ISO), and International Electrotechnical Commission (IEC),
September 1998. ANSI/ISO/IEC 14882.

B. Boone. Java Essentials for C and C++ Programmers. Addison–Wesley,
Reading, Mass., 1996.

U. Bubenheimer. YALL. Eine morphologische Analysekomponente für das
Lateinische zum Einsatz in einem lehrunterstützenden System. Universität
Koblenz–Landau, Institut für Computerlinguistik, Koblenz, Germany, 1995.
Studienarbeit.

F. F. Chew. The Java/C++ Cross–Reference Handbook. Prentice Hall, Upper
Saddle River, New Jersey, 1998.

M. A. Covington. Converging transition networks and sub–morphemic regular-
ities in Latin noun inflection. Unpublished paper, Artificial Intelligence Center,
The University of Georgia, February 1999.

D. J. Delorie. djgpp 1.12M4. Computer software, available from http://
www.delorie.com/djgpp, 1995.

P. G. W. Glare, editor. Oxford Latin Dictionary. Oxford University Press, New
York, 1982.

H. J. Hillen. Krüger Lateinisches Unterrichtswerk. Zweiter Teil. Grammatisches
Beiheft. Verlag Moritz Diesterweg, Frankfurt am Main, Germany, 1986.

M. Johnson. Features and formulae. Computational Linguistics, 17(2):131–151,
1991.

L. Karttunen. Features and values. In Proceedings of COLING 84, pages 28–33,
1984.

48

49

P. Kinnucan. JDE 2.1.4 — Java Development Environment for Emacs. Com-
puter software, available from http://sunsite.auc.dk/jde, 1999.

D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Pro-
gramming. Addison–Wesley, Reading, Mass., 1973.

K. C. Louden. Programming Languages: Principles and Practice. PWS Pub-
lishing Company, Boston, Mass., 1993.

NetBeans. Gandalf Beta 1. Computer software, available from http://
www.netbeans.com, April 1999a.

NetBeans. NetBeans DeveloperX2 2.1. Computer software, available from
http://www.netbeans.com, March 1999b.

F. C. N. Pereira. Grammars and logics of partial information. In J.-L. Lassez,
editor, Proceedings of the Fourth International Conference on Logic Program-
ming, volume 2, pages 989–1013, Cambridge, Mass., 1987. MIT Press.

H. Rubenbauer, J. B. Hofmann, and R. Heine. Lateinische Grammatik. C. C.
Buchners Verlag, Bamberg, Germany, 1989.

R. W. Sproat. Morphology and Computation. MIT Press, Cambridge, Mass.,
1992.

B. Stroustrup. The C++ Programming Language. Addison–Wesley, Reading,
Mass., first edition, 1986.

B. Stroustrup. The C++ Programming Language. Addison–Wesley, Reading,
Mass., second edition, 1991.

B. Stroustrup. The C++ Programming Language. Addison–Wesley, Reading,
Mass., third edition, 1997.

Sun Microsystems. Java Workshop 2.0a. Computer software, previously avail-
able from http://www.sun.com/workshop/java, 1998.

Sun Microsystems. The Java tutorial. World Wide Web page, http://
java.sun.com/docs/books/tutorial, 1999a.

Sun Microsystems. Java Workshop 3.0. Computer software, available from
http://www.sun.com/workshop/java, 1999b.

Tek–Tools. Kawa 3.21. Computer software, available from http://tek–
tools.com/kawa, 1999.

I. Tilevich. C2J++. Computer software, available from http://sol.pace.edu/
˜tilevich/c2j.html, 1997.

50

W. M. Wilson. An Essential Latin Grammar. Macmillan, London, 1968.

XEmacs. XEmacs 20.4. Computer software, available from http://
www.xemacs.org, 1998.

Appendix A

Unification with Negation and Disjunction

This appendix gives a longer example including negated and disjunctive feature

structures for the unification method described in Section 2.3.3.

a = ¬


decl : i
case : acc

gen :
{

masc
fem

}


≡ ¬

decl : i
case : acc
gen : masc

 ∨
decl : i

case : acc
gen : fem



b =



pos : noun
decl : i
num : pl

case :
{

nom
acc

}
gen :

{
masc
neutr

}



≡


pos : noun
decl : i
num : pl
case : nom
gen : masc

 ∨


pos : noun
decl : i
num : pl
case : nom
gen : neutr

 ∨


pos : noun
decl : i
num : pl
case : acc
gen : masc

 ∨


pos : noun
decl : i
num : pl
case : acc
gen : neutr



51

52

a t b =



pos : noun
decl : i
num : pl
case : nom

gen :
{

masc
neutr

}

 ∨


pos : noun
decl : i
num : pl
case : acc
gen : neutr



≡


pos : noun
decl : i
num : pl
case : nom
gen : masc

 ∨


pos : noun
decl : i
num : pl
case : nom
gen : neutr

 ∨


pos : noun
decl : i
num : pl
case : acc
gen : neutr



Appendix B

A Feature System for Latin Morphology

Tables B.1, B.2, and B.3 show the system of features for the analysis of nouns,

adjectives, verbs, and particles, the parts of speech that are currently covered by

the morphological analyzer. It is based on the classification of Hillen (1986), a Latin

textbook grammar. Abbreviations in parentheses for attribute names correspond to

abbreviations used in the text. Abbreviations in brackets for value names stand for

abbreviations used in the endings and lexicon trie specification files. Appendix D

lists all regular forms recognized by the morphological analyzer. In addition, unin-

flected particles are recognized. A brief explanation of features that need explanation

follows.

regularity The category regularity serves to separate regular from irregular forms

and is further described in Section 2.3.7.

declension The feature values in the category declension may seem unusual to some

readers. Instead of numbering the declensional classes from one to five, first

declension is called a–declension, second o–declension, fourth u–declension,

and fifth e–declension. In addition, instead of having five main declensional

classes, second declension is split into two distinct paradigms and third declen-

sion into three. For second declension, this is in accordance with the approach

of most (German) school grammars (e.g. Hillen, 1986; Rubenbauer et al., 1989)

and captures the regular deviations of nouns ending in -er (e.g. puer, boy, in con-

trast to filius, son). For third declension, the split is based on the classification

53

54

Table B.1: Features for more than one part of speech

attribute value

part of speech noun
(pos) adjective

verb
particle

number singular
(num) plural

regularity + [regular]
(reg) − [exception]

Table B.2: Features for declined forms

attribute value

declension a–declension [a decl]
(decl) o–declension [o decl]

o–declension, -er stems [o puer decl]
consonant declension [cons decl]
i–declension [i decl]
mixed declension [mixed decl]
u–declension [u decl]
e–declension [e decl]

gender masculine
(gen) feminine

neuter
case nominative

genitive
dative
accusative
ablative
vocative

55

Table B.3: Features for verbs

attribute value

conjugation a–conjugation [a conj]
(conj) e–conjugation [e conj]

consonant conjugation [cons conj]
consonant conjugation, 1st sg. -io [cons i conj]
i–conjugation [i conj]
0–conjugation, 1st sg. -o, [null conj o]
0–conjugation, 1st sg. -m, [null conj m]

person 1 [one]
(pers) 2 [two]

3 [three]
infinite

mode indicative
subjunctive
imperative

stem present stem [prs stem]
perfect stem [perf stem]
supine stem [sup stem]

tense present
past
future

voice active
passive

infinitivity infinitive
(inf) gerund

gerundive
participle
supineI
supineII

56

of Hillen (1986). In the case of nouns, lex, law, and tempus, time, are exam-

ples for consonant declension, turris, tower, and mare, sea, for i–declension,

and urbs, city, and cor, heart, for mixed declension which shares characteris-

tics of consonant declension and i–declension. For adjectives, Hillen distin-

guishes between consonant declension (dives, rich), and i–declension (acer,

sharp). These two declensions are slightly different from their noun counter-

parts, although they bear the same names. All the subtypes of third declension

do not show big differences, but in order to capture the few differences as a

regular phenomenon in the morphological system, a further differentiation of

the declensional paradigms is convenient. For an exact list of the forms in each

declension see Appendix D.

conjugation Similarly to the treatment of declensions, conjugations are named a–

conjugation (first conjugation), e–conjugation (second conjugation), consonant

conjugation (third conjugation), and i–conjugation (fourth conjugation). Con-

sonant conjugation has a variant for verbs like capere, to grab, which resembles

i–conjugation (for details, see Appendix D). In addition, there are two “null”

conjugations. These are artificial constructions, and they are only defined for

forms of the present stem. Their purpose is to facilitate the description of

irregular verbs in the lexicon, like esse, to be or ire, to go. A more sophis-

ticated approach could encode these verbs into the endings trie directly, and

would eliminate the need for two “ad–hoc” conjugations. Another advantage

of a “direct encoding” approach would be that verbs like adesse or adire would

not need to duplicate the complex esse and ire lexical entries but could use the

special esse and ire inflectional paradigms in the endings trie in order to vastly

facilitate the lexical entries for adesse, adire, and any other verbs derived from

and ending in esse or ire.

57

person In addition to the three standard values for the person category, it can have

the value infinite which designates infinite verb forms. Those forms are the

only ones that receive a feature from the infinitivity category.

tense Instead of six different tenses as usual, only three are distinguished, but these

are combined with the present stem and the perfect stem features to practically

result in the six common tenses.

Appendix C

More Examples of Standard Lexical Entries

This appendix gives additional examples of typical lexical entries. Several of the

examples also appear in Bubenheimer (1995).

positive

templum


reg : +
pos : noun
decl : o
gen : neutr


templ–

An example for nouns from o– and a–declension, with usually only one stem and
regular inflection.

positive negative 1

59

positive

asper


reg : +
pos : adj

decl :
{

a
o puer

}


asper–

An example for some of the adjectives from o– and a–declensions with –er ending.
Only one stem is needed.

positive negative 1 negative 2

utilis

reg : +
pos : adj
decl : i



utilis–


case :

{
nom
voc

}
num : sg

gen :
{

masc
fem

}


utile–


case :


nom
acc
voc


num : sg
gen : neutr


util– ¬

case :
{

nom
voc

}
num : sg

 ¬

case : acc
num : sg
gen : neutr


An example for adjectives from i–declension with more than one nominative singular
form. Usually, one stem entry is needed for every nominative singular form and one
common stem entry for most other forms.

positive

laudare

reg : +
pos : verb
conj : a


laud–

[
stem : present

]
laudav–

[
stem : perfect

]
laudat–

[
stem : supine

]
An example for verbs from a–declension, with usually three stems and very regular
inflection.

Appendix D

Inflection Tables

The following tables list the word forms recognized by the morphological analyzer.

This appendix is mainly a translation of material from Bubenheimer (1995) and

largely follows Hillen (1986).

Finite verb forms are listed starting from first person singular through third

person plural. Declined word forms are listed in the following order of cases with

the exception of the gerund, for which nominative and vocative forms are not listed.

nominative
genitive
dative
accusative
ablative
vocative

60

61

D.1 Verbs

Table D.1: present stem active

a–conj. e–conj. cons. conj. cons. conj.
(-io–stem)

i–conj.

indicative
present am–o mon–eo reg–o cap–io aud–io

am–as mon–es reg–is cap–is aud–is
am–at mon–et reg–it cap–it aud–it
am–amus mon–emus reg–imus cap–imus aud–imus
am–atis mon–etis reg–itis cap–itis aud–itis
am–ant mon–ent reg–unt cap–iunt aud–iunt

past am–abam mon–ebam reg–ebam cap–iebam aud–iebam
am–abas mon–ebas reg–ebas cap–iebas aud–iebas
am–abat mon–ebat reg–ebat cap–iebat aud–iebat
am–abamus mon–ebamus reg–ebamus cap–iebamus aud–iebamus
am–abatis mon–ebatis reg–ebatis cap–iebatis aud–iebatis
am–abant mon–ebant reg–ebant cap–iebant aud–iebant

future am–abo mon–ebo reg–am cap–iam aud–iam
am–abis mon–ebis reg–es cap–ies aud–ies
am–abit mon–ebit reg–et cap–iet aud–iet
am–abimus mon–ebimus reg–emus cap–iemus aud–iemus
am–abitis mon–ebitis reg–etis cap–ietis aud–ietis
am–abunt mon–ebunt reg–ent cap–ient aud–ient

subjunctive
present am–em mon–eam reg–am cap–iam aud–iam

am–es mon–eas reg–as cap–ias aud–ias
am–et mon–eat reg–at cap–iat aud–iat
am–emus mon–eamus reg–amus cap–iamus aud–iamus
am–etis mon–eatis reg–atis cap–iatis aud–iatis
am–ent mon–eant reg–ant cap–iant aud–iant

past am–arem mon–erem reg–erem cap–erem aud–irem
am–ares mon–eres reg–eres cap–eres aud–ires
am–aret mon–eret reg–eret cap–eret aud–iret
am–aremus mon–eremus reg–eremus cap–eremus aud–iremus
am–aretis mon–eretis reg–eretis cap–eretis aud–iretis
am–arent mon–erent reg–erent cap–erent aud–irent

imperative
present

am–a mon–e reg–e cap–e aud–i

am–ate mon–ete reg–ite cap–ite aud–ite

future
am–ato mon–eto reg–ito cap–ito aud–ito
am–ato mon–eto reg–ito cap–ito aud–ito

am–atote mon–etote reg–itote cap–itote aud–itote
am–anto mon–ento reg–unto cap–iunto aud–iunto

infinitive am–are mon–ere reg–ere cap–ere aud–ire

62

Table D.2: present stem passive

a–conj. e–conj. cons. conj. cons. conj.
(-io–stem)

i–conj.

indicative
present am–or mon–eor reg–or cap–ior aud–ior

am–aris mon–eris reg–eris cap–eris aud–iris
am–atur mon–etur reg–itur cap–itur aud–itur
am–amur mon–emur reg–imur cap–imur aud–imur
am–amini mon–emini reg–imini cap–imini aud–mini
am–antur mon–entur reg–untur cap–iuntur aud–iuntur

past am–abar mon–ebar reg–ebar cap–iebar aud–iebar
am–abaris mon–ebaris reg–ebaris cap–iebaris aud–iebaris
am–abatur mon–ebatur reg–ebatur cap–iebatur aud–iebatur
am–abamur mon–ebamur reg–ebamur cap–iebamur aud–iebamur
am–abamini mon–ebamini reg–ebamini cap–iebamini aud–iebamini
am–abantur mon–ebantur reg–ebantur cap–iebantur aud–iebantur

future am–abor mon–ebor reg–ar cap–iar aud–iar
am–aberis mon–eberis reg–eris cap–ieris aud–ieris
am–abitur mon–ebitur reg–etur cap–ietur aud–ietur
am–abimur mon–ebimur reg–emur cap–iemur aud–iemur
am–abimini mon–ebimini reg–emini cap–iemini aud–iemini
am–abuntur mon–ebuntur reg–entur cap–ientur aud–ientur

subjunctive
present am–er mon–ear reg–ar cap–iar aud–iar

am–eris mon–earis reg–aris cap–iaris aud–iaris
am–etur mon–eatur reg–atur cap–iatur aud–iatur
am–emur mon–eamur reg–amur cap–iamur aud–iamur
am–emini mon–eamini reg–amini cap–iamini aud–iamini
am–entur mon–eantur reg–antur cap–iantur aud–iantur

past am–arer mon–erer reg–erer cap–erer aud–irer
am–areris mon–ereris reg–ereris cap–ereris aud–ireris
am–aretur mon–eretur reg–eretur cap–eretur aud–iretur
am–aremur mon–eremur reg–eremur cap–eremur aud–iremur
am–aremini mon–eremini reg–eremini cap–eremini aud–iremini
am–arentur mon–erentur reg–erentur cap–erentur aud–irentur

imperative
present

am–are mon–ere reg–ere cap–ere aud–ire

am–amini mon–emini reg–imini cap–imini aud–imini

future
am–ator mon–etor reg–itor cap–itor aud–itor
am–ator mon–etor reg–itor cap–itor aud–itor

am–antor mon–entor reg–untor cap–iuntor aud–iuntor

infinitive am–ari mon–eri reg–i cap–i aud–iri

63

Table D.3: additional infinite forms for the present stem

a–conj. e–conj. cons. conj. cons. conj.
(-io–stem)

i–conj.

participle am–ans mon–ens reg–ens cap–iens aud–iens
(participle am-antis mon–entis reg–entis cap–ientis aud–ientis
present etc. etc. etc. etc. etc.
active) (see below, (see below, (see below, (see below, (see below,

mixed mixed mixed mixed mixed
declension) declension) declension) declension) declension)

gerund am–andi mon–endi reg–endi cap–iendi aud–iendi
am–ando mon–endo reg–endo cap–iendo aud–iendo
am–andum mon–endum reg–endum cap–iendum aud–iendum
am–ando mon–endo reg–endo cap–iendo aud–iendo

gerundive am–andus, mon–endus, reg–endus, cap–iendus, aud–iendus,
a,um a,um a,um a,um a,um

etc. etc. etc. etc. etc.
(a–/o–decl. (a–/o–decl. (a–/o–decl. (a–/o–decl. (a–/o–decl.
for adj.) for adj.) for adj.) for adj.) for adj.)

Table D.4: perfect stem active

indicative
present amav–i
(perfect) amav–isti

amav–it
amav–imus
amav–istis
amav–erunt

past amav–eram
(pluperfect) amav–eras

amav–erat
amav–eramus
amav–eratis
amav–erant

future amav–ero
(future perfect) amav–eris

amav–erit
amav–erimus
amav–eritis
amav–erint

subjunctive
present amav–erim
(perfect) amav–eris

amav–erit
amav–erimus
amav–eritis
amav–erint

past amav–issem
(pluperfect) amav–isses

amav–isset
amav–issemus
amav–issetis
amav–issent

infinitive amav–isse

Table D.5: supine stem

participle amat–us,a,um
present etc.
(participle (a–/o–decl.
perf. passive) for adjectives)
participle amat–urus,a,um
future etc.
(participle (a–/o–decl.
fut. active) for adjectives)
supine I amat–um
supine II amat–u

64

Table D.6: declension of present participle

singular plural
masc., fem. neutr. masc., fem. neutr.

mixed decl. am–ans am–ans am–antes am–antia
(3rd decl.) am–antis am–antis am–antium am–antium

am–anti am–anti am–antibus am–antibus
am–antem am–ans am–antes/–antis am–antia
am–ante am–ante am–antibus am–antibus
am–ans am–ans am–antes am–antia

Table D.7: 0–conjugation paradigms (only present stem)

1st sg. -o 1st sg. -m
active passive active passive

indicative, –o –or –m –r
subjunctive –s –ris –s –ris

–t –tur –t –tur
–mus –mur –mus –mur
–tis –mini –tis –mini
–unt –untur –nt –ntur

imperative
present –ε –re –ε –re

–te –mini –te –mini

imperative
future –to –tor –to –tor

–to –tor –to –tor

–tote –tote
–unto –untor –nto –ntor

66

D.3 Adjectives

Table D.9: adjective declension

singular plural
masc. fem. neutr. masc. fem. neutr.

a–/o–decl. iust–us iust–a iust–um iust–i iust–ae iust–a
(fem.: iust–i iust–ae iust–i iust–orum iust–arum iust–orum
a–decl.; iust–o iust–ae iust–o iust–is iust–is iust–is
masc./neutr.: iust–um iust–am iust–um iust–os iust–as iust–a
o–decl.) iust–o iust–a iust–o iust–is iust–is iust–is

iust–e iust–a iust–um iust–i iust–ae iust–a
a–/o–decl. pulcher pulchr–a pulchr–um pulchr–i pulchr–ae pulchr–a
(-er stem) pulchr–i pulchr–ae pulchr–i pulchr–orum pulchr–arum pulchr–orum
(fem.: pulchr–o pulchr–ae pulchr–o pulchr–is pulchr–is pulchr–is
a–decl.; pulchr–um pulchr–am pulchr–um pulchr–os pulchr–as pulchr–a
masc./neutr.: pulchr–o pulchr–a pulchr–o pulchr–is pulchr–is pulchr–is
o–decl. (-er)) pulcher pulchr–a pulchr–um pulchr–i pulchr–ae pulchr–a
cons. decl. dives dives dives divit–es divit–es divit–a

divit–is divit–is divit–is divit–um divit–um divit–um
divit–i divit–i divit–i divit–ibus divit–ibus divit–ibus
divit–em divit–em dives divit–es divit–es divit–a
divit–e divit–e divit–e divit–ibus divit–ibus divit–ibus
dives dives dives divit–es divit–es divit–a

i–decl. acer acris acre acr–es acr–es acr–ia
acr–is acr–is acr–is acr–ium acr–ium acr–ium
acr–i acr–i acr–i acr–ibus acr–ibus acr–ibus
acr–em acr–em acre acr–es/–is acr–es/–is acr–ia
acr–i acr–i acr–i acr–ibus acr–ibus acr–ibus
acer acris acre acr–es acr–es acr–ia

Appendix E

Endings Trie

The following list represents YALL’s complete endings trie. Compared to Buben-

heimer (1995), a clearer format is used and a few trie nodes have changed. Each line

represents one trie node, including the node’s number, covered grapheme, features,

and parent nodes (for an explanation of the actual endings trie structure see Section

3.4.3); it has the form [node number,morph,feature values,parent nodes]. This is

not the format of the endings trie specification file trie.ini, which is not equally

readable. For a list of the used features see Appendix B. The last node listed is the

trie’s “start node.”

[0,ε,verb,]
[1,ε,prs_stem,0]
[2,ε,perf_stem active,0]

[3,ε,sup_stem,0]
[4,ε,a_conj,1]
[5,ε,e_conj,1]
[6,ε,cons_conj,1]
[7,ε,cons_i_conj,1]
[8,ε,i_conj,1]
[9,ε,null_conj_o,1]
[10,ε,null_conj_m,1]
[11,a,,4]

[12,e,,5]

[13,i,,6]

[14,e,,6]

[15,i,,7]

[16,e,,7]

[17,i,,8]

67

68

[18,e,,15 17]

[19,re,,11 12 14 16 17]

[20,isse,,2]

[21,er,,2]

[22,ε,indicative subjunctive,9]

[23,ε,indicative subjunctive,10]

[24,ε,present indicative,11 12 13 15 17]

[25,ε,present indicative,4 6 12 15 17]

[26,ε,present indicative,541539.634.9(15)-509.9(17])]TJ'Ω-2.4301 71.21 TD'Ω([24,)Tj'Ω/F11 1 Tf'Ω2.0401 0 TD'Ω0 Tc'Ω(¿)Tj'Ω/F3 1 Tf'Ω0.39 0 TD'Ω-0.0046 Tc'Ω[(,present)-550(indicati20(15)-520(17])]TJ'Ω-2.430181.21 TD'Ω([24,)Tj'Ω/F11 1 Tf'Ω2.0401 0 TD'Ω0 Tc'Ω(¿)Tj'Ω/F3 1 Tf'Ω0.39 0 TD'Ω-0.0046 Tc'Ω[(,present)-550(indicative,11)-1(2)-520610(13)-520(15)-520(17])]TJ'Ω-2.4Ω-029,ba,past(indicpresent)-550(indicative,21)-1(2)-5208,15)-539.9(17])]TJ'Ω-030,b,future(indi634present)-550(indicati20(15)-0)]TJ'Ω-2.4Ω-031,a,future(indi634present)-556indicat(1)5(2)-520(1),,15 17][24,ε

69

[61,ris,singular passive two,22 23 28 29 32 34 35 36 37]

[62,ε,singular two,40 47 48]

[63,re,singular two passive,38]

[64,t,singular active three,22 23 24 27 29 32 33 35 36 50 52 53]

[65,it,singular active three,49]

[66,tur,singular passive three,22 23 24 29 32 33 35 36 37]

[67,ε,singular three,47 48]

[68,mus,plural active one,22 23 24 29 32 33 35 36 37 50 52 53]

[69,imus,plural active one,49]

[70,mur,plural passive one,22 23 24 29 32 33 35 36 37]

[71,tis,plural active two,22 23 24 29 32 33 35 36 37 50 52 53]

[72,istis,plural active two,49]

[73,mini,plural passive two,22 23 24 29 32 33 35 36 37 39]

[74,te,plural two,40 47]

[75,u,,22 26 30]

[76,nt,plural active three,23 27 29 32 35 36 37 50 52 53 75]

[77,erunt,plural active three,49]

[78,ntur,plural passive three,23 27 29 32 35 36 37 75]

[79,ε,three plural,47 48]

[80,ε,infinite infinitive active,19 20]

[81,r,,11 12 17]

[82,i,infinite infinitive passive,6 7 81]

[83,n,infinite participle masculine feminine neuter,11 12 14 18]

[84,s,nominative vocative singular masculine feminine,83]

[85,s,nominative accusative vocative singular neuter,83]

[86,t,singular genitive dative ablative,83]

[87,t,singular accusative masculine feminine,83]

[88,t,plural,83]

[89,ε,infinite participle present,3]

[90,ur,infinite participle future,3]

[91,nd,infinite gerund,11 12 14 18]

[92,i,genitive,91]

[93,o,dative ablative,91]

[94,um,accusative,91]

[95,nd,infinite gerundive,11 12 14 18]

[96,um,infinite supineI,3]

[97,u,infinite supineII,3]

[98,ε,noun,]
[99,ε,adjective,]
[100,ε,masculine neuter,89 90 95 99]

[101,ε,masculine neuter,99]

[102,ε,feminine,89 90 95 99]

[103,ε,masculine feminine,98]

70

[104,ε,masculine feminine neuter,98]

[105,ε,masculine feminine neuter,99]

[106,ε,o_decl,100 104]

[107,ε,o_puer_decl,101 103]

[108,ε,a_decl,102 103]

[109,ε,e_decl,103]
[110,ε,u_decl,104]
[111,ε,cons_decl,104 105]

[112,ε,i_decl,104 105]

[113,ε,mixed_decl,84 85 86 87 88 104]

[114,o,,106]

[115,u,,106]

[116,o,,107]

[117,u,,107]

[118,a,,108]

[119,e,,109]

[120,u,,110]

[121,i,,111]

[122,e,,111]

[123,i,,112]

[124,e,,112]

[125,i,,113]

[126,e,,113]

[127,ε,nominative accusative vocative singular neuter,

111 112 113 120]

[128,m,nominative accusative vocative singular neuter,115 117]

[129,s,nominative vocative singular masculine feminine,119 120]

[130,ε,nominative vocative singular masculine feminine,

107 111 112 113 118]

[131,s,nominative singular masculine feminine,115]

[132,i,genitive singular,106 107 119]

[133,e,genitive singular,118]

[134,s,genitive singular,120 121 123 125]

[135,ε,dative singular,114 116]

[136,e,dative singular,118]

[137,i,dative singular,111 112 113 119 120]

[138,ε,dative singular neuter,120]

[139,ε,noun,123]
[140,ε,adjective,124]
[141,m,accusative singular masculine feminine,

115 117 118 119 120 122 126 139 140]

[142,ε,ablative singular,114 116 118 119 120 122 123 126]

[143,e,vocative singular masculine feminine,106]

71

[144,ε,verb,125]
[145,ε,noun,113]
[146,a,nominative accusative vocative plural neuter,

106 107 111 120 123 144 145]

[147,s,nominative accusative vocative plural masculine feminine,

119 120 122 124 126]

[148,i,nominative vocative plural masculine feminine,106 107]

[149,e,nominative vocative plural,118]

[150,r,,114 116 118 119]

[151,um,genitive plural,111 120 123 125 150]

[152,i,,110]

[153,is,dative ablative plural,106 107 108]

[154,bus,dative ablative plural,119 121 123 125 152]

[155,s,accusative masculine feminine plural,114 116 118 123 125]

[156,ε,particle,]
[157,ε,regular,
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 76 77 78

79 80 82 92 93 94 96 97 127 128 129 130 131 132 133 134 135 136 137

138 141 142 143 146 147 148 149 151 153 154 155 156]

[158,ε,exception,]
[159,ε,,157 158]

Appendix F

Source Code

This appendix presents the complete source code of YALL’s reimplementation in

Java.

Affix.java

package yall;

/**
* Combines a morph and a feature structure into a morphological
* description of the "morph meaning".
*/

class Affix {
public String grapheme;
public FeatureMap affixfeaturemap;

/*
public Affix() {
}

*/

/*
public Affix(String graphemestring, FeatureMap thefeaturemap) {
this();
grapheme = graphemestring;
affixfeaturemap = thefeaturemap;
}

*/
}

72

73

AnalysisResult.java

package yall;

/**
* Data structure to specify the results of a morphological analysis
* with the the found lemma, the found stem, and the found features.
*/

class AnalysisResult {
String lemmaname;
String stemname;
SimpleFeatureMap features;

public String toString () {
return "Lemma: " + lemmaname + "\nStem: " + stemname + "\n" +

features.toString();
}

}

74

Automat.java

package yall;

import java.util.LinkedList;
import java.util.ListIterator;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileNotFoundException;
import java.io.IOException;

/**
* The main class for the endings trie.
*/

final class Automat{
ExtAffix mat;

/*
file format of automat file:
1. 1-n entries
2. Each entry consists of several lines:
1. identifier for entry (standard String)
2. affix at node
3. one line for each feature value,
blank line indicates end of feature values
4. one line for each successor node identifier,
blank line indicates end of successor nodes
3. The last entry is the start node of the trie

*/

public Automat(){
LinkedList tempentrylist = new LinkedList();

try {
BufferedReader trieini =

new BufferedReader(new FileReader("trie.ini"));
try {

do {
TempEntry newentry = new TempEntry();
newentry.identifier = trieini.readLine();
newentry.node = new ExtAffix();
newentry.node.successors = new LinkedList();
newentry.node.grapheme = trieini.readLine();

newentry.node.affixfeaturemap = new FeatureMap();
String valuestring;

75

while ((valuestring =
trieini.readLine()).length() > 0) {

newentry.node.affixfeaturemap.
put(new Feature(valuestring));

}

newentry.nextentries = new LinkedList();
String idstring;
while ((idstring = trieini.readLine()).length() > 0) {

newentry.nextentries.add(idstring);
}
tempentrylist.addLast(newentry);

} while(trieini.ready());
// do-while: at least one entry (start node) required
// in file!
trieini.close();

} catch (IOException e) {
throw new Error("Wrong file format in trie.ini!");

}
} catch (FileNotFoundException e) {

throw new Error("trie.ini could not be found!");
}

ListIterator entryiterator = tempentrylist.listIterator(0);
do {

TempEntry theentry = (TempEntry) entryiterator.next();
ListIterator iditerator =

theentry.nextentries.listIterator(0);
while(iditerator.hasNext()) {

String theid = (String) iditerator.next();
boolean idfound = false;
ListIterator otherentryiterator =

tempentrylist.listIterator(0);
do {

TempEntry theotherentry =
(TempEntry) otherentryiterator.next();

if(theid.equals(theotherentry.identifier)) {
theentry.node.successors.add(theotherentry.node);
idfound = true;
break;

}
} while (otherentryiterator.hasNext());
if(!idfound) {

76

throw new Error("unknown node identifier: " + theid);
}

}
} while (entryiterator.hasNext());

mat = ((TempEntry) (tempentrylist.getLast())).node;
}

public LinkedList analyze(final String word) throws NoMatch {
return mat.partmatch(word, (byte) (word.length() - 1),

new FeatureMap());
}

}

77

BaseTrie.java

package yall;

import java.io.RandomAccessFile;
import java.io.IOException;
import java.io.FileNotFoundException;

import java.util.LinkedList;
import java.util.Iterator;

/**
* The fundamental class for all lexicon tries.
*/

class BaseTrie {
// and here comes the ugly workaround...
private RandomAccessFile superFile;

private EntryListFile entrylistfile;
public EntryFile entryfile;

private static final byte arrayentries = 27;
// 26 characters of the Western Alphabet plus one "empty" letter

private String fileSuffix = ".yt";
// it’s important to have at least one array in file

public BaseTrie() {
// only for creating an empty BaseTrie, needs to be followed
// by create()
entrylistfile = new EntryListFile();
entryfile = new EntryFile();

}

public BaseTrie(String filename) {
try {

superFile = new RandomAccessFile(filename + fileSuffix, "r");
}
catch(FileNotFoundException e) {

throw new Error("File " + filename + fileSuffix +
" does not exist yet. " +
"Please create it first.");

}
entrylistfile = new EntryListFile(filename);
entryfile = new EntryFile(filename);

}

78

public void create(String filename) {
try {

superFile = new RandomAccessFile(filename + fileSuffix, "rw");
superFile.setLength(0);
appendBlankArray();

}
catch(IOException f) {

throw new Error("Couldn’t create new file" + filename +
fileSuffix);

}
entrylistfile.create(filename);
entryfile.create(filename);

}

private int appendBlankArray() {
try {

int appendpos = (int) superFile.length();
superFile.seek(appendpos);
for(int i = 1; i <= arrayentries; i++) {

superFile.writeInt(-1);
}
// I’m not sure if this works or if I have to
// extend the size of the file first
return appendpos;

}
catch(IOException e) {

throw new Error("An error occured while trying to append an" +
"entry array to a trie file.\n" + e);

}
}

public int arraypos(final String affixstring, final byte aktchar,
final int startpos) {

return startpos + 4 * (affixstring.charAt(aktchar) - ’a’ + 1);
// needs to be corrected!

}

/*
exactness:
0: exact find
1: find prefixes of findaffix
2: find completions of findaffix

When trie file is created, every list in it must have the
"empty" character as the character for the first element (makes

79

retrieval easier)
*/

/* an old find() with lists
public LinkedList find(final String findaffix, final int aktchar,
final long findpos, final byte exactness)
throws IOException {
LinkedList poslist = new LinkedList();

if(findpos == 0)
return poslist;

seek(findpos);
byte infixchar = readByte();
long aktelepos = readLong();
long nextpos = readLong();

if (infixchar == 0) {
if ((exactness == 0 && aktchar == findaffix.length()) ||
(exactness == 1 && aktchar <= findaffix.length()) ||
(exactness == 2 && aktchar >= findaffix.length())) {
poslist.addAll(getentrypositions(aktelepos));
}
if (exactness == 2 ||
(exactness == 1 && aktchar < findaffix.length())) {
poslist.addAll(find(findaffix, aktchar, nextpos, exactness));
}
} else if ((aktchar < findaffix.length() &&
infixchar == findaffix.charAt(aktchar)) ||
// some "casting" needed here!!!
exactness == 2) {
poslist.addAll(find(findaffix, aktchar + 1, aktelepos, exactness));
} else {
poslist.addAll(find(findaffix, aktchar, nextpos, exactness));
}
return poslist;
}

*/

public LinkedList findEntries (final String findaffix,
final byte exactness) {

LinkedList poslist = find(findaffix, exactness);
Iterator positerator = poslist.iterator();
LinkedList entryList = new LinkedList();
for (int i = 0; i < poslist.size(); i++) {

80

entryList.add(entryfile.find(((Integer) positerator.next()).
intValue()));

}
return entryList;

}

public LinkedList find(final String findaffix, final byte exactness) {
return find(findaffix, (byte) 0, 0, exactness);

}

private LinkedList find(final String findaffix, final byte aktchar,
final int findpos, final byte exactness) {

LinkedList poslist = new LinkedList();
try {

if(findpos != -1) {
if ((exactness == 0 && aktchar == findaffix.length()) ||

(exactness == 1 && aktchar <= findaffix.length()) ||
(exactness == 2 && aktchar >= findaffix.length())) {
superFile.seek(findpos);
int listpos = superFile.readInt();
poslist.addAll(entrylistfile.

getentrypositions(listpos));
}
if (aktchar < findaffix.length()) {

superFile.seek(arraypos(findaffix, aktchar, findpos));
int nextpos = superFile.readInt();
poslist.addAll(find(findaffix, (byte) (aktchar + 1),

nextpos, exactness));
}
else if (exactness == 2)
{

for(int i = 0; i < arrayentries; i++) {
int nextpos = superFile.readInt();
int oldpos = (int) superFile.getFilePointer();
poslist.addAll(find(findaffix,(byte)(aktchar + 1),

nextpos, exactness));
superFile.seek(oldpos);

}
}

}
}
catch(IOException e) {

throw new Error("BaseTrie.find() found a problem " +
"with the lexicon!");

}
return poslist;

81

}

public void updateEntry(LexEntry entry) {
// only meant to update the lexicon entry’s file positions of
// the linked lemmas/stems!!! so don’t change anything else in
// entry!!! And leave the number of linked lemmas/stems the
// same!!!
try {

entryfile.update(entry);
}
catch (IOException e) {

throw new Error("BaseTrie.update(LexEntry) found a problem " +
"with the lexicon!");

}
}

// this insert also sets entry.entrypos to the right position and
// returns that same position
public void insert(LexEntry entry) {

try {
int pos = entryfile.append(entry);
insert(entry.name, pos);

}
catch (IOException e) {

throw(new Error("BaseTrie.insert(LexEntry) found a problem " +
"with the lexicon!"));

}
}

public void insert(final String affixstring, final int lexipos) {
insert(affixstring, lexipos, (byte) 0, 0);

}

private int insert(final String affixstring, final int lexipos,
final byte aktchar, final int insertpos) {

int realinsertpos;

if(insertpos != -1) {
realinsertpos = insertpos;

}
else {

realinsertpos = appendBlankArray();
}

try {

82

if(aktchar == affixstring.length()) {
superFile.seek(realinsertpos);
int listpos = superFile.readInt();
int listrealpos = entrylistfile.insert(listpos, lexipos);
if(listpos == -1) {

superFile.seek(realinsertpos);
superFile.writeInt(listrealpos);

}
} else {

int charinsertpos = arraypos(affixstring, aktchar,
realinsertpos);

superFile.seek(charinsertpos);
int readinsertpos = superFile.readInt();
int returninsertpos = insert(affixstring, lexipos,

(byte) (aktchar + 1),
readinsertpos);

if(readinsertpos == -1) {
superFile.seek(charinsertpos);
superFile.writeInt(returninsertpos);

}
}

}
catch (IOException e) {

throw new Error("BaseTrie.insert encountered a problem " +
"with the lexicon!");

}
return realinsertpos;

}

public void delete(final String affixstring, final int lexipos) {
delete(affixstring, lexipos, (byte) 0, 0);

}

private void delete(final String affixstring, final int lexipos,
final byte aktchar, final int triepos) {

if(triepos != -1) {
try {

if(affixstring.length() == aktchar) {
superFile.seek(triepos);
int listpos = superFile.readInt();
int deletepos =

entrylistfile.delete(listpos, lexipos);
if(deletepos != -1) {

superFile.seek(triepos);
superFile.writeInt(deletepos);

}

83

}
else {

int chardeletepos = arraypos(affixstring, aktchar,
triepos);

superFile.seek(chardeletepos);
int readdeletepos = superFile.readInt();
delete(affixstring, lexipos, (byte) (aktchar + 1),

readdeletepos);
}

}
catch (IOException e) {

throw new Error("BaseTrie.delete found a problem " +
"with the lexicon!");

}
}

}
}

84

Category.java

package yall;

/**
Used to specify feature categories.

*/
final class Category {

private byte index;

private static Category [] object = {new Category((byte)0),
new Category((byte)1),
new Category((byte)2),
new Category((byte)3),
new Category((byte)4),
new Category((byte)5),
new Category((byte)6),
new Category((byte)7),
new Category((byte)8),
new Category((byte)9),
new Category((byte)10),
new Category((byte)11),
new Category((byte)12),
new Category((byte)13)};

private Category (byte index) {
this.index = index;

}

public byte index () {
return index;

}

public static Category object (byte index) {
return object[index];

}
}

85

CategoryValue.java

package yall;

/**
* The class to specify category-value pairs. Contains fields for all
* possible categories and values.
*/

class CategoryValue {
// categories
public static int partofspeech = 1;
public static int conjugation = 2;
public static int person = 3;
public static int number = 4;
public static int infinitivity= 5;
public static int mode = 6;
public static int stem = 7;
public static int tense = 8;
public static int voice = 9;
public static int declension = 10;
public static int casus = 11; // casus since case is Java term
public static int gender = 12;
public static int regularity = 13;

// partofspeech
public static int noun = 1;
public static int verb = 2;
public static int adjective = 3;
public static int particle = 4;

// conjugation
public static int a_konj = 1;
public static int e_konj = 2;
public static int kons_konj = 3;
public static int kons_i_konj = 4;
public static int i_konj = 5;
public static int null_konj_o = 6;
public static int null_konj_m = 7;

// person
public static int one = 1;
public static int two = 2;
public static int three = 3;
public static int infinite = 4;

// number

86

public static int singular = 1;
public static int plural = 2;

// infinitivity
public static int infinitive = 1;
public static int gerund = 2;
public static int gerundive = 3;
public static int participle = 4;
public static int supineI = 5;
public static int supineII = 6;

// mode
public static int indicative = 1;
public static int subjunctive = 2;
public static int imperative = 3;

// stem
public static int prs_stem = 1;
public static int pref_stem = 2;
public static int sup_stem = 3;

// tense
public static int present = 1;
public static int past = 2;
public static int future = 3;

// voice
public static int active = 1;
public static int passive = 2;

// declension
public static int a_decl = 1;
public static int o_decl = 2;
public static int o_puer_decl = 3;
public static int e_decl = 4;
public static int u_decl = 5;
public static int cons_decl = 6;
public static int i_decl = 7;
public static int mixed_decl = 8;

// casus
public static int nominative = 1;
public static int genitive = 2;
public static int dative = 3;
public static int accusative = 4;
public static int ablative = 5;

87

public static int vocative = 6;

// gender
public static int masculine = 1;
public static int feminine = 2;
public static int neuter = 3;

// regularity
public static int regular = 1;
public static int exception = 2;

public int category;
public int value;

public CategoryValue(int cat, int val){
category = cat;
value = val;

}
}

88

EntryFile.java

package yall;

// here we get to a big, big problem in Java... IT IS NOT POSSIBLE TO
// CATCH AN EXCEPTION FROM THE CONSTRUCTOR IN THE SUPERCLASS IN THE
// CONSTRUCTOR OF THE DERIVED CLASS! ALL DERIVED CLASSES HAVE TO THROW
// THE SAME EXCEPTION. ALSO: REQUIRED INVOCATION OF CONSTRUCTOR OF
// SUPERCLASS AS FIRST THING IN THE CONSTRUCTOR OF DERIVED CLASS

// another braindead idea is to make the classes String, Byte, etc.
// final, so they can’t be used for derivations

import java.io.IOException;
import java.io.FileNotFoundException;

/**
* The class to handle the lexicon entry files (.ye).
*/

class EntryFile {

ExtRandomAccessFile superFile;
// workaround: I don’t
// derive it from the superclass, I make the superclass a
// member...

private static String fileSuffix = ".ye";

class FilePosLink {
int startpos, headlinkpos;

}

public EntryFile() {
// only for creating an empty EntryFile, needs to be followed
// by create()

}

public EntryFile(String name) {
try {

superFile = new ExtRandomAccessFile(name + fileSuffix, "r");
}
catch(FileNotFoundException e) {

throw new Error("File " + name + fileSuffix +
" does not exist yet. " +
"Please create it first.");

}

89

}

public void create(String filename) {
try {

superFile = new ExtRandomAccessFile(filename + fileSuffix,
"rw");

superFile.setLength(0);
}
catch(IOException f) {

throw new Error("Couldn’t create new file" + filename +
fileSuffix);

}
}

public LexEntry find (final int findpos) {
LexEntry anentry = new LexEntry();
try {

superFile.seek(findpos);
anentry.fileRead(superFile);

}
catch(IOException e) {

throw new Error("Something is wrong with the lexicon " +
"files; couldn’t read lexicon entry at" +
"specified location.");

}
return anentry;

}

// append also sets newentry.entrypos to the correct position
// and returns that position
int append (LexEntry newentry) throws IOException {

newentry.entrypos = new Integer((int) superFile.length());
superFile.seek(newentry.entrypos.intValue());
newentry.fileWrite(superFile);
return newentry.entrypos.intValue();

}

void update (LexEntry theentry) throws IOException {
superFile.seek(theentry.entrypos.intValue());
theentry.fileWrite(superFile);

}
}

90

EntryListFile.java

package yall;

import java.io.RandomAccessFile;
import java.io.FileNotFoundException;
import java.io.IOException;

import java.util.LinkedList;

/**
* The class to handle the files with lists of pointers to lexicon
* entries in the lexicon entry files. The lexicon tries contain
* pointers to heads of lists in the entry list files.
*/

class EntryListFile {
// and another one of these workarounds...
RandomAccessFile superFile;

private static String fileSuffix = ".yel";

public EntryListFile() {
// only for creating an empty EntryListFile, needs to be
// followed by create()

}

public EntryListFile (String filename) {
try {

superFile = new RandomAccessFile(filename + fileSuffix, "r");
}
catch (FileNotFoundException e) {

// this should only occur when opening for reading
throw new Error("File " + filename + fileSuffix +

" does not exist yet. " +
"Please create it first.");

}
}

public void create(String filename) {
try {

superFile = new RandomAccessFile(filename + fileSuffix, "rw");
superFile.setLength(0);

}
catch(IOException f) {

throw new Error("Couldn’t create new file" + filename +
fileSuffix);

91

}
}

public LinkedList getentrypositions(final int entriespos)
throws IOException {
if (entriespos == -1) {

return new LinkedList();
} else {

superFile.seek(entriespos);
int nextpos = superFile.readInt();
int lexentrypos = superFile.readInt();
LinkedList returnlist = getentrypositions(nextpos);
returnlist.add(new Integer(lexentrypos));
return returnlist;

}
}

public int insert(final int insertpos, final int lexentrypos)
throws IOException {
if(insertpos == -1) {

int length = (int) superFile.length();
superFile.seek(length);
superFile.writeInt(-1);
superFile.writeInt(lexentrypos);
return(length);

} else {
superFile.seek(insertpos);
int nextpos = superFile.readInt();
int realinsertpos = insert(nextpos, lexentrypos);
if(nextpos == -1) {

superFile.seek(insertpos);
superFile.writeInt(realinsertpos);

}
return insertpos;

/* old stuff
long runentrypos = insertpos;
long oldpos;
do {
seek(runentrypos);
oldpos = runentrypos;
} while((runentrypos = readLong()) != -1);
long length = length();
seek(oldpos);
writeLong(length);
seek(length);

92

writeLong(-1);
writeLong(lexentrypos);
return insertpos;

*/
}

}

public int delete(final int insertpos, final int lexentrypos)
throws IOException {
if(insertpos == -1) {

return -1;
} else {

superFile.seek(insertpos);
int nextpos = superFile.readInt();
int thislexpos = superFile.readInt();
if(thislexpos == lexentrypos) {

return nextpos;
} else {

int deletepos = delete(nextpos, lexentrypos);
if(deletepos != -1) {

superFile.seek(insertpos);
superFile.writeInt(deletepos);

}
return -1;

}
}

}
}

93

ExtAffix.java

package yall;

import java.util.LinkedList;
import java.util.Iterator;

/**
* Objects of this class represent nodes in the endings trie which
* include pointers to successor nodes.
*/

class ExtAffix extends Affix {
LinkedList successors;
//the following nodes in the trie

LinkedList partmatch(String input, byte aktchar,
final FeatureMap solong) throws NoMatch {

if(input.regionMatches(aktchar - grapheme.length() + 1,grapheme,0,
grapheme.length())) {

FeatureMap newsolong;

try {
newsolong = solong.matchmap(affixfeaturemap);

}
catch(NotUnifiable e) {

throw new NoMatch();
}

LinkedList helplist = new LinkedList();

if(successors.size() == 0) {
StringFeatureMap resultmap = new StringFeatureMap();
resultmap.analysis = newsolong;
resultmap.stem =

input.substring(0,aktchar - grapheme.length() + 1);
helplist.add(resultmap);
return helplist;

}
else {

Iterator succiter = successors.listIterator(0);
boolean somematch = false;

for(int i = successors.size(); i > 0; i--) {
try {

helplist.
addAll(((ExtAffix)succiter.next()).

94

partmatch(input, (byte)
(aktchar-grapheme.length()),
newsolong));

somematch = true;
}
catch(NoMatch e) {
}

}
if(somematch) {

return helplist;
}
else {

throw new NoMatch();
}

}
}
else {

throw new NoMatch();
}

}
}

95

ExtLexEntry.java

package yall;

/**
* This class represents lexicon entries and includes the entry’s
* lemma string.
*/

class ExtLexEntry extends LexEntry {
String lemmagrapheme;

public ExtLexEntry(LexEntry oldentry, EntryFile lemmafile) {
entrypos = oldentry.entrypos;
name = oldentry.name;
links = oldentry.links;

LexEntry lemmaEntry =
lemmafile.find(((Integer)links.getFirst()).intValue());

lemmagrapheme = lemmaEntry.name;
try {

features = oldentry.features.matchmap(lemmaEntry.features);
}
catch(NotUnifiable e) {

throw new Error("The positive feature sets for the stem " +
"entry " + name + " and the lemma entry " +
lemmaEntry.name + " are not compatible!");

}
nofeatures = new FeatureMapList(oldentry.nofeatures);
nofeatures.addAll(lemmaEntry.nofeatures);

}

/*
LinkedList matchanalysis(final FeatureMap analysis)
throws NotUnifiable {
// versucht, eine morphologische Analyse analysis mit einem
// kombinierten Lemma-Stamm-Eintrag zu matchen; die so
// gewonnenen gueltigen Analysen werden in einer Liste von
// SimpleFeatureMaps zurueckgegeben

// I don’t think this is a good way to approach the problem;
// will start from domatch first!!!

LinkedList biglist = new LinkedList();
FeatureMap helpmap = analysis.matchmap(features);
LinkedList tempresult =
helpmap.matchnegmaplist(stementry.nofeatures);

96

// etc. etc. (need to do matchnegmap/matchnegmaplist first)

}
*/

}

97

ExtRandomAccessFile.java

package yall;

import java.io.RandomAccessFile;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.io.FileNotFoundException;

/**
* This class is an extension of the standard {@link RandomAccessFile}
* class and adds reading and writing of {@link String} objects.
*/

class ExtRandomAccessFile extends RandomAccessFile {
public ExtRandomAccessFile(String name, String mode)

throws FileNotFoundException {
super(name,mode);

}

String readString() throws IOException {
byte strlength = readByte();
byte [] bytearray = new byte[strlength];
readFully(bytearray);
String returnstring;
try{

// encoding should have been ASCII but Kawa debugging
// won’t let me... UTF8 should include all ASCII chars
// with same numbers (Java Developers Connection)
returnstring = new String(bytearray, "UTF8");}

catch(UnsupportedEncodingException e) {
throw new Error("unsupported encoding");

}
return returnstring;

}

void writeString(final String outputstring) throws IOException {
writeByte(outputstring.length());
writeBytes(outputstring);

}

/* has been done in class Feature
Feature readFeature() throws IOException {
returnfeature = new Feature();
returnfeature.category = readByte();
returnfeature.value = readByte();
return returnfeature;

98

}

void writeFeature(Feature outputfeature) throws IOException {
writeByte(outputfeature.category);
writeByte(outputfeature.value);
}

FeatureMap readFeatureMap() throws IOException {

}

void writeFeatureMap() throws IOException {
}

*/
}

99

Feature.java

package yall;

import java.io.IOException;

// the java.lang object classes like Byte, Integer, etc., suck
// insofar as they don’t work together with the collection classes
// from java.util very well; e.g. in a set, it cannot be tested if a
// certain numeric value is in the set, unless one has made a unique
// object for every possible number (this is because equals() in Byte,
// Integer, etc., checks for real Object identity, not number
// identity!)
//
// Hence I will make unique Byte objects for every possible number for
// categories and values.

/**
* This class implements simple attribute-value pairs.
*/

class Feature implements Filable {
public Category category;
public Value value;

// class Byte instead of byte because of easier handling elsewhere

public Feature() {
}

public Feature(String valuestring) {
// constructs a feature from the given valuestring
for (byte cat = 1; cat <= 13; cat++) {

for (byte val = 1; val <= FeatureNames.valuenumbers[cat - 1];
val++) {
if(valuestring.equals(FeatureNames.

valuenames[cat - 1][val - 1])) {
category = Category.object(cat);
value = Value.object(val);
return;

}
}

}
throw new Error("Unknown feature value " + valuestring);

}

public void fileWrite(ExtRandomAccessFile f) throws IOException {

100

f.writeByte(category.index());
f.writeByte(value.index());

}

public void fileRead(ExtRandomAccessFile f) throws IOException {
category = Category.object(f.readByte());
value = Value.object(f.readByte());

}
}

101

FeatureDescription.java

package yall;

/**
* Objects of this class contain a textual description of an
* attribute-value pair that is used in the specification files for
* the endings trie and the lexicon.
*/

class FeatureDescription {
int category;
int value;
String description;

public FeatureDescription(int cat, int val, String desc) {
category = cat;
value = val;
description = desc;

}
}

102

FeatureMap.java

package yall;

import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.Iterator;

import java.util.LinkedList;

import java.io.IOException;

/**
* A class to implement feature structures with features containing
* disjunctive feature values.
*/

class FeatureMap extends HashMap implements Filable {

FeatureMap() {
super();

}

FeatureMap(FeatureMap t) {
super(t);

}

public void fileWrite (ExtRandomAccessFile f) throws IOException {
Set mapset = entrySet();
f.writeByte((byte) mapset.size());
Iterator setiterator = mapset.iterator();
while (setiterator.hasNext())
{

Map.Entry entry = (Map.Entry) setiterator.next();
f.writeByte(((Category) entry.getKey()).index());
byte valueno = (byte) ((ValueSet) entry.getValue()).size();
f.writeByte(valueno);
Iterator valueiterator =

(((ValueSet) entry.getValue()).iterator());
for (; valueno > 0; valueno--) {

f.writeByte(((Value) valueiterator.next()).index());
}

}
}

103

public void fileRead (ExtRandomAccessFile f) throws IOException {
byte mapsize = f.readByte();
for(; mapsize > 0; mapsize--)
{

Category category = Category.object(f.readByte());
ValueSet newvalueset = new ValueSet();
byte valueno = f.readByte();
for(; valueno > 0; valueno--) {

newvalueset.add(Value.object(f.readByte()));
}
put(category, newvalueset);

}
}

public void put(Feature newfeature) {
if(containsKey(newfeature.category)) {

ValueSet thevalueset = (ValueSet) get(newfeature.category);
thevalueset.add(newfeature.value);
put(newfeature.category, thevalueset);

}
else {

ValueSet newvalueset = new ValueSet();
newvalueset.add(newfeature.value);
put(newfeature.category, newvalueset);

}
}

public FeatureMap matchmap (final FeatureMap othermap)
throws NotUnifiable {

FeatureMap newmap = new FeatureMap();

Set thiscollection = entrySet();

Iterator runner = thiscollection.iterator();

while(runner.hasNext()) {
Map.Entry thisentry = (Map.Entry) runner.next();
Category thiscategory = (Category) thisentry.getKey();
ValueSet thisvalueset = ((ValueSet) thisentry.getValue());

if (othermap.containsKey(thiscategory)) {
ValueSet othervalueset =

((ValueSet) othermap.get(thiscategory));
ValueSet newvalueset = thisvalueset.match(othervalueset);
newmap.put(thiscategory, newvalueset);

104

} else {
// category was not in the other FeatureMap:
newmap.put(thiscategory, thisvalueset);

}
}

Set othercollection = othermap.entrySet();

Iterator otherrunner = othercollection.iterator();

while(otherrunner.hasNext()) {
Map.Entry otherentry = (Map.Entry) otherrunner.next();
Category othercategory = (Category) otherentry.getKey();
ValueSet othervalueset = ((ValueSet) otherentry.getValue());

if (! newmap.containsKey(othercategory)) {
newmap.put(othercategory, othervalueset);

}
}
return newmap;

/*
Iterator otherrunner = othercollection.iterator();
otherloop:
while(otherrunner.hasNext()) {
Map.Entry otherentry = (Map.Entry) otherrunner.next();
byte othercategory = ((Byte) otherentry.getKey()).byteValue();
if(thiscategory == othercategory) {
ValueSet othervalueset = ((ValueSet) otherentry.getValue());
ValueSet newvalueset = thisvalueset.match(othervalueset);
newmap.put(thiscategory, newvalueset);
continue thisloop;
}
}
// category was not in the other FeatureMap:
newmap.put(thiscategory, thisvalueset);
}

Collection newcollection = newmap.values();
Iterator otherrunner = othercollection.iterator();

outerloop:
while(otherrunner.hasNext()) {
Map.Entry otherentry = (Map.Entry) otherrunner.next();
byte othercategory = ((Byte) otherentry.getKey()).byteValue();
ValueSet othervalueset = ((ValueSet) otherentry.getValue());

105

Iterator newrunner = newcollection.iterator();
innerloop:
while(newrunner.hasNext()) {
Map.Entry newentry = (Map.Entry) newrunner.next();
byte newcategory = ((Byte) newentry.getKey()).byteValue();
if(othercategory == newcategory) {
// category is already in new FeatureMap
continue outerloop;
}
}
// category was not in the new FeatureMap:
newmap.put(othercategory, othervalueset);
}
return newmap;

*/
}

public LinkedList splitmap() {
// splits up a FeatureMap into SimpleFeatureMaps with at
// most one value per category
//
// needed for matchnegmap, etc.
//
// this procedure is a little computationally expensive (could
// be improved for the case that a category has only one value
// (but it’s harder to program then))

Set thiscollection = entrySet();
Iterator thisrunner = thiscollection.iterator();

LinkedList prevcollection = new LinkedList();
prevcollection.add(new SimpleFeatureMap());
do {

LinkedList newcollection = new LinkedList();
Map.Entry thisentry = (Map.Entry) thisrunner.next();
Iterator thisvaluerunner =

((ValueSet) thisentry.getValue()).iterator();
do {

Value thisvalue = (Value) thisvaluerunner.next();
Iterator prevrunner = prevcollection.iterator();
while(prevrunner.hasNext()) {

SimpleFeatureMap amap =
(SimpleFeatureMap) prevrunner.next();

SimpleFeatureMap newmap;
// we want to save some copying effort, so for the
// last value in the valuelist we just use the

106

// FeatureMaps from prevcollection instead of
// copying them (without this measure they would
// get discarded and we would waste a lot of time
// when the FeatureMaps are very simple)
if(thisvaluerunner.hasNext()) {

newmap = new SimpleFeatureMap(amap);
}
else {

newmap = amap;
}
newmap.put((Category) thisentry.getKey(), thisvalue);
newcollection.add(newmap);

}
} while(thisvaluerunner.hasNext());
prevcollection = newcollection;

} while(thisrunner.hasNext());
return prevcollection;

}

public String toString() {
StringBuffer text = new StringBuffer("[\n");
Set mapset = entrySet();
Iterator setiterator = mapset.iterator();
while (setiterator.hasNext()) {

Map.Entry entry = (Map.Entry) setiterator.next();
byte catindex = ((Category) entry.getKey()).index();
ValueSet values = (ValueSet) entry.getValue();
text.append(FeatureNames.categorynames[catindex - 1] + " : " +

values.toString(catindex) + "\n");
}
text.append("]\n");
return new String(text);

}
}

107

FeatureMapList.java

package yall;

import java.util.LinkedList;
import java.util.Iterator;

import java.io.IOException;

/**
* A class to implement lists of feature structures containing
* features with disjunctive values.
*/

class FeatureMapList extends LinkedList implements Filable {

public FeatureMapList() {
super();

}

public FeatureMapList(FeatureMapList l) {
super(l);

}

public void fileRead (ExtRandomAccessFile f) throws IOException {
byte listlength = f.readByte();
for (int i = 0; i < listlength; i++) {

FeatureMap newmap = new FeatureMap();
newmap.fileRead(f);
add(newmap);

}
}

public void fileWrite (ExtRandomAccessFile f) throws IOException {
f.writeByte(size());
Iterator runner = iterator();
for (int i = 0; i < size(); i++) {

((FeatureMap) runner.next()).fileWrite(f);
}

}
}

108

FeatureNames.java

package yall;

/**
* Maps numeric feature descriptions to names of attributes and values
* for displaying feature structures.
*/

final class FeatureNames {
// categories
public final static int partofspeech = 1;
public final static int conjugation = 2;
public final static int person = 3;
public final static int number = 4;
public final static int infinitivity= 5; // very tentative...
public final static int mode = 6;
public final static int stem = 7;
public final static int tense = 8;
public final static int voice = 9;
public final static int declension = 10;
public final static int casus = 11; // casus since case is Java term
public final static int gender = 12;
public final static int regularity = 13;

// partofspeech
public final static int noun = 1;
public final static int verb = 2;
public final static int adjective = 3;
public final static int particle = 4;

// conjugation
public final static int a_conj = 1;
public final static int e_conj = 2;
public final static int cons_conj = 3;
public final static int cons_i_conj = 4;
public final static int i_conj = 5;
public final static int null_conj_o = 6;
public final static int null_conj_m = 7;

// person
public final static int one = 1;
public final static int two = 2;
public final static int three = 3;
public final static int infinite = 4;

// number

109

public final static int singular = 1;
public final static int plural = 2;

// infinitivity
public final static int infinitive = 1;
public final static int gerund = 2;
public final static int gerundive = 3;
public final static int participle = 4;
public final static int supineI = 5;
public final static int supineII = 6;

// mode
public final static int indicative = 1;
public final static int subjunctive = 2;
public final static int imperative = 3;

// stem
public final static int prs_stem = 1;
public final static int perf_stem = 2;
public final static int sup_stem = 3;

// tense
public final static int present = 1;
public final static int past = 2;
public final static int future = 3;

// voice
public final static int active = 1;
public final static int passive = 2;

// declension
public final static int a_decl = 1;
public final static int o_decl = 2;
public final static int o_puer_decl = 3;
public final static int e_decl = 4;
public final static int u_decl = 5;
public final static int cons_decl = 6;
public final static int i_decl = 7;
public final static int mixed_decl = 8;

// casus
public final static int nominative = 1;
public final static int genitive = 2;
public final static int dative = 3;
public final static int accusative = 4;
public final static int ablative = 5;

110

public final static int vocative = 6;

// gender
public final static int masculine = 1;
public final static int feminine = 2;
public final static int neuter = 3;

// regularity
public final static int regular = 1;
public final static int exception = 2;

final static String [] categorynames = {
"partofspeech",
"conjugation",
"person",
"number",
"infinitivity",
"mode",
"stem",
"tense",
"voice",
"declension",
"case",
"gender",
"regularity"

};

final static String [][] valuenames = {
{

"noun",
"verb",
"adjective",
"particle"

},
{

"a_conj",
"e_conj",
"cons_conj",
"cons_i_conj",
"i_conj",
"null_conj_o",
"null_conj_m"

},
{

"one",
"two",

111

"three",
"infinite"

},
{

"singular",
"plural"

},
{

"infinitive",
"gerund",
"gerundive",
"participle",
"supineI",
"supineII"

},
{

"indicative",
"subjunctive",
"imperative"},

{
"prs_stem",
"perf_stem",
"sup_stem"

},
{

"present",
"past",
"future"

},
{

"active",
"passive"

},
{

"a_decl",
"o_decl",
"o_puer_decl",
"e_decl",
"u_decl",
"cons_decl",
"i_decl",
"mixed_decl"

},
{

"nominative",
"genitive",

112

"dative",
"accusative",
"ablative",
"vocative"

},
{

"masculine",
"feminine",
"neuter"

},
{

"regular",
"exception"

}
};
final static int [] valuenumbers =
{4, 7, 4, 2, 6, 3, 3, 3, 2, 8, 6, 3, 2};

}

113

Filable.java

package yall;

import java.io.IOException;

/**
* Denotes classes that implement methods to write their contents to
* an {@link ExtRandomAccessFile} and to read it back in.
*/

interface Filable {
public void fileWrite(ExtRandomAccessFile f) throws IOException;
public void fileRead(ExtRandomAccessFile f) throws IOException;

}

114

LexEntry.java

package yall;

import java.util.LinkedList;
import java.util.Iterator;

import java.io.IOException;

/**
* Objects of this class can contain a complete lexicon entry, but not
* the entry’s lemma string.
*/

class LexEntry implements Filable {
Integer entrypos;
// an Integer object in order to make interweaving with links
// field of other lexEntries easier
String name;
FeatureMap features;
FeatureMapList nofeatures;
LinkedList links;

public void fileRead (ExtRandomAccessFile f) throws IOException {
entrypos = new Integer((int) f.getFilePointer());
name = f.readString();
features = new FeatureMap();
features.fileRead(f);
nofeatures = new FeatureMapList();
nofeatures.fileRead(f);

byte listlength = f.readByte();
links = new LinkedList();
for (int i = 0; i < listlength; i++) {

links.add(new Integer(f.readInt()));
}

}

public void fileWrite (ExtRandomAccessFile f) throws IOException {
f.writeString(name);
features.fileWrite(f);
nofeatures.fileWrite(f);
Iterator runner = links.iterator();
f.writeByte(links.size());
for(int i = 0; i < links.size(); i++) {

f.writeInt(((Integer) runner.next()).intValue());

115

}
}

}

116

Lexicon.java

package yall;

import java.io.FileReader;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.LinkedList;
import java.util.Iterator;

/**
* This class handles YALL’s lexicon, including the generation of the
* lexicon from a textual lexicon specification file
* <code>yalllext.txt</code>. To do the generation type<p><code>java
* Lexicon</code>
*/

class Lexicon {
public BaseTrie lemmatrie, stemtrie;
private FileReader textfile;
private long textpos = 0;

private static String lemmastring = "l";
private static String stemstring = "s";
private static String textstring = "t.txt";

private char lookahead;

public Lexicon() {
// only to create new Lexicon; needs to be followed by
// create()
lemmatrie = new BaseTrie();
stemtrie = new BaseTrie();

}

public Lexicon(final String basename) {

lemmatrie = new BaseTrie(basename + lemmastring);
stemtrie = new BaseTrie(basename + stemstring);

}

public static void main(final String [] args) {
// the main procedure for the application to convert the lexicon
Lexicon thelexicon = new Lexicon();
thelexicon.create(Yall.lexiconBaseName);

}

117

public void create(final String basename) {
try {

textfile = new FileReader(basename + "t.txt");
}
catch(FileNotFoundException e) {

throw new Error("The lexicon text file " + basename +
textstring + " does not exist yet. " +
"Please create it first.");

}
lemmatrie.create(basename+lemmastring);
stemtrie.create(basename+stemstring);

parse();
}

private void parse() {
look();
lemmaentries();

}

private void look() {
while(Character.isWhitespace(lookahead = reallyRead())) {
}

}

private char reallyRead() {
textpos++;
try {

return (char) textfile.read();
}
catch(IOException e) {

throw new Error("An IO error occured while parsing the " +
"lexicon text file.");

}
}

private void match(char character) {
if(lookahead != character) {

parseError();
}
look();

}

private void parseError() {
throw new Error("The lexicon text file is incorrect at " +

"character " + textpos);

118

}

private void lemmaentries() {
while(lookahead == ’[’) {

lemmaentry();
}
match((char) -1);

}

private void lemmaentry() {
LexEntry newEntry = new LexEntry();
match(’[’);
newEntry.name = string();
match(’,’);
newEntry.features = features();
match(’,’);
newEntry.nofeatures = featuremaplist();
match(’,’);
LinkedList stementries = stemEntries();

newEntry.links = new LinkedList();
for(int i = 1; i <= stementries.size(); i++) {

// "make room" for later update;
// required so the size of the lemma
// entry doesn’t change when updated
newEntry.links.add(new Integer(0));

}
// also changes newEntry.entrypos
lemmatrie.insert(newEntry);
// clear list before storing real values
newEntry.links.clear();
Iterator stemiterator = stementries.iterator();
while(stemiterator.hasNext()) {

LexEntry currentstem = (LexEntry) stemiterator.next();
currentstem.links = new LinkedList();
currentstem.links.add(newEntry.entrypos);
stemtrie.insert(currentstem);
newEntry.links.add(currentstem.entrypos);

}
lemmatrie.updateEntry(newEntry);

match(’]’);
}

private String string() {
StringBuffer returnstring = new StringBuffer();

119

while(Character.isLetterOrDigit(lookahead) || lookahead == ’_’) {
returnstring.append(lookahead);
look();

}
return new String(returnstring);

}

private FeatureMap features() {
FeatureMap newmap = new FeatureMap();
match(’[’);
while(lookahead != ’]’) {

newmap.put(this.feature());
if(lookahead == ’,’) {

//I’m a little too generous about parsing invalid
//grammar, but it’s ok
match(’,’);

}
}
match(’]’);
return newmap;

}

private Feature feature() {
String valuestring = string();
return new Feature(valuestring);

}

private FeatureMapList featuremaplist() {
FeatureMapList newlist = new FeatureMapList();
match(’[’);
while(lookahead == ’[’) {

newlist.add(features());
}
match(’]’);
return newlist;

}

private LinkedList stemEntries() {
LinkedList returnlist = new LinkedList();
match(’[’);
while(lookahead == ’[’) {

LexEntry newentry = stemEntry();
returnlist.add(newentry);

}
match(’]’);
return returnlist;

120

}

private LexEntry stemEntry() {
LexEntry newEntry = new LexEntry();
match(’[’);
newEntry.name = string();
match(’,’);
newEntry.features = features();
match(’,’);
newEntry.nofeatures = featuremaplist();
match(’]’);
return newEntry;

}

/* this is not needed *yet*
void open() {
lemmatrie.open();
stemtrie.open();
}

*/
}

121

NoMatch.java

package yall;

/**
* An exception to be thrown when at some point no match is possible
*/

class NoMatch extends Exception {
}

122

NotUnifiable.java

package yall;

/**
* An exception to be thrown when two feature structures cannot be
* unified.
*/

class NotUnifiable extends Exception {
}

123

SimpleFeatureMap.java

package yall;

import java.util.HashMap;
import java.util.Set;
import java.util.Iterator;
import java.util.Map;

/**
* A class to implement feature structures with features containing
* non-disjunctive feature values.
*/

class SimpleFeatureMap extends HashMap {

public SimpleFeatureMap() {
super();

}

public SimpleFeatureMap(final SimpleFeatureMap f) {
super(f);

}

boolean containsCategory (final Category category) {
return containsKey(category);

}

boolean containsFeature (final Feature f) {
return (containsKey(f.category) && get(f.category) == f.value);

}

Value getValue(final Category category) {
return (Value) get(category);

}

public Value put(Feature f) {
// Returns previous value associated with specified key, or
// null if there was no mapping for key. A null return can
// also indicate that the HashMap previously associated null
// with the specified key.

return (Value) put(f.category,f.value);
}

// public Object put(Category category, Value value)
// already available from superclass

124

public boolean matchnegmap(final FeatureMap negmap) {

// here we have to make an implementation decision: when there
// is a conflict between positive and negative set, we can
// either cut up the resulting sets into "basic" feature
// structures with at most one value per category, or we
// accept the possibility of duplicate analyses represented in
// more than one of the resulting feature sets; I find the
// second choice better, otherwise we would get so many
// analysis feature sets sometimes; that wouldn’t be too
// "insightful" (see explanation of cutting up feature
// structures into basic ones on p. 15 of my Studienarbeit);
// well, no I’ll change my mind this time: it is so messy to
// have several clusters that also may contain duplicates and
// that get further fragmented and duplicated by
// matchnegmaplist; so I will use "basic" feature sets for the
// results; this also makes the implementation of matchmap
// *much* easier! And we can always reverse the splitting up
// with a procedure that clusters the feature sets back
// together.
//
// but before this point, "clustered" feature sets make sense,
// because they’re a lot more efficient for the program and
// are not a big additional burden for the programmer
//
// well, but now that I think about it, programming might be a
// little easier with "basic" feature maps throughout

// this procedure is completely redone, using the insights
// from the Studienarbeit and above

// LinkedList result = splitmap();
// LinkedList realresult = new LinkedList();
Set negset = negmap.entrySet();

// Iterator positivemapsrunner = result.iterator();
// while(positivemapsrunner.hasNext()) {
// SimpleFeatureMap currentmap =
// (SimpleFeatureMap) positivemapsrunner.next();
Iterator negativemaprunner = negset.iterator();

// a nested class declaration
// class CurrentMapPassed extends Exception {};

125

// try {
while(negativemaprunner.hasNext()) {

Map.Entry currentnegpair =
(Map.Entry) negativemaprunner.next();

Category currentnegcategory =
(Category) currentnegpair.getKey();

if(! containsCategory(currentnegcategory) ||
! (((ValueSet) currentnegpair.getValue()).

contains(get(currentnegcategory)))) {
return true;

}
// throw new CurrentMapPassed();

}
// }
// catch(CurrentMapPassed e) {
// realresult.add(currentmap);
// }
// }

// if(realresult.size() == 0)
// throw new NotUnifiable();

// return realresult;

return false;
}

// public boolean matchnegmaplist (final LinkedList negmaplist) {
// Iterator negmaplistrunner = negmaplist.iterator();
// while(negmaplistrunner.hasNext()) {
// if(!matchnegmap((FeatureMap)negmaplistrunner.next()))
// return false;
// }
// return true;
// }

public String toString() {
StringBuffer text = new StringBuffer("[\n");
Set mapset = entrySet();
Iterator setiterator = mapset.iterator();
while (setiterator.hasNext()) {

Map.Entry entry = (Map.Entry) setiterator.next();
byte catindex = ((Category) entry.getKey()).index();
Value value = (Value) entry.getValue();
text.append(FeatureNames.categorynames[catindex - 1] + " : " +

126

value.toString(catindex) + "\n");
}
text.append("]\n");
return new String(text);

}
}

127

StringFeatureMap.java

package yall;

import java.util.LinkedList;
import java.util.Iterator;

/**
* Combines an analysis from the endings trie with its remaining stem.
*/

class StringFeatureMap {
String stem;
FeatureMap analysis;

public LinkedList lexiconMatch(Lexicon matchlexicon) throws NoMatch {
LinkedList resultlist = new LinkedList();
LinkedList stemmatches =

matchlexicon.stemtrie.findEntries(stem,(byte)0);
// LinkedList lemmamatches = new LinkedList();
Iterator stemmatchiter = stemmatches.iterator();
while(stemmatchiter.hasNext()) {

LexEntry currentstemmatch = (LexEntry) stemmatchiter.next();
// lemmamatches.add(new ExtLexEntry(currentstemmatch,
// matchlexicon.lemmatrie));
ExtLexEntry currentlemmamatch =

new ExtLexEntry(currentstemmatch,
matchlexicon.lemmatrie.entryfile);

// for(Iterator lemmamatchiter = lemmamatches.iterator(),
// ExtLexEntry currentlemmamatch;
// lemmamatchiter.hasNext();
// currentlemmamatch =
// (ExtLexEntry) lemmamatchiter.next()) {

FeatureMap unified = null;
//assignment just for stupid Java compiler...

try{
unified = analysis.matchmap(currentlemmamatch.features);

}
catch (NotUnifiable e) {

continue;
}
LinkedList simplemaps = unified.splitmap();
Iterator smapsiter = simplemaps.iterator();
while(smapsiter.hasNext()) {

SimpleFeatureMap currentsmap =

128

(SimpleFeatureMap) smapsiter.next();
class NotPassingNegMap extends Exception {};
try {

Iterator negmapiter =
currentlemmamatch.nofeatures.iterator();

while(negmapiter.hasNext()) {
FeatureMap currentnegmap =

(FeatureMap) negmapiter.next();
if(!currentsmap.matchnegmap(currentnegmap)) {

throw new NotPassingNegMap();
}

}
AnalysisResult validanalysis = new AnalysisResult();
validanalysis.lemmaname =

currentlemmamatch.lemmagrapheme;
validanalysis.stemname = currentlemmamatch.name;
validanalysis.features = currentsmap;
resultlist.add(validanalysis);

}
catch(NotPassingNegMap e) {

// do nothing
}

}
}
if(resultlist.size() != 0) {

return resultlist;
}
else {

throw new NoMatch();
}

}
}

129

TempEntry.java

package yall;

import java.util.LinkedList;

/** Objects of this class are temporary and needed during the build-up
* of the endings trie when the application is started.
*/

class TempEntry {
String identifier;
ExtAffix node;
LinkedList nextentries;

/*
public TempEntry() {
}

*/

/*
public TempEntry(String id, ExtAffix nd, LinkedList ne) {
this();
identifier = id;
node = nd;
nextentries = ne;
}

*/

}

130

Value.java

package yall;

/**
Used to specify feature values.

*/
final class Value {

private byte index;

private static Value [] object = {new Value((byte)0),
new Value((byte)1),
new Value((byte)2),
new Value((byte)3),
new Value((byte)4),
new Value((byte)5),
new Value((byte)6),
new Value((byte)7),
new Value((byte)8)};

private Value (byte index) {
this.index = index;

}

public byte index () {
return index;

}

public static Value object (byte index) {
return object[index];

}

public String toString() {
return String.valueOf(index);

}

public String toString(byte catindex) {
return FeatureNames.valuenames[catindex - 1][index - 1];

}
}

131

ValueSet.java

package yall;

import java.util.HashSet;
import java.util.Iterator;

/**
Specifies disjunctions of feature values.

*/
class ValueSet extends HashSet {

public ValueSet() {
super();

}

ValueSet match(final ValueSet othervalueset) throws NotUnifiable {
ValueSet newvalueset = new ValueSet();

Iterator thisrunner = iterator();

thisloop:
while(thisrunner.hasNext()) {

Value thisvalue = (Value) thisrunner.next();
if(othervalueset.contains(thisvalue)) {

newvalueset.add(thisvalue);
}

}
if(newvalueset.size() != 0) {

return newvalueset;
}
else {

throw new NotUnifiable();
}

}

public String toString() {
StringBuffer text = new StringBuffer("{");
Iterator runner = iterator();
while(runner.hasNext()) {

text.append(((Value) runner.next()).toString());
}
text.append("}");
return new String(text);

}

132

public String toString(byte catindex) {
StringBuffer text = new StringBuffer("{ ");
Iterator runner = iterator();
while(runner.hasNext()) {

Value val = (Value) runner.next();
text.append(val.toString(catindex) + " ");

}
text.append("}");
return new String(text);

}
}

133

Yall.java

package yall;

import java.util.LinkedList;
import java.util.Iterator;

/**
* The main class. Contains "global variables", initialization
* methods, and the main method to perform a morphological word
* analysis.
*/

class Yall {

/**
* The endings trie.
*/

Automat latinendings;
/**
* The lexicon.
*/

Lexicon yalllexicon;

/**
* The prefix of the file names for the lexicon files.
*/

public static String lexiconBaseName = "yalllex";

/**
* Builds up the endings trie and initializes the lexicon database.
*/

public Yall() {
latinendings = new Automat();
yalllexicon = new Lexicon(lexiconBaseName);

}

/**
* Performs a morphological analysis.
*
* @param word the word to be analyzed
* @return A {@link java.util.LinkedList} of
* {@link StringFeatureMap} objects, specifying the results.
* @throws NoMatch if no valid analysis can be found
*/

public LinkedList analyze(final String word) throws NoMatch {
LinkedList endingsanalyses = latinendings.analyze(word);

134

LinkedList completeanalyses = new LinkedList();
Iterator endingsrunner = endingsanalyses.iterator();
while(endingsrunner.hasNext()) {

try {
completeanalyses.

addAll(((StringFeatureMap)endingsrunner.next()).
lexiconMatch(yalllexicon));

}
catch(NoMatch e) {

//one mismatch is ok
}

}
if(completeanalyses.size() == 0) {

throw(new NoMatch());
// only mismatches means complete failure

}
return completeanalyses;

}

/**
* <code>main</code> method of the YALL application. Prints out
* the found analysis to the console window. For instructions how
* to use YALL see the <a
* href="../overview-summary.html#overview_description">overview
* description.
*
* @param args a single Latin word to be analyzed
*/

public static void main(final String [] args) {
Yall yallinstance = new Yall();
try {

LinkedList analysis = yallinstance.analyze(args[0]);
System.out.println("Found " + analysis.size() +

" analyses for " + args[0] + ".\n\n");
Iterator runner = analysis.iterator();
while(runner.hasNext()) {

System.out.println(((AnalysisResult) runner.next()).
toString() + "\n");

}
}
catch(NoMatch e) {

System.out.println("No valid analysis for " + args[0] +
" could be found.");

}
}

}

Appendix G

YALL Class Documentation

Below the class interface documentation files for YALL are shown, which were gen-

erated automatically from the class files with the javadoc command. The documen-

tation files are originally in HTML hypertext format, hence this appendix can only

give an approximation.

G.1 Overview

 Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

YALL - an application for morphological analysis of Latin words.

See:
 Description

Packages
yall The single package of the Yall application.

YALL - an application for morphological analysis of Latin words. Start with

java Yall word

where word is the word to be analyzed.

 Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

135

136

G.2 Package yall

Overview Package Class Tree Deprecated Index Help
 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

Package yall

The single package of the Yall application.

See:
 Description

Interface Summary

Filable Denotes classes that implement methods to write their contents to an
ExtRandomAccessFile and to read it back in.

Class Summary

Affix Combines a morph and a feature structure into a morphological description of
the "morph meaning".

AnalysisResult Data structure to specify the results of a morphological analysis with the the
found lemma, the found stem, and the found features.

Automat The main class for the endings trie.

BaseTrie The fundamental class for all lexicon tries.

Category Used to specify feature categories.

CategoryValue The class to specify category-value pairs.

EntryFile The class to handle the lexicon entry files (.ye).

EntryListFile The class to handle the files with lists of pointers to lexicon entries in the
lexicon entry files.

ExtAffix Objects of this class represent nodes in the endings trie which include pointers
to successor nodes.

ExtLexEntry This class represents lexicon entries and includes the entry’s lemma string.

ExtRandomAccessFileThis class is an extension of the standard RandomAccessFile class and adds
reading and writing of String objects.

Feature This class implements simple attribute-value pairs.

FeatureDescription Objects of this class contain a textual description of an attribute-value pair
that is used in the specification files for the endings trie and the lexicon.

FeatureMap A class to implement feature structures with features containing disjunctive
feature values.

137

FeatureMapList A class to implement lists of feature structures containing features with
disjunctive values.

FeatureNames Maps numeric feature descriptions to names of attributes and values for
displaying feature structures.

LexEntry Objects of this class can contain a complete lexicon entry, but not the entry’s
lemma string.

Lexicon This class handles YALL’s lexicon, including the generation of the lexicon
from a textual lexicon specification file yalllext.txt .

SimpleFeatureMap A class to implement feature structures with features containing
non-disjunctive feature values.

StringFeatureMap Combines an analysis from the endings trie with its remaining stem.

TempEntry Objects of this class are temporary and needed during the build-up of the
endings trie when the application is started.

Value Used to specify feature values.

ValueSet Specifies disjunctions of feature values.

Yall The main class.

Exception Summary
NoMatch An exception to be thrown when at some point no match is possible

NotUnifiable An exception to be thrown when two feature structures cannot be unified.

Package yall Description

The single package of the Yall application.

Overview Package Class Tree Deprecated Index Help
 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

138

G.3 Class Yall

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

yall
Class Yall
java.lang.Object
 |
 +-- yall.Yall

class Yall
extends java.lang.Object

The main class. Contains "global variables", initialization methods, and the main method to perform a
morphological word analysis.

Field Summary
(package private)

 Automat latinendings
 The endings trie.

static java.lang.String lexiconBaseName
 The prefix of the file names for the lexicon files.

(package private)
 Lexicon yalllexicon

 The lexicon.

Constructor Summary
Yall ()
 Builds up the endings trie and initializes the lexicon database.

Method Summary
 java.util.LinkedList analyze (java.lang.String word)

 Performs a morphological analysis.
static void main (java.lang.String[] args)

 main method of the YALL application.

139

Methods inherited from class java.lang.Object
, clone, equals, finalize, getClass, hashCode, notify, notifyAll, registerNatives,
toString, wait, wait, wait

Field Detail

latinendings

Automat latinendings

The endings trie.

yalllexicon

Lexicon yalllexicon

The lexicon.

lexiconBaseName

public static java.lang.String lexiconBaseName

The prefix of the file names for the lexicon files.

Constructor Detail

Yall

public Yall ()

Builds up the endings trie and initializes the lexicon database.

Method Detail

analyze

public java.util.LinkedList analyze (java.lang.String word)
 throws NoMatch

Performs a morphological analysis.
Parameters:

140

word - the word to be analyzed
Returns:

A LinkedList of StringFeatureMap objects, specifying the results.
Throws:

NoMatch - if no valid analysis can be found

main

public static void main (java.lang.String[] args)

main method of the YALL application. Prints out the found analysis to the console window. For
instructions how to use YALL see the overview description.
Parameters:

args - a single Latin word to be analyzed

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

