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CHAPTER 1

INTRODUCTION

1.1 Introduction

This research aims to better understand how untrained LM activations can predict language-elicited

fMRI signals.

Recently, Schrimpf et al. reported that language-elicited fMRI responses could be predicted

from activations of untrained language models by simple linear regression [1]. This has been found

in subsequent research for language models [2], as well as previous research in computer vision

models [2]. The setup used by Schrimpf et al. involved predicting heldout fMRI data points for

each word in a stimulus from the activations extracted from feeding the words into a language

model (LM) by training a simple linear regression model on the training data points. Where trained

models were able to perform close to the maximal level given the noise of the data, surprisingly,

untrained models were able to reach about half the maximal level.1

Schrimpf et al. suggested some possible properties that may cause untrained networks to be

predictive of fMRI data. The fact that the performance of the untrained model was correlated

with the performance of the trained model suggests that the untrained performance is sensitive

to the model architecture itself. Schrimpf et al. further showed that the untrained model scores

were correlated with their scores on task of next-word prediction (with a similar linear prediction

1Performance is based on the Pearson correlation coefficient between the held-out target values and the predicted
values of the untrained models.
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mechanism), suggesting that the model’s performance on fMRI prediction may be related to models

inadvertently capturing linguistic properties. They further ruled out basic alternative explanations,

such as overfitting common words and word sequences.

The main objective of my research investigation was to develop mechanical explanations for

these findings by examining what word features the untrained models are able to predict. My first

experiment mirrored the fMRI prediction mechanism used by Schrimpf et al. and examines the

prediction of word features from LM activations. My second experiment is based on research by

Baek et al. on untrained computer vision models [3]. In a study published in Nature, they found

that untrained neural vision models could robustly develop activations that effectively model an

unexpectedly high-level feature: the distinction between face vs non-face. Trained LMs have also

been shown to have interpretable neuron activations [4], so for my second experiment, I adapt

some of the Baek et al. methodology for use on untrained LMs to see whether any untrained LM

activations can be interpreted likewise as POS classes.

1.2 High-level Core Prediction Mechanism

In this line of research, language is modeled as a sequence of words. Using human subjects and

methods from neurophysiology, each word can be associated with multiple fMRI response datasets.

Using language models (LMs) and methods from machine learning, each word can be associated

with multiple LM response datasets (composed of model activations). Finally, a simple linear

regression model with cross-validation is trained to predict the sets of fMRI responses from each

of the LMs.
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Both categories of responses are essentially projections of each word into a feature space. The

LM projection presumably contains features that, through training, are useful for the computation of

the next-word prediction. Similarly, the fMRI projection presumably contains information relevant

to whatever language-specific tasks the brain performs. Thus, an LM’s prediction performance

depends on how similar its projections are to the brain’s projections, or more precisely, on how

similar a linear combination its projections can be to the brain’s projections.
Under this theory, an untrained model is predictive of fMRI data because its projections are

similar to brain projections. To add interpretability, my research strengthens this theory to the
following:

A linear combination of untrained LM projections is able to model the brain’s projections be-
cause a linear combination of untrained projections can model simple interpretable linguistic
features.

1.3 Background

1.3.1 fMRI prediction

My research centers around my two experiments. The methodology of my first experiment is based

mainly on the previously mentioned research of Schrimpf et al. [1]. To my knowledge, there are

two other studies that examined untrained neural language models in the context of fMRI prediction,

Hosseini et al. [5] and Pasquiou et al. [2], which further focused my research. The methodology of

my second experiment is based on Baek et al.’s research (which did not involve fMRI or language

models).

Schrimpf et al. was primarily concerned with the effects of model architecture. Their analysis

attributed the difference between the two models’ fMRI prediction performance to the interpretable

differences in their architectures. In some cases, this made for very convincing arguments. For
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example, they found that context-independent models, such as GloVe or random word embeddings

of the same size as the GPT-2-XL embedding, could not predict the fMRI data very well. However,

when it came to comparing between two well-performing models, they could only suggest that

the GPT-2 architecture performed better than the BERT architecture because the BERT model was

bidirectional and the GPT-2 model was unidirectional, so like the brain, it could not perceive words

ahead of the current word.

Hosseini et al., of whom Schrimpf was a coauthor, mainly examined the effect of the quantity of

training data [5]. They found that a GPT-2-XL model could reach near-maximum fMRI prediction

on only 100 million words of training data, which is approximately equal to the number of words

children are exposed to during their first 10 years of life. Furthermore, it included a sub-experiment

that found that when the first layer of an untrained GPT-2 model was reinitialized with a simple

Gaussian distribution N (0, 0.02), the untrained model could no longer predict the fMRI data above

chance. Thus, model performance is critically dependent on the initialization choices choices of

untrained networks; the network architecture itself does not explain the fMRI prediction.

The research of Pasquiou et al. focused on examining which regions of the brain were predicted

by trained vs untrained LMs [2]. Most interestingly, they essentially found that the model’s best

fMRI prediction occurred in two distinct types of region. One type of region is what one would

expect: The untrained models were not very predictive of the region, but the trained models were.

But in the second type of region, both trained and untrained models were predictive of the fMRI

data, but trained models were not significantly more predictive. This could suggest that this second

is sensitive to fairly simple features, already captured by the untrained models at initialization.
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Regarding the model architecture, Pasquiou et al.’s results directly contradicted Schrimpf et

al.: BERT was reported to outperform GPT-2, and the less complex untrained models (GloVe

and LSTM) outperformed the more complex untrained models(GPT-2 and BERT). There are a

number of differences in methodologies (for example, Pasquiou et al. trained their models in house

while Schrimpf et al. used pretrained models), and it is not clear which of the differences cause the

discrepancies.

This seems to be a fundamental problem with the methodology of predicting the black box of

the brain with the black box of a language model with no interpretable intermediate. Therefore, my

research focuses on the use of interpretable linguistic features.

Fully trained neural models are known to contain some individual activations that can be directly

interpretable as high-level features [4] but Baek et al. found that even untrained vision models

contain neurons that can be interpreted as face selective, an unexpectedly high-level feature [3].

These face-selective neurons were defined by having significantly higher mean activations on face

images than on five other non-face classes of images, Baek demonstrated with a number of tests

that these activations not only correlate with face vs. non-face, but act face-selective in other ways

as well. For example, they retained their selectivity when evaluated on images from other datasets

and images generated with generative neural networks. Face-selective activations showed a higher

response to images where local features were disrupted compared to images where global features

were disrupted, showing that they were not just extrapolating from simpler local features, such as

nose-shape. Furthermore, they trained a face vs. non-face image SVM classifier on the 1.1% of

the face-selective neurons in the final layer, and it performed similarly well to an SVM that was
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trained on the entire final layer of activations. My second experiment replicates attempts to apply

this methodology to language models.

1.4 Objectives

The primary objective of this research is to better understand how the activations of untrained GPT-

2 models can predict language-elicited fMRI responses by examining how well they model word

features.

1. What word features can be predicted by a linear combination of LM activations?

The theory is that if a linear combination of LM activations can model simple word features and

a linear combination of simple word features can model the fMRI data, then it logically follows

that a linear combination of LM activations can also model the fMRI data. To test this, I examined

how well a linear combination of LM can predict the current word’s part of speech, word frequency,

bigram and trigram frequencies, word order, word depth in the tree, function vs. content distinction,

and the next word’s part of speech. Each of these is predicted for the previous, current, and next-

word features.

2. Do untrained LMs contain activations that are directly interpretable as high-level fea-
tures?

The theory here can be thought of as a stronger version of the previous theory. By disallowing

linear combinations for representing word features with activations, this experiment essentially tests

how explicitly word features are represented. The experiment adopted Baek et al.’s methodology

that used neural computer vision models for use with the untrained GPT-2 models: 6 classes, 200
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training images per class, with neurons evaluated using a two-sided rank sum test (P < 0.001)

for the class with the highest mean score. Even negative results for this experiment would be

interesting; I would not have expected positive results if not for Baek et al..

1.5 Experiments

1.5.1 Models and Datasets

I chose to use the GPT-2 architecture because Schrimpf reported that GPT-2 outperforms all oth-

ers and because it is more cognitively plausible than the other transformer models because it is

unidirectional [1]. Furthermore, I wanted to examine the results of the Gaussian start which used

the smallest 13 layer GPT-2 variant [5]. All experiments were carried out with a total of 21 model

instances, all utilizing the GPT-2 architecture:

• XL-Trained (GPT-2-XL, 49 layers, 1.5B parameters)

• XL-Untrained (GPT-2-XL, 49 layers, 1.5B parameters)

• GPT-Trained (GPT-2, 13 layers, 117M parameters)

• 9×GPT-Untrained (GPT-2, 13 layers, 117M parameters)

• 9×GPT-Gaussian (GPT-2, 13 layers, 117M parameters)

As in Schrimpf et al., all trained models were obtained from the Hugging Face transformer li-

brary [6], using the default pretrained model weights.

Schrimpf’s published code was used to calculate each model’s ability to predict fMRI data,

reported at the layer-by-layer level, against the three fMRI datasets used in their original paper,

Blank2014 [7], Fedorenko2016 [8], and Pereira2018 [9]. Of these datasets, Schrimpf et al. primarily
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focused on the results of the Pereira2018 dataset, which was approximately 3 orders of magnitude

larger than the other two. For the most part, I was able to reproduce the published scores for

Blank2014 and Pereira2018, but was unable to get the code to run on the Fedorenko2016 dataset.

For the Pereira2018 dataset, I was able to reproduce Schrimpf et al. published results for the

pretrained models GPT-2 and GPT-2-XL with variation in the second decimal place. For the

Blank2014 dataset, I was able to reproduce the exact published results for the pretrained GPT-2 and

GPT-2-XL except for the model’s 0th layers (though the 0th layers scored). However, the Blank2014

scores were ultimately excluded from further analysis, primarily because of some unexpected

behavior on control models. Blank2014 scores, which matched the published Schrimpf et al. scores,

were discarded primarily due to unexpected behavior on control models. (Please see section 3.3 for

a more complete discussion) Thus, in the end, only Pereira2018 was used for my experiments.

The base corpus for word features is the Hugging Face implementation of the OntoNotes corpus

(formally known as the“CoNLL2012 shared task data based on OntoNotes 5.0”). [10] The following

nine categories of word features were selected for experiment.

• unigram frequency (i.e., word frequency)

• bigram frequency

• trigram frequency

• word order

• tree depth

• POS-51

• POS-12

• POS-7

• Function vs content
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Ngram frequencies were calculated over the entire OntoNotes corpus. Word order is the word’s

position in a sentence, clipped at 34. Tree depth is the word’s syntactic depth in the sentence,

calculated from the corpus’s provided trees, clipped at 17. POS-51 is the manually annotated POS

tags. POS-12 is a simplified version of the POS-51 tags, using NLTK’s map_tag function. POS-7

is a manually further simplified tagset primarily for use in my second experiment2. Finally, the

function versus content distinction can be thought of as a further simplified binary POS distinction

between function words (with primarily syntactic value) and content words. To keep the number of

samples consistent, I included a third category of punctuation, resulting in function versus content

being a trinary class.

Activations were retrieved from the hidden states of the model on a per-layer basis. The first

500 sentences of the OntoNotes corpus “training split” were used to generate activations for each

word per model per layer. Values for the first 386 words ( 22 sentences) were discarded due to

insufficient context length, resulting in 7958 samples. This yielded 768 activations per layer/word

from the base GPT-2 models and 1600 for the GPT-2-XL models.

1.5.2 Experiment 1: What do untrained models know?

In this experiment, I explored how well a linear linear combination of each layer’s activations of

each model could predict each of the word features. For continuous word features (the ngram

frequencies), ordinary linear regression was used to generate predictions for each instance using

5-fold cross-validation. For each fold, the Pearson correlation coefficient between the held-out and

predicted values was calculated. Finally, the mean of these coefficients is calculated and taken to

2In my second experiment, the seventh “misc” category is discarded.
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be the performance metric of the predictive model and reported as the mean Pearson’s R for the

combination of layer / target. The other word features were categorical, and so multi-target logistic

regression was used to generate predictions for each instance using stratified 5-fold cross-validation.

The performance metric for categorical targets is categorical accuracy.

1.5.3 Experiment 2: Do some activations directly code for features?

This experiment adapts Baek’s methodology of neuron-by-neuron study, originally used on com-

puter vision models, for use on language models [3]. First, the data instances were partitioned by

their POS-7 class, and all but the six classes with the largest populations in the entire OntoNotes

corpus were discarded, resulting in the following classes.

1. Noun (includes Pronouns)

2. Verb

3. Adposition

4. Determiner

5. Adjective

6. Adverb

Since the smallest partition had 387 instances, each partition was randomly sampled for 200 training

instances, 100 validation instances, and 75 training instances for a total of 2250 words of data. The

activations of each unit were normalized by z-scoring over all 2250 words. For each neuron, the

class with the highest mean activations was compared with the others using a two-sided rank sum

test (P < 0.001) to determine whether the difference in the mean of two distributions is statistically

significant. If the difference was significant against all other categories, then that neuron was
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categorized as selective for that class. The resulting counts and their distribution over the layers

were then analyzed over the network.

1.6 Conclusion

My research explored the language predictiveness of untrained neural language models to better

understand how their activations were predictive of neural data. As expected, pretrianed model

activations were able to predict word features above chance, especially POS and ngram features.

In the context of the fMRI prediction methodology, untrained LM activations were found to be

predictive of many word features, especially POS and Ngram frequencies, although less so than

their pretrained counterparts. Untrained LMs were also found to be more predictive of word features

for the next word than previous word targets. When looking at the performance of individual layers,

whereas untrained LM predictions of fMRI data appear to increase asymptotically with increasing

depth, their predictions of word features appear to decrease asymptotically with increasing depth,

which appears contradictory.

The larger untrained model was significantly more predictive of fMRI data than the smaller

untrained model, but significantly less predictive of all linguistic targets. For trained models, the

results were similar but more nuanced. Relative to the smaller model, the larger trained model again

outperformed on fMRI prediction, again unperformed on POS, word order, and syntactic tree depth

predictions, but had very similar performance on ngram probability prediction. These results held

over these features for the current and previous words as well.
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Ultimately, although the untrained LM prediction of fMRI data might be partially explained

by the LM’s prediction of word features, further explanation is required to explain the degree of

performance in fMRI prediction. Finally, possible reasons are explored to reconcile some of the

more contradictory results.
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CHAPTER 2

LITERATURE REVIEW

2.1 High Level Methodological Overview

Language is composed of a sequence of words. Using methods from linguistics, we can assign

word features to each word, such as part-of-speech. Using human subjects and methods from neuro-

physiology, we can assign an fMRI response to each word. Using methods from machine learning,

we can assign a language model (LM) response to each word. My research and the research that

I refer to here revolves around using simple prediction models, such as linear regression, logistic

regression, and support vector machines, to predict some of these values from the others.

To be clear, the untrained/trained LM are not themselves predicting anything in the context of

this research. The crucial key to this research is to contrast the simplicity of the predictive model

with the complexity of the predictors and the target. This allows us to argue that the prediction

outcome is the result of a direct connection between the predictor data and the target data, since the

prediction model itself does a minimal amount of the heavy lifting, so to speak.1.

1For example, if a simple linear regression model was able to predict some particular brain activity from the sole
metric of estimated word frequency, we could conclude that that particular brain activity may involve the computation
of word frequency or something very close to word frequency. However, if we did the same experiment but used a deep
learning model to predict brain activity directly, we would not be able to reach this conclusion. Instead, it could be that
the deep learning model internally produces an estimate of POS and that part of the brain is processing a particular part
of speech that is otherwise independent of word frequency. Thus, a complex prediction model may be more predictive,
but it comes at a high cost to interpretability.

It is important to note that the prediction of fMRI data is not an ultimate goal in itself, as there are no apparent
practical applications for a reliable predictor or simulator of fMRI data.
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This method of using task-optimized neural model activations to predict fMRI data was initially

applied in visual processing (2014) [11], and later in other perceptual tasks such as rat whisker

navigation (2017) [12], auditory processing (2018) [13], and language processing (2021) [1]. The

results have been interpreted to mean that the internal representations that the brain uses in task

cognition are closely related to the internal representations of the neural models. If that interpre-

tation holds here, then perhaps the fact that untrained models predict fMRI data indicates that the

random weights in the models happen to produce representation related to internal representations

of the stimulus itself (e.g., a word’s POS) or to computational processes involved in the cognition

of stimulus (e.g., the time it takes to compute word’s POS).

2.2 Schrimpf’s research

The Schrimpf study, published in the Proceedings of the National Academy of Sciences, compared

a wide variety of neural language models in their prediction of brain responses [1]. In summary, the

prediction of the fMRI data involves computing the cross-validated Pearson correlation coefficients

between the predicted and actual fMRI values for each voxel of each participant, aggregating the

results, and normalizing the result by dividing by the prediction noise ceiling of the dataset. The

trained models were out-of-the-box pretrained models. Untrained networks were initialized with the

default initialization scheme of the models, and the weights were never adjusted after initialization.

Schrimpf’s experiments give good initial insight into the untrained networks. Many of the

untrained models could predict brain responses far above chance.
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Whatever representation these untrained models are developing that allows them to predict

fMRI seems to have something to do with language because their scores are predictive of other

metrics. For example,

• The untrained model’s fMRI predictiveness correlated with their trained counterpart’s fMRI
predictiveness2.

• the untrained model’s fMRI predictiveness correlated with their scores for next word predic-
tiveness3.

They also found that the large size of the feature space alone could not explain the results; a

model that randomly projected words (independent of context) into vector spaces with the size of

the GPT-2-XL activations scored only 15% of the untrained GPT-2-XL model. Model performance

was not due to overfitting on common words or word sequences, because the statistical overlap

between ngrams in train/test sets was low. Finally, to test whether the linear fitting methodology

was inflating the scores, the model predictability with regression was, in turn, predictive of an

alternative metric, Regression Depth Median (which seems to be conceptually similar to the k-

nearest neighbor), which does not rely on an assumption of linear separability.

The crucial difference between my research and Schrimpf’s is the use of linguistic features

for interpretability. His research is centered on predicting one black box (the brain) from another

black box (a neural network) and attributing the differences in score to the differences in the model

architecture. [14] For example, they found that models which did not take the word’s context into

account (such as word2vec) failed to significantly predict fMRI response, which suggests that the

integration of words with their context is necessary for predicting the brain response. However,

2They found that training resulted in an average of 53% increase in score.
3Next word prediction was not performed using the untrained models raw predictions (which, of course, are

random), but by training a linear readout from the network’s outputs (a similar prediction procedure as for fMRI
predictions.)
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the conclusions that can be drawn from this methodology are limited [14]. For example, it does

not seem capable of generating explanations for performance differences between models of high

prediction, since it gives limited insight into how the LMs are modeling the brain data.

2.2.1 Hosseini

Hosseini et al. published a preprint (coauthored by Schrimpf), which included a subexperiment that

explored whether the performance of the untrained model was sensitive to initialization choices [5].

They manually reinitialized the 12 sets of weights in the first transformer block of an untrained

GPT-2 model with a simple Gaussian distribution N (0, 0.02), and found that the model could no

longer significantly predict the fMRI data. They theorized that similar to how the brain’s architecture

has been selected by evolutionary processes over time, the model’s architecture, hyperparameters,

and initialization strategies have been progressively selected by people creating language models

based on their performance on language modeling. In other words, even though the particular

values of random weights aren’t conditioned to linguistic data, the choices in the model architecture

are. For example, they choose which distributions to initialize from, how to scale initial weights,

how many layers the model will use, how many units per layer, etc.

This result is not too unexpected; it has been reported in applications of neural networks with

random weights that networks are sensitive to initialization choices [15, 16].
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2.2.2 Pasquiou

The research of Pasquiou et al. focused on examining which regions of the brain were predicted by

trained vs untrained LMs [2]. Like Schrimpf et al., they also reported that untrained models could

predict fMRI data better than chance.

The most interesting finding was that the primary regions of the brain where the untrained

models are most predictive are not the primary areas where training improves the prediction of fMRI.

The methodology involved the creation of a training gain model by subtracting the predictivity of

each model trained from the untrained predictivity, over each voxel. They examined the top 10%

of the voxels for trained and untrained models of the LSTM, GPT-2, and BERT architectures. They

reported that there was a 79% overlap across the three untrained models, a 75% overlap across the

training gain models, but these two overlap regions only overlapped each other by 18%. In other

words, the primary regions of the brain where untrained models are most predictive are not the

primary areas where training is improving the prediction of fMRI.

Contrary to Schrimpf, which reported that neither the trained nor the untrained GloVe model

performed well, they found that the less complex untrained models (LSTM and GloVe) outper-

formed the more complex untrained transformer models (GPT-2 and BERT), but for trained models,

the opposite is true.

Examining the models, this study used 768 units for GloVe for comparison with GPT-2, while

the GloVe model in Schrimpf contained 300 units.
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2.3 Baek’s research: single-neuron representations

Baek et al. published a study in Nature by Baek on untrained neural vision models that I have

replicated for untrained neural language models [3]. It is known that fully trained neural models (in

general) contain some individual activations that are directly interpretable as representing high-level

features [4], but Baek found that even untrained vision models contain neurons directly interpretable

as representing face vs non-face.

Baek et al. retrieved 400 images for each of six image classes. These images fed through the

model and the activations of each neuron were z-scored on all images. Using 200 training images

of each category, each neuron was classified as face-selective if its mean activations on face images

was significantly higher than the mean of the other five classes, using a two-sided rank sum test

(P < 0.001)

Baek then characterized the degree of the neuron’s face-selectivity index (FSI), defined by the

difference of mean activations in face and non-face classes normalized by the standard deviation of

the activations [17]4.:

FSI =
µ+ − µ−√
(σ2

+ + σ2
−)/2

Baek demonstrated with a number of tests that these activations not only correlate with face vs.

non-face on holdout data but act face-selective in other ways as well. For example, they retained

their selectivity when evaluated on images from other datasets and images generated with generative

neural networks. Face-selective activations showed a higher response to images where local features

4Just to sate curiosity (though its not particularly significant): this research had a few odd mathematical decisions.
For example, the random division by two in the FSI definition and using a two-sided test for a clearly one-sided
comparison. These appear to be historical artifacts because they continue to occur (without comment) as deep in the
chain of references as I investigated.
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were disrupted compared to images where global features were disrupted, showing that they were

not just extrapolating from simpler local features, such as nose-shape. Furthermore, they trained a

face vs. non-face image SVM classifier on the 1.1% of the face-selective neurons in the final layer,

and it performed similarly well to an SVM that was trained on the entire final layer of activations.

With some training, they demonstrated that the FSI of face-selective activations decreased when the

network was trained on a dataset without faces and increased when the training data was appended

with more face images. (One experiment was particularly convincing, but it does not appear to

have an obvious linguistic analog. Baek trained used generative adversarial neural networks to

generate images that maximized face-selective weights, resulting in images that visually appear to

be face-like images. )
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CHAPTER 3

GENERAL METHODOLOGY

3.1 Linguistic Features

The base corpus for word features is “CoNLL2012 shared task data based on OntoNotes 5.0”, and

is hereafter referred to as the OntoNotes corpus, and specifically the Hugging Face implementation

of the OntoNotes corpus1 which used the data processed with the official scripts from a Mendeley

repository [18].. This is a manually-annotated pretokenized corpus that includes 2.6M English

words with Penn-Treebank-style POS tags for words and parse trees for sentences [10]2.

Additionally, the features for the function versus content distinction, word order, tree depth, and

unigram/bigram/trigram frequencies were computed. The ngram frequencies are calculated across

the entire OntoNotes corpus without smoothing. Unigram frequency should be independent of

context, Bigram frequencies depend on the previous word only for context, and trigram frequencies

depend on the previous two words only for context.

The original POS feature, which I label POS-51, contains 51 “Penn Treebank style” POS tags in

this version of the corpus [10]. The corpus documentation was outdated, detailing only 36 standard

tags of the Penn Treebank, which was used for an earlier version of the data set. The POS-51

tags were simplified to produce POS-12 with the 12 class ‘Universal’ tagset [19]3using NLTK’s

1OntoNotes Corpus: huggingface.co/datasets/conll2012_ontonotesv5
2Though not utilized in this research, this corpus also contains datasets for Arabic and Chinese as well as semantic

features for named entities, semantic role labels, and co-reference.
3POS-12 tag descriptions: github.com/slavpetrov/universal-pos-tags
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map_tag function. Finally, since Baek’s research defined feature selectivity using a preference to

one of six classes, I manually simplified POS-12. For comparison to experiment 2, POS was further

simplified into seven class POS-7 with the classes of noun, verb, adjective, determiner (E.g., the,

a, this), adposition (prepositions and postpositions. For example, in, of, for, with), and an ‘other’

class which is discarded for that experiment. See section 4.2 for more details.

3.1.1 Why these features

Cognitive behavior in general is sensitive to statistical aspects of language4. These features were

chosen because they are simple, easily accessible, and well studied in language cognition. Simplic-

ity is desirable because one would not expect untrained networks to model more complex features

if they cannot model the simpler features on which they are based. For example, I would not expect

a model to distinguish between the semantic roles that relate noun to verb if they cannot distinguish

between nouns and verbs. Ngram frequencies were chosen because ngrams are one of the most

standard control models of next-word prediction, and see use as a control model in next-word pre-

diction tasks. Finally, part of speech was chosen because it is one of the simplest ways to model

syntactic relationships. (LMs tend to be better (more natural?) models of syntax than of semantics.

For example, during training, LMs learn syntactic relationships before semantic relationships, and

simple LMs tend to reliably capture many basic syntactic relationships but tend to struggle with

even basic semantic relationships.)

4This is a fascinating area. In the simplest cases, observable cognitive behavior is sensitive to (context-independent)
word frequency. For written language, the more common a word is, the faster it is recognized, the faster it can be read
aloud, and the faster lexical decisions can be made [20, 21, 22, 23, 24]. Similarly, in the audio realm, subjects are more
likely to recognize more common words immersed in noise [25, 26]. These results are generalized when the context is
incorporated (such as the frequency of the word being used as that part of speech). The results further generalize to the
predicted word probability that is output from language models. For an interesting review, see Jurafsky [27].
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3.2 Neural Network Response (Activation Retrieval)

All models are of the GPT-2 architecture. The GPT-2 architecture appeared to be the best candidate

for my experiments because Schrimpf reported that GPT-2 outperforms all others and because it

is more cognitively plausible than the other transformer models because it is unidirectional [1].

Furthermore, I wanted to examine the results of Hosseini [5], who also used a GPT-2 model.
All experiments were run with a total of 21 model instances, all utilizing the GPT-2 architecture:

• XL-Trained (GPT-2-XL, 49 layers, 1.5B parameters)

• XL-Untrained (GPT-2-XL, 49 layers, 1.5B parameters)

• GPT-Trained (GPT-2, 13 layers, 117M parameters)

• 9×GPT-Untrained (GPT-2, 13 layers, 117M parameters)

• 9×GPT-Gaussian (GPT-2, 13 layers, 117M parameters)

This is a total of 21 models and 345 layers. All models were implemented using the Hugging Face

transformer library [6]. The trained models use the pre-trained weights from this library, and the

untrained models were created using the default initialization from this library. Nine models were

used for GPT-Untrained to check if the results with trained models were relatively consistent. For

each of the GPT-Untrained models created, a GPT-Gaussian model was created by reinitializing 12

weights in the first layer with values pulled from a Gaussian N (0, 0.02). [5]

Extracting activations from the model yields 768 activations per layer/word from the base GPT-

2 models and 1600 for the GPT-2-XL models. The input tokens are truncated to 512, and thus the

extracted activations are outputs of each block that correspond to the activations of the 512th token.

The final layer also has the softmax function applied. Finally, the 0th layer consists of the values

that are fed into the first block. Crucially, this means that the 0th layer is context-independent, it is

dependent only on the random input embedding for the current word.
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Schrimpf truncated the input length of the tokens to a maximum of 512 tokens, likely to control

for the input length between the various sizes of language models that he used in his study. There

was one adjustment that I made for my experiment; I discarded the activations that were calculated

with fewer than 512 total input tokens. (i.e., the first 386 words.) There does not appear to be

any reason why the nth activation of one positional input would have a direct relation to the nth

activation of another. Additionally, discarding the short inputs eliminates unnecessary complexities,

such as checking if the distribution of the categorical data is different in shorter inputs.

3.2.1 Activation Retrieval

To keep my experiments as comparable as possible to Schrimpf’s set-up, the process for my acti-

vation retrieval mostly reused the retrieval from Schrimpf’s code. The first 500 sentences of the

OntoNotes corpus “training split” were used to generate activations for each word per model per

layer. The values for the first 386 words ( 22 sentences) were discarded due to insufficient context

length, resulting in 7958 samples.

One challenge I had to overcome was that the corpus was tokenized using a different standard

from the GPT-2 tokenizer. To overcome this, I needed to manually adjust the tokenization. (see

Appendix section A.3 for details)

3.3 Prediction of fMRI

Schrimpf’s published code was used to calculate each model’s ability to predict fMRI data, re-

ported at the layer-by-layer level, against the three fMRI datasets used in their original paper,

23



Blank2014 [7], Fedorenko2016 [8], and Pereira2018 [9]. Of these datasets, Schrimpf et al. pri-

marily focused on the results of the Pereira2018 dataset, which was approximately 3 orders of

magnitude larger than the other two. I was unable to get the code to run without errors on the

Fedorenko2016 dataset. In the end, my code returned the exact scores reported for all layers in

the pre-trained GPT-2 and GPT-2-xl model on the Blank2014 dataset except for the 0th layer. It

returned almost the exact Pereira2018 results, with discrepancies in the second decimal place.

However, though my results on the Blank2014 dataset seem to replicate the published results

of Schrimpf et al., there was a concerning inconstancy that lead me to set these results aside.

The activations of the Gaussian models are approximately uniform from the second layer onward

to the second to last layer on the Pereira2018 dataset. (As will be shown in later chapters, this

pattern is consistent across all predictions of linguistic features as well.) This contrasts heavily

with their prediction of Blank2014 where these Gaussian’s Brain Scores vary significantly layer by

layer. Additionally, more recent github versions of their code yield different scores on Blank2014.

Finally, it does not seem necessary to focus on Blank2014 results, as the datasets were smaller

than Pereira2018 by a factor of 1000, and Schrimpf et al. mainly focused on Pereira2018 in their

publication. This result is available in Appendix B, Figure B.1.

Therefore, I only used the Pereira2018 dataset for my experiments. Pereira2018 was also the

primary dataset mentioned in Schrimpf as it was approximately three orders of magnitude larger

than Blank2014 and Fedorenko2016. The stimulus included a selection of 168 passages that span a

diverse range of topics with 3 or 4 sentences per passage for a total of 627 sentences. [9] The fMRI

data come from two experiments with 9 and 6 subjects (10 unique), and responses were averaged

over 3 repetitions of each stimulus. The pre-processing and the exclusion of voxels from outside
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language-specific brain regions resulted in responses for total of 13553 voxels (average of 1355

voxels per participant)5.

3.3.1 Interpretation: fMRI measures task complexity

fMRI uses an MRI machine to measure the blood oxygen level-dependent signal (BOLD). This

signal is elicited from changes in oxygenated blood flow to areas of the brain in response to the

neural activity that occurs in those areas. Crucially, this signal scales with the complexity of the task,

rather than with the quantity of muscular energy required for the task, for example. For example,

consider a finger tapping task. If you tap the fingers of your right hand on a flat surface sequentially

2-3-4-5, this will increase blood flow to the left motor cortex of your brain. An MRI machine would

record a spike in the BOLD signal in the left motor cortex, with a time delay of approximately

4-6 seconds. Instead, if you tap in a more complex order, such as 3–5–4–2, you will generate a

greater increase in blood flow to this cortex, resulting in a significantly higher spike in the BOLD

signal, despite the fact that the muscular energy requirements of the two tasks are approximately

equal. [28]

5I initially intended to use the results of all three datasets, so I wrote in a way that was general to the 3 datasets.
However, the brain datasets are very diverse. For example, Blank2014 used an audio stimulus with 1 brain response
per word, while Pereira2018 is a visual stimulus presented in visual format with 1 response per sentence. But even
with that caveat, I am glossing over some major technicalities with respect to the brain datasets and their prediction.
The single most relevant technicality is that the brain response is not actually recorded per word but per word grouping,
where the grouping was a sentence in Pereira2018 but a 2 second interval in Blank2014. This means that the fMRI
data is not predicted from the LM activations per word, but instead the averages of the fMRI responses are predicted
from the averages of the LM activations. Ultimately, my research is focused on the prediction of word features, so
it is easiest to understand my research by thinking of the fMRI prediction as a per-word calculation, and leave these
technicalities to research more oriented on the neurophysiological aspect. See Schrimpf’s Supplementary Information
Appendix for more details on the preprocessing and prediction of fMRI datasets [1].
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CHAPTER 4

EXPERIMENTS

fMRI Prediction and Reproduction of Schrimpf’s Results

The aggregated correlation coefficients of all models on the Pereira2018 fMRI dataset are shown

in item 4.1. For the trained models, the values reproduced Schrimpf’s results to 5 significant

figures. The only exception was for the 0th layer, though all his models and all my models scored

near zero for that layer, and I couldn’t determine why they differ. My untrained models differed

because they are different random initializations but scored similarly to the reported untrained

model. Throughout all my results, the untrained initializations behaved very similarly to each other,

suggesting that the results are robost (insensitive to the randomization seed).

My Gaussian random initialization did not behave like Schrimpf’s. Whereas his resulted in what

appeared to just be a significantly less predictive model, my Gaussian initialization model produced

activations that were relatively uniform after the 0th layer. The values in the model essentially got

‘stuck’ with little significant change from layer to layer. 1 In the present investigation, the Gaussian

models here serve as a control2.

All of my experiments are centered on explaining the data in this result. For example, it would

be interesting to find features that the model cannot predict, because that would indicate that they

1This seems to be because the skip connections in the GPT-2 architecture skip over a normalization layer, which
results in the non-normalized input being summed with a normalized output.

2The Gaussian models were originally intended for an experiment that was cut due to time constraints.
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Figure 4.1: Model prediction of the Pereira2018 fMRI benchmark. The Key Takeaways: (1) The
0th layer of all models did performed near chance. (2) All models become significantly predictive
of the Pereira2018 data on the first layer. (3) For the untrained models, this predictivity remains
fairly constant over the rest of the layers with small fluctuations. (4) For the Gaussian models, this
predictivity remains uniform over the rest of the layers. (5) For the trained models, after the first
2-3 layers, there is a slight downward trend for the first half of the values, followed by a large
improvement in the second half of the layers. The layer index of the 49-layer XL models are scaled
down to match the 13 layers of the non-XL models.
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are not making a significant contribution towards predicting the fMRI data. On the opposite end,

it would also be interesting to find features such that the models variance in prediction of those

features mirrors the variance of prediction of the fMRI data. Experiment 1 does this by directly

mirroring the methodology for fMRI prediction, using a linear combination of model activations on

a per-layer basis to predict linguistic features. In contrast to the linear combination methodology,

experiment 2 uses Becks methodology to try to characterize the activations of individual neurons

as being selective of linguistic features.

4.1 Experiment 1 Predicting word features from each layer of activations.

This first experiment directly mirrors Schrimpf’s methodology for fMRI prediction and uses a linear

combination of a layer of model activations to predict linguistic features.

4.1.1 Method: Predicting word features from layer activations

At its core, each predictive model consists of predicting a single word feature from a single layer

of activations over the set of all stimulus words, where each layer consists of 768 values for the

‘GPT’ models and 1600 predictors for the ‘XL’ models. The OntoNotes stimulus data consists of

7,958 words, so each predictive model consists of 7,958 data instances, one instance for each word.

Each stimulus word corresponds to a total of 27 unique targets, nine word features for each for the

current, previous, and next words. Since there are 345 total layers across all neural models, each

stimulus word corresponds to 345 sets of predictors. Therefore, this experiment consists of a total
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Figure 4.2: Results for POS prediction with logistic regression. Reported is the classification
accuracy between the actual values and the values predicted from multiclass logistic regression
with stratified 5-fold cross validation. Targets are the product of the 3 different partitions for POS
classes over the previous, current, and next words values. POS-51 has 51 classes, POS-12 has 12
classes, POS-7 has 7 classes. For the 9 GPT-2-Untrained and 9 GPT-2-Gaussian models, the solid
line represents their mean and the shading represents their standard deviation over the 9 models.
The 49 layers of the XL models are scaled down to the 13 layers of the base models. In contrast
to the ngram predictions, XL-Trained under-performs its base variant in the middle layers of the
model, but, like with the ngram predictions, they are similar at the start and end layers. Like
the ngram predictions, the untrained model underperforms its base variant GPT-Untrained on all
targets, which is the opposite of the brain-score results.
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Figure 4.3: Results for ngram prediction with linear regression. Pearson correlation coefficient
between the actual values and the values predicted from ordinary linear regression with 5-fold
cross-validation. The reported coefficient is the mean of each fold. Targets are the product of
the unigram, bigram, and trigram frequencies (calculated over the full OntoNotes corpus) over
the previous, current, and next words values. For the 9 GPT-2-Untrained and 9 GPT-2-Gaussian
models, the solid line represents their mean and the shading represents their standard deviation over
the 9 models. Except for the 0th layer, trained XL model and its base perform similarly across most
targets. under-performs its base variant in the middle layers of the model, but like with the ngram
predictions, they are similar at the start and end layers. Like the POS predictions, the untrained
model under-performs its base variant GPT-Untrained on all targets, which is the opposite of the
brain-score results.
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of

345× 6 = 2070

predictive model, one for each layer/target.

Three of the targets were continuous:

1. unigram frequency (i.e., word frequency)

2. bigram frequency

3. trigram frequency

For continuous targets, ordinary linear regression was used to generate predictions for each

instance using 5-fold cross-validation. For each fold, the Pearson correlation coefficient between

the held-out and predicted values was calculated. Finally, the mean of these coefficients is calculated

and taken to be the performance metric of the predictive model and reported as the mean Pearson’s

R for the combination of layer / target.

Six of the targets were categorical:

1. POS-51 (51 classes)3

2. POS-12 (12 classes)

3. POS-7 (7 classes)

For categorical targets, multitarget logistic regression was used to generate predictions for each

instance using stratified 5-fold cross-validation. The performance metric for categorical targets is

categorical accuracy.

3Note that the POS categories are hierarchical. (E.g., each category in POS-51 maps to exactly one category in
POS-7.)
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4.1.2 Results: Predicting word features from layer activations

The results of POS prediction are shown in Figure 4.2 and the results of ngram prediction are shown

in Figure 4.3. For each of the GPT2-Untrained and Gaussian models, the mean of the 9 models is

plotted, and their shaded area represents the standard deviation.

The results show that all POS targets could be classified above chance in the 0th layer. This

accuracy should not be too unexpected; the 0th layer is dependent only on the current word, and

part of speech should be inferable for many words (E.g., ‘the’ usually a determiner). Perhaps, it

is not surprising that the POS of the previous and next words can partially be guessed from the

current word (E.g., ‘the’ often follows punctuation, verb, or noun, but not often an adjective. and is

often followed by determiner or adjective). However, it is surprising that, for example, the previous

word’s part of speech isn’t better predicted in the first layer given that it does have dependence on

the previous word (as well as all other word that fit in the context length.

The results of the 0th layer on the POS targets contrast with the results of the fMRI prediction,

where the 0th layer could not predict the fMRI data above chance for any model. This implies that

knowledge of these POS targets is not, by itself, predictive of fMRI data, which is consistent with

the results of Schrimpf, which found that context-independent LMs could not predict fMRI above

chance.

Interestingly, except for the GPT-Trained, the 0th layer could not predict the ngram targets,

above chance. This could suggest that the fMRI prediction could be somewhat dependent on the

task of next-word prediction. However, since the 0th layer of GPT-Trained can predict the ngram

targets above chance, but cannot predict fMRI, ngram prediction must also not be sufficient to

predict the brain data.
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For all untrained models, on all targets, the performance on the layers after the 0th layer decayed

asymptotically.

The 0th layer, which is independent of the surrounding words, behaved differently. For the

untrained GPT2 models, the performance of the 0th layer was higher than in the performance of

the first layer, on all targets with the unique exception of the current word’s POS-51. This also held

for the 0th layer of the untrained XL models for the POS prediction, but was not true for n-gram

protection, where the 0th layer of the XL models scored near chance.

The XL-Trained model’s 0th layer exhibited the same oddity as the XL-Untrained models,

where the 0th layer scored significantly on POS prediction but near chance for ngram prediction.

In ngram prediction, the trained models generally performed similar to each other and far

outperformed the untrained models.

The trained model generally performed above the other models for all layers on all targets. For

most targets, the scores tended to increase over the layers until a peak and then decreased for the

rest of the layers. This suggests that the trained model tends to develop information about these

word features through the first layers, and then discards that information in the later layers. Most

interestingly, relative to the current word prediction, the peak tends to occur earlier in the previous

word feature targets, and later on the next word feature targets. This suggests that previous-word

information is processed (or most relevant) earlier in the network, and next-word information is

produced or processed later in the network.
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Figure 4.4: A visual representation of GPT-Trained’s POS-selective neurons activations over the
validation data. The units are arbitrary with white for near 0 activations, more red for greater than 0,
more blue for less than 0. This confirm that this methodology, trained models do have neurons that
can be directly interpreted as POS-selective selective, and serves as an exemplar for what would be
desired in the untrained model.
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Figure 4.5: A visual representation of GPT-Untrained’s POS-selective neurons activations over
the validation data. The units are arbitrary with white for near 0 activations, more red for greater
than 0, more blue for less than 0. Note that the determiner selective activations and adposition
selective neurons are clearly more active on the validation data, whereas its not very clear if the
POS-selectively holds on the validation data others are not.
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Table 4.1: Prevalence of feature selective neurons per feature/model/layer.

Noun Verb Adposition Determiner Adjective Adverb
Model Layer

GPT-Trained 0 0.26% 1.56% 6.38% 8.59% 1.17% 1.04%
1 0.78% 1.3% 3.78% 8.72% 1.95% 2.86%
2 1.04% 1.3% 4.56% 9.77% 1.82% 3.39%
3 1.43% 1.17% 4.17% 8.2% 2.47% 2.99%
4 2.08% 1.3% 3.26% 6.25% 2.34% 3.26%
5 1.69% 1.69% 2.99% 5.86% 2.6% 2.99%
6 2.47% 1.56% 3.26% 4.95% 2.86% 2.73%
7 2.6% 1.95% 3.26% 4.95% 3.26% 3.78%
8 2.86% 1.95% 3.52% 4.43% 2.21% 3.91%
9 2.34% 1.04% 4.17% 4.95% 2.47% 3.65%
10 2.47% 1.3% 5.08% 5.21% 1.95% 3.39%
11 2.21% 1.04% 5.6% 4.69% 1.04% 2.34%
12 1.43% 1.17% 5.99% 4.17% 1.04% 3.12%

GPT-Untrained 0 0% 0.14% 4.85% 20.38% 0.06% 0.23%
1 0.01% 0.13% 3.05% 16.57% 0.04% 0.82%
2 0% 0.03% 1.88% 14.92% 0.06% 1.07%
3 0.03% 0.03% 1.43% 13.63% 0% 1.07%
4 0% 0.04% 1.35% 12.73% 0.03% 1.3%
5 0.03% 0.04% 1.27% 11.86% 0% 0.94%
6 0% 0.09% 0.98% 11.39% 0% 0.88%
7 0% 0% 0.77% 11.24% 0.03% 1.1%
8 0% 0.03% 0.84% 10.87% 0.03% 0.93%
9 0% 0.04% 0.84% 10.27% 0.03% 1.01%
10 0.01% 0.04% 0.84% 9.74% 0% 0.91%
11 0.01% 0.03% 0.78% 9.62% 0.03% 1.04%
12 0.01% 0.03% 0.62% 9.26% 0.03% 0.85%

GPT-Guassian 0 0% 0.14% 4.85% 20.38% 0.06% 0.23%
1 0% 0% 0.2% 7.51% 0.01% 0.27%
2 0% 0% 0.2% 7.47% 0.01% 0.33%
3 0% 0% 0.23% 7.48% 0.01% 0.32%
4 0% 0% 0.2% 7.38% 0.01% 0.33%
5 0% 0% 0.2% 7.44% 0.01% 0.33%
6 0% 0% 0.22% 7.31% 0.01% 0.32%
7 0% 0% 0.23% 7.26% 0.01% 0.32%
8 0% 0% 0.25% 7.22% 0.01% 0.32%
9 0% 0% 0.25% 7.35% 0.01% 0.32%
10 0% 0% 0.25% 7.26% 0.01% 0.29%
11 0% 0% 0.23% 7.44% 0.01% 0.32%
12 0% 0% 0.27% 7.41% 0.01% 0.32%
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Figure 4.6: Activations of feature-selective neurons on held out data. This figure shows that the
determination of selectivity does not overfit the training data. The neuron index corresponds to
the first 30 neurons that were determined to be feature-selective for the 6 categories. (e.g., first 30
noun-selective neurons, the first 30 verb-selective neurons...) The word index corresponds to the
first 50 words of each category (e.g., first 50 nouns, then first 50 verbs...)
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Figure 4.7: Word frequencies of the 10 most common words in each of the 6 POS categories over
the first 500 sentences of the corpus. These words accounted for more than 10% of their categories
occurrences: ‘the’ accounts for 54% of determiners, ‘of’ accounts for 20% of adpositions, and ‘in’
accounts for 14% of adpositions. These categories are also the categories for which the untrained
models contained a significant number of neurons that were feature selective. This could mean that
neurons are selecting for these common words, rather than for linguistic properties of the category.

4.2 Experiment 2 Examining individual neuron’s POS selectivity.

Whereas Experiment 1 explored the relationship of a word feature to a layer of activations, this

experiment explored the relationship of a word feature to a single neuron activations. To follow

Baek’s statistical method as closely as possible, I implemented my experiment with the following

specifications:

• z-score neurons

• 6 classes

• 200 training examples per class

• two-sided rank-sum test with a confidence threshold of P < 0.001
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4.2.1 Method: Predicting word features from layer activations

First, the data instances were partitioned by their POS-12 class, and the noun and pronoun partitions

were combined. Then, all but the six classes with the largest populations in the full corpus were

discarded, resulting in the following classes.

1. Noun (includes Pronouns)

2. Verb

3. Adposition

4. Determiner

5. Adjective

6. Adverb

Since the smallest partition had 387 instances, each partition was randomly sampled for 200

training instances, 100 validation instances, and 75 training instances for a total of 2250 words of

data. The activations of each unit were normalized by z-scoreing over all 2250 words. For each

neuron, the class with the highest mean activations was compared with the others using a two-sided

rank sum test (P < 0.001) to determine whether the difference in the mean of two distributions

is statistically significant. If the difference was significant against all other categories, then that

neuron was categorized as selective for that class.

4.2.2 Results

The percentage of neurons that are feature selective in each layer is shown in Table 4.1. The reported

values for GPT-Untrained and GPT-Guassian are the means of the nine models. Interestingly, in the

untrained network, the number of feature-selective neurons also appears to decrease asymptotically

in subsequent layers. This seems to mirror the predictiveness of the layers for POS categories.
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For example, perhaps the neurons are instead selective of determiners because ‘the’ accounts

for 54% of determiners. To explore this, the word frequencies for the most common words of each

category are shown in Figure 4.7.

Baek’s experiment used a network with 5 layers of convolution and 2 regular feedforward layers

over an extremely high-dimensional image input. The LMs that I am using are much deeper and

more sophisticated with a low-dimensional sequence of words input.
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CHAPTER 5

DISCUSSION

Experiment 1 focused on predicting word features from a linear combination of neuron activations

in each layer, while Experiment 2 essentially predicted linguistic features from individual neurons.

5.1 What did my research find about the trained models?

The trained LM activations were found to be able to model word features, as expected. For trained

models on the layer-based prediction:

• Relative to current word targets, the peak predictiveness layer for the base GPT-2 model
occurred in a deeper layer for next word targets and in a shallower layer for previous word
targets. This could suggest hierarchical processing with layer depth.

• For all word frequency targets, the predictiveness of the trained GPT-2-XL model tracked the
trained base model.

• In contrast, for all POS targets, the predictiveness of the trained GPT-2-XL model differed
significantly in the middle layers, showing a minimum predictiveness about 1/3 of the way
through the layers, with improvement through the second half of the layers. This was the
only major result that seems to conform to the expectations of the fMRI prediction data.

For trained models in the experiment on single-neuron feature selectivity for 6 classes of POS:

• Trained models contained POS-selective neurons, which was expected.

• In contrast to the untrained models, the number of POS-selective neurons did not appear to
asymptotically decay over progressive layers.

• The number of neurons for each part of speech was fairly constant for each category in deeper
layers, about 2% of neurons in each category.

The last result is fairly interesting, as one would expect that the quantity of selective neurons

may track how frequently that category appears.

41



5.2 What did my research find about the untrained models?
Untrained models were found to be predictive of linguistic targets providing evidence for my theory
that their prediction of fMRI data was by virtue for their prediction of linguistic features. For
untrained models:

• They were reasonably predictive of POS

• They were very predictive of the current words word frequency

• They were not very predictive of higher orders of ngram frequencies for the previous word.

• The untrained GPT-2-XL models were less predictive of all linguistic targets than the un-
trained base GPT-2.

• Across linguistic targets, the performance of the untrained model appeared to decrease asymp-
totically over progressive layers, approaching a constant value.

• Across all models, this asymptotic decrease was also observed in single-neuron feature selec-
tivity.

In general, the performance of the untrained model seems to directly contradict their perfor-
mance in predicting fMRI data. In contrast to the prediction of the linguistic targets:

• The untrained GPT-2-XL models were more predictive of fMRI targets than the base GPT-2.

• The performance of the untrained models on the fMRI data was constant or slightly increased
over progressive layers.

5.2.1 Critically evaluate assumptions and limitations in light of the research.

This research was carried out under the assumption that the activations of the untrained model

model fMRI data because these activations model linguistic features. It could be that the activations

are modeling features not directly related to the brain’s processing of the language itself, and instead

the untrained model just happens to be a naturally good feature extractor for those nonlinguistic

features, such as audio features caused by certain syllables.

However, there is an alternative way to model this that consistently explains the observed results.

It is rather interesting, though not tested.
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1. Each feature has an explicit representation and an embedded representation.

2. The explicit representation is the representation that is predictive of the feature directly
(perhaps via a linearly separable model).

3. The embedded representation is the representation that predicts the fMRI data (perhaps
through a linearly separable model).

4. The model architecture is such that on average in a random computation, the computation
deconstructs the explicit representation into its embedded form.

5. Likewise, the model architecture is such that, on average in a random computation, the
computation reconstructs the embedded representation into its explicit form.

6. Finally, assume that the networks are such that in net, they preserve information so that an
increase in one is balanced by a decrease in the other.

This would result in the following explanation for the base GPT-2 models: the 0th layer em-

bedding of the input (an explicit word) happens to randomly extract features with a more explicit

representation than an embedded representation. Then, as the layers progress, the explicit repre-

sentations are converted into implicit representations, and vice versa. This leads to an asymptotic

approach towards equilibrium. This approach results in progressively more embedded representa-

tion which increases fMRI predictiveness, and vice versa, the approach results in progressively less

explicit representation and hence progressively less predictiveness of word features.

This theory contains many assumptions to validate. Perhaps one way to test this would be

to replace n activations in one layer directly with explicit feature information and observe the

prediction of that feature downstream. If this theory is accurate, then one should be able to fit

an equilibrium equation to solve for the previous quantity of explicitly represented features, and

the previous quantity of embedded information, both in terms of n. And if this prediction holds,

then this method of explicit feature injection could be a more direct way to evaluate the model’s

sensitivity to that feature’s embedded information.
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5.3 Future research: Where to go from here?

Given the complexity and number of choices involved in each of the data sets, and the inherent

opaqueness of both the brain and neural networks, there seems to be a vast number of ways to

continue research into understanding how the untrained models can predict neural data.

For example, different linguistic features could be examined. The experiments can be scaled up

in a number of ways, such as using more data points from the OntoNotes.

Future research along this line could look at other word-level features such as named entities,

semantic role labels, and co-reference features.

As noted in the literature, Pasquiou [2] found opposite results to Schrimpf in untrained networks,

so it seems that one would want to examine the fMRI pre-processing and / or prediction procedures

more closely.

A more practical direction for the single neuron study would be automating the selection of

features to examine, in line with the style of a recent study published by OpenAI in which they

automated the process of interpreting individual neuron activations with the latest version of Chat-

GPT [4]. This would be especially useful for comparing different architectures.
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CHAPTER 6

CONCLUSION

My research explored the language predictiveness of untrained neural language models to better

understand how their activations were predictive of neural data. Using the code of Schrimpf et al.,

I reproduced their results for the GPT-2 and GPT-2-XL LMs on the Blank2014 and Pereira2018

datasets, and described discrepancies that occurred when analysing the Blank2014 dataset. As

expected, pretrianed model activations were able to predict word features above chance, especially

POS and ngram features. In the context of the fMRI prediction methodology, untrained LM activa-

tions were found to be predictive of many word features, especially POS and Ngram frequencies,

although less so than their pretrained counterparts. Untrained LMs were also found to be more

predictive of word features for the next word than previous word targets. When looking at the

performance of individual layers, whereas untrained LM predictions of fMRI data appear to in-

crease asymptotically with increasing depth, their predictions of word features appear to decrease

asymptotically with increasing depth.

The larger untrained model was significantly more predictive of fMRI data than the smaller

untrained model, but significantly less predictive of all linguistic targets. For trained models, the

results were similar but more nuanced. Relative to the smaller model, the larger trained model again

outperformed on fMRI prediction, again unperformed on POS, word order, and syntactic tree depth

predictions, but had very similar performance on ngram probability prediction. These results held

over these features for the current and previous words as well.
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Ultimately, although the untrained LM prediction of fMRI data might be partially explained

by the LM’s prediction of word features, further explanation is required to explain the degree of

performance in fMRI prediction. Finally, possible reasons are explored to reconcile some of the

more contradictory results.
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APPENDIX A

A.1 Method: Predicting fMRI from layers activations.

At the lowest level, consider the prediction for the values a particular voxel, for a particular subject,

for a particular layer. Finally, consider a particular time value and consider just the first fold of

cross-validation, partitioning the words into a training and held-out set. At this resolution, each

word in the stimulus corresponds to one layer of activations and one fMRI data point. First, the time

dimension is eliminated using the first fold to determine the optimal time point (the BOLD signal

has a 4-8ish second delay). Then, the held-out data is set aside so that it does not influence the

choice in time. A linear regression model is trained over the activations of all words in the training

set to predict their corresponding fMRI values. The Pearson correlation coefficient is calculated

between these predicted values and the actual values. This is repeated over all values in the time

dimension, and the time that maximizes this prediction is chosen as the target time delay. Next, for

all folds, the heldout values are predicted from the training values at that time delay, and the Pearson

correlation coefficient is calculated. This results in a single correlation coefficient, representative of

that voxel/subject/layer. This coefficient is normalized by dividing by the noise ceiling of that data

set, which is taken to represent the maximum correlation coefficient that is possible: 0.32 (Pereira),
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0.17 (Fedorenko), and 0.20 (Blank)1 This normalized Pearson correlation coefficient is taken to

represent a normalized predictivity for that combination of voxel, subject, and layer.

Finally, the coefficients are aggregated over voxels by discarding the lowest scoring 90% of vox-

els (which was reported to be a standard procedure) and computing the median over the remainder.

Then these scores were aggregated over subjects, taking the median value over all subjects. This

results in the final metric, Brain Score: an aggregated normalized Pearson correlation coefficient

reported for each layer of the model. (When comparing a large number of models, the scores can

be further aggregated over layers by selecting the value of the maximally performing layer only,

which results in a single Brain Score per model.)

Schrimpf reported the standard deviation in the participant score as the error. 2

A.2 Package Versioning details for replicating the results of

Schrimpf’s Research.

Schrimpf’s code included the published results of the models on the Pereira2018, Fedorenko2016,

and Blank2014 fMRI datasets, as well as their Python environment. Their code was unable to repro-

duce these results run as-is at the most current version; I had to manually downgrade the version of

their code along with five of the code’s dependencies, ‘brainio’, ‘brainio_base’, ‘brainio_collection’,

and ‘result_caching’. Additionally, I had to use the same version of tensorflow, pytorch, and cuda,

otherwise the calculated Brain Score was different. I also attempted to run the code on the same

1The ceiling estimation involves using sub-sampling with a procedure that involves predicting the biological
readings of one participant from a subset of the others, and extrapolating for the highest ceiling possible.

2Please see Schrimpf’s supplemental appendix for more detail on these calculations[1].
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versions of Ubuntu as the authors with a fresh install of Ubuntu 16.04, but got the same results

as running the code on Ubuntu 22.04. Because the original version of CUDA was not technically

supported on my operating system (Ubuntu 22.04), I also attempted to run the code on a fresh

install of the same OS as the authors (Ubuntu 16.04), but the results did not vary. In the end, my

code replicated almost the exact Pereira2018 results as Schrimpf published, with variation in the

second decimal place, replicated the exact reported for all layer Brain Scores for the pretrained

GPT-2 and GPT-2-XL model on the Blank2014 dataset except for the 0th layer, and would not run

the Fedorenko2016 dataset without error.

A.3 Reconciling Tokenization Issues

There were two major issues with the pretokenization process. First, the GPT-2 tokenizer also

tokenizes spaces and appends them to the following word. Secondly, the OntoNotes corpus is

pretokenized, with its features reported at the token level, but the GPT-2 tokenizer has a different

tokenization scheme. For example:

⟨ Don’t replace the can marked "Green Paint". ⟩

tokenizes into

⟨ (Don ’t) (re place) (the) (can) (marked) (" Green) (Paint " .) ⟩

where parentheses denote each space-delimited “word”. The activation for each word is defined as

the activations on the final token of each word. Additionally, it appends a space character to the

front of the first token of each word, except for the first word in every sentence. The activations for

each word are computed as the activations for the final token of the word. The OntoNotes corpus

was already tokenized as

⟨ Do n’t replace the can marked " Green Paint " . ⟩
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If fed directly into the GPT-2 tokenizer, this would result in

⟨ (Do) (n ’ t) (re place) (the) (can) (marked) (") (Green) (Paint) (") (.) ⟩

The GPT-2 tokenizer further tokenizes ⟨ replace ⟩ into ⟨ re place ⟩. The OntoNotes tokenization

tokenizes a contraction into ⟨ base n’t ⟩ whereas the GPT-2 tokenizer uses ⟨ basen + ’t ⟩. The

GPT-2 tokenizer incorrectly places spaces between tokens such as in front of ⟨ Green ⟩, the period,

the end quote, and the ⟨ n ⟩ in ⟨ don’t ⟩.

Since the corpus was annotated, this was solved in the following way: I moved the ⟨ n ⟩ in all ⟨

n’t ⟩ to the previous word. And finally, I flagged all tokens to have a space in front of them, unless

they met one of the following conditions:

– token was already a tokenized symbol like ⟨ ’t ’s ⟩

– token was a opening or closing parenthesis, or end of sentence tag

– token followed by a start parenthesis POS or start quote POS tag.

– token followed a hyphen POS tag

– token was the first token in the sentence.

The most major difference between my activation retrieval and Schrimpf’s was that whereas

my activation retrieval returned one set of layer activation’s per token, Schrimpf’s code returned

one set of layer activation’s per (space delimited) word. This was done by assigning to the word,

the set of layer activation’s per token. In my previous example, the last word is

⟨ Paint". ⟩

which is composed of 3 tokens:

⟨ Paint " . ⟩

So Schrimpf’s code would assign to the full 3 token word, only the models activations corresponding

to the period. This seems to be a necessary step for modeling an audio stimulus with a text-based

model where punctuation has no explicit form but instead is applied through modifications of the
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nearby explicit words. But given that I was assigning activations to analyze the token level “word

features”, I just assigned the token activations directly to the tokens. Therefore, in the context of

my experiments, a word is defined as a token in the OntoNotes corpus, rather than space delineation

as in the fMRI prediction in Schrimpf.
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APPENDIX B

OTHER RESULTS
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Figure B.1: Model prediction of the Blank2014 dataset. The scores of the trained models repro-
duced Schrimpf’s published results. The layer index of the 49-layer XL models is scaled to align
with the index of the 13 layers of the non-XL models. However, these results are suspect: the
performance of the layers of the Gaussian models should be nearly uniform after the 0th layer, as
is the case in all other results of this research. (This is because the models activations themselves
are nearly uniform after the 0th layer.)
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APPENDIX C

RAW DATA AND STATISTICS
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Table C.1: Categorical statistics for POS-51 (n=2.74M)

POS Proportion

NN 12.13
IN 10.32
DT 8.44
NNP 7.50
JJ 5.41
NNS 5.04
. 4.65
XX 4.62
, 4.23
RB 4.11
PRP 4.07
VB 3.35
VBD 3.12
CC 2.85
VBZ 2.28
VBP 1.97
VBN 1.92
CD 1.88
VBG 1.57
TO 1.41
MD 1.16
PRP$ 1.06
HYPH 0.67
UH 0.62
POS 0.61
” 0.58
“ 0.57
WP 0.46
WDT 0.45
RP 0.38
: 0.37
WRB 0.37
JJR 0.26
NNPS 0.26
VERB 0.19
$ 0.17
EX 0.16
JJS 0.14
RBR 0.13
-RRB- 0.13
-LRB- 0.13
PDT 0.09
RBS 0.05
FW 0.04
NFP 0.02
SYM 0.02
WP$ 0.01
LS 0.01
ADD 0.01
AFX 0.00
* 0.00
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Table C.2: Categorical statistics for POS-12 (n=2.74M)

POS Proportion

NOUN 24.93
VERB 15.38
. 10.82
ADP 10.32
DET 9.14
X 6.20
ADJ 5.81
PRON 5.61
ADV 4.67
CONJ 2.85
PRT 2.40
NUM 1.88

Table C.3: Categorical statistics for POS-7 (n=2.74M)

POS Proportion

Noun 30.54
X 24.14
Verb 15.38
Adposition 10.32
Determiner 9.14
Adjective 5.81
Adverb 4.67

Table C.4: Categorical statistics for POS-6 (n=2.08M)

POS Proportion

Noun 40.25
Verb 20.27
Adposition 13.61
Determiner 12.05
Adjective 7.66
Adverb 6.15
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