

FORT STEWART SHORTEST PATH ANALYSIS OF DEBRIS CLEANUP OPTIONS

by

MICHAEL ANTHONY WALLISER

(Under the Direction of Pete Bettinger)

ABSTRACT

 Several heuristic algorithms are developed to find the fastest set of routes in order for a

fleet of cleanup crews to clear hurricane-related debris from the road network at Fort Stewart

near Savannah, Georgia. The road network is divided into priority levels such that each level

must be completely cleared before work can begin on the next level. The problem is similar to

the Hierarchical Chinese Postman Problem and the Capacitated Arc Routing Problem. It

presents a unique challenge, however, in that each road must be cleared before it can be used for

transport. Rule-based heuristics, adaptations of local beam search, and genetic algorithms are

tested in various combinations with each other to build solutions. Results are evaluated based on

the time required to clear the entire network of debris. The best solutions are generated by using

a combination of all three of the aforementioned heuristics.

INDEX WORDS: Arc routing, Hierarchical Chinese Postman Problem, Capacitated Arc

Routing Problem, Path finding, Search heuristics, Local beam search,

Genetic algorithm

FORT STEWART SHORTEST PATH ANALYSIS OF DEBRIS CLEANUP OPTIONS

by

MICHAEL ANTHONY WALLISER

BS, Georgia Institute of Technology, 2005

MEd, University of Georgia, 2009

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2012

© 2012

Michael Anthony Walliser

All Rights Reserved

FORT STEWART SHORTEST PATH ANALYSIS OF DEBRIS CLEANUP OPTIONS

by

MICHAEL ANTHONY WALLISER

 Major Professor: Pete Bettinger

 Committee: Walter D. Potter

 Charles Cross

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2012

iv

ACKNOWLEDGEMENTS

 Above all, I would like to thank Pete Bettinger for his guidance and assistance in

completing this thesis. His ready availability and willingness to help made the project possible.

I would also like to thank Don Potter and Charles Cross for serving on my committee. Special

thanks go to Shawn Baker for going out of his way to help me with data analysis. Finally, I want

to express my gratitude to everyone at the Institute for Artificial Intelligence who has helped me

in any way, whether they know it or not.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

CHAPTER

 1 INTRODUCTION ...1

 1.1 The problem ...1

 1.2 Generalizing the problem ...3

 1.3 A similar type of problem ..5

 2 METHODS ..9

 2.1 Heuristic search process ...9

 2.2 Case study layout ...23

 2.3 Experiment ...26

 3 RESULTS ..31

 4 DISCUSSION ..50

 4.1 Revisiting assumptions ..50

 4.2 Analysis of results ..52

 4.3 Analysis of the algorithms and implementations ...59

 4.4 Future directions ..62

 4.5 Validation of results ...63

vi

 5 CONCLUSION ..64

REFERENCES ..66

vii

LIST OF TABLES

Page

Table 2.1: Characteristics of each of the nine priority levels of the road network23

Table 2.2: Variables in implementing rule-based heuristics ..27

Table 2.3: Variables in implementing level-based beam search ..27

Table 2.4: Variables in implementing constant time beam search ..28

Table 2.5: Variables in implementing constant progress beam search ..29

Table 2.6: Variables in implementing the genetic algorithm ...30

Table 3.1: Results from using rule method 1 ...37

Table 3.2: Results from using rule method 2 ...37

Table 3.3: Results from using rule method 1 in conjunction with level based beam search38

Table 3.4: Results from using rule method 2 in conjunction with level based beam search39

Table 3.5: Results from using constant time beam search combined with each rule method40

Table 3.6: Computational demand from using constant time beam search in conjunction with

each rule method ..41

Table 3.7: Results from using constant time beam search in conjunction with the random-choice

method..42

Table 3.8: Computational demand from using constant time beam search combined with the

random-choice method...43

Table 3.9: Results from using constant progress beam search in conjunction with each rule

method..44

viii

Table 3.10: Computational demand from using constant progress beam search combined with

each rule method ..45

Table 3.11: Results from using constant progress beam search combined with the random-choice

method..46

Table 3.12: Computational demand from using constant progress beam search combined with the

random-choice method...47

Table 3.13: Results from running the genetic algorithm five times with each combination of

variables, using level based beam search to generate the initial population48

Table 3.14: Computational demand from running the genetic algorithm with the initial

population generated using level-based beam search ..48

Table 3.15: Results from running the genetic algorithm with the initial population generated

using constant time beam search combined with rule method 249

Table 4.1: Theoretical lower limits for three, five, and eight crews ..53

ix

LIST OF FIGURES

Page

Figure 1.1: View of the road network near the starting point ..5

Figure 2.1: Flow chart representing rule method 1 for choosing the next direction at an

intersection or dead-end ...11

Figure 2.2: Fort Stewart network of roads of priority levels 1, 2, and 3 ..12

Figure 2.3: Flow chart representing rule method 2 for choosing the next direction at an

intersection or dead-end ...14

Figure 2.4: Model of one possible genetic representation of two solutions18

Figure 2.5: Conceptual illustration of a repair operator to make child solutions feasible after

crossover ..19

Figure 2.6: Flow chart representing Dijkstra’s shortest-path algorithm adapted for minimizing

time ..21

Figure 2.7: Road network at Fort Stewart divided into priority levels ..24

Figure 2.8: Fort Stewart road network with state highways marked ...25

Figure 4.1: Effect of number of crews on inefficiency index when using rule method 154

Figure 4.2: Effect of number of crews on inefficiency index when using rule method 254

Figure 4.3: Comparison of rule methods 1 and 2...55

Figure 4.4: Average solutions using constant time beam search in conjunction with each rule

method at various time thresholds ...57

x

Figure 4.5: Average solutions using constant progress beam search in conjunction with each rule

method at various progress thresholds ...57

1

CHAPTER 1

INTRODUCTION

Emergency management is an area that often gets overlooked when it comes to the

advancement of society, yet will always present relevant operational problems. For man-made

disasters such as nuclear accidents and airplane crashes, it is obviously desirable to prevent the

incident from occurring in the first place. In those cases, a reaction plan is a secondary concern

to a prevention plan. Natural disasters, on the other hand, are completely unpreventable, so it is

crucial to plan for them to happen and be prepared when they strike.

The Federal Emergency Management Agency (FEMA) defines emergency management

as “the process of preparing for, mitigating, responding to and recovering from an emergency”

[1]. Being well prepared for a disaster can enhance the efforts in any or all of the other three

areas mentioned. According to the American Planning Association [2], it is “absolutely vital that

planning research seek out the answers, identify the best practices, and make clear how they

relate to the unique circumstances of each new community that experiences a disaster.” The

problem addressed in this thesis particularly involves preparing for the response and recovery

aspects of emergency management.

1.1 The problem

The problem was posed by the United States Army and concerns the management of

roads at Fort Stewart, which is located near Savannah, Georgia. The installation’s proximity to

the coast of the southeastern U.S. makes it vulnerable to hurricane-force winds. Such winds

2

have the potential to fell trees, covering the roads with debris and thus making them impassable.

The overarching task, then, is to develop a set of routes for a fleet of road-clearing crews to

follow during the cleanup effort. This is a single-objective combinatorial optimization problem,

with the objective being to minimize the time required to clear all the roads of debris. The roads

are divided into different priority levels, and the crews are assumed to operate with the constraint

that all roads of a given priority must be cleared before beginning on any roads of a lower

priority. There are many other ways to address the road prioritization, some of which may be

better in practice, but the aforementioned constraint is what was specified by the Army. Because

this is a hard constraint, it is necessary for the set of roads of any priority level, in union with all

the roads of higher priority levels, to form a continuous network. This concern was considered

in the assignment of a priority to each section of road.

 In this particular type of problem, the number of crews utilized must be known prior to

the development of a plan, and it is assumed that at least that many systems of equipment are

staged at a known position prior to direct impact of the wind. These systems of equipment are

assumed to be used throughout the recovery effort, with no more added and none assumed to

break down. Some other assumptions were made in order to make the problem tractable. They

include:

 A priority list of roads has been developed prior to the development of the plan.

 Once a road is clear, it stays clear. No new debris is deposited afterward.

 All roads can be cleared using the same equipment and processes available to each crew.

 The crews will initially leave from a pre-designated area (depot).

 The rate of speed on cleared roads is known, as is the rate of road-clearing operations.

These speeds are not necessarily consistent among all roads.

3

 Crews change travel speeds instantaneously when moving between different speed zones.

 All crews work at the same pace under similar conditions.

 Crews will work non-stop until all the roads have been cleared.

 There is no other traffic on the road that will impede the recovery process.

 The amount of tree-related debris falling onto roads (the demand) is constant.

 Having two crews in the same place at the same time will double the speed of clearing.

A third crew will provide no extra value.

1.2 Generalizing the problem

This problem combines elements of the Hierarchical Chinese Postman Problem (HCPP)

and the Capacitated Arc Routing Problem (CARP). In the traditional Chinese Postman Problem

(CPP), the goal is to minimize the time (or travel distance) required to traverse every arc in a

given network and return to the starting point, representative of a postman delivering to every

address in the network and then returning to the post office. The HCPP adds the stipulation that

some roads have a higher priority than others, and therefore an order of precedence must be

followed.

In the CARP, a fleet of vehicles sets out from an initial location and “must service a

subset of the edges of a graph, with minimum total cost and such that the load assigned to each

vehicle does not exceed its [known] capacity” [3]. An example of a CARP would be the routing

of school buses, where all the relevant roads must be traversed by at least one bus, but the load of

each bus is limited by its carrying capacity.

Like in the HCPP, every arc must be traversed, and the priority constraints are strictly

enforced. Returning to the starting point, however, is not a concern, as the ultimate goal is

4

reached as soon as all the roads have been cleared. Like in the CARP, there are multiple

vehicles, but in this problem, the vehicles have an unlimited service capacity.

There are several aspects of this problem, however, that are not part of the HCPP or

CARP. Each road requires service on the first traversal, but after being serviced, the demand

load is removed from the cost of traveling the road. In the traditional versions of these problems,

each arc must eventually be serviced but can also be traversed before being serviced. The utility

of teamwork is also factored into this problem, as two crews working together can clear a road

twice as fast, though any more than two is a waste of resources.

Having multiple vehicles, as is considered in the CARP, makes this problem immensely

more complex than the HCPP. The path chosen by one crew can have a great impact on how

much work another crew can accomplish. Consider the portion of the road network depicted in

Figure 1.1, and assume five working crews. Roads 18 and 16 provide the only avenue to reach

the rest of the network, so until those two have been cleared, progress is limited to the area

shown. Furthermore, that sequence will take much longer to clear than the rest of the area

shown. A single crew would want to clear the entire area near the depot first and then proceed to

Road 18, so it would not have to waste time returning to the area. However, with a fleet of five

crews, clearing the area near the depot first would then lead to three crews just “sitting around”

while two worked on Road 18 and then Road 16. Rather, it would be advisable for two crews to

begin on Road 18 immediately. Since that task will take a relatively long time, the other three

crews can clear the area near the depot in the meantime. Ultimately, which road to clear next

depends on a combination of which roads have been cleared, where the other crews are, where

they plan to go next, and the specific characteristics of the road (such as speed limit and length).

5

Figure 1.1: View of the road network near the starting point.

The HCPP is NP-hard [4], as is the CARP [5]. It follows that all algorithms that might be

developed for problems such as these can be considered heuristics [6]. Most practical problems

have their own nuances that make them different from other problems that fit into the HCPP

and/or CARP categories, so most available documentation is on problems with varying degrees

of similarity to this one, but some crucial difference as well.

1.3 A similar type of problem

A category of problems very similar to this one is the Snow Plow Problem (SPP). In the

SPP, a fleet of snow plows must leave a depot and clear snow from a network of roads, much

6

like how the fleet in this problem must clear debris from the roads. Different versions of the SPP

make different assumptions, and in some cases the hierarchical component is even included. A

general feature of the SPP that differs from the Fort Stewart problem, though, is that snow plows

can drive over roads that have not been serviced, while the cleaning crews at Fort Stewart must

clear the path in order to make it usable.

One heuristic that has been used to address the SPP and other types of CARP problems is

the cluster-first, route-second approach [6][7][3]. In this method, the network is partitioned into

a set of sub-networks (clusters) of similar workloads, each of which is assigned to a vehicle.

Then, each cluster is solved as a single-vehicle arc-routing problem. The corresponding single-

vehicle problems can be approached in a number of ways, such as by transforming them into

Rural Postman Problems [8].

This cluster-first, route-second method would presumably not lend itself well to the Fort

Stewart problem, based on several problem-specific considerations. The requirement that roads

be cleared on the first traversal, along with the fact that all crews start at the same location,

would greatly augment the challenge of assigning clusters. Additionally, keeping the vehicles in

separate clusters precludes the possibility of two crews teaming up on a section of road.

Another approach to the SPP involves constructing an initial set of feasible routes to be

traversed, and then developing methods to attempt to improve these routes by means of different

destroy/repair operators [9]. This method, however, is also much more appropriate when

applied to local neighborhoods being serviced by a single vehicle. When considering the

interdependence of the service vehicles, both in the Boolean terms of completing the goal and in

the quantitative terms of how long it will take to traverse each arc, designing the repair operator

7

becomes a substantial problem in itself. Mei et al. [10] have developed a global repair operator

for the CARP, but this operator assumes the ability to traverse a road before servicing it.

Amponsah and Salhi [11] developed a “look-ahead” strategy for a constructive heuristic

pertaining to garbage collection, another type of CARP. While the Fort Stewart problem has the

single objective of minimizing time, this particular garbage collection problem has the added

objective of minimizing inconvenience due to smell from the garbage. A maximum load per

vehicle is also a consideration in the garbage collection problem, and this limitation plays a

strong role in the “look-ahead” algorithm.

A very basic approach which could be handled with little to no computational power is a

rule-based heuristic, where a vehicle chooses its path based on a predetermined set of rules. A

sufficiently descriptive set of rules could make for a deterministic path [12][13][14][15]. With

the size of the network in this problem and all the considerations such as loops, dead-ends, etc., it

would be challenging to find any feasible solution using a deterministic set of rules. Previous

work on the Fort Stewart problem was performed by Bettinger et al. [16] using deterministic

rules based on Dijkstra’s algorithm, a shortest-path algorithm described in the Methods section.

Their work was incomplete and especially encountered problems dealing with loops.

As an alternative to deterministic rules, the rules could be used simply to narrow down

the possible choices at each intersection, ultimately leaving some decisions to chance. Such a set

of rules would provide general guidelines on how the vehicle should choose its path. The quality

of a solution developed in this way is thus left to chance, but such solutions could be improved.

In approaching the Extended CARP (which is the CARP with a few extensions that do

not make it any more like the Fort Stewart problem), Xu et al. [17] use a combination of several

classical heuristics that are integrated into a single standard heuristic (a genetic algorithm). The

8

classical heuristics are used to develop a series of possible solutions, which become the initial

population of the genetic algorithm.

In a genetic algorithm [18], a population of solutions is evolved over a number of

generations, mimicking the process of evolution via natural selection. Members of the

population are evaluated according to their “fitness” or quality, and the better solutions are more

likely to be selected to “breed” with other solutions or simply move unchanged into the next

generation. The “breeding” process happens through crossover, where corresponding parts of

two solutions are switched, thus creating two new solutions. Occasionally, a “mutation”

happens, where a small part of a solution changes, much like how mutations occur in real life.

When a population goes through the process of selection, crossover, and mutation, a new

generation is created. As the evolution progresses, better solutions are formed, and eventually

(whether due to convergence or reaching some time/generation limit) a solution is settled upon.

This research uses the aforementioned idea of integrating classical heuristics with a

genetic algorithm to develop a solution to the Fort Stewart road debris clearing problem. This

represents an application of previous research to a new problem, and involves enhancements that

are necessary to address this particular land management issue.

9

CHAPTER 2

METHODS

This research involves the integration of classical heuristics with a genetic algorithm in

order to develop a solution to a road clearance problem. The first classical heuristic involves a

small set of rules to provide some guidelines for the crews. Two separate sets of rules were

tested, and they are described below. The second heuristic was derived from the idea of a search

heuristic called local beam search, though it does not follow this heuristic exactly.

2.1 Heuristic search process

2.1.1 Rule-driven decisions

Two different sets of rules were tested, plus a random-choice method. A crew would

invoke the designated set of rules any time it reached an intersection or dead-end and needed to

choose its next direction. The aim of each set of rules was to preclude the crews from choosing

paths that would lead to time wasted, while still allowing for the potential to explore paths that

may not seem like the best immediate choice but may prove to be better in the long run. Both

sets of rules utilize the concept of Zero Marginal Worker Effectiveness (ZMWE), which stems

from the stipulation in the problem that two crews working together on a stretch of road can clear

debris at twice the speed of one crew, but any additional crews beyond two provide no added

value. Thus, a section of road with two or more crews already working on it is said to be at

ZMWE.

10

Solutions were generated from these rules by way of simulation. The crews are identified

by number, and they start out from the depot at the same time. As they move through the map,

they keep track of their path, and the simulation keeps track of which roads (arcs) have been

cleared and which have not. It is important to note that when multiple crews are choosing their

next directions, they choose in order of their ID number, as opposed to simultaneously.

2.1.1.1 Rule method 1

Rule method 1 works as follows. If there is only one arc from which to choose, then the

crew will choose it. Otherwise, a list is made of all the arcs that connect to the crew’s current

intersection or dead-end (i.e., node) and do not violate the priority constraint. If the crew is

arriving from an arc that had already been cleared, this most recent arc is removed from the list

of possibilities. Using the remaining list:

1. If there are any arcs that have not been cleared and are not at ZMWE, choose randomly

from among those.

2. Otherwise, if there are any arcs that have been cleared, choose randomly from among

those.

3. Otherwise, choose a random arc.

The general approach represented by these rules is to clear a road whenever one is found

that has not been cleared, to avoid making U-turns when driving on cleared roads, and to avoid

roads that are already at capacity with workers. In some cases, these guidelines will determine

with certainty which arc to choose next, while in other cases, they may only narrow down the list

of options. This decision method is represented as a flow chart in Figure 2.1.

11

Figure 2.1: Flow chart representing rule method 1 for choosing the next direction at an

intersection or dead-end.

12

2.1.1.2 Rule method 2

This method takes into account dead-end paths, which must be properly defined in the

context of this problem. A dead-end path is a connected set of arcs (road segments) that, if

traveled in one direction, will only ever offer one choice of direction in addition to turning

around; eventually, the path reaches a node where turning around is the only option. It is

important to note, however, that for this purpose, the number of choices at a node includes roads

up to and including the current priority level as well as those of the next priority level.

The reasoning behind this extra inclusion is that at any given time, the next priority level

might become accessible. Without including that priority level in the dead-end definition, there

would be cases where the crews would be prevented from being in the best possible position to

begin work on it. Consider, for instance, a case where the crews are currently working on

priority level 2. Thus, they are allowed to travel on roads of priority 1 or 2. Figure 2.2 shows

the map of the network consisting only of priority levels 1, 2, or 3.

Figure 2.2: Fort Stewart network of roads of priority levels 1, 2, and 3.

13

Ideally, upon completing priority level 2, there will be crews near points A and B, ready

to begin clearing priority level 3. Thus, crews are allowed to go east of point C before priority

level 2 is cleared. However, since the section of road east of point A has been cleared, and there

is no need to revisit it to get to roads of priority 3, it is labeled a dead-end path. The sections of

road extending north from points D and E, west from point F, and south from point G are labeled

dead-end paths for the same reason. Since the section of road southeast of point H ends in a

loop, it avoids classification as a dead-end path. It is of note that a road’s status as a dead-end

path is dependent on which priority level is currently being cleared.

Rule method 2 attempts to minimize time wasted on dead-end paths, and it operates as

follows. Starting with the list of all the arcs that connect to the crew’s current node and do not

violate the priority constraint:

1. If the crew is on a dead-end path that does not need help (i.e. either the dead-end path has

been cleared or an arc on the dead-end path is at ZMWE), then move away from the end

of the dead-end and back toward the rest of the road network.

2. Until only one arc remains (which may already be the case), eliminate roads in the

following order. If multiple roads fall under the same guideline, they are removed one at

a time in random order:

a. If the crew is coming from an arc that had already been cleared, eliminate that arc.

b. Eliminate any arc that is on a dead-end path that has already been cleared.

c. Eliminate any arc that is at ZMWE.

d. Eliminate any arc that has already been cleared.

e. Eliminate the remaining arcs.

14

These rules take into consideration the same issues as Rule Method 1, with the additional

provision of avoiding needlessly traveling down dead-end paths. Figure 2.3 shows a flow chart

representing rule method 2.

Figure 2.3: Flow chart representing rule method 2 for choosing the next direction at an

intersection or dead-end.

2.1.1.3 Random-choice method

This method involves choosing randomly from all arcs that have an endpoint at the

crew’s current node and do not violate the priority constraint.

15

There are advantages and disadvantages to each method. Rule method 1 has a very

simple set of rules that prevents some inefficient behaviors. However, there are some scenarios

where those rules are too simplistic and actually prevent the best choice from being made. For

instance, it might be better in some cases to move past some blocked roads in favor of clearing

some other roads further down the line. Rule method 2 adds dead-end paths to the consideration,

presumably preventing even more inefficient behaviors. Again, though, there may be some

circumstances where the rules backfire. For example, upon the completion of priority level 2,

being east of point A (as labeled in Figure 2.2) would actually put a crew in good position to start

on priority level 3. More rules also mean a higher computational load. The random-choice

method allows the crews to take wildly inefficient routes, but each decision requires less of a

computational load than the rule-based methods. Due to the large number of decisions that must

be made in this problem, the probability of finding a better solution with the random-choice

method than with either rule method is extremely low.

2.1.2 Local beam search

Local beam search occurs in a search tree as follows [19]: “It begins with k randomly

generated states. At each step, all the successors of all k states are generated. If any one is a

goal, the algorithm halts. Otherwise, it selects the k best successors from the complete list and

repeats.” The idea behind this method, as it relates to the Fort Stewart problem, is that the best

possible complete solution was very likely one of the best solutions when evaluated at any point

during the process. Two different ways were implemented of evaluating a solution before it was

completed. These implementations are discussed below.

16

Building a search tree for this problem would be a complex and confusing task. A

solution to the problem represents a set containing one path for each crew. The crews, however,

make their decisions upon reaching intersections or dead ends, which is not generally at the same

time for all crews. Thus, one node in the search tree might represent a decision made by one

crew, while another node represents a decision made by another crew. Yet another node may

represent the combination of decisions made by two or more crews, if they happened to reach the

ends of their respective arcs at the same time. In order to know which crew will be making the

next decision, the algorithm has to know how much time each crew will require to reach the end

if its current arc. To calculate this time requires knowledge of (a) the length of the arc, (b) the

position of the crew on the arc, (c) whether the arc has already been cleared, (d) how many other

crews are on the arc (if it has not been cleared), and (e) the maximum speed on the arc (if it has

been cleared). Much of this information is dependent on the paths taken up to the current state,

so the algorithm would either have to store this information in memory as it moves down the

tree, or else recalculate it at every search node. The relevant information was kept in memory by

creating each path through the search tree as a simulation of the road-clearing process. The idea

of local beam search was adapted to fit the simulation.

Two adaptations of local beam search, constant time beam search and constant progress

beam search, were developed and tested in the experiment. In the former, a set of s simulations

(where s will be called the exploration factor) are run for a predetermined amount of simulated

time. Upon reaching this time threshold, each simulation is evaluated based on its progress, as

determined by the length of road that has been cleared. The k best simulations (where k will be

called the filter size) are selected for advancement, while the rest are discarded. Each surviving

simulation makes (s/k – 1) copies of itself, returning the total number of simulations in progress

17

to s. Each of these simulations is then run, continuing from where it left off, for the same

predetermined amount of time. They are then evaluated based on their progress and either

discarded or selected for advancement. Those that are selected for advancement again replicate

themselves to fill out the set, and the process continues until a solution is reached.

Constant progress beam search works in much the same way, but the roles of time and

progress are reversed. Each simulation runs until reaching a predetermined amount of road

cleared. The simulations then are evaluated and compared based on the amount of simulated

time required to reach that progress threshold. Again, the k best are selected for advancement,

and they replicate themselves to return the set of simulations to its original size. These

simulations continue from where they left off, with each one running until it again reaches the

progress threshold. The process repeats as such until a solution is reached.

An offshoot of constant progress beam search uses priority levels as the progress

benchmarks. The progress is not constant, since each priority level contains a different amount

of road, but the divergence of solutions does still occur at a predetermined threshold. This

adaptation will be called level-based beam search.

2.1.3 Genetic algorithm

Applying the genetic algorithm presents the previously-noted challenge of creating a

repair operator. When new paths are created from crossover, infeasible solutions often arise

because the new paths have disconnects. Crossover and mutation could also create problems

adhering to the priority constraints. Employing an appropriate representation is a key to

avoiding these problems or, at the very least, allowing for a reasonably simple repair operator to

fix them.

18

One straightforward genetic representation of a solution would be for each “step” to

represent a gene, where a step is simply one arc on the path of one crew. The solution would

then look like one long strand divided into sub-strands representing the paths of each crew, as

illustrated by the two solutions in Figure 2.4 (which assume 4 crews).

Figure 2.4: Model of one possible genetic representation of two solutions. It assumes four

crews, and each gene represents one arc on the path of one crew.

An advantage to this representation is that a gene represents the most basic component of

a solution (an arc), so the entire search space is attainable through the evolutionary process. This

representation also presents many significant problems, though. Because solutions are of

different lengths, it must be checked that any crossover point actually exists in both solutions.

Moreover, the crossover point should be located in corresponding sub-strands in order to keep

the solution properly divided into separate paths for each crew. It may be necessary for two

parent solutions to have crossover points at different indices, but that is acceptable since

solutions will differ in their lengths anyway.

Supposing that the crossover leads to a disconnected path, a sub-path would need to be

inserted into the child solutions to make them feasible. This concept is illustrated in Figure 2.5.

19

Creating these “filler” paths presents a separate challenge. It might be that the path can be

traveled by using only cleared roads. In this case, Dijkstra’s algorithm (described below) can be

used to find the shortest path. However, there is also a chance that to get from one point to the

next requires clearing new roads. When this happens, the problem of finding the best path is

integrated into the larger problem. The quickest path might involve the least amount of road-

clearing, but then again, it might be better to take a little longer and do more clearing along the

way. The proper balance can only be determined by assessing the resulting quality of the larger

solution.

Figure 2.5: Conceptual illustration of a repair operator to make child solutions feasible after

crossover.

The need for this type of repair could be eliminated by stipulating that the crossover

points in the two parents must correspond to the same network node. Whether this stipulation is

20

included or not, however, some other issues are raised in the new solutions. Since parts of a

complete solution are eliminated, the new solution may not cover the entire map, or it may lead

some crews to travel on lower priority roads before the higher priority roads are cleared. More

repair operators would be needed to handle these problems. Additionally, since the traversal

time of an arc varies depending on whether it has already been cleared, and the “cleared” status

of an arc when a crew traverses it is so intricately woven into the rest of the solution, calculating

the quality (time) of a new solution would require running a simulation of the entire solution.

Most of these concerns can be alleviated by dividing the solution into priority levels, and

letting each gene represent the set of paths taken by all the crews in the course of clearing one

priority level. The completion of a priority level represents a specific benchmark in progress, so

the roads that have been cleared after completing a given priority level in one solution are the

exact same roads that have been cleared after completing that same priority level in a different

solution. Thus, in crossover, the only repair operator necessary is the one illustrated in Figure

2.5, which provides a sub-path to connect two other paths. It must be implemented for each

crew, but since the repair sub-paths can consist entirely of cleared roads, the shortest paths can

be determined by Dijkstra’s algorithm.

 Dijkstra’s algorithm [20] is described below. The “time” of a given node refers to the

time it takes to travel from the starting node to the given node, assuming all the roads in use have

been cleared. Nodes for which a time has not been determined are considered unsolved. Figure

2.6 provides a flow chart representation.

1. All nodes are initially marked as unsolved except the starting node, which is marked as

solved with a time of 0.

21

2. For all unsolved nodes that are adjacent to a solved node, calculate the “candidate time,”

which is the time to its adjacent solved node plus the extra time to get to the unsolved

node. If an unsolved node is adjacent to more than one solved node, the smallest

candidate time is used.

3. Choose the node with the smallest candidate time and mark it as solved with that time.

Keep track of the corresponding path to that node from the initial node.

4. Repeat steps 2 and 3 until the destination node has been solved.

Figure 2.6: Flow chart representing Dijkstra’s shortest-path algorithm adapted for minimizing

time.

A solution in this representation is thus made up of priority levels, which represent the

genes, and “transfers.” A transfer is a set of sub-paths (one for each crew) that takes the crews

from their respective locations upon finishing one priority level to their locations specified at the

22

beginning of the next. If n refers to the number of crews, then there are up to n! possible

transfers between any two priority levels. Since the commencement of work on the next priority

level assumes all crews are in their proper starting place, a transfer is measured by the longest (in

terms of time) of the paths of the individual crews. The fastest transfer according to this

evaluation method is chosen. It is noteworthy that given a set of starting and ending points, this

algorithm will always determine the fastest possible transfer.

Since no clearing progress is made in the transfers, they are not included in the

evolutionary process, except in the evaluation of a solution. Crossover produces a new

combination of genes, which are then connected by generating the appropriate transfers. The

time to clear each priority level is added together with the time to perform each transfer to yield

the total time for the solution.

Mutation is thus performed in this representation by changing one priority level. First, an

auxiliary solution is generated up to the beginning of the priority level in question. That priority

level can then be generated any number of times before the best version of it is inserted into the

selected solution as a mutation. Taking the best of several repetitions increases the likelihood

that the mutated gene will be of high quality. In all the tests run in this experiment, five

candidates are generated, and the best of these replaces the gene chosen for mutation, even if the

replacement is worse. The mutated genes are created according to the same heuristic being used

for the rest of the solution.

This representation also creates an option for a type of offshoot of elitism. It is likely that

the best times for individual levels come from different members of the population (after all, that

is the purpose of crossover). One way to generate elite solutions is to take the best of each level

from the whole population (i.e., the best gene in each respective position) and put them together

23

to create a solution. There is a good chance that this solution will be the best generated by the

whole process, but it is also certainly possible that the transfers required to make this solution

work are quite long, inflating the overall time required.

2.2 Case study layout

The Fort Stewart road network is represented in this problem in terms of arcs and nodes,

where each arc is a segment of road and each node is either an intersection or a dead-end. The

network consists of 808 nodes and 1,126 arcs. In total, these 1,126 arcs cover 4,567,656 feet of

road. The breakdown of roads by priority level is shown in Table 2.1, along with the percentage

of the total road length contained in each priority level. Figure 2.7 also illustrates the road

network of Fort Stewart, divided into the different priority levels. Road lengths are rounded to

the nearest foot, and percentages are rounded to the nearest 0.1%. As is evident from the table,

priority level 7 is by far the most substantial, while priority level 6 is comparatively almost non-

existent. However, all priority levels provide ample opportunities to waste time due to poor

planning, so they all must be considered important.

Table 2.1: Characteristics of each of the nine priority levels of the road network.

Priority level
Number of road

segments (arcs)
Length of road (feet)

Percentage of total

length

1 104 298,409 6.5

2 62 189,019 4.1

3 38 144,214 3.2

4 37 131,502 2.9

5 77 243,216 5.3

6 1 5,044 0.1

7 666 2,970,654 65.0

8 29 138,906 3.0

9 112 446,692 9.8

24

Figure 2.7: Road network at Fort Stewart divided into priority levels.

25

A theoretical lower limit clearing time can be determined by assuming that each crew

spends the entire time clearing, with no traversing of cleared roads and never having more than

two crews on the same arc. The theoretical lower limit would thus be the total number of feet of

road divided by the product of the number of crews and the clearing speed of each crew. For this

particular network, such a limit could never be attainable due at the very least to dead-ends,

loops, and bottlenecks such as the one depicted in Figure 1.1.

A single crew was assumed to be able to clear roads at a rate of half a foot per second.

Thus, two crews working together could clear at one foot per second. Under post-hurricane

conditions, on cleared roads, the crews were assumed to be able to travel 44 feet per second (30

mph) on state highways and 22 feet per second (15 mph) on other roads. State highways

constitute most of priority level 1, and are also mostly limited to that priority level. Figure 2.8

shows the road network divided into state highways and other roads.

Figure 2.8: Fort Stewart road network with state highways marked.

26

2.3 Experiment

In running a simulation, progress could only be made in discrete steps, which were time-

based. In one time step, each crew would travel along whatever arc it was on, clearing that arc if

necessary. Its speed was determined by considering (a) whether it was clearing debris, (b)

whether there was another crew helping it, and (c) whether the road was a state highway. For the

sake of simplicity of operation, when a crew reached the end of an arc during a time step, it

would have to wait until the next time step to commence traveling on the next arc. The amount

of time allocated to each time step was treated as a variable in the experiments.

All of the tests that were run were evaluated according to the quality of the best solution

found, the average quality of solution found, and the computation required, which was measured

in both time and a quantity called crew-steps. Each crew-step represented the computation

required to handle one crew in one time step.

The algorithms were written in the C# programming language. The experiments were

run on three different computers. CPU1 used an Intel® Pentium® 4, 2.60 GHz processor with

2.00 GB of RAM. CPU2 used an Intel® Xeon™, 3.60 GHz processor with 10.00 GB of RAM.

CPU3 used an Intel® Xeon®, 2.66 GHz processor with 8.00 GB of RAM.

The first test compared the rule-based heuristics. The number of crews was variable, as

was the size of the time step. Table 2.2 shows the values tested for each variable. Each possible

combination of variables (i.e., each of the 18 elements in the Cartesian product of the three

columns) was tested 20 times using CPU1.

27

Table 2.2: Variables in implementing rule-based heuristics. Each possible combination of one

variable from each column was used to run 20 simulations to compare the rule-based heuristics.

Rule set Number of crews Size of time step (seconds)

1 3 10

2 5 25

8 100

The next test integrated a basic implementation of level-based beam search with the rule-

based methods. The filter size in these tests was held at 1, while the exploration factor was

adjusted. In fact, the previous test could be seen as a special case of this test with the exploration

factor set to 1. Table 2.3 shows the values tested for each variable. Each possible combination

of variables from the four columns was tested 50 times using CPU1.

Table 2.3: Variables in implementing level-based beam search. Each combination of variables

was used to run 50 trials to compare the rule-based heuristics in conjunction with level-based

beam search with a filter size of 1.

Rule set Exploration factor Number of crews Size of time step (seconds)

1 3 3 10

2 10 5 25

 8 100

The two types of adapted local beam search were then tested, with each making use of

both rule-based heuristics as well as the random-choice method. With new variables being

introduced, the number of crews in these tests was held constant at 5, and the time step was held

constant at 25 seconds. The exploration factor was also held constant at 20. In the constant time

28

beam search, the variables were the rule set, the time threshold, and the filter size. Table 2.4

shows the values tested for each variable, and each possible combination consisting of one

variable from each column was tested 20 times. Experiments using rule set 1 and the random-

choice method were run on CPU2, with the exception of the combination of the random-choice

rule set, 5,000 second time threshold and filter size 2, which was run on CPU3. Experiments

using rule set 2 were run on CPU1. In the constant progress beam search, the variables were the

rule set, the progress threshold, and the filter size. Table 2.5 shows the values tested for each

variable, and each possible combination consisting of one variable from each column was tested

20 times. Experiments using rule set 1 were run on CPU3, while experiments using rule set 2

and the random-choice method were run on CPU1. Two exceptions are the combinations

involving the random-choice method, a progress threshold of 8,000 feet cleared, and filter sizes

of 5 and 2, which were run on CPU3.

Table 2.4: Variables in implementing constant time beam search. Each possible combination of

was used to run 20 trials. The number of crews was set to 5, the time step was set to 25 seconds,

and the exploration factor was set to 20.

Rule set
Time threshold

(seconds)
Filter size

1 5,000 10

2 10,000 5

Random-choice 25,000 2

250,000

29

Table 2.5: Variables in implementing constant progress beam search. Each possible

combination of variables was used to run 20 trials. The number of crews was set to 5, the time

step was set to 25 seconds, and the exploration factor was set to 20.

Rule set
Progress threshold

(feet cleared)
Filter size

1 8,000 10

2 20,000 5

Random-choice 50,000 2

250,000

The genetic algorithm also introduces more variables, so some of the parameters that

were varied in previous tests will be held constant in testing the genetic algorithm. The

populations, each consisting of 30 solutions, were created using level-based beam search in

conjunction with the first rule-based heuristic. The number of crews was set to 5, with an

exploration factor of 3, a filter size of 1, and a time step of 25 seconds. Two-point crossover was

used, and the crossover probability was held constant at 0.8. Each run was limited to 50

generations, but would terminate if 15 consecutive generations failed to improve on the best

solution found. In each generation, two “elite” solutions were created by using the best and

second-best, respectively, of each individual priority level. The selection method and mutation

probability were varied, and their values/types are shown in Table 2.6. Each possible

combination of values was tested 5 times using CPU1.

The last experiment tested whether the genetic algorithm could be used to improve upon

the solutions developed by the local beam search adaptations. The initial population of each run

of the genetic algorithm consisted of 30 solutions, which were developed using constant time

beam search in conjunction with rule-set 2. The number of crews was held constant at 5, and the

30

Table 2.6: Variables in implementing the genetic algorithm. Each possible combination of

variables was used to run 5 trials. Each run assumed 5 crews, two-point crossover with a

probability of 0.8, a convergence criterion of 15 consecutive generations without improvement,

and a population of 30 solutions created from level-based beam search in conjunction with rule-

set 1, an exploration factor of 3, a filter size of 1, and a time-step of 25 seconds.

Selection method Mutation probability

Ranked roulette 0.01

Tournament (size 2) 0.2

constant time beam search used a time step of 25 seconds, a time-threshold of 25,000 seconds, an

exploration factor of 20, and a filter size of 2. The genetic algorithm used ranked roulette

selection, two-point crossover with a probability of 0.8, and a mutation probability of 0.2. The

convergence criterion was again set to 15 consecutive generations without improvement, but the

number of generations was not capped. Two “elite” solutions were created in each generation in

the same way as described above. The experiment was run on CPU2.

31

CHAPTER 3

RESULTS

Table 3.1 shows the results from using rule method 1 while varying the number of crews

and the size of the time step. Recall that the time step is the amount of simulated time that

passes each time the state is updated. Each combination of parameters was tested 20 times on

CPU1. This method can be thought of as level-based beam search with the exploration factor set

to 1. For each given number of crews, the differences in solutions generated by using the three

different time steps were not statistically significant.

Table 3.2 shows the results from using rule method 2 while varying the number of crews

and the size of the time step. Each combination of parameters was tested 20 times on CPU1.

With three crews, the difference in average solution from using time steps of 10 seconds and 25

seconds are not statistically significant, but the differences between these and the solutions found

from using a time step of 100 seconds are statistically significant (p = 0.05). With five crews,

the solutions from using a time step of 10 seconds are not significantly different than those from

using a time step of either 25 seconds or 100 seconds, but the results from those two experiments

are statistically significantly different from each other. With eight crews, none of the three

experiments produced solutions that were statistically significantly different from any of the

others.

 When comparing rule method 1 to rule method 2 based on each given parameter

combination, the differences in solutions are statistically significant for all parameter

32

combinations involving three or five crews (p = 0.05). However, the differences are not

statistically significant for any of the combinations involving eight crews.

Table 3.3 shows the results from using rule method 1 in conjunction with level-based

beam search while varying the number of crews, the exploration factor, and the size of the time

step. The filter size was held constant at 1, and each parameter combination was run 50 times on

CPU1. For all the solutions from using three crews and a time step of either 10 seconds or 25

seconds, the differences are not statistically significant (p = 0.05). The solutions found from the

two experiments using three crews and a time step of 100 seconds are not significantly different

from each other, but are significantly different from those using three crews and smaller time

steps. Of the combinations involving five crews, the two that used a time step of 10 seconds

both differed significantly from the one that used a time step of 100 seconds and an exploration

factor of 10. Solutions found from the one using a time step of 10 seconds and an exploration

factor of 10 also differed significantly from those found by the one using a time step of 100

seconds and an exploration factor of 3. Otherwise, none of the combinations involving five

crews produced solutions statistically significantly different than any of the others (p = 0.05).

All six combinations involving eight crews produced results that were not significantly different

than any of the others.

Table 3.4 shows the results from using rule method 2 in conjunction with level-based

beam search while varying the number of crews, the exploration factor, and the size of the time

step. The filter size was held constant at 1, and each parameter combination was run 50 times on

CPU1. Of the solutions found using three crews, those that used a time step of 100 seconds and

an exploration factor of 10 were not statistically significantly different (p = 0.05) from those that

used a time step of 10 seconds or 25 seconds and an exploration factor of 3. The combinations

33

using an exploration factor of 10 and time steps of 10 seconds and 25 seconds did not differ

significantly from each other. Of the combinations involving five crews, none produced

solutions that were statistically significantly different than any of the others (p = 0.05), with the

exception of the one that used a time step of 100 seconds and an exploration factor of 3. Its

solutions were significantly different from those found using all the other combinations except

for a time step of 100 seconds and an exploration factor of 10. Of the combinations involving

eight crews, the solutions from the two combinations that used a time step of 10 seconds and the

one that used a time step of 10 seconds and an exploration factor of 10 were not statistically

significant (p = 0.05). The other three combinations also produced results that were not

statistically significantly different from each other.

 In the results from level-based beam search, when comparing rule method 1 to rule

method 2 with corresponding combinations of all the other parameters, most of the differences

are statistically significantly different (p = 0.05). The exceptions are when three crews are used

with an exploration factor of 10 (for all three time steps) and when eight crews are used with an

exploration factor of 3 (for time steps of 10 seconds and 25 seconds).

Table 3.5 shows the results from using constant time beam search in conjunction with

rule methods 1 and 2. The number of crews was set to 5, the time step was held constant at 25

seconds, and the exploration factor was set to 20. The time threshold and filter size were varied.

Each parameter combination was tested 20 times, but different computers were used. Table 3.6

shows the computers used for each test as well as the data regarding time and crew steps. A

comparison of the solutions found from constant time beam search in conjunction with either

rule method determined that any differences between any solutions produced by different

parameter combinations using a given rule method were not statistically significant (p = 0.05),

34

nor were any solutions produced by the different rule methods with a fixed parameter

combination.

 Table 3.7 shows the results from using constant time beam search in conjunction with the

random-choice method. The number of crews was set to 5, the time step was held constant at 25

seconds, and the exploration factor was set to 20. The time threshold and filter size were varied.

Each parameter combination was tested 20 times, but different computers were used. Table 3.8

shows the data regarding time and crew steps. Each of these tests was run on CPU2. Using any

given parameter combination, the solutions found from using constant time beam search in

conjunction with the random-choice method were significantly different than those found from

using constant time beam search in conjunction with either rule method (p = 0.05). Further, the

solutions found using combinations that included a time threshold of 250,000 seconds and the

random-choice method were significantly different from those using smaller time thresholds, but

not from each other.

Table 3.9 shows the results from using constant progress beam search in conjunction with

rule methods 1 and 2. The number of crews was set to 5, the time step was held constant at 25

seconds, and the exploration factor was set to 20. The progress threshold and filter size were

varied. Each parameter combination was tested 20 times, but different computers were used.

Table 3.10 shows the computers used for each test as well as the data regarding time and crew

steps. A comparison of the solutions found from constant progress beam search in conjunction

with either rule method determined that any differences between any solutions produced by

different parameter combinations using a given rule method were not statistically significant (p =

0.05), nor were any solutions produced by the different rule methods with a fixed parameter

combination.

35

Table 3.11 shows the results from using constant progress beam search in conjunction

with the random-choice method. The number of crews was set to 5, the time step was held

constant at 25 seconds, and the exploration factor was set to 20. The progress threshold and

filter size were varied. Each parameter combination was tested 20 times, but different computers

were used. Table 3.12 shows the computers used for each test as well as the data regarding time

and crew steps. All of the differences between solutions found using constant progress beam

search with the random-choice method and those found using constant progress beam search

with either rule method and corresponding parameter combinations were found to be statistically

significantly different (p = 0.05). The solutions found with the random-choice method and

progress thresholds of 8,000 feet or 20,000 feet were not significantly different from each other.

Those found using the random-choice method and progress thresholds of 50,000 feet were not

significantly different from each other, and those found using progress thresholds of 250,000 feet

were not significantly different from each other.

Table 3.13 shows the results from using genetic algorithms whose populations (of size

30) were generated using level-based beam search in conjunction with rule method 1. The

number of crews in each was set to 5, and the level-based beam search used an exploration factor

of 3, a filter size of 1, and a time step of 25 seconds. The genetic algorithm employed two-point

crossover with a crossover probability of 0.8. The number of generations was limited to 50,

though the algorithm would also terminate after 15 consecutive generations without

improvement. Two “elite” solutions were constructed in each generation, with the first

consisting of the best gene in the population at each priority level, and the second consisting of

the second-best gene in the population at each priority level. These solutions were passed

unchanged to the next generation. The selection method and mutation probability were variables

36

in these experiments, and each combination of these variables was tested 5 times. The tests were

run on CPU1. Table 3.14 shows the data regarding time and crew steps.

 Table 15 shows the results from the five trials of the genetic algorithm with each initial

population generated from constant time beam search in conjunction with rule method 2. Data

from each individual trial are displayed in addition to summary statistics.

37

Table 3.1: Results from using rule method 1. Based on 20 trials per parameter combination.

Standard

Standard

Time # Average deviation Best Average Average deviation

step of solution of solutions solution run time number of of crew

(s) crews (s) (s) (s) (s) crew steps steps

10 3 4,617,501 480,063 3,887,820 <5 1,385,250 144,019

5 2,831,315 146,328 2,602,190 <5 1,415,658 73,164

8 1,977,288 97,556 1,781,460 <5 1,581,830 78,045

 25 3 4,647,610 398,826 4,024,175 <5 557,713 47,859

5 2,886,934 171,787 2,629,300 <5 577,387 34,357

8 1,983,801 119,601 1,760,750 <5 634,816 38,272

 100 3 4,923,270 526,293 3,979,400 <5 147,698 15,789

5 3,148,355 353,377 2,721,400 <5 157,418 17,669

 8 2,166,305 170,137 1,859,500 <5 173,304 13,611

Table 3.2: Results from using rule method 2. Based on 20 trials per parameter combination.

Standard

Standard

Time # Average deviation Best Average Average deviation

step of solution of solutions solution run time number of of crew

(s) crews (s) (s) (s) (s) crew steps steps

10 3 5,258,382 808,591 4,457,330 <10 1,577,515 242,577

5 3,385,911 509,019 2,742,080 <10 1,692,956 254,509

8 2,106,146 296,460 1,797,440 <10 1,684,917 237,168

 25 3 5,215,060 719,753 3,893,400 <10 625,807 86,370

5 3,321,668 336,093 2,844,525 <5 664,334 67,219

8 2,113,124 210,497 1,797,725 <5 676,200 67,359

 100 3 6,707,120 832,337 4,914,100 <5 201,214 24,970

5 3,756,160 552,981 3,167,100 <5 187,808 27,649

 8 2,408,025 319,819 1,915,200 <5 192,641 25,586

38

Table 3.3: Results from using rule method 1 in conjunction with level based beam search.

Based on 50 trials per parameter combination.

Time

Average St. dev. of Best Average Average St. dev.

step # of Exploration solution solutions solution run time # of crew of crew

(s) crews factor (s) (s) (s) (s) steps steps

 10 3 3 4,223,658 349,100 3,716,210 10 4,087,332 214,779

10 4,418,399 470,262 3,636,070 36 13,745,045 391,699

5 3 2,658,209 142,060 2,416,650 8 4,375,814 214,023

10 2,540,345 197,609 2,343,050 29 14,566,652 365,034

8 3 1,896,921 97,682 1,701,390 8 4,745,624 168,835

10 1,831,264 53,283 1,718,980 28 15,864,677 528,065

 25 3 3 4,368,644 398,690 3,836,300 7 1,665,727 95,848

10 4,399,270 388,524 3,584,775 20 5,548,413 165,516

5 3 2,687,074 176,879 2,458,200 6 1,777,150 101,804

10 2,663,444 323,661 2,351,050 19 5,949,181 143,652

8 3 1,899,610 106,124 1,702,125 6 1,919,905 93,548

10 1,835,306 40,391 1,758,475 17 6,395,572 218,548

 100 3 3 4,801,304 532,662 3,972,400 5 451,124 25,593

10 4,751,722 510,802 3,844,300 15 1,482,782 48,704

5 3 2,894,426 302,371 2,482,800 5 474,306 24,756

10 2,930,802 411,817 2,482,300 14 1,584,744 52,319

8 3 1,986,042 90,256 1,842,900 5 519,208 26,696

10 1,898,090 54,512 1,800,200 14 1,727,880 64,829

39

Table 3.4: Results from using rule method 2 in conjunction with level based beam search.

Based on 50 trials per parameter combination.

Time

Average St. dev. of Best Average Average St. dev.

step # of Exploration solution solutions solution run time # of crew of crew

(s) crews factor (s) (s) (s) (s) steps steps

 10 3 3 4,737,307 420,531 3,795,850 14 4,630,995 512,089

10 4,413,871 142,292 4,193,250 48 15,573,762 724,465

5 3 3,215,361 572,323 2,504,960 13 4,846,117 437,749

10 3,316,731 262,421 2,589,030 42 16,319,731 845,895

8 3 2,144,775 440,612 1,686,110 12 5,133,404 418,606

10 2,124,572 378,124 1,737,200 52 16,927,300 730,512

 25 3 3 5,018,978 575,533 4,370,375 11 1,980,847 193,176

10 4,443,611 149,650 4,161,650 32 6,735,208 406,464

5 3 3,335,400 603,623 2,565,325 10 2,021,152 213,989

10 3,310,740 214,182 3,104,425 29 6,756,745 324,137

8 3 2,115,122 340,874 1,789,575 10 2,093,518 123,264

10 2,445,863 452,898 1,789,400 31 7,108,601 329,779

 100 3 3 5,353,086 490,937 4,690,700 8 581,959 57,018

10 4,776,444 285,572 4,402,900 25 1,946,498 123,985

5 3 3,677,938 486,471 2,669,700 7 553,230 45,677

10 3,463,860 182,104 3,184,700 24 1,865,395 101,159

8 3 2,469,070 548,448 1,864,800 10 583,393 50,623

10 2,594,268 437,537 1,894,500 31 1,906,076 105,191

40

Table 3.5: Results from using constant time beam search combined with each rule method.

Based on 20 trials per parameter combination. The number of crews was set to 5, the time-step

was set to 25 seconds, and the exploration factor was set to 20.

Time Average St. dev. of Best

Filter threshold solution solutions solution

Rule set size (s) (s) (s) (s)

 1 10 5,000 2,152,179 26,278 2,082,425

10 10,000 2,160,673 36,874 2,083,125

10 25,000 2,230,170 33,585 2,185,075

10 250,000 2,375,721 45,276 2,296,625

5 5,000 2,177,849 52,397 2,111,975

5 10,000 2,165,461 33,316 2,117,825

5 25,000 2,201,094 30,885 2,138,025

5 250,000 2,410,270 46,471 2,326,200

2 5,000 2,176,278 48,992 2,081,625

2 10,000 2,190,018 32,781 2,127,400

2 25,000 2,194,614 30,745 2,145,075

2 250,000 2,469,931 60,692 2,327,075

 2 10 5,000 2,122,199 35,847 2,054,050

10 10,000 2,142,664 34,149 2,090,425

10 25,000 2,224,960 38,403 2,174,525

10 250,000 2,422,214 53,309 2,345,975

5 5,000 2,131,370 39,405 2,073,600

5 10,000 2,130,249 30,341 2,084,875

5 25,000 2,181,531 36,069 2,134,625

5 250,000 2,436,770 54,025 2,336,875

2 5,000 2,131,694 26,503 2,085,075

2 10,000 2,137,634 31,102 2,073,250

2 25,000 2,176,515 33,627 2,131,625

2 250,000 2,529,059 79,443 2,388,500

41

Table 3.6: Computational demand from using constant time beam search in conjunction with

each rule method. Based on 20 trials per parameter combination. The number of crews was set

to 5, the time-step was set to 25 seconds, and the exploration factor was set to 20.

Time

Average Average

Filter threshold

runtime # of crew St. dev. of

Rule set size (s) CPU (min) steps crew steps

 1 10 5,000 2 27 8,682,253 105,783

10 10,000 2 15 8,795,858 149,364

10 25,000 2 7 9,305,253 139,171

10 250,000 2 3 10,955,791 109,867

5 5,000 2 39 8,740,709 211,487

5 10,000 2 22 8,738,162 122,641

5 25,000 2 11 9,018,073 129,506

5 250,000 2 3 10,839,950 142,771

2 5,000 2 48 8,716,396 196,798

2 10,000 2 18 8,793,514 133,663

2 25,000 2 11 8,882,171 127,866

2 250,000 2 3 10,703,584 171,111

 2 10 5,000 1 11 8,555,500 141,445

10 10,000 1 6 8,748,515 129,481

10 25,000 1 3 9,316,057 157,002

10 250,000 1 1 11,645,280 224,182

5 5,000 1 17 8,553,788 159,475

5 10,000 1 8 8,594,993 123,647

5 25,000 1 4 8,966,542 158,685

5 250,000 1 1 11,084,270 135,383

2 5,000 1 19 8,541,527 103,782

2 10,000 1 9 8,591,981 123,550

2 25,000 1 4 8,838,490 143,454

2 250,000 1 2 11,012,883 237,459

42

Table 3.7: Results from using constant time beam search in conjunction with the random-choice

method. Data summaries are based on 20 trials per parameter combination. The number of

crews was set to 5, the time-step was set to 25 seconds, and the exploration factor was set to 20.

Time Average St. dev. of Best

Filter threshold solution solutions solution

size (s) (s) (s) (s)

 10 5,000 2,805,446 124,052 2,613,375

10 10,000 2,942,794 83,076 2,773,375

10 25,000 3,161,538 69,681 3,036,575

10 250,000 3,829,554 173,139 3,521,625

 5 5,000 2,790,815 118,654 2,569,625

5 10,000 2,855,869 115,785 2,701,475

5 25,000 3,023,398 66,612 2,888,450

5 250,000 3,787,784 132,109 3,543,475

 2 5,000 2,893,381 187,639 2,604,025

2 10,000 2,853,494 116,493 2,634,550

2 25,000 3,003,114 104,060 2,812,525

2 250,000 3,878,983 185,567 3,542,950

43

Table 3.8: Computational demand from using constant time beam search combined with the

random-choice method. Data summaries are based on 20 trials per parameter combination. The

number of crews was set to 5, the time-step was set to 25 seconds, and the exploration factor was

set to 20.

Time Average Average

 Filter threshold runtime # of crew St. dev. of

size (s) (min) steps crew steps

 10 5,000 34 11,379,659 494,042

10 10,000 20 12,106,524 336,980

10 25,000 10 13,461,895 309,989

10 250,000 4 20,188,753 639,769

 5 5,000 49 11,219,546 475,257

5 10,000 25 11,574,149 463,870

5 25,000 13 12,540,603 287,925

5 250,000 4 18,666,686 490,992

 2 5,000 14 11,599,072 751,142

2 10,000 32 11,481,813 467,363

2 25,000 15 12,261,513 427,233

2 250,000 5 17,541,932 730,368

44

Table 3.9: Results from using constant progress beam search in conjunction with each rule

method. Data summaries are based on 20 trials per parameter combination. The number of

crews was set to 5, the time-step was set to 25 seconds, and the exploration factor was set to 20.

Progress Average St. dev. of Best

Filter threshold solution solutions solution

Rule set size (ft) (s) (s) (s)

 1 10 8,000 2,177,008 31,807 2,135,650

10 20,000 2,197,910 24,541 2,147,475

10 50,000 2,262,259 32,873 2,205,775

10 250,000 2,349,321 47,769 2,268,425

5 8,000 2,174,166 55,242 2,102,050

5 20,000 2,182,175 20,137 2,137,450

5 50,000 2,213,440 40,937 2,148,625

5 250,000 2,358,744 48,645 2,287,300

2 8,000 2,162,754 35,956 2,093,575

2 20,000 2,166,685 29,922 2,114,050

2 50,000 2,219,840 33,835 2,160,600

2 250,000 2,338,019 31,118 2,280,900

 2 10 8,000 2,143,019 53,166 2,087,625

10 20,000 2,161,286 27,992 2,098,400

10 50,000 2,220,895 35,619 2,166,350

10 250,000 2,371,960 56,079 2,285,425

5 8,000 2,138,854 40,454 2,054,400

5 20,000 2,150,559 35,961 2,072,700

5 50,000 2,184,671 34,790 2,131,775

5 250,000 2,330,259 50,723 2,252,950

2 8,000 2,153,744 39,196 2,094,575

2 20,000 2,176,575 44,291 2,078,700

2 50,000 2,191,504 22,002 2,156,825

2 250,000 2,326,290 71,122 2,224,125

45

Table 3.10: Computational demand from using constant progress beam search combined with

each rule method. Based on 20 trials per parameter combination. The number of crews was set

to 5, the time-step was set to 25 seconds, and the exploration factor was set to 20.

Progress

Average Average

Filter threshold

runtime # of crew St. dev. of

Rule set size (ft) CPU (min) steps crew steps

 1 10 8,000 3 4 10,477,275 267,786

10 20,000 3 2 10,971,533 252,599

10 50,000 3 1 11,456,088 246,086

10 250,000 3 <1 11,913,588 306,685

5 8,000 3 7 10,180,739 404,542

5 20,000 3 3 10,882,165 278,555

5 50,000 3 <1 11,128,743 372,091

5 250,000 3 <1 11,977,559 305,350

2 8,000 3 8 9,742,283 370,433

2 20,000 3 4 10,447,563 310,927

2 50,000 3 1 11,025,659 281,872

2 250,000 3 <1 11,892,460 275,618

 2 10 8,000 1 14 11,124,889 807,238

10 20,000 1 7 11,539,684 563,865

10 50,000 1 4 12,199,614 566,662

10 250,000 1 2 13,057,073 448,327

5 8,000 1 21 10,574,935 817,322

5 20,000 1 10 11,002,044 439,823

5 50,000 1 5 11,823,058 702,745

5 250,000 1 2 13,126,021 457,687

2 8,000 1 25 10,188,894 655,950

2 20,000 1 11 11,038,479 749,431

2 50,000 1 6 11,681,186 502,235

2 250,000 1 2 13,196,334 730,473

46

Table 3.11: Results from using constant progress beam search combined with the random-choice

method. Data summaries are based on 20 trials per parameter combination. The number of

crews was set to 5, the time-step was set to 25 seconds, and the exploration factor was set to 20.

Progress Average St. dev. Of Best

Filter threshold solution solutions solution

size (ft) (s) (s) (s)

 10 8,000 2,921,944 125,833 2,747,125

10 20,000 3,132,581 84,849 2,980,200

10 50,000 3,400,223 98,807 3,218,200

10 250,000 3,881,554 164,765 3,634,525

 5 8,000 2,822,818 123,997 2,644,775

5 20,000 3,018,069 131,022 2,871,950

5 50,000 3,267,364 119,096 3,063,725

5 250,000 3,843,765 183,498 3,526,725

 2 8,000 2,823,255 132,029 2,557,475

2 20,000 2,954,930 124,748 2,721,800

2 50,000 3,264,565 104,757 3,135,300

2 250,000 3,794,609 134,550 3,566,625

47

Table 3.12: Computational demand from using constant progress beam search combined with

the random-choice method. Data summaries are based on 20 trials per parameter combination.

The number of crews was set to 5, the time-step was set to 25 seconds, and the exploration factor

was set to 20.

Progress

Average Average

 Filter threshold

runtime # of crew St. dev. of

size (ft) CPU (min) steps crew steps

 10 8,000 1 15 21,501,879 1,357,692

10 20,000 1 7 24,058,856 1,260,759

10 50,000 1 4 25,853,471 738,374

10 250,000 1 2 27,206,019 882,159

 5 8,000 3 7 19,925,818 1,645,200

5 20,000 1 10 23,032,021 1,214,480

5 50,000 1 5 25,098,046 1,143,694

5 250,000 1 3 27,260,201 1,197,047

 2 8,000 3 8 19,909,736 2,152,342

2 20,000 1 11 22,300,013 1,698,992

2 50,000 1 6 24,832,531 1,367,439

2 250,000 1 3 27,299,862 1,361,670

48

Table 3.13: Results from running the genetic algorithm five times with each combination of

variables, using level based beam search to generate the initial population.

Average St. dev. of

Average St. dev. of generation generation

Selection Mutation best solution best solution finding finding

method probability (s) (s) best solution best solution

 Ranked 0.2 2,235,308 21,422 36.6 19.1

roulette 0.01 2,272,907 22,760 2.2 2.2

 Tournament 0.2 2,230,524 16,739 34.4 17.2

(size 2) 0.01 2,310,353 34,284 3.2 2.9

Table 3.14: Computational demand from running the genetic algorithm with the initial

population generated using level-based beam search. Data summaries are based on five trials per

parameter combination.

Average St. dev. of Average

Selection Mutation number of number of runtime

method probability crew steps crew steps (h)

 Ranked 0.2 180,284,640 37,588,791 4.94

roulette 0.01 55,765,522 1,431,437 1.58

 Tournament 0.2 177,830,344 38,439,168 4.79

(size 2) 0.01 56,939,024 2,635,052 1.78

49

Table 3.15: Results from running the genetic algorithm with the initial population generated

using constant time beam search combined with rule method 2.

Generation

Best finding Number

solution best of crew Runtime

Trial (s) solution steps (h)

 1 2,017,988 139 4,727,301,185 22

2 2,025,208 76 2,939,538,120 14

3 2,043,346 38 1,664,340,780 8

4 2,028,271 87 3,270,284,440 15

5 2,036,025 29 1,681,842,845 7

 Average 2,030,168 74 2,856,661,474 13

Standard Deviation 9,805 44 1,272,701,150 6

50

CHAPTER 4

DISCUSSION

 The problem addressed in these experiments was very complex, so a number of

assumptions were made for simplification. Some of these assumptions will be revisited in this

section, and the adaptability of the algorithms to scenarios where these assumptions do not hold

will be addressed. An analysis of results will determine the comparative effectiveness of the

heuristics tested. Positive and negative aspects of the heuristics will be discussed, along with

possible future directions of the problem.

4.1 Revisiting assumptions

 Many of the assumptions were simply made to specify the problem to be solved. One

such assumption was that the amount of tree-related debris falling onto roads was constant. In

real life, an even distribution is unlikely. The algorithms developed, however, do not depend on

this assumption. A quick aerial survey could determine the demand distribution, and the status

of each road can be set before running the algorithm. Any roads that are unaffected by the winds

can be marked “cleared” and set to priority level 1, so they can be used at any time. The rate at

which crews clear the roads can also be set to depend on the road without affecting the operation

of the algorithm, so roads with light coverage can be assumed to take less time.

 In addition to depending on the demand of the particular road, the rate at which a crew

clears debris can be dependent on the crew. The assumption that all crews work at the same pace

is not necessary for the algorithm to function, nor is the assumed pace of half a foot per second,

51

so each crew in the simulation can be assigned different capabilities. A related assumption is

that a maximum of two crews can work effectively on the same road. This number can change,

and a formula can also be developed to accommodate the idea of multiple crews with different

levels of capability working on the same road. All these changes can be smoothly incorporated

into the algorithms.

 The speeds at which the crews travel on cleared roads can also be much more variable

than what was assumed in this problem. The assumption was that all crews could travel 30 miles

per hour on state highways and 15 miles per hour on other roads, once they have been cleared.

As with the clearing speeds, these rates can be adjusted for each individual road and also be

dependent on the crew. Since the road conditions can be expected to improve in the days after

the hurricane, these assumed speeds can even change over the course of the operation.

 The assumption that all crews leave initially from a single depot is also not crucial to the

operation of the algorithm. The crews can start from anywhere, whether they are in scattered

locations or clustered together. However, due to protocols developed by the Department of

Defense, the initial staging area needs to be clear of surrounding hazards, thus the initial staging

area at Fort Stewart is an airfield. Certain initial placements may cause conflicts with the

priority constraints, though, which could be handled by assigning top priority to avenues that

connect a crew’s initial location to the priority 1 network.

 Additionally, all the crews might not be available immediately or throughout the entirety

of the process, as was assumed. In a real case of hurricane damage, most people will be allowed

attend to their immediate personal issues first before attending to road management issues. This

may cause uneven crew availability throughout the response and recovery stages of a hurricane.

Crews can be added or subtracted to the fleet without affecting the algorithm. However, the

52

times and locations at which they are added or subtracted would have to be assumed prior to

developing a solution.

 There are also some assumptions that, if disregarded, might require large changes to the

algorithm. One is that all crews work constantly until the entire network is clear. In reality,

breaks will be necessary, and they may involve returning to the depot or to some other location,

such as a barracks. Certainly, interruptions in the availability of fuel and supplies may cause

interruptions in debris-clearing progress. These types of issues are difficult to predict in a

chaotic environment. However, in order to develop solutions to this problem, the algorithm

would have to be adjusted to include these necessary extra routes at the appropriate times.

 The hard priority constraint greatly simplified the problem, but in a real-life scenario,

strictly following the constraint would likely hinder the debris cleanup effort. As a priority level

nears completion, it can often be the case that not all the crews can clear debris, since there may

not be enough accessible roads needing to be cleared. At this point, the excess crews should start

on the next priority level, even though the current one is not quite finished. There may also be

cases where clearing a low-priority road opens up an avenue that enables the crews to more

quickly clear the high priority roads. However, allowing for these exceptions opens up a

drastically larger search space, making it harder to find a good solution.

4.2 Analysis of results

These experiments considered three real-life scenarios involving clearing debris from the

roads at Fort Stewart: one made use of three crews, one made use of five crews, and one made

use of eight crews. A theoretical lower bound of the clearing time can be calculated for each

scenario by assuming all crews are constantly clearing roads, without ever driving back over any

53

roads that have already been cleared or having more crews in one place than can effectively

contribute to the job. This lower bound is the result of dividing the total amount of road by the

product of the number of crews and the clearing speed of each crew. The theoretical lower limits

of each scenario were calculated and are shown in Table 4.1. Solutions can be scaled down by

dividing by the corresponding theoretical limit, producing an inefficiency index. This index will

allow for easier comparison of solutions.

Table 4.1: Theoretical lower limits for three, five, and eight crews. These are based on the

assumption that all crews constantly clear debris until all roads have been cleared.

Number of crews Theoretical lower limit (s)

3 3,045,104

5 1,827,062

8 1,141,914

 For obvious reasons, increasing the number of crews decreases the amount of time

required to clear the network. Generally, however, an increase in the number of crews led to an

increase in the inefficiency index. Figures 4.1 and 4.2 show the trends produced by rule methods

1 and 2, respectively, when varying the number of crews. The figures show the average

inefficiency indices produced by the various parameter combinations of each rule method

operating as the sole heuristic or in conjunction with level-based beam search.

 The decrease in efficiency with more crews likely has mostly to do with the limit on the

number of crews that can work effectively in one place. In a bottleneck like the one shown in

Figure 1.1, any number of crews beyond two is rendered useless until the network branches out.

Thus, a higher number of crews leads to a higher percentage of unutilized workers. Similar

54

Figure 4.1: Effect of number of crews on inefficiency index when using rule method 1.

Figure 4.2: Effect of number of crews on inefficiency index when using rule method 2.

1.3

1.5

1.7

1.9

3 5 8

In
ef

fi
ci

en
cy

 i
n

d
ex

Number of crews

Rule method only, time step 10 s Level-based, expl factor 3, time step 10 s

Level-based, expl factor 10, time step 10 s Rule method only, time step 25 s

Level-based, expl factor 3, time step 25 s Level-based, expl factor 10, time step 25 s

Rule method only, time step 100 s Level-based, expl factor 3, time step 100 s

Level-based, expl factor 10, time step 100 s

1.3

1.5

1.7

1.9

2.1

2.3

3 5 8

In
ef

fi
ci

en
cy

 i
n

d
ex

Number of crews

Rule method only, time step 10 s Level-based, expl factor 3, time step 10 s

Level-based, expl factor 10, time step 10 s Rule method only, time step 25 s

Level-based, expl factor 3, time step 25 s Level-based, expl factor 10, time step 25 s

Rule method only, time step 100 s Level-based, expl factor 3, time step 100 s

Level-based, expl factor 10, time step 100 s

55

situations can arise when a priority level is nearing completion, as there may be more crews than

available places for them to work.

Whether the rule-based methods performed in isolation or in conjunction with level-

based beam search, rule method 1 generally resulted in better solutions than rule method 2.

Figure 4.3 shows the average inefficiency index generated by each set of experiments across all

the parameter combinations tested. These results were surprising because rule method 2 was

intended to eliminate some inefficient behaviors generated by rule method 1.

Figure 4.3: Comparison of rule methods 1 and 2.

To allow time to test other parameter variations, subsequent heuristics were only tested

using a time step of 25 seconds and an assumption of 5 crews. Constant time beam search and

constant progress beam search both produced drastically better results than the previous

experiments. Using rule method 1 in conjunction with level-based beam search with an

0

0.5

1

1.5

2

2.5

Rule method only Combined with level-

based beam search

(exploration factor 3)

Combined with level-

based beam search

(exploration factor 10)

In
ef

fi
ci

en
cy

 i
n

d
ex

Method 1 Method 2

56

exploration factor of 3, the average solution with 5 crews and a 25-second time step had an

inefficiency index of 1.47. Increasing the exploration factor to 10 slightly improved the results,

producing an average index of 1.46. The average solution using rule method 1 and constant time

beam search (across all parameter combinations) had an inefficiency index of 1.23. When only

considering solutions produced using a time threshold of 25,000 seconds or less, the index drops

to 1.19. When using rule method 2, this number sinks to 1.18. Constant progress beam search

produces nearly identical improvements using parameter combinations involving a progress

threshold of 20,000 feet or less.

In both constant time beam search and constant progress beam search, changing the filter

size had very little effect on the results. There was a noticeable trend, however, resulting from

changes in the respective threshold. Figure 4.4 shows the average solution resulting from each

time threshold, over all filter sizes, for constant time beam search in conjunction with rule

methods 1 and 2. Figure 4.5 shows the average solution resulting from each progress threshold,

over all filter sizes, for constant progress beam search in conjunction with rule methods 1 and 2.

Smaller time and progress thresholds produce better results because they evaluate the

solution more often in the development process. However, implementing smaller time and

progress thresholds also leads to longer runtimes due to the extra computation necessary. The

right balance is dependent on how much time and computing power is available. There is also

likely a lower limit to this trend, since the lowest possible thresholds are merely greedy searches.

 While rule method 1 produced better results than rule method 2 using the earlier methods,

both constant time beam search and constant progress beam search performed slightly better with

rule method 2. Interestingly, as the time and progress thresholds became very large, and thus the

process became more like the earlier methods, rule method 2 lost its advantage.

57

Figure 4.4: Average solutions using constant time beam search in conjunction with each rule

method at various time thresholds. Note that the interval on the horizontal axis is not constant.

Figure 4.5: Average solutions using constant progress beam search in conjunction with each rule

method at various progress thresholds. Note that the interval on the horizontal axis is not

constant.

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

5,000 10,000 25,000 250,000

In
ef

fi
ci

en
cy

 I
n

d
ex

Time threshold (seconds)

Method 1 Method 2

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

8,000 20,000 50,000 250,000

In
ef

fi
ci

en
cy

 i
n

d
ex

Progress threshold (feet cleared)

Method 1 Method 2

58

 Unsurprisingly, the adaptations of local beam search did not perform as well in

conjunction with the random-choice method as with the rule-based methods. Even with a time

threshold of 5,000 seconds, constant time beam search produced an average inefficiency index of

1.55 with the random-choice method. With a progress threshold of 8,000 feet, constant progress

beam search produced an average inefficiency index of 1.56 with the random-choice method.

Additionally, while the method for choosing a path was simpler, producing a solution generally

took more time using the random-choice method because the poor solutions required longer

paths and thus more choices to be made.

 In running the genetic algorithm with a population generated from level-based beam

search, the selection method had little effect on the quality of solutions found. A higher mutation

probability, however, enabled the algorithm to run longer before becoming stagnant, thus

producing better solutions. The solutions found from using a mutation probability of 0.2 had an

average inefficiency index of 1.22, while those found from using a mutation probability of 0.01

had an average index of 1.25. These solutions were improvements from level-based beam

search, but were not as good as constant time or constant progress beam search. Four of the five

genetic algorithms run with a mutation probability of 0.2 terminated because of the 50-

generation limit rather than the stagnation criterion, so it is possible they would have found better

solutions than they did. However, solutions generated using this mutation probability took an

average of nearly five hours to find. Those generated using a mutation probability of 0.01 took

an average of over an hour and a half. Better solutions could be found using constant time or

constant progress beam search in minutes.

 The best solutions were produced by the combination of all three types of heuristics: a

rule set, a local beam search adaptation, and a genetic algorithm. The only such combination

59

tested used rule method 2, constant time beam search with a time threshold of 25,000 seconds,

and a genetic algorithm with a mutation probability of 0.2. Each of the five runs produced a

better solution than the best solution found by any other algorithm. Four of the five solutions

found had an inefficiency index of 1.11, while the best had an inefficiency index of 1.10. The

best found by any other combination of heuristics had an inefficiency index of 1.12 and was a

product of constant time beam search in conjunction with rule method 2. This three-heuristic

combination took an average of 13 hours to find a solution, though, so again, its value depends

on the time and computing power available.

4.3 Analysis of the algorithms and implementations

 The adaptations of local beam search, in conjunction with the rule-based methods, were

responsible for most of the development of the best solutions. There was little difference

between the solutions found from constant time beam search and those found from constant

progress beam search, and within those heuristics, little difference between the solutions found

employing rule method 1 and those found employing rule method 2. The only factor that made a

noticeable difference in the performance of these heuristics was the size of the respective time or

progress threshold. Even those parameters were not reported to provide significantly different

results (p = 0.05), but the trend was apparent in Figures 4.4 and 4.5. The statistical significance

testing may also have been less robust than it could have been since the sample sizes were

limited to 20 solutions generated by each parameter combination.

 After all its extended efforts, the genetic algorithm did ultimately prove to be of some

value by improving upon the solutions found by the other heuristics. One source of the labor

encountered by the genetic algorithm was the repair operator. While Dijkstra’s algorithm is

60

simple to implement, it can require large amounts of computational effort in large networks.

Since each transfer required n
2
 executions of Dijkstra’s algorithm (where n is the number of

crews), crossover was an expensive operation. It may be beneficial to try to find or develop a

faster repair operator.

One possible way to improve these algorithms is to develop different, and perhaps more

complex, rule sets. The ones applied to this problem were intended to be equally applicable to

any connected network. Some specific aspects of the Fort Stewart network could possibly be

used to improve this algorithm’s performance in this particular network. For instance, many of

the priority levels in the Fort Stewart network are localized to particular areas of the map due to

particular aspects of the training mission of the army. Nothing in either rule method directs a

crew to roads that need to be cleared unless the crew happens to drive past such a road. That

kind of direction could save significant amounts of time spent searching for roads to service.

The magnitude of the Fort Stewart problem makes the use of mathematical methods or

integer programming an unrealistic means of finding solutions. The simulation representation

used in this experiment not only can handle a problem this large, but also is adaptable to changes

in the assumptions about the problem or the landscape. Another significant aspect of this

approach is that it has no problem figuring out how to handle loops or dead ends; a

straightforward Dijkstra’s algorithm would need computational caveats to address these. There

are, of course, elements of a real scenario that are not accounted for in the simulation algorithm.

The simulations used in the experiment are discrete representations of a continuous

process, and the size of the time step can be thought of as the “resolution” of the simulation.

When a crew reaches the end of an arc in a simulation, it remains at that point until the end of the

time step, whereas in real life, it would immediately choose its next arc and continue its task.

61

This “lost” time upon reaching the end of an arc is a source of error, and the potential for this

error increases with the size of the time step. Note also that this type of error can only serve to

overestimate the time required to clear the road network. Thus, the same solution executed with

two different-sized time steps will generally yield a better result with the smaller time step.

However, the amount of computation necessary to run the simulation is directly related to

how many times the computer must update the status of the crews. Thus, smaller time steps lead

to more computational effort. Finding the right balance to generate an accurate, high-quality

solution in a reasonable amount of time depends on the priorities of the user.

Another concept that was not represented in the algorithm was that of turning around in

the middle of an arc. It may be better in some situations for two crews to team up on the first

half of a section of road, but then have one of the crews turn around and clear debris elsewhere

while the other crew finishes the task at hand. In this implementation, however, crews only

make decisions at the nodes, and the arcs are only designated as fully cleared or not cleared. A

related oversight in the implementation involves the ability for more than two crews to work on

an arc at the same time. If two crews clear debris from one end, and two crews clear debris from

the other, they would not impede each other’s progress. This implementation, however, only

recognizes the number of crews on the arc in determining whether an additional crew adds value.

Several minor adjustments were made to the data as well and should be noted. The

priority levels of five arcs were changed in order to make the problem feasible, as these arcs

created disconnected networks. Additionally, the ending node of one arc was changed to match

the map image. The arc had originally been represented as being completely disconnected from

the rest of the network.

62

4.4 Future directions

 The next step in this problem would be to test the effects of changing some of the

assumptions mentioned in section 4.1. While the algorithm as it stands can function under many

different sets of assumptions, it may be that the rule sets are not very appropriate when the

assumptions change. If the priority constraints are softened, the rule sets would need a major

overhaul, and the objective function would also have to be adjusted. Currently, the objective

function consists solely of the time it takes to finish clearing the network. An alternate objective

function could be composed of the elapsed time upon clearing each priority level, perhaps with

different weights associated with each. In a real recovery scenario, this layered objective

function with soft priority constraints would probably provide a more appropriate solution.

 Another issue to consider is that whatever assumptions are made are not likely to hold

entirely true. Since the crews may take breaks each night (if not replaced with other workers), it

can be expected that the algorithm would be re-run each night upon updating the state of the

roads and probably adjusting some assumptions. This approach would prevent errors in

assumptions from propagating through the entire recovery process.

 The best solution found in this experiment, assuming five cleanup crews, still required

about three and a half weeks of nonstop debris removal. If the crews were to work twelve-hour

days, seven days a week, it would take about seven weeks. After several weeks, it may be that

the focus shifts from clearing the roads to salvaging lumber. At this point, the objective becomes

something entirely different. Rather than minimize the amount of time required to clear the

roads, the objective may be to maximize the value of the recovered logs, since most of the main

arteries throughout the installation would be open, and thus the speed at which the roads are

cleared may not be as critical. In this case, the demand load would change as well, since it takes

63

longer to buck and trim limbs and load the wood onto log trucks than it would to simply clear a

tree from the road.

4.5 Validation of results

 Solutions to this problem had never been developed previously, so there are no past

results against which to validate these. Different combinations of heuristics were validated

against each other, and the heuristics that were made of combinations of other heuristics

generally produced better results than the isolated heuristics. This is considered a self-validation

process (Level 2) [21], where best case performance, average case performance, and variation in

the results were examined, along with tests of the sensitivity of heuristic parameters. In cases

where exact solutions to problems are unavailable, self-validation is an adequate way of

assessing solutions from a new heuristic applied to a new problem. However, all of the solutions

were also validated against a theoretical optimum, which was unattainable due at the very least to

bottlenecks, dead ends, and loops. In the future, it may be possible to validate the algorithm

against a small, theoretical problem that can be solved with integer or mixed-integer

programming.

64

CHAPTER 5

CONCLUSION

 The Fort Stewart road-clearing problem presented a challenge unique from other

Hierarchical Chinese Postman Problems and Capacitated Arc Routing Problems due to the

stipulation that roads must be serviced on their first traversal. Having multiple crews was an

added challenge, and the limit on the number of crews that could effectively work in the same

location provided yet another challenge on top of that. The size of the network, the road

prioritization, and all the factors that determine how fast the crews can traverse the arcs, make it

practically impossible to use mathematical methods to solve this problem. Thus, heuristic

methods were developed to try to find the best solution possible.

 Two basic rule sets were conceived to provide general guidelines for the cleanup crews in

choosing their routes. The idea of local beam search was then adapted in three ways to fit this

problem. The rule sets and the local beam search adaptations were tested independently and

provided some baseline results. When the heuristics were combined, they produced much better

results in a reasonable amount of time.

A representation was developed to enable the use of a genetic algorithm to develop

solutions as well. Level-based beam search, which was the weakest but simplest (and fastest) of

the three local beam search adaptations, was combined with one of the rule sets to generate the

initial population of the genetic algorithm. From that initial population, the genetic algorithm

was able to produce solutions almost as good as those from the local beam search adaptations,

but with far more computational effort.

65

Finally, a stronger local beam search adaptation was combined with a rule set to generate

the initial population of the genetic algorithm. Though the process took many hours, the

resulting solutions were better than anything else that had been found. Each heuristic, when

combined with the others, provided an enhancement.

66

REFERENCES

[1] United States Federal Emergency Management Agency. (1993). Emergency

management guide for business and industry: A step-by-step approach to emergency

planning, response and recovery for companies of all sizes. Washington: United States

Federal Emergency Management Agency.

[2] American Planning Association. (2012). Planning For Post-Disaster Recovery: Next

Generation. Chicago: American Planning Association. Retrieved April 6, 2012, from

http://www.planning.org/research/postdisaster/

[3] Benavent, E., Campos, V., Corberán, & Mota, E. (1990). The capacitated arc routing

problem. A heuristic algorithm. Qüestiió, 14(1,2,3), 107-122.

[4] Dror, M., Stern, H., & Trudeau, P. (1987). Postman tour on a graph with precedence

relations on arcs. Networks, 17, 283-294.

[5] Golden, B. L., & Wong, R. T. (1981). Capacitated arc routing problems. Networks, 11,

305-315.

[6] Perrier, N., Langevin, A., & Amaya, C. A. (2008). Vehicle routing for urban snow

plowing operations. Transportation Science, 42(1), 44-56.

[7] Monroy, I. M., Amaya, C. A., & Langevin, A. (in press). The periodic capacitated arc

routing problem with irregular services. Discrete Applied Mathematics.

[8] Cabral, E. A., Gendreau, M., Ghiani, G., Laporte, G. (2004). Solving the hierarchical

Chinese postman problem as a rural postman problem. European Journal of Operational

Research, 155, 44-50.

http://www.planning.org/research/postdisaster/

67

[9] Salazar-Aguilar, M. A., Langevin, A., Laporte, G. (2012). Synchronized arc routing for

snow plowing operations. Computers & Operations Research, 39, 1432-1440.

[10] Mei, Y., Tang, K., & Yao, X. (2009). A global repair operator for capacitated arc routing

problem. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,

39(3), 723-734.

[11] Amponsah, S. K., & Salhi, S. (2004). The investigation of a class of capacitated arc

routing problems: The collection of garbage in developing countries. Waste

Management, 24, 711-721.

[12] Atkins, J. E., Dierckman, J. S., & O’Bryant, K. (1990). A real snow job. The UMAP

Journal, 11(3), 231-239.

[13] Chernak, R., Kustiner, L. E., & Phillips, L. (1990). The snowplow problem. The UMAP

Journal, 11(3), 241-250.

[14] Robinson, J. D., Ogawa, L. S., & Frickenstein, S. G. (1990). The two-snowplow routing

problem. The UMAP Journal, 11(3), 251-259.

[15] Hartman, C., Hogenson, K., & Miller, J. L. (1990). Plower power. The UMAP Journal,

11(3), 261-272.

[16] Bettinger, P., Merry, K. L., & Hepinstall-Cymerman, J. (2010). Fort Stewart timber

salvage and recovery study, and modeling of potential windthrow and storm surges

associated with hurricanes, final report. Athens, GA: Warnell School of Forestry and

Natural Resources, University of Georgia.

[17] Xu, H., Zhang, C., Tan, Y., & Lu, J. (2011). An improved evolutionary approach to the

extended capacitated arc routing problem. Expert Systems with Applications, 38(4),

4637-4641.

68

[18] Goldberg, D. E. (1994). Genetic and evolutionary algorithms come of age.

Communications of the ACM, 37(3), 113-119.

[19] Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach (3
rd

 ed.).

Upper Saddle River: Prentice Hall.

[20] Smith, D. K. (1982). Network optimisation practice: A computational guide. Chichester:

Ellis Horwood Limited.

[21] Bettinger, P., Sessions, J., & Boston, K. (2009). A review of the status and use of

validation procedures for heuristics used in forest planning. Mathematical and

Computational Forestry & Natural-Resource Sciences, 1, 26-37.

