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ABSTRACT

Interactive dynamic influence diagrams (I-DIDs) grapHicaisualize a sequential decision
problem for uncertain settings where multiple agents adenot only amongst themselves but
also with the environment that they are in. Algorithms catiyeavailable for solving these I-DIDs
face the issue of an exponentially growing candidate mquide ascribed to the other agents, over
time. One such algorithm identifies and prunes behavioegjlyivalent models and replaces them
with a representative thereby reducing the model space edlets further reduce the complexity
by additionally pruning models that are approximately sabiyely equivalent. Toward this, we
define subjective equivalence in terms of the distributigardhe subject agent’s future action-
observation paths, and introduce the notiom-etibjective equivalence. We present a new approx-
imation technique that uses our new definition of subjeatigeivalence to reduce the candidate
model space by pruning models that argubjectively equivalent with representative ones.
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CHAPTER1

INTRODUCTION

Decisions in the real world often need to be made under dondibf uncertainty. Here, the deci-
sion maker has to choose among alternatives (that may havef@everal consequences) where
each of these alternatives is associated with a proballigtyibution that is known. There has
been much advancement in this field in recent years. Resealwnee realized the need to develop
strategies that enhance the ability to deal with uncertswrination in a straight forward natural
way which will in turn improve the quality of planning, enahinore rational responses to unex-
pected events, and allow a better understanding of availapiions. These enhancements will
enable people and machines to make better decisions inrfesamnd with lower costs. This growth
in interest for developing algorithms/strategies to hargllch uncertain scenarios was motivated
by a large number of applications in various fields such agxen science, business, engineering,
etc.

Decision theory offers two main approaches for handlingdd@tmns of uncertainty. The first
exploits criteria of choice developed in a broader contgxddime theory [3, 7, 16, 17], for example
the min-maxstrategy, where an alternative is chosen such that the wossible consequence of
the chosen alternative is utilized. The second approaah msadel uncertainty by using subjec-
tive probabilities, based on analysis of previous decsimade in similar circumstances. Utility
theory [4] helps in understanding the value of a choice. &laee three traditions in utility theory.
One attempts to describe people’s utility functions andilked the descriptive approach. Another
attempts to use utility in the construction of a rational mlodf decision making and is called
the normative approach. The third attempts to bridge thergdise and normative approaches by

considering the limitations people have with the normagjeal they would like to reach; this is
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called the prescriptive approach. Our research is aimeahatieicting rational models for decision
making, or in other words, we focus on developing new and avgd normative approaches (how
humans should take decisions) for situations where dewdiave to be made under conditions
of uncertainty. The decisions made using these rationaksadould be more reliable in a given
scenario since they would be the most rational of all thesieas that could be maditerac-
tive Partially Observable Markov Decision Processes (INP@Ps) [20] provide a framework for
planning in multi-agent settings in complex problem dorsaitith partially observablguncertain)
environments that include eithenoperativeor competitivgparticipating agents. The domains have
very few restrictions as opposed to other approaches tsiaiateheir problem domains, in part, to
reduce complexity (Decentralized POMDPs [21, 39, 43] workaoperative multi-agent settings
only). However, as expected, these benefits come with atbegtinvolve complex time consuming
computations for arriving at a solutiomteractive dynamic influence diagrams (I-DIOJ8¥] are
the graphical counterparts of I-POMDPs. Hence, their cdatnal complexity is comparable to
that of -POMDPs. However, since they offer an intuitive wayot only identify but alsalisplay
the essential elements, including decisions, uncerésnénd objectives, and how they influence
each other, they represent a more intuitive framework toehtbe decision problem.

The purpose of this thesis is to develop a new approximaéohrtique for solving I-DIDs in
order to improve the quality of the solution and make it maralable in terms of the number of
horizons (span of time ahead in the planning sequence) pleartfor.

Generally, the quality of the solution or the limit on scali&pis influenced by the curses of
history and dimensionality (which are explained in detatel in this chapter). There exists an
infinite number of models in the model space of the other agembe of which predict identical
behaviors for the subject agent. Hence, the model spaceeclisdlessly reduced considerably by
replacing such models, termed lashaviorally equivalentnodels [37], by a representative model
in an attempt to mitigate the curse. In this work, we aim toHfer reduce this model space by addi-
tionally pruning models that are approximatsiybjectively equivalenfo facilitate this, we first

define subjective equivalence as a group of models of the atient that induce a similar distri-



bution over the subject agent’s futuaetion-observatiompaths. Using this definition, we introduce
the notion ofe-subjective equivalence as the group of candidate modatsriduce distributions
over the paths, which are within> 0 apart. Intuitively, this will result in fewer number of eqar
lence classes than behavioral equivalence. If we pick desmgdel as the representative for each
class, we will end up with fewer number of models than the aeaghnes that use exact behavioral
equivalence.

Our algorithm begins by selecting a model at random from timeroagents’ model space
and grouping together all the models that agsubjectively equivalent with it. This process is
repeated until all the models have been grouped. The mdusisvere picked (the representative
models) are retained in the model set and the rest are prdtegdleeir probability masses have
been transferred to the representatives. Our new defingiguch that it allows us to measure
the degree of equivalence. Hence it= 0, our approach identifies exact subjective equivalence
and the model set contains only subjectively distinct modeld as we increase the degree
of approximation increases. Our approach provides a urogpertunity to bound the error that
arises in the optimality of the solution of the subject ag&vk also experimentally evaluate our
approach on I-DIDs formulated for benchmark problem domaind show significant qualitative
improvement. However, this improvement comes with the obshcreased time complexity of
computinge-subjective equivalence of modeShapter Swill provide a more in-depth discussion

of the proposed algorithm.

1.1 RELEVANCE TO ARTIFICIAL INTELLIGENCE

Artificial Intelligenceis the field that strives to program software agents thatbeiximtelligence.
The wordartificial means something that can be built and the wotelligencedescribes a prop-
erty of the mind that encompasses many abilities, such asajbecities to reason, to plan, to solve
problems, to think abstractly, and to comprehend ideass,Tinuorder to create an Al agent, we

end up with four possible goals [38]:



1. Systems thathink like humansalso known asognitive modelingvhich focuses on rea-

soning like humans and the human framework.

2. Systems thathink rationally or in other words systems that are governed byléwves of

thoughtwhich focuses on reasoning and a general concept of irgaltig.

3. Systems thact like human®r in other words systems that pass Theing test[45] where

the focus is on behavior of humans and the human framework.

4. Systems thadct rationally, also calledational agentghat focus on behavior and a general

concept of intelligence.

Our research caters to the fourth goal of Al stated abBe¢ionalityis an idealized concept of
intelligence, which means “doing the right thing”. We wilhly deal with creating algorithms for
modeling intelligensoftwareagents. For convenience sake, throughout this paper, weetdt to

intelligent software agentas justagentsor intelligent agentsinless it is mentioned otherwise.

1.2 INTELLIGENT AGENTS

An intelligent agentis an entity thaibbservests environment through sensors aacts intelli-
gently upon that environment through actuators. A humamtagas eyes, ears and other organs
for sensors, and mouth, hands, legs and other body partstimatars. Similarly, a software agent
receives keyboard inputs, and files as sensory input andoactise environment by displaying
the output on the screen or writing files. A rational ageneéatslan action that maximizes its per-
formance measure given all the information it has regardiegnature of the environment and
the percepts it receives from it. These environments areactexized along several dimensions
They can be fully or partially observable, deterministicstwchastic, episodic or sequential, static
or dynamic, discrete or continuous, and single-agent otivragent. Environments that are fully
observable, deterministic, and static are less commonture@avhen compared to those that are
partially observable (allow for uncertainty in observag® and dynamic in the real world. Thus,

for correct modeling of many real world problems, the mettmdse must account for possible



actions with stochastic effects and for noisy measurem&viten the environment exhibits these
properties, the planning task becomes a non-trivial prabolving these problems is a complex,
and time-consuming procedure. Hence, the need for bettkefficient algorithms to solve them

becomes prominent.

1.3 RATIONAL DECISIONMAKING

The decision-making process is similar to a problem solgngcess which is often time con-
suming, and context dependent. For example, consider tidgon of a robot navigating in a large
office building. The robot can move from hallway intersegtto intersection and can make local
observations of its world. Its actions are not completeljabde, however. Sometimes when it
intends to move, it stays where it is, or goes too far; sonmegimhen it intends to turn, it over-
shoots. It has similar problems with the observations it @aK he point here is that, machines
that are autonomous are not completely reliable becausariofus factors like sensor malfunction,
power shut down, or even lack of adequate data or informa#garding the environment it is in.
Hence, these agents are faced with the problem of partibBgmwable environments [38]. Hence,
accurate analysis of the environment and rational decisiaking become extremely difficult and
it is interesting to see how these agents handle such sosnari

So researchers were faced with their next challenge in tiened decision making process;
making the agent understand what a good or a bad decisiohay.came up with a solution. If an
agent was going to make decisions by itself, it required somieic that it could use to differentiate
good and bad choices. This was another spot of bother beeaesdumans often find it difficult
to articulate the difference between good and bad choicegefftheless, the researchers had to
articulate these differences in order to provide the ageitbsoptions to choose from. Hence, they
assumed that each state had an associated reward for pedaach possible action or a decision
choice in that state. Rewards are a way of assigning valueff¢éoetht states of the environment.
Given these values, the agent attempts to make the decigbit knows has a greater expected

value.



The next problem encountered by researchers; what if pigrimad to be done for the future?
For the sake of convenience, time was assumed to pass ietgisacrements and the agent had
to choose some action to perform at each tick of the clockold also choose to do nothing).
Say, planning had to be done for two time steps in advancesibas had to be made taking into
consideration factors like the future and expected rewadndsrder to better understand why it is

important, consider the following scenario.

action Aor B
action A (0)
(+2)

action Aor B
(+5)

(+1)
action B

(+5)

action Aor B

Figure 1.1: Sample environment to show why one step greedtegy is undesirable

As it can be seen from the above figure, if the agent had chogggrtorm the action A (higher
immediate reward), a one step greedy strategy, it would ae¢ lended up with a reward as high
as it would have had it chosen to consider two time steps iaramyand made its decision to go
with action B. So this situation shows an example in which tpendwould probably want to take
into account the rewards it might receive in the future, apidust immediate rewards.

The next challenge for researchers was to tackle the probleen the agent had infinitely
many sequential decisions to make. Hence, Puterman etradafized this as the infinite horizon
problem [25, 35]. Finite and infinite horizon problems arenti@ned in greater detail in [25].

Formally, a model can be created for an agent consisting oita Bet of states, a finite set of
actions and a reward structure defined for each action{s#ateThe set of states are the different
locations in which the agent can be in the environment, thefsactions are the things that the
agent can do, and the reward structure for each actionysates the agent’s desirability for being

in the particular state after performing a particular actibor the robot navigation problem, the



states can be viewed as the location of the robot in the emviemt. The actions are the things
that it can do such as move forward, move left, move right, mogie backwards, and associated
with each action is an immediate reward for being in a paldicstate. For example, if there was
a pit directly in front of the robot and the robot did not knoamhto climb out of the pit, then the
reward for moving forward would be less compared to a safa aithin its reach. However, the

real difficulties lie in precisely that; making machines/éenk rationally.

1.4 MARKOV DECISIONPROCESSES

In aMarkov decision proceg81DP) model [35, 38], the agent knows its current state yfabbserv-
able environment). Markov decision processes (MDPs) deaiframework to optimize the action
sequence of the modeled agent under these environmentsrkowdecision process is defined
by a tuple<S, A, T, B>, whereSis the set of the states in the planning probléms the set of
possible actions of the agerii;is the transition function that specifies the probabilityréoach
states’ from states given actiona where,{s, s} € Sanda € A; andR is the reward function
that specifies the reward the agent gets for performing meatwwhen the world is in thes state. It

is important to understand that while MDP solution teche&are able to solve large state space
problems, the assumptions of classical planning (mairgyftiti observability assumption) make
them unsuitable for most complex real world applications.

However, if a participating agent cannot directly obsetve tinderlying environmental state
but instead, infers a distribution over the state based oadehof the world and some local obser-
vations, or in other words, if the environment is partialhservable, then such a model is known
asPartially Observable Markov Decision Proce@3OMDP) [2, 6, 8, 15, 23, 28, 33]. POMDP is
a generalization of the Markov decision process. The POMaméwork is general enough to
model a variety of real-world sequential decision proces8POMDP is a belief-state MDP; we
have a set of states, a set of actions, transitions and inateedbwards. The actions’ effects on
the state in a POMDP is exactly the same as in an MDP. The offgreince is in whether or not

we can observe the current state of the process. In a POMDRIdva set of observations to the



model. So instead of directly observing the current st state gives us an observation which
provides a hint about what state the agent is in. The obsengatan be probabilistic; so we also
specify an observation function. This observation funtsamply tells us the probability of each
observation for each state in the model. We can also haveltbenation likelihood depend on
the action. Formally, a POMDP is defined by a tuglg, A,(2, T, O, R> whereSis a finite set

of statesA is a finite set of actiond) is a finite set of observationg, is the transition function
that specifies the probabilities to go from statw states’ given actiona, where,s, s € Sand

a € A; O s the observation function ariis the reward function, that specifies the reward the
agent gets for performing actiamwhen the world is in the state. POMDPs, when generalized
to multi-agent settings [25, 41] by including other agemtsmputable models in the state space
along with the physical environment, are knownateractive partially observable Markov deci-
sion processed-POMDP) [5, 10, 20]. They provide a framework for sequahtiecision making

in partially observable multi-agent environments. Thestiework will be discussed Ghapter 2

1.5 GRAPHICAL MODELS

An influence diagran{ID) [24, 40, 31] is a simple visual representation of a decigproblem.
Influence diagrams offer an intuitive way to identify andpiiesy the essential elements, including
decisions, uncertainty, and objectives, and how they inflteeeach other. Solving an ID unrolled
over many time slices is calledynamic ID(DID). DIDs may be viewed as structural represen-
tations of POMDPs.

Interactive dynamic influence diagranisDID) [14, 34] are graphical counterparts of inter-
active POMDPs (I-POMDPs) [20]. I-DIDs are consise in theipnesentation of the problem of
how an agent should act in uncertain multi-agent envirorisadiney generalize DIDs [44], which
are graphical representations of POMDPs, to multi-agetihgs analogously to how I-POMDPs

generalize POMDPs. These graphical models will be exptaimgreater detail in th€hapter 2



1.6 QURSES OFDIMENSIONALITY AND HISTORY

The curse of dimensionality is the problem caused by ineréasize of the state space due to
the exponential increase in the number of models of the @bent, over time. This results in
an increase in the number of dimensions of the belief sim@#@xce there exists limitations in
the CPU speed and memory available to us, it leads to large waignal costs in terms of the
time needed to solve each of these models in the model sphiseisTfurther complicatedif other
agents are modeling other as well (nested modeling). Aafditly, in order to properly model
the other agents, agents keep track of the evolution of théeta@mver time. Since, the number
of models increases exponentially over time, these frameswsuffer from the curse of history.

Factors contributing to these curses are enumerated below.

e The initial number oftandidate modelfor the other agents: The greater the initial models
considered, better are the chances of finding the exact nobded other agent and greater
the computational cost as more models have to be solved.pfbidem contributes to the

curse of dimensionality.

e The number ohorizons(look ahead steps): At time stepthere could beM?|(]A;(]Q;])*
many models of the other agej)twhere|/\/lg| is the number of models considered initially,
|A;| is the number of possible actions farand|<2;| is the number of possible observations
for j. As it can be seen, the number of models that have to be soiceebse exponentially

with increase in the number of horizon considered (t).

e The number ofstrategy level{nested modeling): Nested modeling further contributes to
the curse of dimensionality and hence to the complexity leeshe solution of each of the
models at level — 1 requires solving the lower levél- 2 models and so on recursively up

to levelO.

Hence, good techniques that mitigate these curses to theegtextent possible will enable a

wider range of applications in larger problem domains. Quoraach will introduce another factor
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contributing to the curse of dimensionality. This factonmas as a cost while attempting to further

reduce the size of the model space. We will discuss this issgieeater detail in the later chapters.

1.7 Q.AIMS AND CONTRIBUTIONS

In the previous section we provided some basic conceptsutiddrlie the study of multi-agent

decision making. This section enumerates our claims antlibations to the field.

e The primary focus of this thesis is the development of an@pprate solution for interactive

dynamic influence diagrams that helps in improving the duali the solution.

e Algorithms for solving I-DIDs face the challenge of an expatially growing space of can-
didate models ascribed to other agents, over time. Prematisods pruned the behaviorally
equivalent models to identify the minimal model set. We gaite the curse of dimension-
ality by further reducing the candidate model space by auditly pruning models that are

approximately subjectively equivalent and replacing tiveith representatives.

¢ We define subjective equivalence in terms of the distrilbutieer the subject agent’s future
action-observation paths. While rigorous, it has the adlditi advantage that it permits us
to measure the degree to which the candidate models of tlee atfent are subjectively
equivalent. We use symmetric Kullback Leibler (KL) divenge as the metric to measure

this degree.

e We introduce the notion of-subjective equivalence as a way to approximate subjective

equivalence.

e We also propose that outsubjective equivalence approach results in at most oneshfiod
each equivalence class after pruning which results in betiieitions given the number of
models ascribed and quality when compared torttoelel clusteringapproach by Zeng et

al. [46] and other exact algorithms that utilize the behealiequivalence approach.
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e We theoretically analyze the error introduced by this apphdn the optimality of the subject

agent’s solution and also discuss its advantages oventiake| clusteringapproach.

e We empirically evaluate the performance of our approxioratechnique on benchmark
problem domains such as the multi-agent tiger problem aaadnthiti-agent machine main-
tenance problem and compare the results with previous exaicapproximation techniques
including thediscriminative model updatgpproach by Doshi et al. [12]. We show significant

improvement in performance, although with limitations.

1.8 SIrRUCTURE OF THISWORK

Due to the nature of this research topic, it is necessaryrfonme a large literature review to get a
hold of the issues and facts about the sequential decisabigims that are solved using I-DIDs. It
is therefore necessary to present a significant amount d&gbaend information to the reader so
that the foundation is laid and an understanding of the k&yeis involving this research are easier
to acquire. We thus, outline the structure of this thesi©Hlews in order to have a proper flow in
understanding.

In this chaptey the focus is to give a very broad idea of the context of theaesh area,
introduce a few general concepts, and give a basic outlioeiotontributions to the field.

In Chapter 2 we briefly review the framework of finitely nested InteraetPOMDPs which
provides the mathematical foundations for graphical modetmalized by influence diagrams
applied to multiagent settings. We will also introduce thaders to IDs and dynamic IDs which
can be viewed as structurd representations for POMDPs. Walso provide a detailed description
of Interactive IDs and their extensions to dynamic setting®IDs. Exact algorithms to solve I-
DIDs will also be discussed in detail.

In Chapter 3 we survey different implementations of I-DIDs and revidwit pros and cons,
keeping in mind that some of these previous approaches, éo@tt and approximate, may be

applicable in our proposed method. We introduce the readets initial concept of behavioral
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equivalence and discuss why its definition makes it diffituliefine an approximate BE measure
and also discuss exact and approximate algorithms dewefopeolving I-DIDs in the past.

In Chapter 4 we define subjective equivalence in terms of the distrdsutver future action-
observation paths. In addition to being rigorous, the dafimiof subjective equivalence has the
additional advantage of providing a way to measure the e@egrevhich the models are subjec-
tively equivalent. We also derive an equation that comptliedistribution of the future action-
observation paths which lays the foundation of our prop@ggmtoximation technique.

In Chapter 5 we define the notion of-subjective equivalence, and introduce our new and
improved approximation technique.

In Chapter 6 we provide a detailed description of the problem domainwlich our tech-
nique was applied. The reward, observation, and tranditioctions for each of these application
domains will be presented. Also, we illustratively show HeldDs were applied in these problem
domains.

In Chapter 7 we present empirical evaluations of the proposed methedalké the two prob-
lems from the literature; the multiagent tiger problem, #imel multiagent machine maintenance
problem and perform simulations to measure the time needacdhieve different levels of perfor-
mance and their average rewards. We compare our resultsheithther exact and approximation
methods available for solving I-DIDs.

In Chapter 8 we mention the computational advantages due to our prdpageroximation
technique and also attempt to bound the error due to the sippaiion. We also theoretically
analyze our method’s savings with respect to the modelariungt approximation technique.

In Chapter 9 we summarize our contributions, claims and results froettteoretical and
experimental evaluations and also provide some ideas tbefiurmprove on our approximation

method for solving I-DIDs.



CHAPTER 2

BACKGROUND

Interactive POMDPs [20] generalize POMDPs and provide @amatical framework for solving
sequential decision problems in multi-agent settingsyTag the foundation for graphical models
which visually represent the decision problem. These gcapmodels are formalized bgfluence
diagrams(IDs) [24]. In this chapter we will briefly review the I-POMDfPamework.Influence
DiagramsandDynamic Influence Diagram®IDs) will also be discussed in some detail. We will
also provide a detailed descriptionlateractive Influence Diagram$-1Ds) and their extension to
dynamic settings hteractive Dynamic Influence DiagranfisDIDs) and methods to solve them.
Just as DIDs can viewed as the structured counterparts folH3, I-DIDs can be viewed as the

structured counterparts for -POMDPs.

2.1 INTERACTIVE POMDP (I-POMDP) RAMEWORK

In Chapter 1, we introduced POMDPs as a framework to solveesgigl decision problems where
the subject agent is assumed to act alone in the environtdentever, the real world consists of
many scenarios where the agent may not be alone. It musaatteot only with the environment,

but also with other agents. These other agents could be eloperating or competing with the
subject agent. They could also just be neutral in their sgogdr@o achieve a particular task. All the
different combinations of the information about the agesuish as their beliefs, capabilities, and
preferences are represented as models of the agent. Sogsathhas beliefs about not only the
environment but also the other agent’s models and theiertsee beliefs. All this information is

included in the state space - calléa interactive state space

13
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For the sake of simplicity, -POMDPs are usually presenssdimingintentionalagents, sim-
ilar to those used in Bayesian games [22, 29, 32] though thesfrark can be extended to any kind
of model. Also, we will consider just two agents,-andj interacting in a common environment.
All results can be scaled to three or more agents.

Mathematically, the interaction can be formalized usirgItPOMDP framework as follows.
Definition 1 (I-POMDP, ;). A finitely nested I-POMDP of agent i with a strategy level | is

|-POMDPZ‘J =< ISi,l! A,,I;, Qi1 Oi, R;>

where:

1. 1S5;,; is a set of interactive states defined &S,; = S x M;,;_;, whereM,; 1 = 0,;,_; U
SM;, forl > 1, andlS;, = S, where S is the set of states of the physical environnggnt.,
is the set ocomputable intentional modets agentj . The remaining set of models,\/;,

is the set osubintentional modelsf | ;
2. A= A; x A; ,is the set of joint actions of all agents in the environment;

3. Given theModel Non-Manipulability Assumption (MNMhat an agent’s actions do not
change other agents’ model directly, is a transition function7; : S x A x S — [0, 1].
It reflects the possibly uncertain effects of the joint atsimn the physical states of the

environment;
4. Q; is the set of observations of agent

5. Given theModel Non-Observability Assumption (MN@)t an agent cannot observe other
agents’ model directly)); is an observation functiord); : S x A x €; — [0, 1]. It describes
how likely it is for agenti to receive the observations given the physical state amd joi

actions;

6. R; is a reward functionR; : 1.S; x A — R. It describes agents preferences over its inter-

active states and joint actions, though usually only thespaay} states and actions matter.
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Intentional models ascribe to the other agent beliefsgpesices and rationality in action selec-
tion and are analogous to types as used in game theory [7E&¢h intentional model;;_, =
< by_1,0; >, whereb;,_, is agentj 's belief at levell - 1, and the frameq, = <A, T}, €, O;,
R;, OC;>. Here,j is assumed Bayes rational a®d’; is j 's optimality criterion. A subintentional
model is a triplesm; = < hj, O;, f; >, wheref; : H; — A(A;) is agent 's function, assumed
computable, which maps possible historieg sfobservations to distributions over its actions.
is an element of/; andO); gives the probability with whichreceives its input. We refer the reader
to [20] for details regarding the belief update and the vatemation in I-POMDPSs. In this thesis,

we restrict our attention to intentional models only.

2.2 INFLUENCE DIAGRAMS (IDS)

In this section we briefly describe influence diagrams (IDBdved by their extensions to dynamic
settings, DIDs, and refer the reader to [9, 24] for more tetéin influence diagran{ID) (also
called a decision network) is a compact graphical and madkieal representation of a decision
problem. It is a generalization of a Bayesian network, in Wwhooth probabilistic inference prob-
lems and decision making problems can be modeled and soArethfluence diagram can be
used to visualize the probabilistic dependencies in a mecsnalysis and to specify the states
of information for which independencies exist. IDs are tihapfpical counterparts of POMDPSs.
Their graphical representation of the problem enables @fasse and provides an edge over their
non-graphical counterparts. The first complete algoritbrmefzaluating an influence diagram was

developed by Shachter in 1986 [40].

2.2.1 SINTAX

An ID has three types of nodes and three types of arcs (or afvetween these nodes. See the
Fig. 2.1 below. We observe that an ID augments a Bayesian netwith decision and utility

nodes.



16

Figure 2.1: A simple influence diagram (ID) representingdéeision-making problem of an agent.
The oval nodes representing the state (S) and the observ@tjoreflected in the observation
function, O, are the chance nodes. The rectangle is theideceisde (A) and the diamond is the
reward/utility function (R). Influences (links) connect mstand represent the relationship between
nodes.

TYPES OFNODES

1. Decision noddcorresponding to each decision to be made) is drawn asaniget It repre-

sents points where the decision making agent has a choiatiohs.

2. Chance nodécorresponding to uncertainty to be modeled) is drawn asvah ®hese rep-
resent random variables, just as they do in Bayes nets. The egeld be uncertain about
various things because of the partial observability face@al world problems. Each chance
node has a conditional distribution associated with it thatdexed by the state of the parent

nodes.

3. Utility node (corresponding to a utility function) is drawn as a diamooidgn octagon). The
utility node has all the variables that directly affect th#ity, as parents. This description

could be just a tabulation of the function or a mathematigatfion.
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TYPES OFARCYARROWS

1. Functional arcs(ending in utility node) indicate that one of the componesftadditively

separable utility function is a function of all the nodestwit tails.

2. Conditional arcgending in chance node) indicate that the uncertainty at lieads is prob-

abilistically conditioned on all the nodes at their tails.
3. Informational arcgending in decision node) indicate that the decision at thesds is made
with the outcome of all the nodes at their tails known befareh

2.2.2 BJVALUATING INFLUENCE DIAGRAMS

The solution of the influence diagram is the action that isseindo be performed for each possible
setting. This decision is made in the decision node. Oncedcesion node is set, it behaves just
like a chance node that has been set as an evidence variaklalgorithm outline for evaluating

the influence diagram is as follows.

1. Set the evidence in the variables for the current state.
2. For each possible value of the decision node;

(a) Setthe decision node to that value.

(b) Calculate the posterior probabilities for the parentesodf the utility node, using a

standard probabilistic inference algorithm.

(c) Calculate the resulting utility for the action.

3. Return the action with the highest utility.

2.3 DvyNAMIC INFLUENCE DIAGRAMS (DIDS)

IDs can be extended to dynamic settings by unrolling thenn asenany time slices as the number

of horizon. These are known as Dynamic Influence Diagram®¢P[38] shown in Fig. 2.2.
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Solving DIDs is similar to solving IDs except now we will harmultiple conditional sequences of

actions each associated with a value of performing the otispesequence, with the best sequence
being the one with the largest value. Dynamic IDs provideracse and structured representation
for large POMDPs [38] expanded over multiple time slicesnétethey can also be used as inputs

for any POMDP algorithm.

At At+1

()t Ot+1

Figure 2.2: A two time-slice/horizon dynamic influence deg (DID) representing the decision-
making problem of an agent. Here, the influences (links) eotinodes not only within the same
time slice but nodes across time slices as well.

The nodes in a DID, like the one in Fig. 2.2, correspond to tements of a POMDP. That is,
the values of the decision nodg, correspond to the set of actions, A, in a POMDP. The values
of the chance nodes; andO?, correspond to the sets of states and observations, rasbgadn
a POMDP. The conditional probability distribution (CPD){(#r!|S?, A?), of the chance node,
St is analogous to the transition functiohjn a POMDP. The CPD, P! | S, A?), of the
chance node)!*!, is analogous to the observation function, O, and the ytiible of the utility
node,U, is analogous to the reward functidR, in a POMDP. The links in DIDs also known as
influence links connect nodes not only within the same tinmedbut also across different time
slices as well indicating causal relationships not onljhimithe same time slice but also between
time slices.

DIDs perform planning using a forward exploration techmiqiihis technique explores the
possible states of belief an agent may have in the futurdjkékhood of reaching each state of

belief, and the expected utility of each belief state. Therdithen adopts the plan which maximizes
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the expected utility. DIDs provide exact solutions for #nitorizon POMDP problems, and finite

look-ahead approximations for POMDPs of infinite horizon.

2.4 INTERACTIVE INFLUENCE DIAGRAMS (I-IDS)

Interactive Influence Diagrams (I-IDs) [13] generalize 1[24] to make them applicable to set-
tings shared with other agents, who may act, observe andeupitr beliefs. In this section, we
describe I-1Ds for modeling specifically two-agent intdias. I-IDs are graphical representations
of decision making in uncertain multi-agent environmeinsthis framework, agents are repre-
sented using chance nodes and their actions are contraied a static probability distribution.
Any real world scenario in which the agents are interactirmy ime decomposed into chance and
decision variables, and the dependencies between thdleaid-1Ds ascribe procedural models
to other agents: these may be IDs, Bayesian networks (BNs)Os themselves leading to recur-
sive modeling. As agents act and make observations, belefsothers models are updated. With
the implicit assumption that the true model of other is cor@d in the model space, I-IDs use

Bayesian learning to update beliefs, which gradually cayeer

2.4.1 SINTAX

In addition to the usual chance, decision, and utility not#Ss include a new type of node called
the model nodeWe show a general levél-ID in Fig. 2.3(a), where the model nodg/;,_,) is
denoted using a hexagon. We note that the probability bigian over the chance nod€, and
the model node together represents ageribelief over itsinteractive state spacén addition to
the model node, I-IDs differ from IDs by having a chance notlg that represents the distribution
over the other agent’s actions, and a dashed link, callgaliay link between the model node and
the chance nodey;. In the absence of other agents, the model node and the chadegA; ,
vanish and I-IDs collapse into traditional IDs.

The model node consists of the decisions made by the diffenedels ascribed by to the

other agent. Each model in the model node may itself be andrlén ID giving rise to recursive
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(a) (b)

Figure 2.3:(a) Levell > 0 I-ID for agenti sharing the environment with one other aggnthe
hexagon is the model nodé4;, ;) and the dashed arrow is the policy link) Representing the
model node and policy link using chance nodes and causébredhips. The decision nodes of the
lower-level I-IDs or IDs {n}, ,, m3,_,) are mapped to the corresponding chance nodgsA?),
which is indicated by the dotted arrows. Depending on thaevaf node M od[ M], distribution

of each of the chance nodes is assigned to nbdeith some probability.

modeling. This recursion ends when a model is an ID. Formally denote a model of as,
mji—1 = (bji—1, éj>, whereb;;_, is the levell — 1 belief, andéj is the agent’srameconsisting of
action, observation and utility nodes. Because the moded nodtains the alternative models of the
other agent as its values, its representation is not sirmpjearticular, some of the models within
the node are I-IDs that when solved generate the agents appioficy in their decision nodes.
Each decision node is mapped to the corresponding chaneg sayl! , in the following way: if
OPT is the set of optimal actions obtained by solving the I-IDI[@), then Pr(a; € Ajl.) = ﬁ
if a; € OPT, 0 otherwise.

The dashed policy link between the model node and the chamie Ay can be represented

as shown in Fig. 2(3). The decision node of each level 1 I-ID is transformed into a chance

node as we mentioned previously, so that the actions withatigest value in the decision node
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are assigned uniform probability in the chance node whigerést are assigned zero probability.
Each of the alternate models of the other agent can be reyegsas chance node%;, A?, one
for each model. The chance node labeld@d[);] forms the parents of the chance nade
Thus, there are as many action node; (A?) in M,,_, as the number of alternative models of the
other agent. Each of these models is denoted by the statle bfdd[)/;] node. The distribution
over Mod[M;] is i's belief overj's candidate models (model weights) given the physicaéSat
The conditional probability table (CPT) of the chance nadlg,is amultiplexer that assumes the
distribution of each of the action node.s}( A?) depending on the value af/od[M;]. In other
words, whenMod[M;] has the valuen;, ,, the chance nodd; assumes the distribution of the
nodeA;, andA; assumes the distribution af; when M od[M;] has the valuen?, . Note that in

Fig. 2.3b), the dashed policy link can be replaced using traditionpkddency links.

2
mj 1

"
m; 11

Figure 2.4: The transformed I-1D with the model node repdblog the chance nodes and the rela-
tionships between them.

In Fig. 2.4, we show the transformed I-ID when the model nadesplaced by the chance
nodes and relationships between them. In contrast to thegeptation in Fig. 2(3) , there are
no special-purpose policy links, rather the I-ID is commbeé&only those types of nodes that are

found in traditional IDs and dependency relationships leetwthe nodes.
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2.4.2 SOLUTION

Solution of an I-ID proceeds in a bottom-up manner, and ideémgnted recursively.

1.

2.5

Solve the lower level models, which are traditional IDsBds. Their solutions provide
probability distributions over the other agents actiorsiclv are entered in the corresponding

chance nodes found in the model node of the I-ID.

. The mapping from the level 0 models decision nodes to theadnodes is carried out so

that actions with the largest value in the decision node ssgaed uniform probabilities in

the chance node while the rest are assigned zero probability

Given the distributions over the actions within the difet chance nodes (one for each model

of the other agent), the I-ID is transformed into a tradiéibiD.

During the transformation, the CPT of the node, is populated such that the node assumes

the distribution of each of the chance nodes depending ostéte of the nodel/ od[M/;].

. The transformed I-ID is a traditional ID that may be solwesing the standard expected

utility maximization method [12].

. This procedure is carried out up to the level | I-ID whoskison gives the non-empty set of

optimal actions that the agent should perform given itsgbeNotice that analogous to IDs,

I-IDs are suitable for online decision-making when the agenrrent belief is known.

INTERACTIVE DYNAMIC INFLUENCE DIAGRAMS (I-DID S)

In this section, we describe the interactive dynamic infigediagrams (I-DIDs) for two-agent

interactions which are the extensions of interactive imfbgediagrams to dynamic settings (mul-

tiple time slices).

I-DIDs extend I-IDs to allow sequential decision making ovaultiple time slices (see

Fig. 2.5). Just as DIDs are the structured graphical reptasens of POMDPSs, I-DIDs are

the graphical representations for I-POMDPs.



23

2.5.1 SINTAX

Fig. 2.5 shows a general two time slice I-DID. Here, in adudiitio the model nodes and the dashed
policy link, what differentiates an I-DID from a DID is thmodel update linlshown as a dotted

arrow in Fig. 2.5. We explain the semantics of the model updakt.

Figure 2.5: A generic two time-slice level-DID for agents:.

The model update link symbolically represents the updath@®inodel node. There are two
steps in the update process. First, the models need to béedpareflect the change in beliefs
that occur because the agents interact with the environemshtwith each other by acting on
recieved observations. It can be observed that the numhaodéls in the model node increase
exponentially upon update. Since the set of optimal acfions model could include all the actions
and the agent may recieve any ong(of| possible observations, the updated set at timetstep
will have up to] M}, || A;[€2;] models whereM, | is the number of models at time stepA;|
and|Q2,| are the largest spaces of actions and observations resggcimong all the models. The
CPT of Mod[M;},] encodes the functiom(b}, ,,a%, o™, b1 ) which is 1 if the belieft!,
in the modelm}, , using the action and observation’"" updates td’}', in a modelm’}’,;
otherwise itis 0.

Second, the new distribution over the updated models neduisdomputed, given the original

distribution and the probability of the agent performing #iction and receiving the observation
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Figure 2.6: The semantics of the model update link. Notieegttowth in the number of models at
t + 1 shown in bold.

that led to the updated model. The dotted model update litkeri-DID may be replaced using

standard dependency links and chance nodes, as shown & &igansforming it into a flat DID.

Figure 2.7: Transformed I-DID with the model nodes and magelate link replaced with the
chance nodes and the relationships (in bold).
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In order to clearly understand the model update preoceswjugse an example to show how
the dotted model update link is implemented in the I-DID aF&imp 2.6. First, let us assume two
level I — 1 models are ascribed to ageinat time step.. Suppose, they result in one action and
each agenf can make one of two possible observations, then the numimeodéls in the updated
set will be four. Hence, at time stept 1, the model node will contain four updated models, say,
(miih, mi b mi Y, andmt ). Each of these models will have different initial belietcause
of agentj updating its beliefs due to its action and one of two posgblkervations. The next step
is to compute the distribution over the updated set of modielsther words, the distribution over
the chance nodMod[M;“] (in M;j_ll) is to be computed. The probability thas updated model
is, saym;fli’ll, depends on the probability pperforming the action and receiving the observation
that led to this model, and the prior distribution over thedels at time step Because the chance
node A% assumes the distribution of each of the action nodes basedeovalue ofMod[M]],
the probability of the action is given by this chance nodeoriher to obtain the probability ofs
possible observation, we introduce the chance riodehich depending on the value Mod[M;]
assumes the distribution of the observation node in theriésvel model denoted by/od[M]].
Because the probability g’ observations depends on the physical state and the jciioina of
both agents, the node; is linked with S**!, Af, and A®. Analogous to4’, the conditional prob-
ability table ofO; is also a multiplexer modulated tMod[M;]. Finally, the distribution over the
prior models at time: is obtained from the chance nod&od[M}] in Mod[Mj, ,]. Consequently,
the chance nodes/od[M!], A%, andO; , form the parents of/od[M}*'] in M;j_ll. Notice that
the model update link may be replaced by the dependency tiakgeen the chance nodes that
constitute the model nodes in the two time slices. In Fig.vi2e7show the two time-slice I-DID
with the model nodes replaced by the chance nodes and thi®mnslkips between them. Chance
nodes and dependency links that not in bold are standardllyi$ound in DIDs. Expansion of the
I-DID over more time steps requires the repetition of the steps of updating the set of models

that form the values of the model node and adding the rekstiips between the chance nodes, as

many times as there are model update links. We note that th&lppe set of models of the other
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agentj grows exponentially with the number of time steps. For eXamgdterT steps, there may

be at mostM‘31[(]A;]|Q;])" ' candidate models residing in the model node.

SOLUTION

Analogous to I-IDs, the solution to a level-DID for agenti expanded over time steps may be
carried out recursively. For the purpose of illustraticet,l|I= 1 andT = 2. The solution method
uses the standard look-ahead technique, projecting th&sagetion and observation sequences
forward from the current belief state [38], and finding thegible beliefs that could have in the
next time step. Because agehs a belief ovej’s models as well, the lookahead includes finding
out the possible models thatould have in the future. Consequently, each’sflevel 0 models
(represented using a standard DID) in the first time step teisolved to obtain its optimal set
of actions. These actions are combined with the set of plessliservations thgtcould make in
that model, resulting in an updated set of candidate moteds ihclude the updated beliefs) that
could describe the behavior pin the second time step. Beliefs over this updated set of dateli
models are calculated using the standard inference metsidg the dependency relationships
between the model nodes as shown in Fig. 2.6. We note thesreeurature of this solution: in
solving agent’s level 1 I-DID, j's level O DIDs must be solved. If the nesting of models is @gep
all models at all levels starting from O are solved in a botigmmanner.

We briefly outline the recursive algorithm for solving agéstievel | I-DID expanded oveil
time steps with one other aggnin Fig. 2.8. A two-phase approach is adopted: Given an I-ID of
level | (described previously in Section 2.4) with all lowevel models also represented as I-1Ds or
IDs (if level 0), the first step is to expand the leVélID over T time steps adding the dependency
links and the conditional probability tables for each nottee focus is particularly on establishing
and populating the model nodes (lines 3-11). In the secoadgla standard look-ahead technique
is used projecting the action and observation sequenced divee steps in the future, and backing
up the utility values of the reachable beliefs. Similar ik, the I-DIDs reduce to DIDs in the

absence of other agents. As we mentioned previously, tlielé+el models are the traditional
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I-DID E xAcT (levell > 1 I-ID or level 0 ID, T")
Expansion Phase
1.Fort from 1toT — 1 do
2. If [ > 1then
PopulateM/t !

=1

3. For eachm in M}, , do

4, Recursively call algorithm with thie— 1 I-ID(or ID)
that represents:’, and the horizon]" — ¢ + 1

5. Map the decision node of the solved I-ID (or ID),
OPT(m}), to the chance nodd’

6 For eacha; in OPT(m}) do

7. For eacho; in O; (part ofm!) do

8. Updatej's belief, b/*! « SE(bt, a;,0;)

9 m*! < New I-ID (or ID) with b*" as belief

10. MEL & {m! Ty

11.  Addthe model nodel/}!,, and the model update link

betweenM!, | andM; !
12. Add the chance, decision and utility nodestfet time slice
and the dependency links between them

13. Establish the CPTs for each chance node and utility node

Look-Ahead Phase
14. Apply the standard look-ahead and backup method to solve the
expanded I-DID (other solution approaches may also be used)

Figure 2.8: Algorithm for exactly solving a level> 1 I-DID or level O DID expanded over time
steps.

DIDs. Their solutions provided probability distributionger actions of the agent modeled at that
level to I-DIDs at level 1. Given probability distributiomver other agents actions the level 1 I-
DIDs can themselves be solved as DIDs, and provide probalistributions to yet higher level
models. It is assumed that the number of models considereakcatlevel is bound bil. Solving

an I-DID of levell is then equivalent to solving@ (M) DIDs.



CHAPTER 3

RELATED WORK

Suryadi and Gmytrasiewicz [42] proposed modeling othentgyey modifying IDs to better reflect
the observed behavior. Unlike I-DIDs, other agents did notieh the original agent and the distri-
bution over the models was not updated over time based orctivms and observations.

Recent advancements in I-DIDs contribute to the increasomylarity of multi-agent graph-
ical models such as Multi-agent Influence Diagrams (MAID&][and Networks of Influence
Diagrams (NIDs) [18, 19] that seek to model the embeddedtstrel in many real-world decision
making problems. This is done by encoding the structure asahand decision variables, and
the dependencies between the variables. Unlike exterminesfof games, MAID games are com-
pact and readable. They graphically represent games offegpénformation with decision nodes
for each agent’s actions and chance nodes for the agentstgrnformation. Their objectivity in
analysing games and efficiency in computing Nash equilibrisi aided by exploiting the condi-
tional independence structure. NIDs extend MAIDs to inelagients’ uncertainty over the game
being played and over models of the other agents. Both MAIRSNADSs provide an analysis of
the game from an external viewpoint, and adopt Nash equitibbas the solution concept. MAIDs
do not allow us to define a distribution over non-equilibribehaviors of other agents. MAIDs are
applicable only for single play games and in static envirents. But I-DIDs address this gap by
extending DIDs to multi-agent settings and therefore atlgwits application in repeated games
and in dynamic environments. They represent the other ggaotels as states in their model
node. Other agents’ models and the original agent’s betieés these models are then updated

over time. I-DIDs provide a way to exploit predicted non-giQuum behavior.

28
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In this chapter, we will discuss the following exact and apgmation techniques in some level

of detail and refer the readers to their respective papemmdoe information:

1. Exact algorithm to solve I-DIDs

Using Behavioral Equivalence (BE).

2. Approximate algorithms to solve I-DIDs
Using Model Clustering (MC).

Using Discriminative Model Updates (DMU).

3.1 EXACTLY SOLVING I-DID S USING BEHAVIORAL EQUIVALENCE

Since the BE approach lays the foundation for our new appratan technique €-subjective
equivalence), we will discuss this approach in greaterildétawever, an overview of the approx-
imation algorithms will also be presented to enable the eeatb understand the need for an

improved approximation method.

3.1.1 BEHAVIORAL EQUIVALENCE (BE)

In order to reduce the dimensionality of the interactivaestpace, it is required to reduce the
number of models being solved at every time step. At the same doing so will reduce the
optimality of the solution if the actual models of the othgeats were pruned before they were
solved. Hence, itis important to carefully prune modelgftbe infinitely large model space. Some
methods limit the maximum number of models they solve at @ashstep as a way to mitigate the
impact of the history that afflicts the other modeled ageithdugh the space of possible models
is very large, not all models need to be considered. Thisdalme some models in the model node
of the I-DID have behavioral predictions for the other agiiatt are identical. These models are
classified adehaviorally equivalent36, 37]. Thus, all such models could be pruned and a single

representative model could be considered. This is bechasstution of the subject agent’s I-DID
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is affected by the predicted behavior of the other agent;ahiys we need not distinguish between
behaviorally equivalent models.

The main idea of the exact algorithm to solve I-DIDs usingaheédral equivalence is to aggre-
gate the behaviorally equivalent models into a finite nundb@quivalence classes and instead of
reasoning over the infinite set of interactive states, waaipeover the finite set of equivalence

classes each having one representative model.

0 0.1 P(TR) 09 1

Mo [t ——- [Jo -

Figure 3.1: Horizon-1 value function in the tiger game ane kielief ranges corresponding to
different optimal actions.

In order to clearly understand the construction of behaViequivalence classes, let us consider

a simple example - the classical tiger problem introducg@%h According to the problem, there
is an agent waiting to open one of two doors. Behind one of thesithere is a tiger that would eat
the agent that opens that door and behind the other is a potehf There is a reward of +10 to get
the gold and -100 when the agent is eaten by the tiger. Therevarstates signifying the location
of the tiger - TL, when the tiger is behind the left door and TRgw the tiger is behind the right
door. The agent can choose to perform one of three actionsnirog the left door (OL), opening

the right door (OR), and listen (L). The agent can receive tlseovations when it chooses to
listen that will guide it to making the right decision - GL hiears a Tiger’s growl from behind the
left door, and GR, it hears a growl from behind the right doaheaith 85% certainty. The value

function gives the value of performing the optimal plan gitkee belief. In Fig. 3.1, we show the

value function in the tiger game and the belief ranges cpamrding to different optimal actions.
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We note that the agent opens the right door if it believes thbability that the tiger is behind the
right door is less than 0.1. It will listen if the probability between 0.1 and 0.9 and open the left
door if the probability is greater than 0.9. We observe tlagheoptimal action spans over multiple
belief points. For example, opening the right door is therogat action for all beliefs in the set [0-
0.1). Thus, the beliefs in the set [0-0.1) are equivalenbat it induces the same optimal behavior.
Such beliefs arbehaviorally equivalentThe collection of the equivalence classes forms a pantitio
of the belief space. For finite horizons, and a finite numbexctibns and observations, the number
of distinct optimal actions and therefore the number of eajence classes is also finite.

Using this insight, behavioral equivalence is used to s®liz@Ds exactly by pruning the
models that induced the same optimal behavior and repladittge models in a behavioral equiva-
lence class with one representative model. Thus, at evagygtep, the number of models that have
to be solved is reduced to only the number of these equivalelasses. LédehavioralEq(M ;1)
be the procedure that prunes the behaviorally equivaledtetadromM;;;_; returning the set of
representative models. The algorithm for exactly solviigDs using behavioral equivalence is
given below. The algorithm for solving the I-DID is the sanseb@fore, except that the updated set

of models is minimized by excluding the behaviorally eqiewh models (line 17).

3.2 APPROXIMATELY SOLVING |-DID S USINGMODEL CLUSTERING

This approach was introduced by Zeng et al. [46]. They ptesem method to reduce the dimen-
sionality of the interactive state space and mitigate thaeich of the curse of history. This is done
by limiting and holding a constant number of models; &K << M, whereM is the possibly large

number of candidate models of the other agent included istite space. Using the insight that
beliefs that are spatially close are likely to be behavigraduivalent [37], Zeng et al. cluster the
models of the other agents and select representative nfooi@each cluster. They utilize the pop-
ular k-means clustering method, which gives an iterativg t@agenerate the clusters. Intuitively,

the clusters contain models that are likely to be behawipeajuivalent and hence may be replaced



32

[-DID E XAcT (levell > 1 I-DID or level 0 DID, T')
Expansion Phase
1.Fort from 1to T — 1 do
2. If [ > 1then
PopulateM/t !

J,l—1

3. For eachm’ in M}, , do

4, Recursively call algorithm with thie— 1 I-DID(or DID)
that representfn; and the horizon]" — ¢

5. Map the decision node of the solved I-DID (or DID),
OPT(m), to the chance nodd’

6 For eacha; in OPT(m}) do

7. For eacho; in O; (part ofm!) do

8. Updatej's belief, ! « SE(b, a;, 05)

9 m’*! < New I-DID (or DID) with b’ ™" as belief

10. MEL & {mlty

11.  Add the model noddw;j_ll, and the model update link

betweenM!, | andM; |1
12. Add the chance, decision and utility nodestfet time slice
and the dependency links between them

13. Establish the CPTs for each chance node and utility node

Solution Phase
14.1f [ > 1 then
15. Represent the model nodes and the model update link
as in Fig. 2.6 to obtain the DID
Minimize model spaces
16. For t from 1to T do
17. M, + BehavioralEq(M}, )
18. Apply the standard look-ahead and backup method to solve the
expanded DID (other solution approaches may also be used)

Figure 3.2: Algorithm for exactly solving a levet> 1 1-DID or level 0 DID expanded over time
steps.

by a subset of representative models without a significas¥ io the optimality of the decision

maker.K representative models from the clusters are selected atatagover time.
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3.2.1 MODEL CLUSTERING APPROACH

The approximation technique is based on clustering thetagedels and selecting, where 0< K
<< M, representative models from the clusters. In order taatatclustering, the initial means was
identified around which the models would be clustered. Thecten of the initial means is crucial
as we hope to select them minimally and avoid discarding fsatiat are behaviorally distinct
from the representative ones. The initial means were sgled those that lie on the intersections of
the behaviorally equivalent regions (see previous se&tioan illustration to help understand these
regions). This allows models that are likely to be behaWprquivalent to be grouped on each
side of the mean. These intersection points are calledtsatygpoints (SPs). In order to compute
the SPs, we observe that they are the beliefs at the non-dtedirntersection points (or lines)
between the value functions of pairs of policy trees. A lm@agram (LP) shown in [46] provides
a straightforward way of computing the SPs. If the intelisestwere lines, then the LP returned a
point on this line. The initial clusters group together msd# the other agent possibly belonging
to multiple behaviorally equivalent regions. Additionjalsome of the SPs may not be candidate
models of the other agemtas believed by the subject agentIn order to promote clusters of
behaviorally equivalent models and segregate the nonvimrhadly equivalent ones, the means are
updated using an iterative method often utilized bykireean<lustering approach. This iterative
technique converges because over increasing iteratisasi&v models will be added to a cluster,
thereby making the means gradually invariant. Given thelstalusters, a total df representative
models are selected from them. Depending on its populatiach) cluster contributes a proportion
k of models to the set. Thiemodels whose beliefs are the closest to the mean of the cluste
selected for inclusion in the set of models that are retaiResnaining models in the cluster are
discarded. The selected models provide representativavimel for the original set of models
included in the cluster. The algorithm for approximatelyvsay I-DIDs using model clustering
is a slight variation of the one in Fig. 2.7 that solves I-Di®gctly. In particular, on generating
the candidate models in the model node during the expansiasegK models are selected after

clustering using the procedukdviodelSelectiorexplained in [46]. It can be noted that models at
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all levels will be clustered and pruned. Also, this approaahore suited to situations where agent
i has some prior knowledge about the possible models of gtteneby facilitating the clustering
and selection. We refer the readers to [46] for more detailhis approach.

As mentioned earlier, the insight for this approach comas fihe fact that behaviorally equiv-
alent models are spatially closer to each other than thevimelly distinct ones. However, this
approach first generates all possible models before regltiogspace at each time step, and utilizes
an iterative and often time-consuming k-means clusterieghod. Despite its favorable results
when compared to the exact approaches, it can be noted #ratithno way to show the degree
to which models are behaviorally equivalent. Our approxiomatechnique €-subjective equiva-
lence), provides a definition for subjective equivalenctenms of the distribution over the future
action-observation paths, that allows a way to measuredfjeed to which the models are subjec-
tively equivalent. Apart from this, th€hapter 8contains more information that will highlight the

advantages of our approach over the model clustering agproa

3.3 APPROXIMATELY SOLVING |I-DID S USING DISCRIMINATIVE MODEL UPDATES

This approximation method was introduced by Doshi and Z&2g [This work is also motivated
by the fact that the complexity of I-DIDs increased predasmitty due to the exponential growth
of candidate models, over time. Hence, they formalizedisimal setof models of other agents,
a concept that was previously discussed in [36]. Their nepraach for approximating I-DIDs
significantly reduced the space of possible models of othents that needed to be considered by
discriminating between model updates. In other words, tbdats were discriminatively updated
only if the resulting models were not behaviorally equivéle the previously updated ones. Fur-
thermore, in this technique, solving all the initial modetss avoided. The outline of the algorithm
is given below. The algorithm takes the I-DID of leVglhe horizonT, and the numbef of random
models to be solved initially, and the threshold for eudidelistance between belief points, as
input. First,K models are randomly selected from the candidate model spatsolved. For each

of the remaining models, if the belief of that model is clos¢hiat of one of the solved models by
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atleast a threshold (supplied as input), then that modehass the solution of the solved model.
Otherwise, the model is solved. At each time step, only thoedels are selected for updating
which will result in predictive behaviors that are distifidm others in the updated model space.
In other words, models that on update resulted in predistibat are identical to those that existed
were not selected for updating. For these models, theiseevprobability masses were transfered
to the existing behaviorally equivalent models. The soh#iof the solved models are then merged
bottom up to obtain the policy graph. This approach imprarethe previous one that uses model
clustering (discussed earlier) because it does not genellgiossible models prior to selection at
each time step; rather it results in a minimal set of models.

We empirically compare this approach with our approxinratisethod in terms of the average

rewards obtained and results are showRapter 7 For more details on this approach, we refer

the readers to [12].
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SUBJECTIVE EQUIVALENCE

In this chapter, we provide a definition for subjective eglewnce in terms of the distribution of the
future action-observation paths, that allows a way to meathe degree to which the models are
subjectively equivalent. We first assume that the modele@bther agent have identical frames
and differ only in their beliefs. Because our technique isely related to a previous concept -
behavioral equivalence (BE), we will first define BE. We willthatroduce subjective equivalence
(SE)! and finally relate the two definitions.

As we mentioned previously, two models of the other agenB&ief they produce identical
behaviors for the other agent. Formally, models;_,,m;;—1 € M;;,_, are BE if and only if
OPT(mj;—1) = OPT(m;,;—1), whereOPT(-) denotes the solution of the model that forms the
argument. If the model is a DID or an I-DID, its solution is alipp tree. Our initial aim was
to identify models that arapproximatelybehaviorally equivalent. But due to the nature of the
definition of BE, direct comparisons of disparate policy $raee not possible. A pair of policy trees
may only be checked for equality. Thus, making it difficultiefine a measure of approximate BE,
motivating further investigations.

Analogous to BE, it can be noted that some subsets of modelsnpaget the decision-making
of the modeling agent similarly, thereby motivating intr@ grouping such models together. We

use this insight and introduce a new concept called sulsgeetjuivalence.

We will use BE, SE as acronyms fbehaviorallyandsubjectively equivalerih their adjective forms
andbehavioralandsubjective equivalenda their noun forms, respectively. Appropriate usage will be self-
evident.

36
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4.1 DEFINITION

Let h = {al, o/"'}L_| be the action-observation path for the modeling agewhereo! ™' is null
for aT horizon problem. It:f € A; ando;?+1 € ();, whereA; and(2; arei’s action and observation
sets respectively, then the set of all pathsfs= 17 (A; x ©Q;), and the set of action-observation
histories up to time is H! = I1,"'(A; x ;). The set of future action-observation pathdis, , =

7 (A; x Q;), wheret is the current time step.

We show an example of future action-observation paths afitaige a 2-horizon multi-agent
tiger problem in Fig. 4.1. Agents actions are represented by nodes, &agossible perceived
observations are represented by the edges. In this exaag#at: starts with listening and then
it may receive one of six possible observations dependenf'solaction. We use the action-
observation paths of just ageingince our focus is on the decision makingioEach ofi’s future
paths have a probability associated with it. This probghiithe chance with which that particular
path is chosen by the subject agénthe sum of each of these future action-observation pathpro
abilities is 1. Also note that as the number of time stepsiases, the number of action-observation
paths and hence the size of the distribution table contgiinidividual path probabilities, increases
exponentially. As we discuss later, this is one of the maasoas for memory issues when the
algorithm is executed. Also, the size of the distributionliiectly proportional to the the number

of actions and observations for ageént

[L]

<GL,S> <GLCL> <GR,CL><GR,CR>
[N

[L] [L] [L] [L
X X )
<GLS> <GLCL> <GR,CL><GR,CR> <GLS> <GLCL> <GRCL><GR,CR>
/ o0 0 \ \ / / oo o
[OR] [L] [ [L] L] [L] [L] [OL]

Figure 4.1: Future action-observation paths of agéma 2-horizon multiagent tiger problem. The
nodes represent action, while the edges are labeled with the possiblervbsiens. This example
starts with: listening. Agent may receive one of six observations conditionalj@action, and
performs an action that optimizes its resulting belief.
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The distribution over’s future action-observation paths such as the one showngin4kL
is induced by agent’s model and agents perfect knowledge of its own model and its action-
observation history. This distribution plays a criticaleran our approach and we denote it as,
Pr(HT_t]ht,m“,m;l_l), whereh! € H*, m;, is i's level [ I-DID and m§7l_1 is the levell — 1
model of; in the model node at time For the sake of brevity, we rewrite the distribution term as
Pr(Hrp_|mj,;,m5, ), wherem;, isi's horizonT — ¢ I-DID with its initial belief updated given

the actions and observations/ih We will present a way to compute this distribution in the inex

section. We define SE below:

Definition 2 (Subjective Equivalence)lwo models of agent m?l_l andmﬁ.,l_l, are subjectively
equivalent if and only iPr(Hy_|m{,,m}, ) = Pr(Hr_| mj,,m%, ,), whereHr_, andm; are

) 0,09

as defined previously.

In other words, SE models are those that induce an identis@ilaition over agent’s future
action-observation history. This reflects the fact thahsmodels impact agerits behavior sim-
ilarly. We note that BE models, by definition, would induce migr distribution over the future
action-observation paths. However, models that inducdasirdistribution over agent's future
paths are not necessarily behaviorally equivalent. Theuwtddoe models which induce a similar
distribution and still differ in their behavior. The behaxal difference is not observed since the
difference would become explicit over paths that are nevowwed (those which receive proba-
bility 0). This is why we call models that induce similar dibttions as subjectively equivalent

since these models are equivalent from the perspectiveedithject agent.

4.2 COMPUTING THEDISTRIBUTION OVER FUTURE PATHS

As mentioned earlier, each of the future action-obseragieths has a probability associated with
it. This probability is the chance with which that partiaugath is chosen by the subject agént
The probabilities of all the paths put together constitbeedistribution over the action-observation

paths of ageni. Let hr_, be some future action-observation path of aget, , € Hr_,. In
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Proposition 1, we provide a recursive way to arrive at theogbility, Pr(hr_|mj;, m}, ;). Of

course, the probabilities over all possible paths sum to 1.

Proposition 1. Pr(hy—¢|m};,m!; )
=Pr(al, i miy mby ) e g1 Prihr—ialaf,of ™t omtyafoft by )

Pr(at 0t+1|a zlvmj,l—l)

= Pr(at, ot |m”, 3171)2 ' t+1P7“(hT - 1\mﬁ1, 2?11) PT( ?LIW mfpm;,lq)

i1 05
where
Pr(aj, §+1’mzl7 ;,1—1) = Pr(aﬂOPT(mﬁJ)) Za; Pr(a ’OPT( M- 1) (4.1)
Sy Oils™ alal, o) S0, Tis,al b, s b (5,my)
and
Pr(az, EHW fza’mﬁ,z_l) Pr(a t’OPT( m;— 1)) Do Oj(st+1,a§,a§,o§+1) 4.2)

> em, Ti(s, aj, af, s (s, my)

y Qg Mg

In Eq. 4.1,0;(s*",at,at, 0ol™) is i’s observation function contained in the CPT of the

Rl Bid')

chance nodeQ!*!, in the I-DID, T;(s, al, a%, s'*1) is i's transition function contained in the
CPT of the chance nodes*™', Pr(a}|OPT(m!,)) is obtained by solving agents I-DID,
Pr(a}|OPT(m}; ,)) is obtained by solving’’s model and appears in the CPT of nodg,

In Eq. 4.2,0,(s"*1, a], at, 0§+1) is j's observation function contained in the CPT of the chance

node,O;?“, given;’s model ism}, ;. We give the proof of Proposition 1 below.

Proof of Proposition 1.Pr(hgy_|mj;,m}, ;)

:Pr(hT*t*h 1167 2zH_anzla ;1—1)

= Pr(hp_i|al, ot mt,, mt ) Pr(al,of*!mf, m!,_|)  (using Bayes rule)

ir O; 00 a;; 0;

We focus on the first term next:

Pr(hp_i_1]at, §+17m§,l>m§‘l—1)

=>. ot Pr(hr_s4| at, o™ mﬁl,a],oéﬂ, zl ) Pr(a ;, §+1|a fl,m;l_l)

- PT(hT t— 1|mf—}—17m§‘:ilg1> Pr(a]’O§+1|a§7m§,lvm§',171)

In the above equation, the first term results due to an updaieeanodels at time stepwith
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actions and observations. This term is computed recuysier the second term;s level [ — 1

actions and observations are independensasbservations.

1) 7

We now focus on the tern®r(af, o)™ [mf ;,m!_):

Pr(af, of " mi,,mj,_y) = Pr(o;"|aj, mj,, mf, ) Pr(a|OPT(mj,))

(+’s action is conditionally independent gfgiven its model)

= Pr(aj|OPT(m;)) 3o Pr(o™"|af, aj,mi;, mf, ) Pr(aj|OPT(mj, ,))

0,09
= Pr(al|OPT(ml,)) 3,0 Pr(of™[al,ab,m!,) Pr(a}|OPT(m},_,))
(7’s observation is conditionally independentjcf model)
= Pr(aﬂOPT(m?l)) Za; Pr(aﬁ-]OPT(m;’l_l)) Pr(oitt|al, aﬁ-, bjf’l) (b;?’l isi’s belief in mil)
= Pr(aj|OPT(mj))) 3o Pr(aj]OPT(mf,; 1)) 3 Prioi™[s", af, af) Pr(s""|af, aj, b )

= Pr(a§|OPT(m§7l)) Za§_ Pr(a§-|OPT(m§-Jil)) > Oi(s al, al ol

y Wy Yy Yy
Zs,mj Ti(sv af? CL?, St—H) b;,l(&m]’)

whereO; andT; arei’s observation and transition functions respectivelyhia k-DID denoted by
model,m;l. This proves Eqg. 4.1 in Proposition 1.
Finally, we move to the tern®r(a’, o*'|al, m! ,, m,_,), to obtain Eq. 4.2:

Pr(al, of*|al, m

t

z‘,lam;,l—l) = P7”<0§'+1‘at' a; mt,lam;‘,l—l) Pr(aﬁ-\aﬁ,mﬁ,l,m§,z_1)

gy Qg 11
= Pr(0§~+1|at< at,mt mz-’l_l) Pr(a§|OPT(m§7l_1))

70 W z,la

(j's action is conditionally independent dfjiven its model)

= Pr(al|OPT(m%,_1)) > 41 Pr(oi™al, al, s™*1) Pr(s™al, af,mt,,mt, )

70 e 27 ) ]
= PT(G;’OPT(W§-7Z_1)) Zs’“rl Oj(st+17 a;w CL?, O§‘+1) Zs,mj PT<St+1|a§'7 CLE, S) bf’,l(SJ mj)

(0%, isi's belief inm} )
= Pr@IOPT(n, ) S Oy(s'* o) £, Tl s By )

(agenti’s I-DID is used)

whereO; is j's observation function in modeh), ,, whichis a part of’s I-DID. &

Now that we have a way of computing the distribution over thiife paths, we may relate

Definition 2 to our previous understanding of behavioratjyigalent models :
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Proposition 2. If OPT(m!, ) = OPT (i}, ,), then Pr(Hy_i|mj,;,m5, ) = Pr(Hr_m,,

ot t
mj, ;) wherem;

L1 andmf, , arej's models.

Proof. The proof is reducible to showing the above for some indiglghath,hr_; € Hr_;. Given
OPT(m}, ) = OPT(m}, ), we may write,Pr(a}|OPT(m}, ,)) = Pr(a5|OPT(m}, ,)) for
all «. Because all other terms in Egs. 4.1 and 4.2 are identicalldt¥s thatPr (hr|mj,;, m}, ;)
must be the same @& (hr_|mj;, w5, ;).

Consequently, the set of subjectively equivalent modeldudes those that are behav-
iorally equivalent. It further includes models that indudentical distributions over agernts
action—observation paths, but these models could be behaviorainct over those paths that
have a zero probability. Thus, these latter models may ndtebaviorally equivalent. Doshi and
Gmytrasiewicz [11] call these models as (strictly) obstoveally equivalent. Therefore, the
converse of the above proposition is not true.

We use a simple method to compute the distribution over thiespgiven the models afand
j by transforming the I-DID into a Dynamic Bayesian Network (DBM/e do this by replacing
agent:’s decision nodes in the I-DID with chance nodes so thata; € Al) = m and
removing the utility nodes. The desired distribution istltemputed by finding the marginal over
the chance nodes that represémtictions and observations wijfs model entered as evidence in
the Mod node at.

In the next chapter, we will introduce the notioneesubjective equivalence that uses our defi-

nition of SE to approximately solve I-DIDs. We also desctibe algorithm used.



CHAPTERS

€-SUBJECTIVE EQUIVALENCE

The definition of SE described in the previous section hasatheintage of being rigorous in
addition to the merit of permitting us to measure the degoewhich models are SE, thereby

allowing us to introducapproximate SE

5.1 DEeFINITION

We introduce the notion afsubjective equivalence-SE) and define it as follows:

Definition 3 (¢e-SE) Givene > 0, two modelsyn’, , and !, ,, are «-SE if the divergence

7

between the distribution8r(Hr_|m;;, m5, ;) and Pr(Hy_|mj,,mj, ;) is no more thar.

Here, the distributions overs future paths are computed as shown in Proposition 1. There
exists multiple ways to measure the divergence betweenldisons. Kullback-Leibler (KL)
divergence [27] is one of the most well known informatioedhetic measures of divergence of
probability distributions, in part because their matheoashtproperties are well studied. There
is a strong precedent of using KL divergence successfulpgent research to measure distance
between distributions. As KL divergence is not symmetrie, use a symmetric version in this

work, thereby providing added ease of use. Consequentlyntuels are-SE if,
a0

D (Pr(Hp_¢|mj,, mj, o )||Pr(Hr—mj,,m}; 1)) <e

where Dk, (p||p’) denotes the symmetric KL divergence between distributiprendp’, and is

calculated as:

2 p'(k) p(k)

42

Drr(pllp) = lz (p(k)logp(k) +p’(k)logM)
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If ¢ = 0, e-SE collapses into exact SE. Sets of models exhibith®d for some non-zero but
smalle do not differ significantly in how they impact agerg decision making. As we mention in

the next section, these models could be candidates formguni

5.2 APPROACH

We first compute the distributions over the future obseovatiaths for all the initial models in the
candidate model space. We then pick a model af random, say,néjil, from the model node
and call it the representative model. The divergences imigtebutions of each of the remaining
models is computed with respect to that of the represestadil other models in the model node
whose divergence values are less than or equalae classified as-SE with /7!, and are
grouped together with it. Of the remaining models, anotle@resentative is picked at random
and the previous procedure is repeated. The procedurenaesiwhen no more models remain
to be grouped. It can be seen that this iteration convergegklguecause there are only a finite
number of behavioral equivalence classes. Recall that weabsuimed a finite horizon problem
with finite number of actions and observations. This procedtustrated in Fig. 5.1. In general,
whene > 0, more models will likely be grouped together than if we cdesed exact SE. This will
result in a fewer number of classes in the partition and at B®sany representatives as there are
behaviorally distinct models at each time step, after prgni

The above procedure result in partitioning the model spatectiSE classes and the repre-
sentatives of each class arsubjectively distinct. This is because as we pick eachesmtative
model, we make sure that we group all the models in the modalesthat are equivalent with it
before proceeding to pick another. However, this set is n@ue and the partition could change
with different representatives. Only the representatiweleh from each class is retained and all
other models are pruned. The representatives are dissimggiiin that all models in its group are
e-SE with it. Unlike exact SE¢-SE relation is not necessarily transitive. Hence, it wdaddvrong

to select any arbitrary model in the class to be the repraseatsince others may not beSE with
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it. Let Mj be the largest set of behaviorally distinct models, alsledaheminimal sef{12]. Then,
the following proposition holds:

Proposition 3 (Cardinality) Thee-SE approach results in at mo|§t?lj] models after pruning.

Intuitively, the proposition follows from the fact that ilné worst cases = 0, resulting in

subjectively distinct models. This set is no larger thanddteof behaviorally distinct models.

0.10.05 0.02 0.05 0.10.2 0.15 0.1 0.05 0.1 0.05 0.03 Pri(Mj,01|s)
Iteration 1
0 Pr(TL) 1
| lteration 2
0.15 0.85

Figure 5.1: lllustration of the iterative SE model grouping using the tiger problem. Black vertical
lines denote the beliefs contained in different models eigincluded in the initial model node,
MJ{O. Decimals on top indicatés probability distribution over’s models. We begin by picking a
representative model (red line) and grouping models tleat-&E with it. Unlike exact SE, models
in a different behavioral (shaded) region get grouped as Wé¢lthe remaining models, another
is selected as representative. Agéstdistribution over the representative models is obtaiogd
summing the probability mass assigned to the individualet®ih each class.

5.2.1 TRANSFER OFPROBABILITY MASS

A transfer of probability mass needs to happen in any appreddch prunes some models of
agentj, so that the mass assigned to those models is not lost. Heéme@lso done in an exact
approach when models that are exactly SE are pruned. Agdmlief assigns some probability
mass to each model in the model node. Pruning some of the ewadeld result in the loss of the
mass assigned to those models. This loss would induce anierttee optimality of the solution
and this error is avoided by transferring the probabilityssaver the pruned models in each class

to thee-SE representative that is retained in the model node (gp&H).
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5.2.2 SAMPLING ACTIONS AND OBSERVATIONS

For a time-extended+DID, since the clustering process is done while solving tb&D at every
subsequent time step at which the the actual histoiis @bservations are not known, we obtain a
likely history h! by samplingi's actions and observations for subsequent time steps iR@De.
This is because the predictive distribution overfuture action-observation pathBy(Hy_;|h,
m, m;lfl), Is conditioned on the history, as well. The sampling proceds given below.

Initially, since the probability of occurrence of all of age’s actions is assumed to be equal,
we pick an action:! at random. Using the sampled action and the bedigf, ~ Pr(Q;al, b} )
(Wherebfyl Is the prior belief) as the likelihood, we sample an obsémwmatThis sampled action-
observation pair is used as the histoky, & {al,ol™). The above procedure is implemented
by entering randomly, one of agei$ actions, as evidence in the chance nadf,of the DBN
(mentioned in section 4) and sampling from the inferredritlistion over the chance nod@;**.

In order to compute the distribution over the paths, we node the agent’s I1-DID’s solution

is needed as well{r(a;|OPT'(m},)) term in Eq. 4.1). We avoid this complication by assuming a

1

uniform distribution over’s actions,Pr(a;|OPT(mj;)) -

However, even though the set of
e-SE models may change, this does not affect the set of bahdlyiequivalent models. Thus, a
different set of models of may now be observationally equivalent. Nevertheless, unidistri-
bution minimizes the change as models that are now obsenadity equivalent would continue to
remain so for any other distribution ov&s actions. This is because given a modej o uniform

distribution fori induces a distribution that includes the largest set ofatlits support.

5.3 APPROXIMATION ALGORITHM

In this section, we present our algorithm for approximasaiving I-DIDs using the previously
described concept ofSE. The algorithm follows a similar approach as the exakitiem using
BE, except the procedure;SubjectiveEquivalencereplaces the procedurBehaviorEqg, in the
algorithm in Fig. 3.2. The procedure SubjectiveEquivalencdliffers from the procedur&ehav-

iorEq, in the way the models are partitioned in the model node of-DIKD at each time step. This
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is shown in Fig. 5.2. The procedure takes as input, the sgsahodels, M, agent’s DID, m;,
current time step and horizon, and the approximation paee The algorithm begins by com-
puting the distribution over the future pathsiofor each model ofj. If the time step is not the
initial one, the prior action-observation history is firangpled. We may compute the distribution
by transforming the I-DID into a DBN as mentioned@apter 4and entering the model gfas
evidence — this implements Eqgs. 4.1 and 4.2.

Then a representative model is picked at random and all treelm®@f the other agent in the
subject agent’s model node, that have a distribution whosggence from the distribution of the
representative model is withi are grouped together. For this, we utilize the previousighed
distributions of all the candidate models. This processpgated until all the remaining ungrouped
models are grouped. Each iteration results in a new unicass dfe-SE models including their
respective representatives. In the final selection phaetlte representative model for each class
is retained and the remaining models in the class are pruitedtheir belief masses are trans-
ferred to the representative. The set of representativeelsodhich are-subjectively distinct, are

returned.
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€-SUBJECTIVE EQUIVALENCE (Model setM;, DID m;, current time

steptt, horizonT, €) returns M;-

1. Transform DIDm; into DBN by replacing’s decision nodes

with chance nodes having uniform distribution

2.For ¢ from 1to ¢t do

3.  Samplea! ~ Pr(Al)

4.  Entera! as evidence into chance nod&, of DBN

5. Samplepit! ~ Pr(Ot)

6. nl& (at, ol

7.For eachm/ in M; do

8.  Compute the distributior?[k] < Pr(Hp_|ht, m;, m”%),
obtained from the DBN by enterin@? as evidence (Proposition 1)

Clustering Phase
9. While M; not empty

10. Select a moplednf € M;, atrandom as representative
11. Initialize, M « {m’}

12. For eachm/ in M; do

13. If Dy (P[K]||P[k]) < €

14. Mf(gm;“, Mj(lm;?

Selection Phase
15.For each/\/l;? do

16. Retain the representative modM,;- & m§?
17.Return M,

Figure 5.2: Algorithm for partitioning’s model space usingSE. This function replace3ehav-
ioreq() in Fig. 3.2.



CHAPTER 6

TESTPROBLEM DOMAINS

In order to illustrate the usefulness of I-DIDs, we applynth two illustrative problems. We

describe, in particular, the formulation of the I-DIDs fbetse examples.

6.1 MULTI-AGENT TIGER PROBLEM

We begin our illustrations of using I-IDs and I-DIDs with agsitly modified version of the mul-
tiagent tiger problem [20]. It differs from other multi-agfeversions of the same problem [30] by
assuming that the agents not only hear growls to know abeuotation of the tiger, but also hear
creaks that may tell if the other agent has opened a door. fididgm has two agents, each of
which can open the right door (OR), the left door (OL) or lis(eh In addition to hearing growls
(from the left (GL) or from the right (GR)) when they listengthgents also hear creaks (from the
left (CL), from the right (CR), or no creaks (S)), which noisilydicate the other agents opening
one of the doors or listening. When any door is opened, the pigesists in its original location
with a probability of 95¢. Agenti hears growls with a reliability of 6% and creaks with a relia-
bility of 95%. Agentj, on the other hand, hears growls with a reliability ofQ5Thus, the setting
is such that agenthears agerjtopening doors more reliably than the tiger's growls. Thiggasts
thati could usg’s actions as an indication of the location of the tiger. Eaglants preferences are
as in the single agent game discussed in the original vejaijn

Let us consider a particular setting of the tiger problem imalv agent considers two distinct
level 0 models of. This is represented in the level 1 I-ID shown in Fig. 6.1. The IDs could
differ, for example, in the probability thatissigns to the tiger being behind the left door as modeled

by the nodeTigerLocation Given the level 1 I-ID, we may expand it into the I-DID shown i

48
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Figure 6.1: (a) Level 1 I-ID of agent (b) two level O IDs of agent whose decision nodes are
mapped to the chance nodesl,; and A2, in (a), indicated by the dotted arrows. The two IDs
differ in the distribution over the chance node, TigerLoma{14].

R

Al

Tiger

Location'

t+1
AT

Tiger
Location™"

R

t+1
A

Growl&
Creak!

Figure 6.2: Level 1 I-DID of agentfor the multiagent tiger problem.

level O DIDs of agenj . At horizon 1, the models gfare IDs [14].

The model node contdns
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Fig. 6.2. The model nodéy/;, contains the different DIDs that are expanded from the 18u&ls

in Fig. 6.1(b). The DIDs may have different probabilitiesoabthe tiger location at time step
We get the probability distribution gfs actions in chance nodé’ by solving the level 0 DIDs
of j. On performing the optimal action(s) at time step may receive observations of the tiger’s
growls. This is reflected in new beliefs on the tiger's pasitwithin j's DIDs at time stegt +

1. Consequently, the model nodegl, contains more models ¢fandi’s updated belief on's

possible DIDs.

(af. a}} TigcrLuc:tlionf TL TR

(a)
(OL, %) TL 0.95 0.05
(OL, %) TR 0.05 0.95
(OR, *) TL 0.95 0.05
(OR, #) TR 0.05 0.95
(*, OL) TL 0.95 0.05
(%, OL) TR 0.05 0.95
(x, OR) TL 0.95 0.05
(*, OR) TR 0.05 0.95
(L,L) TL 1.0 0
(L, L) TR 0 1.0

(b)
(OL, %) * 0.5 0.5
(OR, %) * 0.5 0.5
{(*, OL) * 0.5 0.5
(*, OR) * 0.5 0.5
(L, L) TL 1.0 0
(L,L) TR 0 1.0

Figure 6.3: CPD of the chance no@iéger Location™ in the I-DID of Fig. 6.2 when the tiger (a)
likely persists in its original location on opening doorsggb) randomly appears behind any door
on opening one.

(al,a")  TgLoc!™'  (GL,CL) (GL,CR) (GL.S) (GR,CL)  {(GR,CR) (GR,S)

J

(L, L) TL 0.85*0.05 0.85%0.05 0.85*09 0.15%0.05 0.15*0.05 0.15*0.9
(L, L) TR 0.15*%0.05  0.15*0.05 0.15*09 0.85*0.05 0.85*0.05 0.85*09
(L,OL) TL 0.85*%0.9 0.85%0.05 0.85*0.05 0.15*0.9 0.15%0.05  0.15*%0.05
(L,OL) TR 0.15*%0.9 0.15%0.05  0.15*0.05 0.85*%0.9 0.85*0.05 0.85*%0.05
(L.OR) TL 0.85*%0.05 0.85*0.9 0.85*0.05 0.15*0.05 0.15*09 0.15%0.05
(L,OR) 1R 0.15*%0.05 0.15%0.9 0.15*%0.05 085*0.05 0.85*09 0.85%0.05
(OL.%) = 176 1/6 176 1/6 176 1/6
(OR,*)  =* 176 1/6 176 1/6 176 1/6

Figure 6.4: The CPD of the chance na@eowl&Creak!™ in the level 1 I-DID.



51

We showed the nested I-DID unrolled over two time steps ferthultiagent tiger problem in
Fig. 6.2. Agent at level 1 consider models of agent of level 0 which, for example, differ in
the distributions over the chance notigerLocation In agenti’s I-DID, we assign the marginal
distribution over the tigers location to the CPD of the chamedeTiger Location! . In the next
time step, the CPD of the chance ndBigjer Location!™ conditioned onTiger Locationt, Al
and A’ is the transition function, shown in Fig. 6.3. We show the CRIhe observation node,
Growl&Creak!™, in Fig. 6.4. The CPDs of the observation nodes in level 0 Dli@sdentical to

the observation function in the single agent tiger problem.

(al, ab) TL TR

(OR. OR) 10 —100
(OL, OL) —100 10
(OR, OL) 10 —100
(OL, OR) —100 10
(L,L) —1 —1
(L, OR) —1 —1
(OR, L) 10 —100
(L,OL) —1 —1
(OL, L) —100 10

Figure 6.5: Reward function of ageinfor the multi-agent tiger problem.

The decision nodel! includes possible actions of agernn the scenario such as listening (L),
opening the left door (OL), and opening the right door (OR)e Tiility node R; in the level 1
I-DID relies on both agents actiong; and A}, and the physical state&jger Location;. We show
the utility table in Fig. 6.5. The utility tables for level Oadels are identical to the reward function
in the single agent tiger problem which assigns a reward of 1iee correct door is opened, a

penalty of 100 if the opened door is the one behind which igextand a penalty of 1 for listening.

6.2 MULTI-AGENT MACHINE MAINTENANCE PROBLEM

Themultiagent machine maintenance probl@wM) [20] is a multi-agent variation of the original
machine maintenance problem presented in [41]. In thiSaersve have two agents that coop-

erate. The non-determinism of the original problem is insezl to make it more realistic, allowing
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for more interesting policy structures when solved. Thgiogl MM problem involved a machine
containing two internal components operated by a singletaggther one or both components of
the machine may fail spontaneously after each producticlecyhe machine that is under main-
tenance can have three possible stdiefsil implying that none of the internal components in that
machine failed;1-fail implying that one of the internal components in that machaiked; and
2-fail implying that two of the internal components in that macheaéed. If an internal compo-
nent has failed, then there is some chance that when opgrgion the product, it will cause the
product to be defective. An agent may choose to manufadbareroduct 1) without examining

it, examine the producty), inspect the machind), or repair it R) before the next production
cycle. On an examination of the product, the subject may fitwlbe defective. Of course, if more

components have failed, then the probability that the pcoudefective is greater.

Ri Ri
Al Aim
All Ail+1
- 7 - 7
Machine Machine /
Failure; )/ Failure;*' /
/ /
/
/ /
M||1 ij|_1l+1
foal |
Defective; Defective,

Figure 6.6: Level 1 I-DID of agentfor the multiagent MM problem. The hexagonal model node
containsM level O DIDs of agenj . At horizon 1, the models gfare IDs [14].

We show the design of a level 1 I-DID for the multiagent MM pliext in Fig. 6.6. We consider
M models of agent at level O which differ in the probability thgtassigns to the chance node
MachineFailure; . In the I-DID, the chance nodé{achineFailureit", has incident arcs from

the nodesV achineFailure;, A}, andA’ . The CPD of the chance node is shown in Fig. 6.7.
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(a;, a}) Mch FailfJrl 0-fail 1-fail 2-fail
(M/E.M/E) 0-fail 0.81 0.18 0.01
(M/E.M/E) | -fail 0.0 0.9 0.1
(M/E.M/E) 2-fail 0.0 0.0 1.0
(MLI/R} 0-fail 1.0 0.0 0.0
(M,I/R} | -fail 0.95 0.05 0.0
(MLI/R) 2-fail 0.95 0.0 0.05
(E.I/R) 0-fail 1.0 0.0 0.0
(E.I/R) 1-fail 0.95 0.05 0.0
(E,I/R) 2-fail 0.95 0.0 0.05
(I/R,*) 0-fail 1.0 0.0 0.0
(I/R,*) | -tail 0.95 0.05 0.0
(I/R.*) 2-fail 0.95 0.0 0.05

Figure 6.7: CPD of the chance nodéachineFailure™ in the level 1 1-DID of Fig. 6.6.

(al. c.v}) Mch fail;+l Not-defective Defective
(M.M/E) ® 0.5 0.5
(MLI/R) * 0.95 0.05
(E.M/E) 0-fail 0.75 0.25
(E.M/E) 1-fail 0.5 0.5
(E.M/E) 2-fail 0.25 0.75
(E.I/R) 0.95 0.05
(IR #) 0.95 0.05

Figure 6.8: The CPD of the chance nablefective. ™ in the level 1 I-DID.

For the observation chance node; fective!™, we associate the CPD shown in Fig. 6.8. Note
that arcs fromM achine Failure!™ and the nodes4, and A7, in the previous time step are inci-
dent to this node. The observation nodes in the level 0 DIe IGPDs that are identical to the
observation function in the original MM problem.

The decision node4; , consists of agents actions including manufactur@d!), examine E),
inspect (), and repair R). It has one information arc from the observation néetef ective! indi-
cating that knows the examination results before making the choice.ufitiy node R; is asso-

ciated with the utility table in Fig. 6.9. The utility funcin of the agenj which is a level O agent is
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(ﬁf. ”ji> 0-fail 1 -fail 2-fail
(M,M) 1.805 0.95 0.5
(MLE) 1.555 0.7 0.25
(MLI) 0.4025 —1.025 —2.25
(M,R) —1.0975 —1.525 —1.75
(E.M) 1.5555 0.7 0.25
(E.E) 1.305 0.45 0.0
(E,I} 0.1525 —1.275 -25
(E,R} —1.3475 —1.775 -2.0
(LM) 0.4025 —1.025 —2.25
(LE} 0.1525 —1.275 -2.5
(LI) —1.0 —3.00 —5.00
(LR) —2.5 —3.5 —4.5
(R,M) —1.0975 —1.525 —1.75
(R.E) —1.3475 —1.775 —2.0
(R.I) 2.5 —3.5 —4.5
(R.R) —4 —4 —4

Figure 6.9: Reward function of agentFor the level 0 agent the reward function is identical to
the one in the classical MM problem with some modificatiorsnghin Fig. 6.10.

(a’) O-fail | -fail 2-fail

(M) 0.9025 0475 0.0
(E) 0.6525 0.225 0.0
( —05 —1.5 .1
(R) =0 —2.0 —2.0

Figure 6.10: Reward function of aggnAgentj is a level 0 agent whose reward function is identical
to the one in the classical MM problem with some modifications

shown in Fig. 6.10. The CPD of the chance noMﬁzd[M;“], in the model nod ;j_ll, reflects

which prior model, action and observationjaesults in a model contained in the model node.



CHAPTER7

EXPERIMENTAL EVALUATION

We implemented the algorithms in Figs. 3.2 and 5.2 utilizing HUGIN Java API for DIDs.
HUGIN is a commercial software used for solving graphicaldels such as Bayesian networks
and influence diagrams [1]. HUGIN not only has a GUI, but al$dsAin several languages such
as JAVA, C++ e. t. c., where these graphical models can be mggiéed and used in other applica-
tions. We show results for the well-known problems in therture: the two-agetiger problem
(1S]=2, | A:|=|A;]=3, |2;|=6, |2,;|=3) [20] and the multiagent version of the machine maintesan

(MM) problem (S|=3,

Ail=|A =4,

Qi|:2,

(2;/=2) [41] described in the previous chapter. These
problems are popular but relatively small, having a physitzie space size of 2 and 3 respectively.
But note that in an interactive state space, we must consiideossible models of other agents,
thus making the interactive state space (IS) considerabyjet. We formulate level 1 I-DIDs of
increasing time horizons for the problems, and solve it agpipnately for varyings. We show that,
(1) the quality of the solution generated using our approaeBH) improves as we redueefor
given numbers of initial models of the other agehf;, and converges toward that of the exact
solution. This is indicative of the flexibility of the apprd® (:i) in comparison to the approach
of updating models discriminatively (DMU) [12], which isdlcurrent efficient technique;SE

is able to obtain larger rewards for an identical number dfahmodels. This indicates a more
informed clustering and pruning usimgSE in comparison to DMU, although it is less efficient in

doing so.
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15 B &-SEMG=75 - -

: €SEMy=100 ---+---
E e &-SE My=50 £-SE My=50
__________ = o
€-SEM=25 —%— 1 £-SEMg=25 —%—
05 [ Exact-BE My=100 ---@--- Exact-BE My=75 ---@---
Exact-BE My=50 0.5 Exact-BE My=50
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O Il Il Il Il Il Il Il
0.003 0.0025 0.002 0.0015 0.001 0.0005 0008 0007 0006 0005 0004 0003 0002  0.001
€ €
(a) (b)

Figure 7.1: Performance profile obtained by solving a levéiID for the multiagent tiger
problem using the-SE approach fofa) 3 horizons andb) 4 horizons. Ase reduces, quality
of the solution improves and approaches that of the exact.

7.1 MULTI-AGENT TIGER PROBLEM

In Fig. 7.1a, b), we show the average rewards gathered by executing thegsobibtained from
solving level 1 I-DIDs approximately within a simulation thfe problem domain. Each data point
is the average of 300 runs where the true model ©f picked randomly according s belief.
The exact solutions are represented by the flat linese Aecreases and approaches zero, the
policies tend to converge to the exact solution. As the nurobeandidate models of the other
agent considered by the agennhcreases, its chances of modeling the other agent corraisth
increases. Note that the error bounddhapter 8does not apply here because we prune models in
subsequent time steps as well.

Next, we compare the performance of this approach with thatly. While both approaches
cluster and prune models, DMU does so only in the initial nhowele, thereafter updating only
those models which on update will be behaviorally distifitius, we compare the average rewards
obtained by the two approaches when an identical number delsa@emain in the initial model
node(a) before andd) after clustering and selection as shown in Fig(@)2&nd(b) respectively.

In the comparison involving the initial models that remairthe model node before clustering, it



Average Reward

57

is possible that the DMU approach might prune more modelsd4&E. This could be responsible,
in part, for its poor performance compared to e-SE. Hendg ntight not be the best indicator for
correctly comparing the effectiveness of the two prunimgtsgies. However, the latter comparison
is done by varying in both approaches until the desired number of models asénest. This
enables us to compare the quality of the solution for the sauneber of models retained and in
turn allowing us to compare the effectiveness of the clusgeaind selection techniques of the two
approaches. The DMU data for case (b) were provided by DengfZeng, Aalborg University,

Denmark.

4.5
4
35
3
25
2

Average Reward

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 20 100
Model Space Model Space

(a) (0)
Figure 7.2: Comparison @fSE and DMU for the multi-agent tiger problem in terms of taeards
obtained given identical numbers of models in the initialdelonode(a) before clustering and
pruning andb) after clustering and pruning.

From Fig. 7.2b), we observe that SE results in better quality policies that obtain signffiitya
higher average reward. This indicates that the models grbgeDMU were more valuable than
those pruned by-SE, thereby indicating a more informed way in which clusigiand selection
were done in our approach. DMU’s approach of measuring sirti@ closeness of beliefs in
models for clustering resulted in significant models beingnpd. However, the trade off is the
increased computational cost in calculating the distitimst over the future paths. To illustrate,
e-SE consumed an average of 34.4 secs in solving a 4 horizdb Miith 25—100 initial models
and differinge, on an Intel Pentium Dual CPU 1.87GHz, 3GB RAM machine whichresents

approximately a three-fold increase compared to DMU.



Average Reward

Average Reward

58

7.2 MULTI-AGENT MACHINE MAINTENANCE PROBLEM

We show a similar set of results for the MM problem in Fig. 7.8e MM problem differs in having

one more physical state and action in comparison to the pigdslem, and less observations. We

observe a similar convergence toward the performance @xaet solution as we gradually reduce

e. This affirms the flexibility in selecting provided by the approach.
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Figure 7.3: Performance profile for the multiagent MM prablebtained by solving level 1 I-DIDs
approximately using-SE for (a) 3 horizon andb) 4 horizon. Reducing results in better quality
solutions.

Furthermore, in Fig. 7.4, we again note the significant iasesin average reward exhibited by

e-SE compared to DMU given an identical number of retained efsod
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Figure 7.4: Significant increase in rewards obtained:f8E compared to DMU, given identical
numbers of retained models in the initial model nddg before clustering and pruning argdl)
after clustering and pruning for the MM problem.
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This clearly illustrates the improvement in clustering relsdhat are truly approximately sim-
ilar, in comparison to using heuristics such as closeneswsléfs. As mentioned earlier, even
though the results presented in Fig.(z.4may not be a reliable indicator for comparing the effec-
tiveness of the two clustering strategies, the results shiowig. 7.4b) further reinforce the appeal
of e-SE. This provides empirical evidence that our approacfopeed a more informed clustering
and that the models retained are significantly more valutifale those retained by DMU trans-
lating into greater reward, albeit at the cost of efficienidye approach incurred on average 54.5
secs exhibiting a four-fold increase in time taken compaoddMU in order to solve a horizon 4
I-DID with 25-100 initial models. On the other hand, whidéSE continues to solve I-DIDs of 5
horizons, the exact approach runs out of memory.

In summary, experiments on two multiagent problem domaidgate that the-SE approach
models subjective similarity between models of the othenaghore accurately resulting in favor-
able performance in terms of quality of the solutions, buthat expense of computational effi-
ciency. As a part of the evaluation, we also theoreticallglyre the performance of our approxi-
mation technique and compare it with that of the model chusgeapproach (described previously

in Chapter3) in the next chapter.



CHAPTERS8

THEORETICAL ANALYSIS

Our main motivation toward the proposed approximation mégple is to mitigate the curse of
history and dimensionality by considerably reducing tlze sif the state space and at the same time
preserving the quality of the solution. In this chapter, wk fecus on specifying how exactly we
achieved computational savings and also on bounding tbe due to the approximation. We will
also theoretically analyze our savings with respect toeRB&algorithm and the Model Clustering

approach.

8.1 COMPUTATIONAL SAVINGS

The computational complexity of solving I-DIDs is primaritiue to the large number of models
that must be solved ovér time steps. LetMJ‘? be the number of candidate models of the other
agent,A; be the number of actions the agent can perform (anide the number of possible obser-
vations. Hence at time steépthere could béM?| (| A;|/©2;])" many models of the other agentAs
mentioned earlier, nested modeling further contributethéocomplexity of the problem because
it requires solving of lower level models recursively upgodl 0. In anN+1 agent setting, if the
number of models considered at each level for an agent iscobyihM |, then solving an I-DID
at levell requires the solutions @ ((N|M])!) many models. As we mentioned in Proposition 3,
thee-SE approximation reduces the number of agent models aleaslo at most the size of the
minimal set,| M. Thus, | M| many models are solved initially and the complexity is imedr
due to the distribution computations while performing thierence in a DBN. This complexity is

less than that of solving DIDs. Hence, we need to solve ato&¥ | M*|)!) number of models at
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each non-initial time step, typically less, wheté* is the largest of the minimal sets, in compar-

ison toO((N|M|)!). Here M grows exponentially over time. In generaM| < |M

, resulting
in a substantial reduction in the computation. Additiopal reduction in the number of models in
the model node also reduces the size of the state space, mblas solving the upper-level I-DID
more efficient.

We will now compare our approach with that of the model cluste(MC) approach [46].

1. In the MC approach, constant numbi€)) of models are solved at every time step where as
in our e-SE approach, all initial models are solved in order to commple distribution over
the future action-observation paths. However, from the a@p onwards, only a maximum

of as many models as there are behaviorally distinct ones tealve solved.

2. In MC, in order to partition the model space, it is requireéirid the sensitivity points which
involves complex linear programming whereas the procegsuditioning SE regions in our
approach is simple. We simply pick a model randomly and elusll e-SE models with it.
Hence, when another model is picked randomly from thoserémaain after the grouping, it
is assured that it is-subjectively distinct from the previous representatiewever, com-
puting the distributions for all the candidate models, whig required for the clustering

process, is time consuming.

3. In MC, thek-means clustering process is known to take some time to cgawehere as in
e-SE the clustering methodology is simple and the clustasmiick due to the presence of

only finite number of SE classes.

4. In MC, whenK models are selected we may end up having more than one modeltie
same subjectively equivalent region. This results in reldmey (because two SE models are
effectively identical as they affect the subject agent kirty) and unnecessary computa-
tions. Instead, if these models were from different SE negjithe solution quality could be

improved. However, in the-SE approach, such redundancies are avoided.
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It can be shown theoretically that thesubjective equivalence approach always performs better
or equal to, but never worse, than the model clustering ambron terms of the number of candi-
date models ascribed to the other agents. This claim folfoova the analysis that we conduct as
shown below.

For the purpose of this analysis, let us considéo be the number of behaviorally equivalent
classes at any particular time stegndK to be the number of models picked in the MC approach.

We present results for three exhaustive cases as follows:

1. R < K: In this case, the-SE approach ends up solving at mé&simodels. Hence, even
the worst case of this approach is better in terms of the nuofomandidate models solved
with respect to the model clustering approach. In terms afity) in the worst case of the
e-SE approach where= 0, since no redundancy occurs in the models picked, it ieBuUénN
exact solution but the MC approach is unable to guarantseThus, better solution quality

is more probable with the former.

2. R = K: In this case, the MC approach and the worst case ok{8& approach (when
e = 0), end up solving the same number of models. In terms of tyu#the worst case of
the SE approach guarantees at least one representativalpectsely equivalent region
thus producing an exact solution but the MC approach doesasdhere may be redundant

models.

3. R > K: In this case, the worst case of th&E approach ends up solving greater number
of models. But quality-wise, the SE approach is more likely to perform better than the MC
approach because a greater numbergibjectively distinct models are solved in the former

and a there exists atled?tK regions without a representative model in the latter.

8.2 ERRORBOUND

In the e-SE approach, we may partially bound the error that arisestalihe approximation. We

assume that the lower-level models of the other agent akedaxactly and also assume that
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we limit the pruning ofe-SE models to the initial model node. Doshi and Zeng [12] shiuat,

in general, it is difficult to usefully bound the error if lowkevel models are themselves solved
approximately. Trivially, where = 0O there is no optimality error in the solution. The error i®du
to transferring the probability mass of the pruned modeh&orepresentative, effectively replacing
the pruned model with the representative. In other wordsy @rises whem is such that models
from some subjectively equivalent regions get clusterdtl irepresentative model from another
region.

For example, say there aR behaviorally equivalent regions ardrepresentative models
remain after the clustering process, at a particular tirep,stomM candidate models of agent
| that were initially considered. Note that the valueka$ dynamic; it changes at every time step.
We can bound the error for excluding all Bumnodels. This presents us with two situations where

approximation errors can occur:

1. Whenk = R: In this case, there is a model representing easiibjectively equivalent region
R and the number of-subjectively equivalent regiorequal the number dbehaviorally

subjectively regiondHence, there will be no optimality error.

2. Whenk < R: In the trivial case where = 0, approximation error arises because there will
be R-k regions without representatives. In the case wlaere€0, approximation error arises

because there may be more than or equ& kxregions without representatives.

Note that our approach can never result in a situation wkerdR (seeProposition 3.

Our definition of SE provides us with a unique opportunity eaibd the error forf. We observe
that the expected value of the I-DID could be obtained as tpected reward of following each
path weighted by the probability of that path. Lsgt,(H7) be the vector of expected rewards for
agent; given it’s belief when each path ifi is followed. Here " is the horizon of the I-DID. The

expected value foris:
EV; = Pr(Hr|mi;, mji_1) - pe,,(Hr)

wherem;;_, is the model ofj.
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If the above model ofj is pruned in the Mod node, let modsél;; ; be the representative
that replaces it. Theb; is i's belief in which modeln;, ; is replaced with the representative.

Expected value foi, EV;, is:
EV; = Pr(Hy|mi;,mji1) - p;,, (Hr)

Then, the effective error bound is:

A =||EV; - EVil|o
= [|Pr(Hr|mig, mji-1) - py, ,(Hr) = Pr(Hrlmig, mji-1) - po,,(Hr)lloo
= ||Pr(Hr|mip,mji1) - py, (Hr) — Pr(Hr[mig, mji1) - po,, (Hr)
+ Pr(Hr|mg g, mj-1) - po,,(Hr) — Pr(Hr|m;;,mji—1) - po,,(Hr)l|loo ~ (2dd zerg
< |[Pr(Hr|miz,mji1) - py, (Hr) — Pr(Hr|mig, mji1) - py, (Hr)
+ Pr(Hr|mig,mji-1) - po,,(Hr) = Pr(Hrmi,mji) - po, (Ho)lleo (05,1 < lpv,, 1)
< Ilpy, ,(Hr) = po,, (H1)|oo - || Pr(Hr|mip, mji—1) — Pr(Hrlmig,mji1)|ln - (Holders inequality
< (RMa® — RMMT x 2¢ (Pinsker’s inequality
Matters become more complex when we additionally prune tsadéhe subsequent model nodes
as well. This is because rather than comparing over distoisigiven each history af we sample
1's action-observation history. Consequently, additiomedreincurs due to the sampling, which is
difficult to bound. As mentioned earlier, it is difficult to efsilly bound the error if lower-level
models are themselves solved approximately. This linaiteits significant because approximately
solving lower level models could bring considerable compahal savings.
In summary, error in's behavior due to pruning SE models in the initial model node may be
bounded, but we continue to investigate how to usefully loahe error due to multiple additional

approximations.



CHAPTER9

CONCLUSION

Interactive dynamic influence diagrams (I-DIDs) provideragiical formalism for modeling the
sequential decision making of an agent in an uncertain ragkint setting. In this thesis, we present
a new approximation method, calle&ubjective Equivalende-SE), to solve interactive dynamic
influence diagrams (I-DIDs). This is an approximation tegbe that allows an agent to plan
sequentially in multi-agent scenarios, which could be evafive, competitive or even neutral. The
main motivation behind the development of this method i$ tha curses of dimensionality and
history that impact I-DIDs, limited existing algorithmsfn scaling to larger multi-agent problem
domains. These curses manifests in the exponentially ggpgpace of candidate models ascribed
to other agents over time. Hence, our goal was to come up witiparoximation technique that
could mitigate these curses better than those that alreastge.

Existing approximation techniques used clustering andipgu of behaviorally equivalent
models as the way to identify theinimal model set. Our approximation technigue reduces
the complexity by additionally pruning models that aeproximatelysubjectively equivalent.
Toward this objective, we defined subjective equivalendelims of the distribution over the sub-
ject agent’s future action-observation paths that alloavedhy to measure the degree to which the
models are subjectively equivalent, which helped fornauatr approximation technique. Defining
SE by explicitly focusing on the impact that the other agemtsdels have on the subject agent in
the interaction allowed us to better identify subjectivmitarity. This translated into solutions of
better quality given a limit on the number of models that ddug held in memory. Consequently,
other approaches may need more models to achieve compgtehity, which could translate into

better efficiencies for our approach.
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We showed the performance of our approach for two test pnudhlehe multi-agent tiger
problem, and the multi-agent machine maintenance problethcampared the results of our
approach with the existing best technique for solving I-B(DMU) and also the exact SE method.

Highlights of the results obtained are presented below:

1. The quality of the solution generated using our approagraves as we redueefor given
numbers of initial models of the other agent, and approatttef the exact solution. This

is indicative of the flexibility of the approach.

2. In comparison to the approach of updating models disoatviely (DMU), which is the
current efficient technique;SE is able to obtain larger rewards for an identical numlber o
initial models. This indicates a more informed clusterimgl gruning using-SE in com-
parison to DMU. The trade off was the increased computatioost due to calculating the
distributions over future paths-SE consumed three times the average time consumed by
DMU in solving a 4 horizon I-DID with 25-100 initial models drdiffering e for the multi-
agent tiger problem and a four-fold increase in the time gored with the same setting for

the multi-agent machine maintenance problem.

We also theoretically analyzed the savings from our appraac compared it with that of the
model clustering approach. Our analysis revealed &/ either ascribes less models to other

agent or is likely to perform qualitatively better in comjsan to the model clustering approach.

9.1 LIMITATIONS AND FUTURE WORK

Scalability to higher horizons using our approximatiorht@que is limited mainly by the curse of
history due to the exponential increase in the number ofréupaths over increasing number of
horizons. We are investigating ways to mitigate the impéthis curse. We are also investigating
ways of reducing the computational cost, for example, bealiy computing the distributions
instead of using the DBN and preemptively discriminatingisstn model updates. The new defi-

nition showed potential when bounding the final error duepdacing some candidate models with
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an approximate representative. However, this error bountyl applies when lower level models
are solved exactly. This is a problem as it is the lower lewgigch offer the greatest potential for
savings. We are also currently working on ways to usefullyrubthe error when these lower level
models are solved approximately. We are optimistic thabfathis can be done in a systematic

way, and this will facilitate application to larger multgant problem domains.
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