ULl BUBENHEIMER
YALL — Yet Another Latin Lemmatizer:
A Morphological Analyzer for Latin and
A Reimplementation in Java
(Under the direction of MICHAEL A. COVINGTON)

This thesis describes a morphological analyzer for Latin and its reimplementation
in the Java programming language. The analyzer is divided into two parts, the
analysis of endings and a lexicon. Both components rely on tries (character—trees),
data structures for efficient lexical lookup. For the analysis of endings, a directed
acyclic graph (DAG) is used in place of the usual tree structure. The tries are
complemented by feature structures that include disjunction and negation. Graph
unification for feature structures is used as a main processing mechanism. The
deficits of the analyzer’s previous implementation in the C++ programming language
are pointed out, a comparison of C++ and Java is undertaken, and a description of

the new implementation is given.

INDEX WORDS: Latin, morphological analyzer, inflectional morphology,

lemmatizer, trie, character—tree, letter—tree, Java, C++

YALL — YET ANOTHER LATIN LEMMATIZER

by

ULl BUBENHEIMER

A Thesis Submitted to the Graduate Faculty
of The University of Georgia in Partial Fulfillment
of the

Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

1999

© 1999
Uli Bubenheimer
All Rights Reserved

YALL — YET ANOTHER LATIN LEMMATIZER

by

ULl BUBENHEIMER

Approved:

Major Professor

Date

Approved:

Graduate Dean

Date

ACKNOWLEDGEMENTS

Many thanks go to Michael Covington for his ongoing support and assistance. In
addition, I want to thank Donald Nute and Rick LaFleur for their time and effort
with this thesis. I am also grateful to the Artificial Intelligence Center at The

University of Georgia for providing a stimulating research environment.

v

CONTENTS

Acknowledgements iv
1 Imtroduction 1
2 Theoryo 3
2.1 Introduction 3
2.2 Analysisofendings 4
2.3 Lexicon 11
2.4 Summary ... e 20
3 Javaversus C++ oL 21
3.1 Problems of the original implementation 21
3.2 Some advantages of Java over C++ 24
3.3 The reimplementation process 33
3.4 New and improved program features 34
4 Conclusions and Outlook oL 45
4.1 Theoretical refinement 45
4.2 Practical refinement and reengineering 46
4.3 Future extensions 46
Bibliography 48
Appendices
A Unification with Negation and Disjunction 51
B A Feature System for Latin Morphology 53

v

More Examples of Standard Lexical Entries 58
Inflection Tables 60
D.1 Verbs. e e e e 61
D.2 Nouns e 65
D.3 Adjectives 66
Endings Trieo 67
Source Code e 72
YALL Class Documentation 135
G.1 Overview 135
G.2 Package yall 136

G.3 Class Yall o 138

CHAPTER 1

INTRODUCTION

This thesis describes YALL (Yet Another Latin Lemmatizer), a morphological ana-
lyzer and lemmatizer for Latin and its reimplementation in Java. Part of this thesis
describes why the Java implementation is superior to an earlier implementation in
C++ and summarizes the experiences made in the reimplementation process; it also
includes a comparison of Java and C++ features from a software development point
of view. In addition, the thesis has served as an opportunity for me to widen my
knowledge and to learn Java, which has been widely talked about for a number of
years. Java has a number of interesting features like its combination of traditional
imperative programming with object—orientation, interpreted execution, platform—
independence, and Internet accessibility. At the same time, Java is supposed to be
similar to C++, which makes an investigation into their differences interesting.
Work on YALL started in the summer of 1994, leading to the first implementa-
tion in C++ described in Bubenheimer (1995). Since then, YALL has been refined,
leading to an improved theoretical basis and a better approach to its implementation
(through the stronger theory and by learning from mistakes made in the previous
implementation). Most of this thesis describes the results of the refinement, with
additional supplements translated from Bubenheimer (1995). One of the basic ideas
behind YALL, namely to approach Latin morphology with tries (character—trees,
letter—trees) was also discovered independently by Covington at about the same

time as my original implementation took place (see Covington, 1999).

2

This thesis does not focus on how Latin morphology can be described in terms
of the theory to be presented. This task has been done earlier and the result can be
found in Bubenheimer (1995). However, the theory will be illustrated by extensive
examples in Chapter 2 and Appendices B, C, D, and E. These appendices are largely
based on German materials from Bubenheimer (1995), and represent an introduction
in English to how exactly Latin morphology is described in terms of the theory.

Chapter 2 describes the present theory of YALL. Basic knowledge of Latin mor-
phology will be helpful to understand this chapter. Chapter 3 analyzes some prob-
lems with the previous implementation, compares differences of Java and C++, and
describes the reimplementation in Java. The chapter presupposes basic knowledge
of programming languages, object—oriented programming concepts, and of the C++
and Java programming languages. The final Chapter 4 attempts an evaluation of the
present state of development and possible future changes and improvements. Sev-
eral appendices follow which primarily give additional examples and elaborations of

concepts described earlier.

CHAPTER 2

THEORY

2.1 INTRODUCTION

The morphological analyzer described in this thesis analyzes inflected Latin word
forms and returns a description of a form’s morphological properties and provides
the word’s base form, the lemma. Only inflectional word structure is analyzed, not
derivational structure. Since the program deals with written Latin, vowel lengths
are ignored. A sample run of the analyzer is given in Section 3.4.4, page 42.

To combine the goals of a linguistically sound morphological analysis and effi-
cient execution, tries (also known as character—trees or letter—trees) are used as the
main data structure to store and process both the system of Latin endings and the
program’s lexicon.

The morphological analysis is divided into two parts. The analysis of endings
(Section 2.2) analyzes and strips off a word’s inflectional ending. The remaining
word stem is then looked up in the lexicon (Section 2.3). Typically, the analysis
of endings, which does not have access to the lexicon, produces a great number of
analyses, many of which are only hypothetical and rely on non—existent vocabulary.
Lexical lookup then filters out those analyses that are legitimized by the existence

of appropriate word stems and matching morphological features.

2.2 ANALYSIS OF ENDINGS

2.2.1 FEATURES

Latin is a richly inflected language. At the same time, Latin inflection is almost
exclusively restricted to the end of words and shows very regular inflectional patterns.
For example, the final -m in silv-a-m (from silva, forest) and fili-u-m (from filius, son)
indicates accusative case and singular number. -a- and -u- indicate a—declension
(also named first declension) and o—declension (or second declension), respectively.
Furthermore, nouns of a—declension can only have masculine or feminine gender,
while there are examples for nouns in every gender for o—declension (Allen and
Greenough, 1903).

To represent these insights formally, features in the form of attribute—value pairs
are used (Johnson, 1991). For the task at hand, attributes represent morpholog-
ical categories, while values represent elements from their corresponding categories.
Appendix B describes the system of features used by the morphological analyzer.

Attribute—value structures (feature structures) are sets of attribute—value pairs.

To represent the above examples, appropriate feature structures are:

[case : acc] (for -m)
num : sg
decl : o
masc
gen : < fem (for -u-)
neutr
decl : a

yon {masc} (for -a-)

fem

5

The curly brackets in the second and the third example mark disjunctions of
feature values. Such disjunctions can be expanded distributively into equivalent
disjunctions of whole feature structures. This is demonstrated by the following
rewriting of the last feature structure from above, where V denotes logical “or.”

Expanded feature structures like these will be used again in Section 2.3.3.

[decl:a } [decl:a }
V
gen : masc gen : fem
As can be seen from a comparison of the expanded with its unexpanded form,

attribute—value structures with disjunctions of feature values allow to keep the rep-

resentation more compact and make it faster to process.

2.2.2 UNIFICATION

To combine features from different parts of the ending like -a- and -m in silv-a-m,
unification, or more specifically, graph unification for attribute-value structures can
be used (Johnson, 1991; Karttunen, 1984). For feature structures with disjunctions
of feature values and only constants as elements of those disjunctions, unification is
easy to sketch. To facilitate the following explanations, a single feature value will
now more generally be considered a disjunction with a single element.

Two feature structures A, B are unified (A U B) in the following way, resulting,

if successful, in a new feature structure:

e [f an attribute occurs in exactly one of A, B, add it to the result, together with

its value disjunction.

e If an attribute occurs in both A and B, compute the intersection of its two
value disjunctions from A and B, and add the attribute to the result, together

with the value intersection. If the intersection is empty, unification fails.

For example,

a
decl : o decl : {0} decl : o
num : sg case : acc
LI | case : acc =
masc num : sg
gen : {fem } en : 4 ¢ en : masc
I\ neutr gen :

2.2.3 TRIES

Tries (Knuth, 1973; Sproat, 1992) are one of the main concepts of the morphological
analyzer. Tries are commonly described as trees (in a graph—theoretical sense) whose
non-root nodes are annotated with letters. A trie stores a set of words which are

represented in the paths from the trie’s root node to its leaf nodes (Figure 2.1). One

Figure 2.1: A simple trie representing the Latin prepositions ab (from), ad (to), per
(through), and pro (for). Every path from the root node to a leaf node represents a
word.

The second generalization is that nodes are annotated with strings of characters,
not just single characters. This makes the representation of Latin endings more
meaningful. The idea is that a node’s feature structure approximately represents
the morphological “meaning” of the node’s string (or morph). The bottom half of
Figure 2.3 shows good examples.

An additional goal in the development of the endings trie was not only to design
a trie that accurately reflects endings, but which does so in a manner that captures
the regularities of Latin endings and contains as little redundancy as possible. To
this end, several nodes (annotated with empty character strings, €) only serve to
represent certain morphological features, and the trie’s arcs define how they relate
to other nodes, morphs, and features. For example, nodes 98 through 104 in Figure
2.2 ensure valid gender for nouns and adjectives; e.g. for a—declension (node 108),
adjectives can only have feminine gender, while nouns can have feminine or masculine

gender.

98 ‘ € 99 €
[pos : noun] [pos : adj]
‘ 100 € ‘ 102 ‘ € 103 € 104 € ‘

masc

neutr [gen - fem]

o)

106

o

108

masc

fem

)

[de(:l : 0}

[decl : a)

118

masc

fem

neutr

j

voc
num : sqg

gen : {

}
)

case : gen
num : sg

e

masc
fem

|

case : dat
num : sqg

case

} |

num : sg

s abl

]

128 -m- ‘ 131 ‘ -5- 143 -e-
nom
case : nom case : acc case : voc
case: q acc num : sg case : 4 9" num : sg num : sg
voc ' 7\ dat ’ ’

5 masc masc masc
num : sg gen : {fﬁm } num : sg gen : {f(’m } gen : {f(’m }
gen : neutr

[130] € | [132 -i- | 135 € | 142 € |
nom
case :

Figure 2.2: A trie representing the regular singular declensional endings of nouns and
adjectives from a—declension (first declension) and o-declension (second declension).
It is a detail of the complete analysis trie. Each node contains a character string, a
feature structure, and a reference number (for documentation purposes here). The
character string can be empty (marked by ¢).

[pas : 11(3rb}

L

2 €

[sf,(zm : pr(zs(zm}

11 -a- ‘ 12 -e- ‘
[conj - a] [conj : €]
[u e] 29 ba- | 33 bi- |
tense : present tense : past tense : future
mode : ind mode : ind mode : ind

68 -mus- ‘ 70 -mur- ‘
person : 1 person : 1

num : pl num : pl

voice : active voice : passive

Figure 2.3: Representation of first person plural in the present stem tenses for a—
and e-conjugation.

10
However, empty character strings can also designate actual manifestations of
morphological structure (often called null morphs) which are expressed by the

absence of a morph on the surface. An example is node 24 in Figure 2.3.

2.2.4 ALGORITHM

The program analyzes word endings from right to left. Consequently, the endings
trie is traversed along its arcs from the leaf nodes at the bottom toward the root
node at the top. The ending substrings of the nodes are matched with the analyzed
word’s ending from right to left in a linear manner. If a node’s string does not
match the word ending in the right place, an analysis using the path that led to this
node from a leaf node is not possible. An analysis is accepted if it reaches the root
node. In general, several alternative analyses (i.e., alternative paths) are found for
an ending.

While the trie is traversed, the feature structures from the visited nodes are
unified with each other, providing one single, unified feature structure per analysis.
If unification fails on some node, then an analysis along the present trie path is not
possible, similarly to a mismatch of node substring and ending substring described
above.

For a valid analysis, the part of the word that is matched in the trie is the word’s
ending, the unmatched part is its stem. The stem, together with the analysis’ feature
structure, is subsequently matched against the lexicon to eliminate invalid analyses
(cf. Section 2.3).

As an example, consider the previously mentioned silvam. One successful analysis
leads through nodes 141, 118, 108, 103, 98, and 0. It finds silv- as the word stem,

and the following morphological feature structure description:

[pos : noun
decl : a
case : acc
num : g

en - masc
|7 em S]

Another valid path is < 141,118,108, 102,99, 0 >

11

Stem Trie

v-
pos : noun
decl : @

gen : fem

num : sg

12

acc
case :
abl
vir-
e pos : noun
decl : 1
— [case : acc]
gen : fem
num : pl
gener-
nom
pos : noun ase ace
case : Lcc -
decl : cons - vis-
voc
gen : neutr n
num : sg pos : noun
N decl : i

gen : fem

nom
case :
voc
\
\

num : sg

vires-
\
genus- \\ pPoOs 1 noumn
pos : noun \ decl : i
decl : cons - gen : fem
gen : neutr r - S S - case : acc
case :

num : pl

nom
acc
voc

num : sg

Figure 2.4: A sample lexicon trie with stems for vis, force, and genus, gender. The
dashed lines indicate connections between word stems in the trie and their stem
entries (in a separate file). vis is listed with four stems in this lexicon (v-, vis-, vir-,

and vires-), genus with two (genus- and gener-). Each stem is associated with a
feature specification, described in Section 2.3.4.

13

2.3.3 UNIFICATION WITH NEGATION

Lexical entries can be made more concise by using negation in feature structures
(Karttunen, 1984; Pereira, 1987; Johnson, 1991), even though the same information
can be expressed more elaborately without negation. Negation in a feature structure
specifies for which forms the feature structure is not suited; it does not make a direct
statement for which forms the feature structure is suited.

Unlike other aspects of unification, if an intuitive semantics for negation is used,
results can vary depending on the time when a negation is evaluated (cf. Pereira,
1987). Fortunately, this limitation does not pose a problem here, since the lexicon
component evaluates negations as the very last step, on feature structures that do
not become further instantiated afterwards.

It turns out that in the case of Latin morphology, no relevant loss of expressive-
ness is encountered when negation is limited to be applied to entire feature structures
rather than parts of them, as in the following:

case : acc
B [gen : fem} (2.1)

Unification of this negative feature structure with a regular, positive feature
structure only succeeds if the latter does not contain accusative case and feminine
gender. For feature structures without disjunctions of feature values, unification of
a positive feature structure P and a negative feature structure N fails if and only
if the set of features in IV is a subset of the set of features in P (for the restricted
kinds of feature structures that are used here). For example, unification of negative
feature structure (2.1) with the feature structure below fails:

decl : 1

case : acc
gen : fem

positive negative 1
Pos : noun
. decl : 4
vir— = [case : acc]
gen : fem
num : pl

14

Figure 2.5: Lexical entry for the stem vir- of the noun vis; the negative feature struc-
ture indicates that this entry is not applicable to the accusative plural (because the
rare form vir-is is assumed not to occur). For the purpose of this and following exam-
ples, which only illustrate formal properties of the analyzer and do not necessarily
represent optimal analyses of Latin morphology, I assume an analysis of vis which
leaves out the uncommon forms vis and vi for gen. and dat. sg., and assumes a single
form vir-es for acc. pl. (and not the less common vir-is from regular i-declension, cf.

15
Subsequently, the lexicon is searched for an entry containing the found stem. This
search is efficient due to the lexicon’s trie structure. If no appropriate entry is found,
the analysis is discarded. If one is found, the entry’s positive feature structure is
unified with the feature structure from the analysis. If this unification succeeds,
each of the lexical entry’s negative feature structures are unified with the result. If
one of the unifications fails, then the analysis is discarded, otherwise the final result
of all unifications is a validated analysis.
For example, suppose that the following feature structure, together with a stem

vir-, is found in the endings trie when the word virium is analyzed:?

POS : noun
decl : 1
case : gen
num : pl (2.2)
masc
gen : < fem
i neutr

vir- is then looked up in the lexicon, and the entry from Figure 2.5 is found. Uni-

fication of feature structure (2.2) and the lexical entry’s positive features produces:

POS : noun
decl : 4

case : gen (2.3)
num : pl

gen : fem

Unification with the lexical entry’s negative feature structure also succeeds,

approving the analysis with stem vir- and feature structure (2.3) as valid.

3The ending analysis produces a general analysis which is not restricted to a particular
gender. Gender is a paradigm category and peculiar to a noun. It is listed in the lexical
entry. Using this information from the lexical entry, the unification process restrains the
original analysis to the right gender.

16

2.3.5 PARADIGM ENTRIES

A word paradigm comprises all word forms that belong to a particular base form.
A paradigm also comprises one or more word stems from which its word forms are
built. While the previous sections took a simplified view on the lexicon’s structure
to highlight other concepts, the lexicon structure is actually a little more complex
than described so far to take care of common properties that members of the same
word paradigm share.

The lexicon lists information common to a word paradigm in a single paradigm
entry. In addition, stem entries list information specific to particular word stems
and the word forms built from them. Figure 2.6 sketches a lexicon consisting of a
trie for stem entries and a trie for paradigm entries.

This differentiation into two kinds of lexical entries reduces redundancy (just
compare the feature structures for stems in Figure 2.4 with those in Figure 2.6)
and is in accordance with a linguistic distinction of paradigm and unit categories.
Features from paradigm categories like part of speech or — for nouns — declension
and gender are intrinsic to a whole word paradigm; their values do not vary. They
are stored in paradigm entries. Values of features from unit categories like number
or — for nouns — case are imposed by inflection. Stem entries specify which stem
is appropriate for particular values of unit categories. Figure 2.7 shows the complete
lexical entry for the word paradigm vis. It contains the paradigm entry together
with all its stem entries.

The division of entries into a stem part and a paradigm part is transparent
(invisible) to other components. When the lexicon component is queried to return
the (composite) entry for a particular stem, the stem entry is looked up in the stem
trie and combined with its corresponding paradigm entry (which is found through

the link from the stem entry as illustrated in Figure 2.6). The positive feature

17

V-
Stem Trie - reg: + nom)] |
- - - | case : B
q \Va num : sg voc
vir-
e reg : + e
|:7Lu’[71 pl:| bl |:(,(ly.S(', . (I,(,(,]
gener-
nom
[] - case : acc Vi
voc n s
num : sg - reg : +
\ S . nom
N case : X
\ voc }
\ num : sg
\
\
\
v e u e
\
\
‘\ vires-
\
enus- N
genu \ reg : —
nom - case : acc
case : { acc - r __..----s S- num : pl
voc
num : sg
g Paradigm Trie \
vis |
pos : noun e - gen
-7 decl =i - | case: {du,t }
n S gen : fem num : sg
ger‘ws
reg : +
pos : noun -
decl : cons NN
gen : neutr S

Figure 2.6: A lexicon consisting of a trie for paradigm entries and a trie for stem
entries. The dashed lines indicate the connections between lexical entries and their
stems or lemmas in the trie. The dotted lines denote links between stem entries and
paradigm entries. Each paradigm (entry) is connected to one or more stem entries.
The feature reg is explained in Section 2.3.7.

positive negative 1
POS : NOUN Jgen
vis decl : 1 o | eser {dat}
gen : fem num : g
reg : +
. {nom}
vis— case :
voc
num : sg
[reg S } [{nom}}
vV— = | case :
num : sg voc
vir— [reg o } - [case : acc]
num : pl
reg . —
vires case : acc
num : pl

18

Figure 2.7: Lexical entry for the word paradigm vis. The first row shows the
paradigm entry, the following rows show the stem entries. See Figure 2.5 for assump-
tions about the analysis of vis here. Section 2.3.7 explains the meaning of the reg
(regular) feature.

19
structures of the two entries are unified, and the union of the two negative feature
structure sets is built. The response to the query returns the unified positive feature

structure and the union of negative feature structures.

2.3.6 ADDITIONAL FEATURES AND LEMMATIZATION

Paradigm entries are also convenient to store additional information of a morpho-
logical or non-morphological nature about a word. External applications can use
this information after the morphological analysis is complete.

Moreover, paradigm entries provide an easy way to do lemmatization (deriving

a word’s base form (the lemma

20

positive negative 1 | negative 2

POS : noun
domus decl : u
gen : fem

reg : +
{nom} [case : abl} [case : acc]
dom— case : - -

voc num : sg num : pl
num : sg

[reg : —
domo case : abl
| num : sg |

[reg : —
domos case : acc
| num : pl |

Figure 2.8: A lexical entry for the noun domus. See the text for additional explana-
tions.

For all “regular” analyses, the ending analysis adds the feature <reqular:+>,
and lexical entries for regular word forms also contain this feature. Figure 2.8 shows
the lexical entry for domus. Figure 2.7 is another example that also demonstrates
how forms with a smaller degree of irregularity are captured by adding additional
“regular” word stems to a lexical entry. Finally, Appendix C contains several more

illustrative (but “regular”) lexical entries.

2.4 SUMMARY

In this chapter, the main ideas underlying the theory of YALL, a morphological
analyzer for Latin, were presented. Trie structures are used for both the analysis
of endings and the representation of the lexicon. They are supported by unification
mechanisms which include handling of disjunctive and negated feature structures.
Several methods help to capture irregular word forms and to avoid overgeneration

of inaccurate analyses.

CHAPTER 3

JAVA VERSUS C++

This chapter describes deficiencies in YALL’s original implementation, outlines why
the choice of Java as a programming language alone remedies some of these deficien-
cies, briefly reviews the reimplementation process, and provides some of the more

interesting implementation—specific details.

3.1 PROBLEMS OF THE ORIGINAL IMPLEMENTATION

YALL had originally been implemented in C++. While this implementation was a
very functional prototype of the system, it had potential for improvement. Some

problems are described in the following.

e Overly complex C++ code. The C++ code of the original implementation
is quite sophisticated. At the time of implementation, the Gnu C/C++ com-
piler did not yet recognize some concepts now documented in the ANSI C++
standard (ANSI/ISO/IEC), such as exception handling and templates, even
though those concepts had already been implemented in many other C++ com-
pilers. It also had several bugs that had to be circumvented. This made part

of the code appear ugly and difficult to maintain.

In addition, extensive use of advanced C++ features such as multiple inheritance
or friend methods and friend classes made the code harder to understand

and maintain. Even though such concepts are recommended to use for C++

21

22
programs, it seems to me that Java facilitates programming by reducing the

number of such bells and whistles.

Also, standard data structures like lists, sets, and vectors had to be imple-
mented from scratch in YALL (cf. Section 3.2.3). This led to vastly increased
debugging demands. Furthermore, the graphical user interface, due to missing
built-in support for windows and graphical user interface (GUI) programming
(see below), suffered from these same complications of needing much low—level

programming and debugging.

A crucial problem with C++ was loss of memory. Because of C++’s strong
reliance on dynamic memory allocation by the programmer, some allocated
memory is easily overlooked and never deallocated. The final version of YALL
in C++ still suffered from memory losses. Although these were errors on the
part of the programmer, the language made them easy to make and hard to

detect.

New Insights. During and after the original implementation of YALL, many
ideas for improvements appeared which had not been implemented in the orig-
inal version. Some of these are experiences gained from the first implementa-
tion (e.g., to use standard class libraries for abstract data types, or to use a
different dynamic memory management mechanism); some are consequences
of continued refinement of the theory (e.g., some changes to the endings trie,
or the decomposition of feature structures with value disjunctions into feature
structures without such disjunctions to facilitate the evaluation of negative
feature structures, cf. Section 2.3.3); some are insights from redesigning the
Java implementation (e.g., to use a declarative lexicon specification, or to use

an external file for the endings trie specification; see Sections 3.4.1 and 3.4.3).

23

e Only usable under MS{DOS. Some emphasis had been put on machine
independence during the development of C++-YALL. However, the develop-
ment took place under MS—DOS and despite a relatively machine—independent
programming style, as described elsewhere, some changes would have had to be
made to port the software to a different architecture such as UNIX. However,

such a port has never been attempted.

e Descriptions in German. Program code and documentation of the original
implementation are in German, which is not surprising since the project was
undertaken in Germany. However, this evidently limits the range of people
able to use the software or to adapt the morphological analyzer to their own
needs. To provide wider access to the analyzer, the reimplementation and

documentation in English is helpful.

e Unattractive user interface. YALL was developed under MS-DOS, using
the djgpp C/C++ compiler (D. J. Delorie, 1995), an MS-DOS port of the Gnu
C/C++ compiler gcc. One of YALL’s original goals was to be easily portable
to other platforms. For that reason, the Curses C library, an elementary
graphics and textual input/output library for text terminals, was used for
the user interface. Variants of Curses are available for various platforms,
including MS-DOS and UNIX. However, Curses does not provide the higher—
level functions, such as support to manage windows or a mouse, that are

necessary to develop an attractive and easy—to—use graphical user interface.

The reimplementation in Java seeks to approach some of the problems in the
C++ version. It concentrates on the previous version’s most interesting part, the
morphological analyzer and lemmatizer. Additionally, due to structural changes in

the software, the need for a graphical user interface has vanished.

24

3.2 SOME ADVANTAGES OF JAVA OVER C++

YALL’s reimplementation in Java appeared considerably easier than the original
implementation in C++. Some of this ease can probably be attributed to the circum-
stance that after a first implementation the problem domain is better understood,
and application design is facilitated by being able to build upon the results and
insights from the previous design and implementation. However, there are also dif-
ferences between the two programming languages that have an effect on implemen-
tation difficulty. This section describes, from an empirical or experience-based point
of view, the differences that have had an important impact on the reimplementation
of YALL . There are certainly other differences between C++ and Java, which can
be found in standard textbooks comparing the two languages (for example, Boone,
1996; Chew, 1998), but those are not relevant in the present context. Remarkably,
C++ has developed further since YALL’s first implementation, but the differences
outlined below are mostly unaffected by these changes.

This section makes use of object—oriented terminology and presupposes knowl-
edge of programming languages in general, and of C++ and Java more specifically.
Readers unfamiliar with these subjects may consider an introduction to object—
oriented programming, such as Stroustrup (1997), which is also the standard intro-
duction to C++. For an introduction to Java, numerous textbooks exist, as well as
a free online course (Sun Microsystems, 1999a). For a general introduction to the

theory of programming languages I recommend Louden (1993).

3.2.1 BETTER HANDLING OF CLASS INTERFACE AND CLASS IMPLEMENTATION

In C++ it is recommended that interface and implementation of a class and its
methods be stored in separate files (typically a header file with extension .h for

the class interface, and an implementation file with extension .cc). The abstract,

25
declarative class interface mainly serves to specify the class’s member functions and
member variables, as well as the class’s integration into a class inheritance hierarchy;,
in order to make this knowledge available to the user of the class who can then see
how he is supposed to use the class (comments for the class user should also be part
of the class interface). The class implementation presupposes the class interface and
implements the methods and some variables specified in the interface.

An inherent problem with this approach is that whenever a method or variable
declaration changes, it needs to be changed in two places, which leads to consistency
problems during program development.

Another problem is that all public, protected, and private class members need to
be declared together in the same place. From the perspective of data encapsulation,
this is not very fortunate: since the user of the class should only see public (and
possibly protected) members, he should not have to or be able to view the private
members. And when the internal structure (private members) of a class changes,
there should not be a need to change the public class declaration as in C++, since
the usage of the class remains the same.

Java remedies these problems. A Java class source file (a . java file) is the source
for both the class interface and the class implementation. Primarily, a . java file
constitutes the class implementation. However, the class interface and comments are
generated automatically by the javadoc utility from the class source code, typically
in HTML format. By default, only public and protected classes are documented in
this way, which leaves the documentation unchanged if changes are made that do
not affect the use of the class. An example for documentation generated by javadoc
is the documentation for the Java version of YALL in Appendix G.

Usually, the proper way to design a class in object—oriented programming (on
the code level) is to specify its interface first, and to write the implementation as

the last step. Java takes care of this approach by enabling javadoc to generate class

26
interface files from code stubs in the .java file, which only contain declarations of
member variables and declarations (heads) of member functions. Hence, a Java class
source file should first contain only the information necessary for the class interface.
At a later stage of program development, the interface can be implemented. In
practice, the class interface tends to undergo change at this point due to new insights
and requirements from the implementation. When the programmer makes such
changes in the class implementation, Java takes responsibility for corresponding

modifications to the class interface.

3.2.2 AUTOMATIC MEMORY MANAGEMENT

C++ offers memory management capabilities that do not go substantially beyond
those of C. Essentially, the only improvement on the surface is the ability to allo-
cate and deallocate heap space for single dynamic objects via the new and delete
operators.

Java’s memory management is more powerful. Java adds a garbage collection
mechanism which includes automatic deallocation of memory for objects that are no
longer in use. The programmer does not need to worry about explicit deallocation
of objects.

This feature is a very beneficial improvement over C++. Object—oriented pro-
gramming relies substantially on the dynamic creation of objects, which also requires
their deallocation at some point. If deallocation has to be done by hand, a very rig-
orous approach to the construction and destruction of objects is required. Objects in
general do not only contain members of primitive data types (for which no memory
allocation in addition to memory for the object itself is needed), but also contain
other objects or references to other objects; these objects require dynamic allocation
and deallocation in turn. In addition, several objects can share identical member

objects which makes the responsibility for deallocation quite sophisticated. In C++,

27
allocation of memory for member objects is usually done in the constructor of the
containing object, a special method called upon creation of the containing object.
Deallocation of memory for member objects is performed in the destructor, a method
called upon destruction of the containing object. However, not all member objects
can be created when the containing object is created (since their content may not
be known yet at the time), and not all member objects can be destroyed when the
containing object is destroyed (due to shared member objects as described above).
Consequently, keeping track of all allocated resources can be extraordinarily error—
prone.

In the C++ version of YALL, it turned out not to be feasible to track down and
remove all such occurrences of “memory leakage.” Even after months of debug-
ging, memory loss was still present. An additional complication in the debugging
of memory leaks is the difficulty in detecting the source of the leak. Memory leaks
only come about in a decrease in available memory during program runs, but except
maybe with sophisticated debugging tools, the point of the leak in the program is
not easy to find. In C++-YALL, many leaks could be detected and removed, but
some still remained.

Java’s automatic memory management consequently has several advantages for
the programmer. Less rigor in memory management is required, memory leaks are
avoided, and debugging is substantially shortened. Having shared member objects
and leaving member objects unspecified after the creation of the containing object
also becomes painless. While the existence of a large number of interacting object
classes can become a complexity problem in C++ due to possible complications in
terms of memory management, there is no such headache in Java, and the use
of objects can be a pleasure, maybe comparable in ease of use to parameterized

procedures in non—object—oriented imperative programming.

28

However, there are also at least two disadvantages in Java’s approach. First,
automatic garbage collection requires some time to execute, which slows down the
execution speed of the software. Second, it can easily lead the programmer to forget
about the overhead involved in dynamic memory allocation and deallocation and
make him program in a style that he might not have used if he had had to undertake
memory allocation more explicitly.

To me, both of these problems seem negligible compared to the benefits. If
memory management slows down execution, then this is a low price paid for improved
software reliability and shortened development time in an age of ever-increasing
speed and ever—decreasing price of processing power. This same counterargument
also applies to the point of a wasteful programming style; and in addition, as known
from program optimization, such a style is usually only critical in crucial places,
frequently executed passages of code; these, if programmed inefficiently, lead to
an over—proportional slowdown of execution. If execution speed is important, it
is often sufficient to simply locate such places with standard software development

tools (profilers) and to optimize them.

3.2.3 STANDARD LIBRARIES AND GENERAL STANDARDIZATION

Java 2 (or, more specifically, the Java 2 Platform, v. 1.2) provides a rather extensive
set of ready—to—use standard data structures such as sets, maps, lists, and arrays in
many different flavors. In addition, the so—called Swing classes to support graphical
user interfaces are part of the language. Some of these libraries have been part of
Java since the first released version in 1995, but essential parts have been added
more recently, in particular with the introduction of Java 2 in December 1998.

In contrast, the first version of C++ was officially released about 1985 (and docu-
mented in Stroustrup, 1986). A library as part of the language containing standard

data structures has only been added over the last few years, together with the

29
development of an official C++ standard (ANSI/ISO/IEC). It does not contain any
graphical user interface support.

This also illustrates a more general point. Sun Microsystems’ central control over
the development of Java has the advantage that standardization is not a problem.
While there have been several drafts of a proposed ANSI C++ standard over many
years, Sun with their 100% pure Java policy can more easily define the exact Java
language and produce similarly standardized extensions to the “core” Java language
at (reasonable) will.

For application development, this has important consequences. One goal in the
development of YALL in C++ was to keep the code as independent from a particular
development environment and operating system as possible, since a morphological
analyzer naturally does not have much to do with a particular computer system.
In 1994, development of a C++ standard library for abstract data types was only
starting. Many development environments had such libraries, also for graphical user
interface development, but using those would have meant to become dependent on a
particular version of a particular development environment on a particular machine.
Consequently, T had to develop my own data structure classes and graphical (text—
terminal-based) user interface routines, which took some effort.! In contrast, only
three years after its introduction, Java has already become more mature than C++
in these respects.

There is yet another problem with standardization of C++. While a language
standard has finally been accepted (ANSI/ISO/IEC), there is no guarantee what-
soever that any given compiler adheres to the standard for reasons such as cost

or difficulty in implementing the standard, or incompatibilities of new features in

Due to a redesign of YALL’s lexicon component and to a focus on the morphological
analyzer and lemmatizer component of YALL in this thesis, a graphical user interface has
become unnecessary for the current implementation. However, future applications based
on YALL will benefit from Java’s provisions for graphical user interface development.

30
the standard with traditional features of the compiler. Hence one needs to study
the exact limitations of the compiler one uses before any code is written (let alone
the need to become acquainted with the proprietary class libraries coming with the
compiler). For example, when YALL was developed with the GNU C++ compiler,
the compiler’s manual claimed support for C++ class templates, a language feature
that had not been part of C++ originally, but which had been around for a while in
1994. After a good portion of the class design had been completed making extensive
use of class templates, the code got to the point to be compiled for the first time.
Surprisingly, the templates as described in Stroustrup (1991) did not compile due to
a different implementation in the Gnu compiler. The effort needed to redesign the
code was disheartening.

Java avoids this problem by having a single “reference” compiler that sets the
standard. When a programmer changes to a different development environment
or hardware platform, the need to relearn the features and limitations of the new
environment is avoided. In addition, code and libraries developed for the old envi-
ronment can quite painlessly be reused, and there is no need to start over from

“near—scratch.”

3.2.4 ADDITIONAL SUPPORT FROM IDE OR EXTERNAL LIBRARIES

C++ requires considerable proprietary support from a development environment
(often an integrated development environment, IDE) beyond what is defined as part
of the language. One example is debugging of dynamic memory allocation. As
described before, without either an additional automatic garbage collection mech-
anism or strong support for debugging dynamic memory allocation, this task can
overwhelm a developer. Another example concerns more general debugging needs.

C++, as an imperative programming language in the tradition of C, encourages a

31
programming style that makes abundant use of pointers and pointer—based struc-
tures such as arrays. However, as every programmer knows, pointers tend to point
to the wrong places, and array elements tend to be accessed beyond the limits of
the array. In order to easily locate such problems, additional run—time support
is required from the development environment, and the ease of debugging hence
depends substantially on that environment.

Java requires little or no additional support at all from a development environ-
ment. Dynamic memory management is already built into Java and does not pose a
problem. Pointers are not available in Java anymore; they are replaced by references
to objects and more “abstract” arrays that cannot be referenced through pointers
as in C++. Basically, in order to refer to objects, one has to use references; objects
cannot be bound to a variable directly. While in C++ one often has the burden of
deciding between two very similar concepts, namely whether to use a reference or a
pointer to an object (a choice which has to be remembered later when the reference
or pointer is used), Java does not leave this confusing choice between two almost
identical concepts and does not even have variables that stand for objects directly.
This can facilitate object handling considerably. In addition, type—checking at com-
pile time is very strict and restrictive compared to C++, capturing many incorrect
variable assignments early. Later on, typical run—time problems are monitored, such
as references that do not point to proper places.

In general, development environments for Java do not need to provide much;
Sun’s free Java distribution already contains most of what is needed: class libraries,
a compiler, an interpreter, a (command-line) debugger, a documentation tool
(javadoc), several other development tools, and complete documentation of the
language and the distribution. A development environment may just want to inte-
grate these components with a visually appealing and easy—to—use graphical user

interface, and to provide an editor with the additional convenience of source-level

32
debugging.? All components in the Java distribution are also well-integrated with
each other. An example is the toString method from the Java “root” class Object.
Every class should redefine this method to make a class instance return some kind of
instance “state” in string format. The method can be used by other classes within
the application itself (and YALL does so), but it is also used by the debugger as a

special routine to provide information about the content of objects.

3.2.5 PLATFORM INDEPENDENCE AND INTERNET ACCESSIBILITY

Two of the best—known features of Java are its platform independence (“write once,
run anywhere”: code only needs to be written once and runs on all platforms that
support Java) and its usability for Internet—related software development, which is in
part due to its platform independence. As mentioned before, one of YALL’s original
goals has been platform—independence, which makes Java an excellent implementa-
tion language. In case the desire arises to make YALL or an application using YALL
available online, it is already well-equipped for Internet access. C++ does not have

much to offer in these regards.

3.2.6 JAVA PROBLEMS

Java also has disadvantages compared to C++. One of the foremost is execution
speed. Java programs tend to run considerably slower than C++ programs. Since
Java is a (partially) interpreted language and uses garbage collection, this disadvan-
tage is unlikely to ever disappear completely. Hence (as usual), the decision on a
programming language depends on the requirements of the developed application.

If a fast application for a specific platform is required, Java should not be used. If

2These low requirements probably explain the abundance of high—quality, free and
commercial development environments available for Java.

33

however speed is not so critical or cross—platform availability is desired, Java brings

along convincing qualities to be the language of choice.

3.3 THE REIMPLEMENTATION PROCESS

Java is generally said to be similar to C++. Hence I had initially expected to be
able to make a rough automatic translation from C++ to Java, to refine the result
a little further by hand, and then to arrive at acceptable Java code. However, an
attempt to use an automatic translator (Tilevich, 1997) ended in Java code which
was so unsatisfactory that it was easier to reimplement the system, even though the
mentioned translator tool (or rather an earlier version of it) appears to be the most
widely referenced tool of its kind.

I chose to use the newly released Java 2 Platform for the reimplementation, even
though it meant an anticipated risk because of Java 2’s novelty. However, there were
two important reasons in its favor. Java 2 introduces the so—called Collection
classes as part of the standard Java class library (the Java API), which provide
lists, sets, hash—tables, and similar standard data structures. Second, having future
extensions of YALL in mind, I wanted to use the Java version that would remain
current for the longest time, in order to avoid potential incompatibilities with future
Java versions for as long as possible.

The risk in using Java 2 turned out to include missing, incomplete, or error—prone
support for Java 2 from most integrated development environments (IDEs). Sun’s
own Java development environment, Java Workshop (Sun Microsystems, 1998), did
not support Java 2 yet when I started the reimplementation. I eventually turned
to XEmacs (XEmacs), a versatile text editor, in combination with JDE (Kinnucan,
1999), the “Java Development Environment” for XEmacs. Since JDE had not had

a good visual debugger, T later tried a few other IDEs: NetBeans (NetBeans, 1999b)

34
and a new version of Sun’s Java Workshop (Sun Microsystems, 1999b), both of which
claimed to support Java 2. However, both failed to support debugging properly. 1
tried a beta version of Gandalf (NetBeans, 1999a), a more recent version of NetBeans,
which seemed to be capable of proper Java 2 debugging, but it was too slow to be
useful. Eventually, I chose Kawa (Tek—Tools, 1999), an unsophisticated but fast IDE

which supports visual debugging of Java 2 code well.

3.4 NEW AND IMPROVED PROGRAM FEATURES

The transition from C++ to Java includes a variety of structural changes to the
program. Some of these changes are of minor importance, like the use of different
and more efficient standard data structures, minor improvements to algorithmic
efficiency and structure, or the exact program code (which is given in Appendix F).
Other changes are of great relevance to the user or to the system architecture and

will be described in the following.

3.4.1 DECLARATIVE LEXICON SPECIFICATION
PREVIOUS PROBLEMS

In the C++ implementation, the user had to enter the system’s lexicon interactively.
Using a sophisticated text—based user interface, lexical entries could be entered by
interactively providing lemma and stem grapheme and specifying the entry’s features
one by one through selection from context-sensitive menus. Changes to lexical
entries had to follow the same procedure. While this ensured syntactically correct
lexical entries (by only providing contextually valid choices to the user), it made the
already sophisticated process of entering correct lexical entries overly tedious and

lengthy by requiring the user to navigate through menus.

35
In addition, the lexicon was stored in a proprietary binary format (namely just
the trie format) which made it difficult to quickly view lexical entries, to check their
validity (displaying lexical entries was only possible by navigating through menus,
basically one feature at a time), to generally display what’s in the lexicon at all,
to make quick changes, or to quickly enter series of words with similar morpholog-
ical characteristics. The lexicon structure also made it harder to convert (import)
other lexicons to YALL’s format or to convert (export) YALL’s format to other
formats. In addition, making modifications to the lexicon storage structure usually
meant having to discard the old lexicon and starting a new lexicon from scratch
(unless appropriate conversion routines were written, see below). Furthermore, a
reimplementation (like the present one) or another software wishing access to the
existing data in the lexicon had to adhere exactly to the existing trie and entry
storage format, even when storage requirements changed (for example, for some
applications a hash table may be preferable over a trie structure) or new, additional
(non-morphological) information needed to be stored in the entries (which was made
impossible). Alternatively, a lengthy conversion program could have been written
to transform the existing lexicon into a new format, or the complete lexicon could
have been reentered.
For these reasons, the present implementation uses an additional declarative lex-
icon definition file containing the entire lexicon in text format. From this declaration

the actual lexicon trie is automatically generated.

THE CURRENT IMPLEMENTATION

The syntax of the declarative lexicon specification is captured by the following
context—free grammar in an extended BNF notation (for BNF, cf. Aho et al., 1986).
The square brackets designate an optional occurrence of the enclosed symbol string,

the curly braces stand for any number (including zero) of iterations of the enclosed

36
symbol string. A string enclosed in single quotes stands for its literal occurrence.
Commas are always used literally, i.e. they are part of the object language (which,

in this case, is the (meta—) language used to specify the lexicon).

lexicon — {lemmaentry}
lemmaentry — ‘[lemma, posfeatures, negfeaturesets, stementries‘|’
lemma — grapheme
posfeatures — features
negfeaturesets — ‘['{features}‘]’
features — ‘['[featurevalue{, featurevalue}]‘]’
stementries — ‘[{stementry}‘]’
stementry — ‘['stem, posfeatures, negfeaturesets‘|’
stem — grapheme

grapheme can be a lemma or a stem like laudare or laud. featurevalue is a feature
value such as feminine or subjunctive. It is not necessary to specify category—value
pairs, since each feature value is unique over all categories, and the parser automat-
ically determines the right category for a value.

Instead of giving a precise semantic definition for the grammar symbols above,
their use is illustrated by the following (toy—size) declarative lexicon file (representing
entries for laudare (cf. Appendix C) and vis (cf. Figure 2.7). Whitespace such as

spaces, tabs, or linefeeds is not significant between terminal symbols.

laudare,
[regular,verb,a_conjl,
1,
[
[
laud,
[prs_stem],

(]

laudav,
[perf_stem],
(]

laudat,
[sup_stem],

(]

vis,
[noun,i_decl,feminine],
[[genitive,dative,singular]],

I
I

vis,

[regular,nominative,vocative,singular],

(]

v,
[regular,singular],
[[nominative,vocative]]

vir,
[regular,plural],
[[accusative]]

vires,

[exception,accusative,plurall,

(]

The parser for the grammar is implemented as a recursive-descent parser with

one character lookahead (cf. Aho et al., 1986).

37

38
Generation of the lexicon trie files from the declarative lexicon specification is

triggered by the command

java Lexicon

This generates six lexicon trie files from the specification file yalllext.txt.

ADVANTAGES OF THE NEW APPROACH

The declarative definition has several advantages:

e Easy parsing and conversion. Since the declarative lexicon file is based on
a simple context—free grammar, it can be easily parsed and “compiled” into a
trie format or converted into any other desired file format. This allows other
programs besides the morphological analyzer easy access to the lexicon as well.
In addition, if the structure of the trie file format changes in the future, the

lexicon can easily be regenerated in the new format from the declaration.

e Easier conversion of other lexicons. A routine to convert an existing Latin
lexicon into YALL’s format would only need to produce the simple context—
free grammar format, not the more sophisticated trie format. The conversion

into trie format is done by YALL.

e Easy viewing, updating, and inserting. These standard lexicon opera-
tions can now be performed with any text editor or similar text processing
tool, which, for example, could also be used to systematically correct certain
mistakes in the lexicon through the editor’s replacement function. In addition,
one could, for example, come up with a standard entry pattern for, say, nouns
of a—declension, specifying all the standard features. This pattern could then

be copied in the text editor as often as needed, and only lemma and stem

39
graphemes would need to be filled in manually for each entry. As a future
improvement, a small application could be written to automate this use of

templates.

3.4.2 SIMPLIFIED LEXICON STRUCTURE

The implementation of the lexicon tries in the C++ version was designed to be efficient
in terms of access time as well as in terms of disk space consumption. However, the
methods needed to access the lexicon were very complex. There were three different
kinds of data in the lexicon tries. When a node in the trie had more than five
child nodes, it was stored in an array to achieve optimal access efficiency. The array
contained one element for each letter of the Latin alphabet to designate each possible
child node; “absent” child nodes were marked by a NIL (Not In List) symbol in the
array. With five children or less, a linked list was used with one list element per
child node; this saved memory compared to an array representation. In addition,
a node in the lexicon trie could also represent a list of pointers to lexical entries.
Consequently, the trie access procedures were rather complicated.

A theoretical assessment of the achieved space gain by using this overly com-
plex trie implementation shows that the gain is limited approximately by an upper
constant factor of 27 (26 characters of the English alphabet plus a special element
pointing to entries), but is actually far lower in the average case.

The new implementation generally uses arrays for the storage of each node in the
trie rather than lists and arrays. In addition, the lists of pointers to lexical entries
have been moved to a separate file. From every node there is now a pointer to a
position in that separate file, denoting the beginning of a list of pointers to lexical
entries connected to the trie node in question. The pointer can have the value NIL to
denote an empty list. This approach makes the implementation more straightforward

and less error—prone. The complete lexicon trie structure now consists of six files:

40
the paradigm trie file (yalllexl.yt), the paradigm entry lists file (yalllexl.yel),
the paradigm entry file (yalllexl.ye), the stem trie file (yalllexs.yt), the stem

entry lists file (yalllexs.yel), and the stem entry file (yalllexs.ye).

3.4.3 SIMPLIFIED ENDINGS TRIE SPECIFICATION

Similarly to the lexicon specification described in Section 3.4.1, the trie for the
ending analysis is also stored in a declarative format. In the C++ version of YALL,
the endings trie had not been stored completely declaratively, but in a kind of
declarative—procedural format, with several lines of program code for every node in
the trie. Here is an illustration of two entries for the personal endings (nodes 68 and

70) from Figure 2.3 (modified to correspond to the figure):

mat [68] =new extaffix(
"mus" ,new featuremap(new feature(plural),new feature(active),
new feature(one), (feature *)0),
mat [24] ,mat [29] ,mat [33], (extaffix *)0);

mat [70]=new extaffix(
"mur" ,new featuremap(new feature(plural),new feature(passive),
new feature(one), (feature *)0),
mat [24] ,mat [29] ,mat [33], (extaffix *)0);

The main disadvantage of this approach is that it makes the coding of the endings
trie specification into the program quite cumbersome. Not surprisingly, this repre-
sentation had to be completely discarded for the reimplementation, due to Java’s
different (and simplified) syntax. As a consequence, the endings trie is now stored
in its own (data) file, and read in whenever the application is started. This makes
it necessary to be able to read and parse the trie quickly. Consequently, the trie
representation is optimized for speed and simplicity. It is not nice to read, but this

is quite unnecessary since the endings trie does not need to be changed once it is

41
entered correctly.?> The above example now becomes the following (again modified

from the original file to correspond to Figure 2.3):

68

mus
plural
active
one

24
29
33

70

mur
plural
passive
one

24

29
33

The general structure of the endings trie file is defined by the following rules:

1. The file can have any number of entries for nodes, but must have at least one.
2. The last entry is the “start node” of the trie.
3. Each entry consists of several lines:

(a) a textual identifier for the node (some string; currently number strings

are used)

(b) the node’s grapheme

3Because of the simple endings trie file format, it was possible to generate the more
readable specification of the endings trie in Appendix E from the endings trie file semi—
automatically via regular expression replacement.

42
(c) one line for each feature value; as with the lexicon specification, only
feature values need to be specified, no categories; a blank line marks the

end of the feature value list

(d) one line for each successor node identifier; a blank line marks the end of

this list of links

An important difference to the conceptual description in Chapter 2 is that the
trie can now be regarded “upside-down.” When the analysis starts, the traversal of
the trie graph begins at a single leaf node, from where it proceeds to the former leaf
nodes from Chapter 2, and then further into the trie towards the root node. However,
since the root node does not have any purpose left except maybe to “conceptually
dominate” the whole trie, it is now simply left out (which brings the endings trie
even closer to an acyclic directed graph and further away from a tree).

The entire endings trie file is given in Appendix E in a form modified for read-
ability. Compared to the endings trie from Bubenheimer (1995), it also contains

minor corrections in content.

3.4.4 USER INPUT AND OUTPUT

The user specifies the word to be analyzed as a command-line argument to the
analyzer, as in the following example to analyze laudare (the command java starts
the Java interpreter, the argument Yall invokes class Yall, and laudare is passed

as an argument to Yall):

java Yall laudare

The output from YALL is a textual display of the found analyses together with
the found word stems and morphological features. For laudare, the output is the

following;:

Found 2 analyses for laudare.

Lemma: laudare

Stem: laud

[

voice : passive
conjugation : a_conj
mode : imperative
number : singular
tense : present
person : two
partofspeech : verb
regularity : regular
stem : prs_stem

]

Lemma: laudare

Stem: laud

[

infinitivity : infinitive
voice : active
conjugation : a_conj
person : infinite
partofspeech : verb
regularity : regular

stem : prs_stem

]

43

The displayed feature structures do not contain disjunctions. During the different

unification operations, feature structures with disjunctions of feature values are even-

tually broken up into disjunctions of feature structures without value disjunctions.

This is necessary to check the validity of found feature structures against negative

feature structures from the lexicon (see Section 2.3.3). Even though an attempt

could be made to at least partially “reassemble” split—up feature structures, the

result, in the general case, would only be a partial reassembly and could still contain

a disjunction of feature structures in addition. The example in Appendix A shows

44

a case where it is not possible to obtain a single positive feature structure as the

result of unification with negation.

CHAPTER 4

CONCLUSIONS AND OUTLOOK

This thesis provided theoretical and practical refinements of a morphological ana-
lyzer and lemmatizer for Latin, originally developed by Bubenheimer (1995). At
the same time, it demonstrated differences in the use of Java and C++ for software
development, and found a remarkable facilitation of small-scale software develop-
ment with Java. A reimplementation of the morphological analyzer in Java now

serves as a clean basis for future improvements to the analyzer.

4.1 THEORETICAL REFINEMENT

While the original theory behind the analyzer was comparably weak and proprietary,
it has been shown in this thesis that it can be cleanly and uniformly reformulated
in terms of current linguistic theory using tries, feature structures, and graph unifi-
cation.

Tries are used to represent both stems and endings. This leads to a uniform
computational model for Latin inflectional morphology.

Feature structures and unification supplement this model and allow to specify
morphological properties of inflected word forms. They are also fundamental in
providing the connection between analysis of word ending and lexical lookup of
word stems; they ensure that only valid combinations of these two processes are

admitted.

45

46
Feature structures can include disjunctions and negations to provide greater flex-
ibility and more concise expressiveness. These extensions are in line with common

linguistic theory.

4.2 PRACTICAL REFINEMENT AND REENGINEERING

The thesis has presented observations gained from redesign and reimplementation of
the morphological analyzer in Java. The reimplementation was considerably easier
than the original implementation in C++; experiences from the first implementa-
tion helped to avoid mistakes and provided guidance for the reimplementation; in
addition, differences between C++ and Java in their features and their abilities to
facilitate program development were contributing factors. However, an attempt to
automatically convert C++ code to Java failed. The redesign of the morphological
analyzer also brought about greater declarativeness of the used data structures and
a reduction of the user interface from complex semi—graphical user interaction to a
simple command-line tool.

A well-known problem of Java, its execution speed, has not turned out to be a
problem in the present application. The morphological analyzer runs at an accept-

able speed.

4.3 FUTURE EXTENSIONS

An additional motivation for attempting a reimplementation in Java was to provide
a clean basis for future improvements of YALL. While these improvements could
already have been applied to YALL’s C++ version, and many of them had already
been described as possible extensions in Bubenheimer (1995), I did not feel comfort-
able to add such extensions to a program that suffered from a number of deficiencies

as discussed in Chapter 3.

47
The following extensions could be added to YALL for a more comprehensive

morphological analysis system:

e Complete Latin morphology. The current implementation of the analyzer
handles nouns, verbs, and adjectives in the positive form (as well as non—
inflected particles). The first three parts of speech are crucial to show the
validity of the theory since they provide the most variety in inflection. Further
development must extend the morphological analyzer to the remaining parts

of speech, but this extension is not likely to cause crucial changes in the theory.

More specifically, adverbs, numbers, pronouns, clitics, and comparison of adjec-
tives are still missing from the analyzer. In addition, better support should be
added for a limited number of high—frequency irregular verbs such as esse and

ire as indicated in Appendix B.

e Lexicon. The size of the lexicon, which currently only consists of a few
words for testing purposes, needs to be extended to a large subset of Latin
vocabulary to make the morphological analyzer useful. The most promising
approach appears to be to convert an existing Latin lexicon to YALL’s format.

Entering the lexicon manually does not seem appealing.

BIBLIOGRAPHY

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison—Wesley, Reading, Mass., 1986.

J. H. Allen and J. B. Greenough. New Latin Grammar. Aristide D. Caratzas,
New Rochelle, New York, 1903.

ANSI/ISO/IEC. Information Technology — Programming Languages — C++.
American National Standards Institute (ANSI), International Organization for
Standardization (ISO), and International Electrotechnical Commission (IEC),
September 1998. ANSI/ISO/IEC 14882.

B. Boone. Java Essentials for C' and C++ Programmers. Addison—Wesley,
Reading, Mass., 1996.

U. Bubenheimer. YALL. FEine morphologische Analysekomponente fiir das
Lateinische zum Einsatz in einem lehrunterstitzenden System. Universitat
Koblenz-Landau, Institut fiir Computerlinguistik, Koblenz, Germany, 1995.
Studienarbeit.

F. F. Chew. The Java/C++ Cross—Reference Handbook. Prentice Hall, Upper
Saddle River, New Jersey, 1998.

M. A. Covington. Converging transition networks and sub—morphemic regular-
ities in Latin noun inflection. Unpublished paper, Artificial Intelligence Center,
The University of Georgia, February 1999.

D. J. Delorie. djgpp 1.12M4. Computer software, available from http://
www.delorie.com/djgpp, 1995.

P. G. W. Glare, editor. Ozford Latin Dictionary. Oxford University Press, New
York, 1982.

H. J. Hillen. Kriger Lateinisches Unterrichtswerk. Zweiter Teil. Grammatisches
Beiheft. Verlag Moritz Diesterweg, Frankfurt am Main, Germany, 1986.

M. Johnson. Features and formulae. Computational Linguistics, 17(2):131-151,
1991.

L. Karttunen. Features and values. In Proceedings of COLING 84, pages 28-33,
1984.

48

49

P. Kinnucan. JDE 2.1.4 — Java Development Environment for Emacs. Com-
puter software, available from http://sunsite.auc.dk/jde, 1999.

D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Pro-
gramming. Addison—Wesley, Reading, Mass., 1973.

K. C. Louden. Programming Languages: Principles and Practice. PWS Pub-
lishing Company, Boston, Mass., 1993.

NetBeans. Gandalf Beta 1. Computer software, available from http://
www.netbeans.com, April 1999a.

NetBeans. NetBeans DeveloperX2 2.1. Computer software, available from
http://www.netbeans.com, March 1999b.

F. C. N. Pereira. Grammars and logics of partial information. In J.-L. Lassez,
editor, Proceedings of the Fourth International Conference on Logic Program-
ming, volume 2, pages 989-1013, Cambridge, Mass., 1987. MIT Press.

H. Rubenbauer, J. B. Hofmann, and R. Heine. Lateinische Grammatik. C. C.
Buchners Verlag, Bamberg, Germany, 1989.

R. W. Sproat. Morphology and Computation. MIT Press, Cambridge, Mass.,
1992.

B. Stroustrup. The C++ Programming Language. Addison—Wesley, Reading,
Mass., first edition, 1986.

B. Stroustrup. The C++ Programming Language. Addison—Wesley, Reading,
Mass., second edition, 1991.

B. Stroustrup. The C++ Programming Language. Addison—Wesley, Reading,
Mass., third edition, 1997.

Sun Microsystems. Java Workshop 2.0a. Computer software, previously avail-
able from http://www.sun.com/workshop/java, 1998.

Sun Microsystems. The Java tutorial. World Wide Web page, http://
java.sun.com/docs/books/tutorial, 1999a.

Sun Microsystems. Java Workshop 3.0. Computer software, available from
http://www.sun.com/workshop/java, 1999b.

Tek—Tools. Kawa 3.21. Computer software, available from http://tek—
tools.com/kawa, 1999.

I. Tilevich. C2J++. Computer software, available from http://sol.pace.edu/
“tilevich/c2j.html, 1997.

50
W. M. Wilson. An Essential Latin Grammar. Macmillan, London, 1968.

XEmacs. XEmacs 20.4. Computer software, available from http://
www.xemacs.org, 1998.

APPENDIX A

UNIFICATION WITH NEGATION AND DISJUNCTION

This appendix gives a longer example including negated and disjunctive feature

structures for the unification method described in Section 2.3.3.

[decl : i
case : acc
a = T
_ Jmasc
_gen : {fem }
decl : 1 decl : 1
=~ case : acc | V | case : acc
gen : masc gen : fem

[pos : noun i

decl : 4

num : pl

b= {nom}
case :
acc
~ |'masc

_gen ' {neutr} i
[pos : noun POS : noun POS : noun POS : noun

decl : 4 decl : 1 decl : 1 decl : 4

= | num : pl V | num : pl V | num : pl V | num : pl

case : nom case : nom case : acc case : acc

| gen : masc gen : neutr gen : masc gen : neutr

o1

52

[pos : noun
) POS : noun
decl : i)
I decl : i
num :
alb= P V | num : pl
case : nom
case : acc
masc
gen : gen : neutr
i neutr | |
[pos : noun POS : noun POS : noun
decl : i decl : 1 decl : i
= | num : pl V | num : pl V | num : pl
case : nom case : nom case : acc
| gen : masc gen : neutr gen : neutr

APPENDIX B

A FEATURE SYSTEM FOR LATIN MORPHOLOGY

Tables B.1, B.2, and B.3 show the system of features for the analysis of nouns,
adjectives, verbs, and particles, the parts of speech that are currently covered by
the morphological analyzer. It is based on the classification of Hillen (1986), a Latin
textbook grammar. Abbreviations in parentheses for attribute names correspond to
abbreviations used in the text. Abbreviations in brackets for value names stand for
abbreviations used in the endings and lexicon trie specificat