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Preface

Computers have been assisting humans in design of artifacts for several years now.

But with the complexity of engineering design acquiring levels that baffle individual

human minds, there is a cry for heuristic automation methods that can suggest

designs allowing the human to add only final touches. An example of the need for

such techniques is in the area of the design of integrated circuits. VLSI technolo-

gies have reached a complexity that is mind-boggling. Electronic design automation

(EDA) tools allow the human designer (electrical engineer) to work with high level

descriptions. We demonstrate the possibility of one such tool that can assist engi-

neers to build standard cells on-the-fly customized to criteria specified by them. Our

method is an example of design by evolution by the use of genetic algorithms.

The field of electronic design automation poses one of the toughest challenges to

the evolutionary computation community.
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Chapter 1

Introduction

This section has been written for a reader new to Very Large Scale Integration

(VLSI). If you are already familiar with standard cells, MAGIC and SPICE you

may jump to page 7.

Figure 1.1: Inside the Intel Pentium

1
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1.1 VLSI Design

The Electronic Design Automation (EDA) industry provides the critical technology

to design electronics that support the Information Age, including: communications,

computers, space technology, medical and industrial equipment and consumer elec-

tronics. Computers have aided design engineers for a long time. They have been

used by designers to create, modify, test and store their designs. Various tools have

been developed to assist the designer but the design process has essentially been

human-driven. Computer chips, for example, used to be designed laboriously by

hand, component by component. With the ever increasing complexity of computer

chip design, it was natural for automation to play an important role. The easier

tasks such as generating mask specifications for fabrication were first automated by

deterministic algorithms. The increasing complexity of Very Large Scale Integrated

Circuits (VLSI) — the technology of putting more than 100,000 transistors on a

single chip — makes the design search space intractable and requires heuristic tech-

niques that negotiate the combinatorial challenges to design high quality chips in an

ever shortening time-to-market. Various heuristic methods [11] have been employed

in chip design with a good number of successes.

The design of VLSI chips is a multi-objective design optimization problem. One

unpopular approach is flat device-level layout synthesis where the entire design is

created in a single step by working in a component by component fashion. According

to Burns and Feldman [6]:

This approach handles design tuning naturally [i.e. the ability to opti-

mize a circuit by changing device parameters - Anil]. However, the syn-

thesis phase is difficult algorithmically. Both the device-level placement

and device-level routing problems are NP- complete [11]. Near-optimal
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algorithms are feasible for small designs only and fast heuristics handling

large designs yield poor quality layouts.

The inherent complexity is addressed by another approach — a hierarchical

design process where a higher process can work by placing components treated as

black-boxes. These black-boxes are designed by another design process that works

with components at a lower level of abstraction. Thus there are various design pro-

cesses each working at a different level of abstraction. Some of the names associated

with these processes are circuit partitioning, cell placement, cell routing, compaction

etc. Each process depends on the other and a process at one level may not have

complete information about components at a lower level and hence cannot use it in

its cost function and has to make approximations.

This field poses one of the toughest challenges to the evolutionary computation

community (and others interested in design optimization) since large-scale, cou-

pled optimization problems commonly arise. Genetic algorithms have been used for

various problems in VLSI. Mazumder and Rudnick [12] is a good survey of such

applications. We have focused our attention on an area where we are not aware of

any GA based solutions — that of standard cell design.

At the lowest level of logic, many designers work with standard cells. The idea

here is to develop a library of frequently used logics to speed up the design process

so that a new chip does not have to be built all the way down to the transistor level.

Higher level tools such as standard cell, datapath placement and routing tools can

then request cells from the library and complete the chip design in days instead of

weeks. But then someone has to create and maintain a library of standard cells.
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1.2 Standard Cell Design

The design of a standard cell is challenging. At this level, designers work with

transistors that are in turn made from bringing certain materials in contact with

one another. Figure 1.2 shows how a transistor is made by bringing a polysilicon

Figure 1.2: A transistor designed in MAGIC

layer in contact with a diffusion layer. What you see is a snapshot from MAGIC [18],

a layout editor which is essentially a smart tool that works with colored polygons

that represent physical layers that form the complex circuitry on a chip. It is smart

as it knows that bringing a polysilicon layer (the narrow rectangle) in contact with

an n-diffusion layer (the wider rectangle) creates an n-transistor which is shown as a

hatched region in the figure. The tool is aware of the electrical characteristics of the

materials and has been programmed with a set of design rules for a given process.

We say for a given process because these rules can change as the technology used by
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the foundry (which eventually etches the electronic copy of the design onto silicon)

changes. Design rules are constraints on the placement of the polygons that reflect

the practical constraints (such as tolerance levels) that the foundry (manufacturers

of the chip) has to deal with.

An example of a design rule would be — A red polygon (polysilicon) has to be

at least 3 lambda away from another red polygon (polysilicon) where lambda is a

unit of measurement. This unit actually translates to a physical measure (usually

in nanometers) depending on the process. A software tool called the design rule

checker (DRC) may be called into action within MAGIC to check if all the polygons

placed so far meet all design rule constraints. Areas that do violate these constraints

are filled with white boxes (Figure 1.3) so as to alert the designer that the polygons

need to be rearranged since this design is not practically feasible. Other design rules

constrain the shapes and minimum sizes of certain polygons.

Figure 1.3: DRC errors highlighted by MAGIC
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Transistors may be connected by blue polygons that represent conducting metals

and hence wires. Once the designer has finished placing and connecting the transis-

tors for a circuit she had in mind (or represented as a circuit schematic on paper or

electronic form), she does a final check to make sure there are no design rule errors.

She now goes on to check if the circuit does behave as intended. In the example in

Figure 4.9 of an inverter (also called NOT gate), the expected behavior is to invert

the given input, i.e. a “zero” at the input will produce a “one” at the output and

vice versa.

This simulation is conducted by another tool called a circuit simulator. We used

SPICE [19, 20] to test our designs. SPICE can take a file extracted from MAGIC ,

supply the inputs specified by the user and generate the outputs requested by the

user. Figure 1.4 shows the waveforms generated (as viewed by another tool called

nutmeg). The tool displays these in color but since the reader may be viewing the

snapshot in black and white, additional labels in and out have been placed all along

the waveforms for your reference. The input waveform goes from 3.3 V, down to 0 V,

up to 3.3 V and down again to 0 V. The output waveform does the exact opposite.

It goes from 0 V to 3.3 V to 0V and back to 3.3 V. Note that there are time delays

experienced by the output waveform and it does seem erratic at places but what is

important is that the values be correct at certain time instants or samples. In this

case we may look at the values at 10 ns and 30 ns. Note that at these instants the

circuit behaves obediently: if the input is at 3.3 V (binary one) the output is at

0 V (binary zero) and vice-versa. The values at both samples in Figure 1.4 are thus

inverted which is the intended behavior of the circuit.

Once the designer is convinced that the circuit behaves correctly she goes on to

tune certain performance criteria that are of interest such as (1) area of the design,

(2) the delay in responding to change in inputs and (3) the power dissipated by the

devices and wires. The first is measured in MAGIC and the last two are measured
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Figure 1.4: Input and Output Waveforms for the inverter in Figure 4.9

in SPICE. Changes are made in the design and the entire process is repeated until

the circuit is optimized for the task in hand. Note that optimizing for the criteria (1,

2 and 3 above) involve design tradeoffs. Also note that an attempt to automate all

these processes without human intervention will also have to find ways of interpreting

the cues offered by MAGIC and nutmeg without resorting to the visual medium. This

requires developing scripts that can parse the output from these tools to seek the

information we need.

Traditionally a large number of these cells are stored in a library known as the

standard cell library. These building blocks number in the thousands catering to the

demand for frequently used logics. Examples include the inverter, NAND gates, full

adder, latch etc. Adding new cells to handle constraints that were not considered

at the time of cell design is difficult if not impossible. Every time the process

changes, the design rules change. These libraries have to be redesigned, manually
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in many cases. Compaction tools have been built that can work with an old library

and migrate them to the new process by shifting the components to accommodate

design rule changes but these have severe limitations. Compaction is the process of

squeezing out all possible extra spaces between the devices in the circuit so as to

minimize its area.

The high costs (both time and money) of designing and maintaining standard

cells is a growing concern in the VLSI community. Many authors have proposed

solutions but the automated techniques are yet to catch up with the quality of

manually laid out cells [5].

1.3 Genetic Algorithms

Genetic Algorithms (GAs) [13] are a class of powerful heuristic algorithms that

can search for a solution by a process similar to natural selection, i.e. the desired

characteristics of the solution are enhanced by continued breeding. GAs attempt to

find good solutions by randomly creating a pool of potential solutions to the problem

and manipulating those solutions by using genetic operators. Genetic operators

manipulate existing solutions to generate new solutions. Each solution is assigned a

fitness value which is a numerical assessment of how well it solves the problem.

A solution encoded as a string of numbers corresponding to different features

of the solution is known as an individual. Individuals with higher fitnesses are

picked more frequently to produce new solutions using recombination operators.

These operators work on multiple individuals (parents) and create new individuals

(offsprings) that are a hybrid of the features of their parents. Another set of operators

— mutation operators— randomly change some of these features.

Individuals with lower fitness values are replaced by individuals of higher fitness.

As a result, the average fitness of the population tends to improve over time. The
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fitness of the best individual is also expected to improve over time and the best

individual may be chosen as a solution after several iterations.

Two variations in replacement strategies are:

1. replacement of the entire pool of individuals resulting in generational GAs

2. replacement of a small fraction of the pool of individuals (usually the weakest)

resulting in steady-state GAs

Both GAs have been implemented by the author with success and the final choice

depends on the application. The main advantages of GAs are:

1. Robust compared to path following methods as they maintain a much more

thorough representation of the search space through a whole set of points that

collaborate to find better regions.

2. Intrinsically parallel and hence conduct a number of searches in parallel.

3. Easy to parallelize on networks of workstations.



Chapter 2

Literature survey and Research Goal

As noted earlier there is a progression toward more automated cell synthesis tech-

niques. Some authors [5, 6] advocate a shift in the use of standard cell libraries as

we know them. The idea here is to engineer standard cells on demand or “on-the-

fly” thus eliminating the need for developing and maintaining expensive static cell

libraries. This would allow the designer to demand cells that may not exist in any

pre-defined library, optimized for a given criterion depending on the context. In

particular this would permit [10]:

1. Standard cell and datapath placement and routing tools to request cells with

exact pin-orderings.

2. Logic synthesis tools to request specific logic decompositions.

3. Interconnect optimization tools to request cells with specific input and output

impedance values.

4. Power optimization tools to request specific power/delay trade-offs, perhaps

even specify a logic family.

Other advantages include:

1. Synthesis of cells of desired shape and size.

2. Transistor level tuning.

10
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3. Ability to jointly conduct circuit and process optimization across process and

layout architecture spaces [9].

Typical techniques are schematic dependent. They either start from a netlist

of transistors (a representation showing how the transistors are connected to one

another) with the transistor type and sizing specified by the designer or from some

other type of a symbolic layout followed by compaction. Existing compaction tech-

niques are unable to change the shape or orientation of layout objects and thus

depend on the designer’s specification. Yet another technique used is the develop-

ment of procedural module generators that are programs that hard code procedures

for assembling a cell as well as design rule constraints. Hard coding limits their use

in the face of changes in cell architecture and interconnect technology [5].

Fixed libraries make device level tuning impossible (or difficult). Poor timing,

area or power tradeoffs may result since the design of the cell is decoupled from the

constraints imposed by higher-level tools. Schematic independence and device-size

tuning is best accomplished via on-the-fly leaf cell synthesis. The use of C5M to

develop a 440 MHz processor for IBM discussed in [6] is a good example of such

a design methodology. Lefebvre, Marple and Sechen [5] note that layout synthesis

tools need to optimize across all of the following phases since each of them involve

design tradeoffs:

1. Creation of a transistor circuit topology that provides a certain digital function.

2. Sizing and ordering transistors in the circuit topology.

3. Placing routing and compacting the above transistors into a layout.
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2.1 Our Research Goal

Given the ambitious goal of automating phases 1, 2 and 3 above into a single phase,

we set out to explore the possibility of accomplishing this for a very simple standard

cell — the CMOS inverter (Figure 4.9) — without a schematic and without incor-

porating any design heuristics for transistor sizing, splitting, ordering, placement,

routing or compaction. The tools we decided to work with were MAGIC [18] —

a layout schematic editor, SPICE [18, 19] a circuit simulator and a modified ver-

sion of GADO [3]— a design optimization engine (Section 4.2.1). Our goal was to

start from a behavioral description for an inverter, an optimization criterion and a

set of building blocks (different types/clusters of transistors, piece of “poly”, piece

of “metal1”, piece of “ndcontact” etc.) and attempt to automate the process of

finding a working inverter optimized for the given criterion as a proof of concept.

The behavioral description consisted of a truth table of inputs and outputs with all

possible input transitions (0 to 1 and 1 to 0). This is because certain designs may

fail on some transitions. Table 1 lists all the input transitions used for the inverter

with corresponding outputs.

Table 2.1: Truth Table with all Possible Transitions for an Inverter

Input Output
0 1
1 0
0 1

But what about testing different input sequences? There are an infinite number

of input sequences and it is possible that a design with unnecessary states fails

at a certain input sequence. Our own experience with this algorithm is that it

tends to find the simplest design and hence the correct design. This is because

complicated designs that have more components also occupy more area and hence
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receive higher penalties than simple designs. (The penalty scheme is discussed in

4.2.3). Another question that needs to be addressed is the justification for using

a behavioral description as opposed to the traditional schematic description. We

believe that this added degree of freedom creates more room for innovation. The

algorithm simultaneously searches for the optimal layout as well as the optimal

schematic.



Chapter 3

VLSI Standard Cell Design Using Genetic Algorithms

3.1 Introduction

Standard cells are the lowest-level building blocks in VLSI design. Since most chip

designs are composed of many standard cells, optimization of these cells is very

important. Traditionally, standard cell libraries have been designed by humans.

Recently, however, there has been a movement toward automated standard cell

design [1, 2].

The advantages of automated standard cell design are low cost and custom tai-

loring. On the other hand, current automatically generated libraries are less efficient

than hand designed ones.

3.2 Our work

Our work addresses the problem of inefficiency in automated standard cell design.

We apply a genetic algorithm [3] to find standard cells, which are more efficient than

hand designed ones. Genetic algorithms (GAs) are used to find more fit solutions

from a diverse pool in a process similar to natural selection. The GA used in this

work (GADO) is a GA that was designed to be suitable for engineering design

optimization domains. These domains usually involve expensive fitness evaluations

and search spaces that are very difficult to search.

14
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3.2.1 Representation

We used integers to represent the different components on the chip. We use a repair

method to reduce the effects of aliasing. When genetic operators such as crossover

and mutation are done, we sort the components of the chromosome in a way that

maps the order of components on the board.

3.2.2 Fitness

A number of metrics were taken into account in our fitness function. These included

area, power, speed, number of correct outputs, and design rule errors. The fitness

function was hierarchical so that time would not be wasted evaluating incorrect

designs for efficiency. The fitness function was also extended to check that inputs

influence the proper output nodes.

3.2.3 Diversity

The distance between two designs was computed as the Euclidean distance between

their integer representations. We are planning to create a more meaningful diversity

function by taking into account the circuit structure.

3.3 Preliminary Results

Figure 3.1 shows the current results of our work. This is an attempt to build an

inverter. You can see that the input node drives the gate of a transistor influencing

the output node. Unfortunately, the other node of the transistor is not connected

because the fitness function did not encourage this. We are planning to extend the

fitness function to ensure that no transistor nodes are unconnected.
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Figure 3.1: Current attempt at an Inverter.

3.4 Conclusions

We have presented a novel scheme for automated standard cell generation. We

currently have not generated any complete circuits. However, we believe that this

technique shows great promise with further development.

3.5 References

[1] C. Edwards, EDA Vendors Rethink Standard-Cell Libraries, Electronics Times,

June 2000.

[2] D. Pietromonaco, Automating Cost-Effective Library Creation, Integrated

System Design, November 2000.

[3] K. Rasheed and H. Hirsh, Learning to be Selective in Genetic-Algorithm-Based

Design Optimization, Artificial Intelligence in Engineering, Design, Analysis
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and Manufacturing, 1999.



Chapter 4

An Evolutionary Approach to Standard Cell Synthesis from

Behavioral Descriptions: A proof of concept

4.1 Introduction

Standard cell methodology is widely used in IC design. Considerable effort has been

invested in attempting to automate the design of a standard cell. Automation of

standard cell layout generation (1) significantly improves turnaround time for cre-

ating new standard cell libraries, (2) provides a test bed for evaluating new process

technologies by rapidly synthesizing cells and (3) enables rapid migration of designs

to new process technologies. Most methods for cell synthesis are schematic-based

methods as they start with a sized/unsized transistor-level netlists and automate the

processes of placement, followed by routing and possibly compaction. Our imple-

mentation attempts to build a cell on-the-fly given only a behavioral description.

The input specification consists of:

1. A truth table description of the input and output with as many possible tran-

sitions (more on this in 4.1.2).

2. A set of building blocks consisting of geometries of objects such as transistors,

piece of polysilicon, piece of polycontact etc.

3. A classification of labels used (as inputs and outputs).

4. A cell template specifying the placement of fixed ports (if any).

18
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A design rule checker (MAGIC) and circuit simulator (SPICE) are also used by

the Genetic Algorithm to evaluate and validate designs.

4.1.1 Motivation

As noted earlier there is a progression toward more automated cell synthesis tech-

niques. Some authors [5, 6] advocate a shift in the use of standard cell libraries,

as we know them. The idea here is to engineer standard cells on demand or “on-

the-fly” thus eliminating the need for developing and maintaining expensive static

cell libraries. This would allow the designer to demand cells that may not exist in

any pre-defined library, optimized for a given criterion depending on the context. In

particular this would permit [10]:

1. Standard cell and datapath placement and routing tools to request cells with

exact pin-orderings.

2. Logic synthesis tools to request specific logic decompositions.

3. Interconnect optimization tools to request cells with specific input and output

impedance values.

4. Power optimization tools to request specific power/delay trade-offs, perhaps

even specify a logic family.

Other advantages include:

1. Synthesis of cells of desired shape and size.

2. Transistor level tuning.

3. Ability to jointly conduct circuit and process optimization across process and

layout architecture spaces [9].
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Typical techniques are schematic dependent. They either start from a netlist

of transistors with the transistor type and sizing specified by the designer or from

some other type of a symbolic layout followed by compaction. Existing compaction

techniques are unable to change the shape or orientation of layout objects and thus

depend on the designer’s specification. Yet another technique used is the develop-

ment of procedural module generators that are programs that hard code procedures

for assembling a cell as well as design rule constraints. Hard coding limits their use

in the face of changes in cell architecture and interconnect technology [5].

Fixed libraries make device level tuning impossible (or difficult). Poor timing,

area or power tradeoffs may result since the design of the cell is decoupled from the

constraints imposed by higher-level tools. Schematic independence and device-size

tuning is best accomplished via on-the-fly leaf cell synthesis. The use of C5M to

develop a 440 MHz processor for IBM discussed in [6] is a good example of such

a design methodology. Lefebvre, Marple and Sechen [5] note that layout synthesis

tools need to optimize across all of the following phases since each of them involve

design tradeoffs:

1. Creation of a transistor circuit topology that provides a certain digital function.

2. Sizing and ordering transistors in the circuit topology.

3. Placing routing and compacting the above transistors into a layout.

4.1.2 Our Research

Given the ambitious goal of automating phases 1, 2 and 3 above into a single phase,

we set out to explore the possibility of accomplishing this for a very simple standard

cell — the CMOS inverter — without a schematic and without incorporating any

design heuristics for transistor sizing, splitting, ordering, placement, routing or com-

paction. The tools we decided to work with were MAGIC [14] — a layout schematic
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editor, SPICE [14, 15] a circuit simulator and a modified version of GADO [3]—

a design optimization engine (Section 4.2.1). Our goal was to start from a behav-

ioral description for an inverter (Figure 4.1), an optimization criterion and a set

of building blocks (different types/clusters of transistors, piece of “poly”, piece of

“metal1”, piece of “ndcontact” etc. as seen in Figure 4.4) and attempt to automate

the process of finding a working inverter optimized for the given criterion as a proof

of concept. The behavioral description consisted of a truth table of inputs and out-

puts with all possible input transitions (0 to 1 and 1 to 0). This is because certain

designs may fail on some transitions. Figure 4.1 lists all the input transitions used

for the inverter with corresponding outputs.

Figure 4.1: Research Goal
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But what about testing different input sequences? There are an infinite number

of input sequences and it is possible that a design with unnecessary states fails

at a certain input sequence. Our own experience with this algorithm is that it

tends to find the simplest design and hence the correct design. This is because

complicated designs that have more components also occupy more area and hence

receive higher penalties than simple designs. (The penalty scheme is discussed in

4.2.3). Another question that needs to be addressed is the justification for using

a behavioral description as opposed to the traditional schematic description. We

believe that this added degree of freedom creates more room for innovation. The

algorithm simultaneously searches for the optimal layout as well as the optimal

schematic.

4.2 An Evolutionary Approach

4.2.1 Genetic Algorithms for Design Optimization

Genetic Algorithms (GAs) are a class of heuristic algorithms that can search for

a solution by a process similar to natural selection, i.e. the desired characteristics

of the solution are enhanced by continued breeding. We use GADO, which is a

steady state Genetic Algorithm for Design Optimization tool developed by Khaled

Rasheed for his PhD dissertation [3], for applications in design optimization including

aerospace industry applications [7], where coupled large-scaled optimization prob-

lems commonly arise. GADO maintains a population of potential designs (standard

cell designs in our case). Better designs are generated using Crossover and Muta-

tion operators within the algorithm. Since designs get better and better with time

such a design methodology is also known as design by evolution. Thus the design

of the schematic and the optimization of the layout happen in parallel at both log-
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ical (schematic/connectivity) and physical (layout) levels as opposed to traditional

methods.

Figure 4.2 shows the details of our architecture. The designs were generated by

GADO and were evaluated by a fitness function. The fitness function would invoke

the design rule checker in MAGIC and SPICE when additional evaluations needed

to be done (as described in Section 4.2.3).

Figure 4.2: Architecture

4.2.2 Coding Scheme

The coding scheme refers to the representation of a cell. We use integers to encode

a layout. Each design is represented in the algorithm as a string (Figure 4.3) of

Objects corresponding to each component in the physical layout. An object is a

member of a pre-defined set of building blocks including various types of transistors,
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Figure 4.3: Representation of a Standard Cell Layout

piece of polysilicon, piece of polycontact etc. Figure 4.4 is a snapshot of a MAGIC

file with all the blocks placed in a single file.

It may be noted that there are 15 object types that consist of symmetrical and

asymmetrical transistors of different types (single, dual and triple). Three other

blocks are pieces of polycontact, polysilicon, and “metal1” (extreme right, top to

bottom in Figure 4.4). The user may easily add other building blocks as and when

required. Each object is further defined by its type, X and Y coordinates, stretch

and orientation (Figure 4.3). Cell limits refer to the size of the grid of the maximum

allowable cell size (as defined by the user). This forces the GA to place components

only within the grid. The orientation refers to a number (0, 1, 2 or 3) that decides

the rotation applied to a block (0, 180, 90 or 270 degrees respectively). The stretch

factor is a number corresponding to the number of units by which a block is scaled.

The scaling is evenly distributed along the direction of orientation. The maximum

scale is limited by the maximum allowable cell size. X and Y refer to the coordinates

of the center of the object and are thus also constrained to be within the maximum

allowable cell area.

Table 4.2.2 summarizes the parameters of each object (column 1), the range of

values that they may have (column 2) and illustrates the values corresponding to
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Table 4.1: Ranges of Parameters and Examples of 2 cells

Parameters Values Figure 4.5 Figure 4.6
Object Type 1-15 11 11
Orientation 0-3 0 2

Stretch Factor Cell Limits 0 5
X Cell Limits 0 15
Y Cell Limits 0 14

the objects shown in Figures 4.5 and 4.6. Note the effects of moving, stretching and

rotating the same object. Figures 4.5 and 4.6 also demonstrate the use of templates.

The 3 pieces of metal and the 4 labels (Vdd, Gnd, in and out) are part of a user

defined template over which the other objects are superimposed.

The objects in the individual were sorted by Euclidean distance from the origin

to enable meaningful crossover.

4.2.3 Smart Fitness Function

The fitness function (also known as cost function) checks a candidate design against

a list of constraints and penalizes the design for every violation encountered. The

penalty values vary for each constraint depending on their importance. This way

the GA fixes the most serious violations first and progresses to make smaller fixes.

The checks involving the external simulators (MAGIC and SPICE as seen in Figure

4.2) are only made after a minimum set of constraints are satisfied. This way time

is not wasted on checking circuits that are obviously incorrect (such as those with

overlapping transistors). Only a circuit with fully connected transistors and labels

go through a SPICE simulation. Along a similar vein, time is not wasted checking

incorrect circuits for efficiency.

In the first phase the GA tries to weed out designs with overlapping transis-

tors. After succeeding in that venture it goes on to check connectivity of individual
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transistors and tries to encourage connections (more details in Section 4.3). Simul-

taneously, the design rule checker is invoked so that the GA tries to minimize both

design rule violations as well as broken connections.

After the GA has succeeded in creating designs with no broken connections it

passes on to the next phase where the design rule check is made in conjunction with

a circuit simulation. In this stage, the GA is trying to simultaneously satisfy the

requirements of zero design errors and zero simulation errors. Once the GA has come

up with a working circuit it proceeds to optimize the design for a given criterion (i.e.

search in the space of correct designs), which is usually one of the following:

1. Minimum Area

2. Minimum Delay times

3. Minimum Power dissipation

One of the most challenging aspects of the project was developing, what was

described as the transistor connectivity check component. A directed graph was

used to capture connectivity information. To illustrate the concept of nodes and

connections here is an example of a circuit layout (Figure 4.7) followed by the graph

(Figure 4.8) used to capture connectivity information.

The transistor connectivity check is also called the influence check since its func-

tion is to penalize nodes that do not influence nodes that they ought to. We also

need to formally define influence (arrows in the graph).

Node A influences node B if there is

1. A direct electrical connection, or

2. A unidirectional electrical influence such as the control of the gate over the

source and drain of a transistor.
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In Figure 4.7, nodes 1 and 2 influence one another by property (1); the bidirectional

nature of influence in represented by solid lines. Also nodes 3 and 4 exhibit property

(2); an arrow going from node 4 to node 3 represents the unidirectional nature of

influence.

It may be also noted that all labels were classified as inputs or outputs. Vdd and

Gnd were treated as inputs. The rules that the influence check tests are:

1. None of the labels should be shorted.

2. Every input must influence at least one output.

3. Every output must be influenced by at least one input.

4. Every transistor gate must be influenced by at least one input.

5. Both source/drain terminals of a transistor must be influenced by at least one

input or influence at least one output.

Thus the layout in Figure 4.7 violates rules 2 and 4 above as may be seen in the

graphical schematic in Figure 4.8. Let us consider another case where there is a

violation, say in rule 3 above (not shown in figures). It is more useful to know how

bad the violation is than a binary yes/no. This is accomplished by a distance check

function that in case of a violation in rule 3 will do a breadth-first graph traversal

starting from the floating output to determine all the nodes that may influence it

creating an O-list. Similarly another graph traversal is made from each input to

create their respective I-list of nodes that they influence. Once created, the distance

function finds the shortest Manhattan distance between nodes in the I-lists and the

node in the O-list and returns a penalty based on this distance. Note that many of

these nodes may be in different layers. We use a look up table with values preset by

a domain expert to calculate distances between nodes in different layers.
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Since designs in which a node in the I-lists is closer to a node in the O-lists

receive lower penalties, the GA favors these designs and in conjunction with the

other 4 rules above it has the holistic effect of encouraging connections between

inputs and outputs via transistors without shorting inputs. This idea lies at the

heart of the GA’s success. To summarize:

If you have some label that is not being influenced by any other label, we want to

know how close it is to some label that can influence it.

The idea that information about the degree of the violation is more useful than

just knowing whether there is a violation is another key ingredient to the GA’s

success and is used in the next 2 stages too. In the design rule check stage, a script

is fed to MAGIC in the NULL mode and the number of tiles that are involved in the

design rule errors is summed to arrive at a penalty. In the circuit simulation step, a

SPICE simulation is made and a penalty is arrived at by dividing the total number

of entries in the truth table simulated incorrectly divided by the total number of

entries in the truth table.

4.2.4 Smart Distance Function

A distance function takes 2 designs as arguments and returns a measure of “how

different” they are. This is used by a diversity module within GADO to weed out

duplicates and designs that are very similar in order to encourage diversity in the

population of potential designs. This helps the GA maintain a much more thorough

representation of the search space as well as allowing it to escape from local optima.

In the earlier runs, while the fitness function was under construction a simple

distance function based on the Euclidean distance between 2 strings was used. An

example with 2 hypothetical simple strings of 4 alleles (numbers in the string) each

(say A and B) illustrates the idea:
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Individual A : 11 3 0 1

Individual B : 9 3 1 0

The 4-dimensional Euclidean distance is calculated as the square root of

4∑
i=1

(Ai − Bi)
2

=
√

(11 − 9)2 + (3 − 3)2 + (0 − 1)2 + (1 − 0)2

=
√

6

The problem with this simple distance function is that it is not sensitive to the

objects in the design since distance between each allele is calculated on the same

scale. After preliminary success with the GA, we set out to fix this. The idea was

to use a weighted scheme corresponding to what each allele represented and how

distinguishing a feature it was in the context of the entire circuit.

In the above example the distance might be:

Sum = A |11 − 9| + B |3 − 3| + C |0 − 1| + D |1 − 0|
where A, B, C and D are weights that reflect the importance of each allele in its

contribution to the total distance between the given designs. The || brackets here

represent the absolute difference. In practice, for a cell with 6 objects the number

of alleles is 30 (since each object is coded with 5 parameters as shown in Figure

4.3). We ended up using this scheme with an additional step explained in the next

paragraph.

Before the final distance between the 2 individuals (say S1 and S2) was com-

puted, every object in S1 was compared with every object in S2. The objects were

rearranged within the individuals so that of all possible distances between the indi-

viduals, the minimum distance was computed. This rearranging took place locally

within the distance computation function so that the actual layouts were not modi-

fied.
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Our scheme still does not fix the problem of apparent diversity. There are many

physical realizations of a given transistor schematic each of which may have its own

unique sequence of alleles. The function needs to be smart enough to say that these

designs are more similar than designs that may have smaller distances but represent

a totally different schematic. This is because in this domain, small changes in the

location, size or orientation of the objects can cause large changes in their logical

equivalents. Such a function would have to be schematic sensitive by computing

the distance between the graphs of the schematics. We are now investigating this

and also a different representation scheme [8] that can make distance computations

easier.

4.3 Experimental Results

These are the results from our attempts to build an inverter. Figures 4.9, 4.10 and

4.11 show MAGIC layout editor screen shots of the inverters designed by the GA for

three different templates with different label configurations. The complete snapshots

from the evolution of these circuits may be viewed at our website [17]. The process

we followed to test these templates was to:

1. Plan a template,

2. Hand design the inverter using the template and

3. Modify the template if necessary to eliminate design rule errors.

Once we were confident that a hand-crafted solution existed for a given template, the

GA was designated the task of finding it. Figures 4.12-4.19 illustrate the highlights

in the evolution of the design of the inverter shown in Figure 4.9.

The C code ran on a Linux box over several iterations. As the GA progressed

it placed the designs that were “best so far” (individuals that were evaluated with
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the highest fitness) on our web page [17] so that we could monitor its progress.

The screenshots you see here are some of the highlights in the evolution of the cell.

The run lasted 3 hours (the next section discusses how this may be reduced) on a

1.2 GHz machine. The first snapshot (Figure 4.12) is that of a random placement

of 6 (or as defined by user) objects from the building-block library (Figure 4.4).

Subsequent snapshots show the improvement of the circuit over time. The GA first

weeds out overlapping transistors seen in 4.13 and arrives at a simple design with a

few objects and a lot of broken connections (Figure 4.14). It then attempts to fix

these connections by reducing the distance between nodes that could influence one

another (Figures 4.15-4.17). On succeeding to fix all connections (Figure 4.18) it

attacks the final hurdle of coming up with a working circuit with zero design rule

errors (Figure 4.19). It then goes on to minimize the area (user defined criterion)

occupied by this circuit and arrives at the final design shown in Figure 4.9.

4.4 Limitations

The GA can currently design cells with a small number of transistors. The search

space becomes intractable as more and more objects are added. Plenty of opti-

mizations can also be made within GADO. A better encoding [8] of the design

(representation of a layout within the GA) is needed to tackle the combinatorial

challenges of cells such as a full adder. As may be seen at our website [17], all runs

of the GA do not converge at the best design. Different random seeds that the GA

started with would converge at different designs. This means that the GA does not

always find the global optima.



32

4.5 Conclusions

An evolutionary approach (using GADO, a genetic algorithm) for standard cell

design automation was proposed. GADO explores the space of all possible con-

figurations (of a set of building blocks) given only a behavioral description of the

circuit. The search space includes all possible electrical connectivity and layout

and is accomplished in a reasonable time frame for an inverter (3 hours on a single

processor). The same result may be obtained in a fraction of the time by adding

multiple processors since genetic algorithms are easily implemented on parallel archi-

tectures [4] or a network of workstations. Statistical observations show that for any

final desired result achievable using the serial algorithm, the parallel version could

provide almost linear speedup (i.e. N times faster on N processors) [13, 11].

Thus the design and optimization of the inverter is done in parallel at both

logical (schematic) and physical (layout) levels. A working inverter was designed as

a proof of concept. This approach has the flexibility of generating cells on the fly

to address the ad-hoc constraints faced by the designer when she is considering a

candidate design in a larger context such as choosing a cell. This was demonstrated

by the design of inverters with arbitrary label placements. This allows higher-level

standard cell and datapath placement and routing tools to request cells with exact

pin-orderings.

A smarter distance function and alternative representations are being investi-

gated in an attempt to make the search space more tractable for more complex cells

such as a full adder.
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Figure 4.4: Different types of Objects used in the construction of an Inverter
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Figure 4.5: A cell with a template and a single Object
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Figure 4.6: The same cell with the Object moved, stretched and rotated
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Figure 4.7: A Sample cell

Figure 4.8: Connectivity Graph corresponding to cell in Figure 4.7
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Figure 4.9: An Inverter
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Figure 4.10: An Inverter with arbitrary label placement (1)
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Figure 4.11: An Inverter with arbitrary label placement (2)
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Figure 4.12: First attempt at the Inverter
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Figure 4.13: Overlapping Transistors
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Figure 4.14: A simple design
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Figure 4.15: Fixing a connection (1)



46

Figure 4.16: Fixing a connection (2)
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Figure 4.17: Fixing a connection (3)
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Figure 4.18: Connection is made (4)
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Figure 4.19: A working inverter (not yet optimized for area)



Chapter 5

Conclusions

An evolutionary approach (using GADO, a genetic algorithm) for standard cell

design automation was proposed. GADO explores the space of all possible con-

figurations (of a set of building blocks) given only a behavioral description of the

circuit. The search space includes all possible electrical connectivity and layouts.

Thus the design and optimization of the inverter happen in parallel at both logical

(schematic) and physical (layout) levels. A working inverter was designed as a proof

of concept in 3 hours on a single processor. The same result may be obtained

in a fraction of the time by adding multiple processors since genetic algorithms

are easily implemented on parallel architectures [4] or a network of workstations.

Statistical observations show that for any final desired result achievable using the

serial algorithm, the parallel version could provide linear speedup (i.e N times faster

on N processors) [12].

This approach has the flexibility of generating cells on the fly to address the

ad-hoc constraints faced by the designer when she is considering a candidate design

in a larger context such as choosing a cell. This was demonstrated by the design of

inverters with arbitrary label placements. This allows higher-level standard cell and

datapath placement and routing tools to request cells with exact pin-orderings.

A smarter distance function and alternative representations are being investi-

gated in an attempt to make the search space more tractable for more complex cells

such as a full adder.

50



51

The inverter was designed as a proof of concept. A tool that is extended to be

able to design more complex cells such as a full adder would be another milestone

in the field of standard cell design automation and will be of commercial interest to

EDA vendors such as Prolific Inc. (Newark, CA) and Cadabra Design Automation

(Santa Clara, CA) who are racing against time to develop tools that can generate

standard cells on the fly [16, 17].
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Appendix A

Hierarchy of the Fitness Function

The following table demonstrates the hierarchical nature of the fitness function (or

cost function) which ensures that the GA fixes incorrect circuits before it optimizes

them. The fitness values ranged from 0 to 5000 with 5000 representing the worst

individuals. In practice, the higher bound is more than 5000 since an additional

penalty is added at the very end in case the cell lies beyond the user specified cell

limits. The GA tries to find a layout that produces the minimum fitness function.

The penalty for “no influence” is discussed in Section 4.2.3. The penalty for “incor-

rect simulation” is proportional to the number of entries in the user specified truth

table that were simulated incorrectly in SPICE. For working circuits the area of the

cell is scaled so that it lies between 0 and 1. The minimum fitness function achieved

for the inverter in Figure 4.9 was 0.666.

Table A.1: Hierarchical Fitness Function

Fitness Function returns For...
5000 Wrong designs

(shorted labels, overlapping transistors)
10 + penalty for “no influence” Incomplete Designs

+ penalty for DRC errors (unconnected input, outputs or trans)
penalty for “incorrect simulation” Complete Designs with DRC errors

+ penalty for DRC errors
Cell Area scaled by a constant factor Correct Designs with no DRC errors
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Appendix B

Look up Table for inter-layer distances

This table shows the values that were preset by the domain expert (Benjamin

Bishop). These were used while calculating the distances between nodes in the

influence check (Section 4.2.3) in addition to the manhattan distance between the

nodes. MAGIC representations are 2 dimensional. In reality, the nodes sit on dif-

ferent layers in 3D space in the chip. Thus the inter-layer distances have to be also

taken into account. The distances calculated by the 2D manhattan distance are

made more representative of the true distances by adding the numbers from this

look up table. Note that the inter-layer numbers between the same layer is 01.

Table B.1: Distance between CMOS Layers

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
(1) POLY 0 1 1 1 2 0 0 1 2 2 1
(2) NDIFF 3 0 3 1 2 4 4 2 2 0 1
(3) PDIFF 3 3 0 1 2 4 4 2 2 0 1

(4) M1 1 1 1 0 1 2 2 0 0 0 0
(5) M2 2 2 2 1 0 3 3 1 1 1 0

(6) NTRAN 0 0 2 2 3 0 1 1 1 3 2
(7) PTRAN 0 2 0 2 3 1 0 1 3 1 2

(8) PC 1 2 2 0 1 1 1 0 1 1 0
(9) NDC 2 0 2 0 1 3 3 1 0 1 0
(10) PDC 2 2 0 0 1 3 3 1 1 0 0
(11) M2C 1 1 1 0 0 2 2 0 0 0 0

1The top row has been labeled with numbers to reduce the width of the table. These
numbers are labeled in Column 1.
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