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ABSTRACT 

The 3D Convolutional Neural Networks have achieved great success in many applications, 

including Alzheimer's Disease classification on medical image volumes. To increase their 

classification transparency and verify their prediction credibility, we uncover the 3D 

classification networks applied on 3D MNIST and OASIS-2, using two visualization 

techniques in deep learning, i.e., the Class Activation Mapping (CAM) and Layer-wise 

Relevance Propagation (LRP). We evaluate the performance of their resulting heatmaps in 

representing the relevance scores to the network's prediction from three perspectives: 1) 

visual interpretability, 2) quantitative measurement based on the Area Over the 

Perturbation Curve (AOPC), and 3) sanity check. The experimental comparison between 

CAM and LRP shows that CAM suffers the inconsistency between visual interpretability 

and heatmap quality, and LRP locates visually more meaningful regions for classification 

while could fail the sanity check. 
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CHAPTER 1 

Introduction and Background 

Chapter 1.1 Thesis Overview 

Alzheimer's disease (AD), the most common form of dementia, usually affects people over 

the age of 65. Once it starts to develop, the patient's cognitive and functional performances 

will be seriously impacted [1]. According to Alzheimer's Association, 1 in 3 seniors dies 

with Alzheimer's or another dementia and it is the 6th leading cause of death in the United 

States. Between 2000 and 2018, deaths from heart disease have decreased 7.8% while 

deaths from Alzheimer's have increase 146%. But 50% of primary care physicians believe 

that the medical profession is not ready for the growing number of people with Alzheimer's 

or other dementias. Thus, it’s not practical to always expect enough well-trained medical 

staff to scrutinize every neuroimaging output in clinical routine and automated image 

analysis using Machine Learning models are desperately needed.  

 

Nowadays Convolutional Neural Networks (CNN) have achieved great success in many 

fields, including the automatic AD classification tasks. But is mere high prediction 

accuracy convincing enough for the medical staff to trust the diagnosis from a computer 

program? As we know, CNN is still deemed as a black box and we don’t fully understand 

how it makes a certain decision yet. For 3D CNN in AD classification, the trust level is 

even lower considering the relatively small amount of training samples and large number 
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of the parameters in the model. Without making this black box more transparent, it’s hard 

for the neural network to play a role in clinical routine in spite of the high testing accuracy.  

 

Thus, in this thesis, I am devoted to work on the explanation of 3D CNN’s decision in the 

context of AD classification. In terms of the explanation, the most intuitive and widely 

accepted way is to generate heatmaps for a certain prediction from the model. It works by 

assigning each pixel a score representing how relevant it is to the final decision, and then 

visualizing it as an image in the same size as the input image. Two heatmap methods have 

been explored to explain 3D CNN’s decision for AD in OASIS-2 dataset. The first one is 

Class Activation Mapping [4], where the heatmap is generated by simply calculating the 

weighted sum of feature maps and then up-sampling to the original image size. To 

understand this method deeper, we also studied the correlation between the heatmaps and 

model complexity besides simply generating heatmaps. The second method is Layer-wise 

Relevance Propagation (LRP) [6]. It works by propagating the predicted output value back 

layer by layer till the input layer is reached, during which the relevance score is distributed 

depending on contribution percentage during the forward propagation. Among the various 

LRP rule variations designed for different purposed, we explored three composite rule sets. 

 

To evaluate the heatmaps from different methods objectively, we take three approaches. 

The first one is to visually interpret them and identify relevant features for classification. 

The second one is to use a numeric metric that helps us quantify the heatmap quality. The 

method is called Area over the Perturbation Curve (AOPC) [7], which is based on the 

assumption that the pixels that are assigned high relevance scores should be the most likely 
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to destroy the prediction value if they are perturbed. In AOPC, several implementation 

variations are explored, such as the stride size, different strategies to divide and sort cubes. 

The last approach we take to evaluate heatmap is Sanity Check, which is to further verify 

the soundness of the heatmap. The intuition behind this check is that if the parameters of 

the original model are randomized, the produced saliency map should change. The 

parameters randomization is performed in cascading fashion from top to bottom layer, and 

then generate corresponding heatmaps to see if any change. 

 

To verify our observations on OSAIS-2 dataset, all experiments are also conducted on the 

3D MNIST dataset for an easy interpretation. We observed that in CAM the more layers 

we have in a model, the higher the prediction accuracy and the heatmap quality, but the 

lower visual interpretability. It shows us that CAM suffers the inconsistency between visual 

interpretability and heatmap quality due to its limited ability to transform the high-level 

abstract features back to the visual space in a complex model. We also found that LRP has 

a higher potential to identify specific features at an individual level in explaining the AD 

classification task than CAM. The same pattern is also observed in the 3D MNIST dataset 

where LRP highlights the features specific to a digit while CAM either uses the overall 

contour or highlights most regions. But that doesn’t mean the LRP method is always 

perfect. For some LRP rules where only positive contribution is used in the back 

propagation, it would generate a multiplication chain of positive matrices which might 

converge at a certain layer. This causes LRP to fail the Sanity Check in OASIS-2 dataset, 

while CAM survived the check in both datasets. But this is not an issue for all heatmaps 

generated by LRP. For instance, the heatmaps generated by LRP in 3D MNIST dataset 
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survived the Sanity Check. It is because the much smaller input size slowed down the 

convergence speed. 

 

From what we observed in heatmaps generated by LRP where specific features can be 

highlighted for individuals, 3D CNN seems to be trustworthy and has great potential to be 

used in the clinical routine in the future. However, the defects we observed about both 

heatmap methods make us less confident about the aforementioned statement. To explain 

3D CNN’s decision with more confidence, better heatmap methods need to be designed in 

the future. An ideal heatmap should be able to map the high-level abstract features, which 

the complex 3D CNN relies on to make decision, back to visual space without any loss or 

distortion. At the same time, the visual interpretability should correlate positively with the 

heatmap quality measurement, and it should also survive the very intuitive Sanity Check.  

 

Chapter 1.2 Alzheimer's Disease  

As we mentioned above, Alzheimer's disease (AD) is terribly affecting the seniors around 

the world. Sadly, so far there is no treatment that could stop or reverse its progression. But 

if AD could be diagnosed at an early stage, we could help the patients and families get 

prepared or even slow down its progression. Thus, preclinical diagnosis is needed for the 

prevention to battle against AD. But is it possible to detect AD before it could be diagnosed 

clinically? As we know that AD is related to brain lesions. Studies have shown that some 

of these lesions begin to form 20 to 30 years before the disease becomes clinically evident, 

which gives us the hope for early detection. However, it is a very challenging task to do 

the measurement especially for the purpose of early diagnosis where the brain lesion areas 
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are still small. Fortunately, several modern neuroimaging modalities already show 

promising results as early diagnostic tools for AD. Among which, Magnetic resonance 

imaging (MRI) is one of the most effective tools for structural assessment. Generally 

speaking, MRI is a medical imaging technique to form pictures of the anatomy of the body 

by using the strong magnetic fields, magnetic field gradients, and radio waves. In the 

differential diagnosis of AD from other type of dementias, MR imaging plays an important 

and routine role. In this thesis, this is also the modality of the brain imaging data we studied.    

 

Generally speaking, there are many factors that could contribute to AD. Thus, which one 

is the real cause? In one study, the researchers recruited 45 healthy elders who are greater 

than 60 years old and conducted a 6 years longitudinal MRI imaging study of normal aging 

[1]. In the final observation, these subjects were separated into two groups who did and did 

not show objective evidence of cognitive decline. After many analyses were performed on 

these two groups, they found medial temporal lobe atrophy rate was the only significant 

predictor of decline in the normal subjects, while other factors such as age, sex, APOE 

genotype, education level didn’t play significant roles. To identify which brain regions are 

related to AD more specifically, another study is conducted based on the concept of Mild 

Cognitive Impairment (MCI), which is commonly accepted as a transitional stage between 

normal aging and AD and can represents early stage AD [2]. In this study, they included 

112 normal elderly individuals, 226 MCI and 96 AD subjects to test if constant and 

accelerated hippocampal loss can be detected in AD [3]. Over short period of time, the 

MCI and AD groups showed hippocampal volume loss over 6 months and accelerated loss 

over 1 year, whereas in the normal group hippocampal loss was detected over 1 year with 
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no indication of acceleration. From this study, they concluded that hippocampus is closely 

related to AD. Besides this study, there are also others that revealed more AD related brain 

regions. In summary, it is widely accepted that the shrinkage of hippocampus and cortex, 

and enlarged ventricles are the commonly accepted Regions of Interest (ROI) for AD. 

 

Chapter 1.3 Machine Learning in Alzheimer's Disease Classification 

With various modalities of neuroimaging data available, such as MRI, PET etc., how to 

use them in AD research? The original way is to have well trained medical experts to look 

at them and make judgement, and it is still the most trustworthy way. It takes many 

resources and time to train a radiologist, thus the workforce in this field is really limited 

comparing to the workload that need to be done. Considering the gap between the demand 

and supply of radiologists, it is not practical to have them scrutinize every image in the 

search for anomalies. With automated image analysis using Machine Learning models, the 

burdens for radiologists could be eased. It would also lower the cost for patients, speed up 

the overall healthcare flow and even has the potential to improve the diagnosis accuracy. 

 

In the AD research field, many problems have been studied, such as the classification task 

that includes ternary classification between AD, MCI and NC, and binary classification 

between AD/NC, AD/MCI and MCI/NC. In this thesis, the classification task we focused 

on in explanation is AD/NC. Various Machine Learning (ML) methods have been applied 

to this field. Among the traditional ML methods, one research is to use Support Vector 

Machine (SVM) to do classification by generating eigenbrain [4]. They started by selecting 

key slices from 3D volumetric data using maximum inter-class variance. Then they 
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generated an eigenbrain set for each subject and obtained the most important eigenbrain by 

Welch's t-test. Finally, kernel support-vector-machines with different kernels were used to 

make predictions of AD subjects. The experiment showed that the proposed method can 

predict AD subjects with a competitive performance. The best accuracy achieved was 

91.47% for linear kernel and 92.36% for polynomial kernel in OASIS-1 dataset.  

 

Even though decent accuracy can be achieved in the proposed method, it requires manually 

designed features, which is the disadvantage of the traditional ML methods in general. For 

Convolutional Neural Networks (CNN), this is not a problem anymore since it allows for 

end-to-end training. Given the input and output, the CNN model is able to minimize human 

efforts and extract features automatically. At the same time, by not specifying which 

patterns to look for, it also gives us potential to identify new region of interest (ROI) for 

AD that has not been discovered before. Among the deep CNN methods, I want to mention 

this study, where the MRI and Positron Emission Tomography (PET) images from 

Alzheimer's Disease Neuroimaging Initiative (ADNI) database are used [5]. In the training 

process, they uniformly divided original input into patches to reduce computation cost. 

Because training a deep CNN model for the whole brain image requires high computation 

cost, especially for the high-resolution images. To keep the correlation information 

between MRI and PET images, they combine the multi-modality images at the same 

position. Then the features associated with both modalities are passed to higher level to 

make prediction. In this model, 93.26% accuracy was achieved in AD vs NC classification.  
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Transfer Learning is a ML method where a model trained for one task is reused as the 

starting point for another model on the second task. Usually relatively large number of 

labeled examples are available in the first source domain and that’s why generic features 

can be extracted and transferred to new domains. As we know, MCI is the early stage of 

AD and has high change to convert to AD. Therefore, effective prediction of such 

conversion from MCI to AD is of great importance for early diagnosis of AD and also for 

evaluating AD risk. In this paper, they propose a transfer learning method that jointly 

utilizes samples from another domain as well as unlabeled samples to boost the 

performance of the MCI conversion prediction [6]. The source domain is samples of AD 

and Normal Control (NC). The target domain is MCI Converter (MCI-C) and MCI Non-

Converter (MCI-NC). Experimental results on ADNI database validate the effectiveness 

of proposed method by significantly improving the classification accuracy of 80.1% for 

MCI conversion prediction. 

 

Another interesting deep learning method Generative Adversarial Networks (GAN) has 

also been applied in the AD early detection field. In this research, they used Cycle GAN to 

generate missing PET images first and then use them for classification [7]. The reasoning 

behind this method is that multi-modality is more powerful and informative in the 

automatic detection. It is quite intuitive that different modalities carry different properties 

and they provide complementary information. But in practice, it is inevitable to have 

missing data. Thus, they used the existing MRI image to generate the missing PET images 

by using the underlying relevance between them. Then both MRI and PET images are used 

in the model training and it achieved 92.5% accuracy in the AD vs NC classification. 
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CHAPTER 2 

Visualization and Evaluation Methods for Deep Neural Networks 

2.1 Class Activation Mapping (CAM) 

In Chapter 1, we talked about how the black box like 3D CNN models have the 

transparency issue. Due to the nonlinearities in the architecture, it is hard to grasp what 

features cause the neural network to arrive at a particular decision. To explain its decision, 

the most intuitive approach will be to generate corresponding heatmaps, where the pixel 

value represents the relevance score for how important that pixel is to the final prediction.  

 

Class Activation Mapping (CAM) is the first heatmap method we used in this thesis. It was 

initially proposed in [9] and it shed light on the uniqueness of global average pooling 

(GAP) layer. Studies have shown that the convolutional layers have the ability to behave 

as object detectors despite no supervision on the location of the object was provided [10]. 

However, this remarkable ability is lost when fully connected layers are used for 

classification. Therefore, they avoid Dense layers in CAM except the last layer for the sake 

of classification. Instead, they used GAP layer right before the last Dense layer to make 

prediction and show how it explicitly enables the CNN to have remarkable localization 

ability despite being trained on image-level labels. Despite its apparent simplicity, they 

achieved 37.1% top-5 error for object localization on ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) 2014 without training on any bounding box annotation. 

They also demonstrated a variety of experiments that by using this method the network is 
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able to localize the discriminative image regions despite just being trained for solving 

classification tasks. 

 

Figure 1: CAM Illustration [9] 

The process for generating the Class Activation Map (CAM) using GAP is actually 

straightforward. As the name implies, a CAM generated for a specific label indicates the 

discriminative image regions used by the model to identify that label.  The CAM is obtained 

by performing GAP on the convolutional feature maps right before the final output layer, 

which is the fully connected layer using softmax in the case of classification. In Figure 1, 

the overall process of CAM is depicted very clearly. To identify which regions are 

important for the Australian terrier prediction, weights of the output layer (W1, W2, … 

Wn) are projected back on to the convolutional feature maps right before GAP. Since GAP 

outputs the spatial average of the feature map of each unit at the last convolutional layer, a 

weighted sum of these values is used to generate the final output. Similarly, a weighted 

sum of the feature maps of the last convolutional layer are computed to be the class 

activation maps. Thus, the class activation map is simply a weighted linear sum of the 

presence of these visual patterns at different spatial locations. After we obtain the CAM 
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for the label Australian terrier, we need to simply up-sample the class activation map to the 

original input image size, then the image regions that are most relevant can be identified. 

 

2.2 Layer-wise Relevance Propagation (LRP) 

Layer-wise Relevance Propagation (LRP) is the second heatmap method we chose. It 

operates by propagating the final prediction value f(x) backwards layer by layer after the 

model finish training [11]. It starts at the last Dense layer where prediction is made and 

propagate all the way till the first input layer. Then the heatmap is generated using the 

relevance values that the first layer has received. The overall propagation process is 

illustrated clearly in Figure 2. 

 

Figure 2: LRP Illustration [11] 

To thoroughly understand how this back propagation works on the neuron level, we can 

start with Formula 1. Let’s say neuron k is in layer L and neuron j is in layer L+1, which 

means neuron j and neuron k are at two consecutive layers in the neural network. Assume 

the relevance score has been propagated all the way to layer L+1 from the final output 

node, and Rk represents the relevance score neuron k received. Now the next step is how to 

propagate relevance score to neurons at layer L, such as neuron j? The answer is 

summarized in this formula. To begin with, the quantity Zjk models the extent to which 

neuron j has contributed to make neuron k relevant in the final prediction. The denominator 

sums up all of the contribution neuron k received from the previous layer during the 
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forward propagation. Therefore, Zjk divided by the denominator tells us how much neuron 

j contributions to neuron k to make it relevant in the final prediction in terms of percentage. 

Based on this measurement, the relevance score Rk flows back to neuron j proportionally. 

In the end, adding up the relevance scores propagated to neuron j from all the neurons in 

layer L+1, we will get the final relevance score Rj for neuron j. Using the same principle, 

we can calculate the relevance score for all neurons in layer L+1. Then Applying this rule 

recursively to the neurons at next layer till the input layer is reached, we will get the 

heatmap for a specific prediction. 

𝑅" = 	%
𝑧"'
∑ 𝑧"'"

𝑅'
'

  
(1) [11] 
 

So far, we just looked at the very basic propagation rule, and there are many carefully 

designed variations for different purposes. Here, we will introduce four LRP rules that are 

used in the thesis, and they are LRP-0, LRP-e, LRP-g, LRP-ab. The rule we just introduced 

above is the most basic one and it is called LRP-0. It is to simply redistribute relevance 

score to each neuron in proportion to the activation contribution. LRP-0 picks many local 

artifacts of the function. Therefore, the explanation is overly complex and does not focus 

sufficiently on the actual feature in the input. That’s why more robust propagation rules 

are needed. LRP-e is to add a small positive constant in the denominator, so that small 

noisy elements could be filtered out. As e becomes larger, only the most salient explanation 

factors could survive the absorption. This typically leads to explanations that are sparser in 

terms of input features and less noisy. But if e is set to be too big, the heatmap will become 

too sparse to be easily understood. Therefore, e is a hyper-parameter we need to tune to 

find the best explanation. LRP-g is to add a parameter g to adjust how much positive 
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weights are favored. LRP-ab works by adding two parameters a and b to adjust how much 

positive and negative contributions matters in the back propagation, and usually a = b + 1. 

As we can see, when g or a increase, negative contributions start to be suppressed and even 

disappear in the end. By treating positive and negative contribution in an asymmetric 

manner, the explanations become more stable. Usually the heatmaps generated by LRP-g 

or LRP-ab are easier to understand because features are more densely highlighted, but it 

might pick unrelated concepts which makes the heatmap not faithful to the label it is trying 

to explain.  

 

Given the advantages and disadvantages of different methods, we can see why composite 

LRP rules is needed. For the lower layers in a deep neural network, which are the layers 

close to the input layer, LRP-g and LRP-ab are more suitable since they tend to spread 

relevance uniformly to the whole feature rather than capturing the contribution of every 

individual pixel. This makes the explanation more understandable for a human. For the 

middle layers, it has more disentangled representation. The stacking of many layers 

introduces spurious variations. LRP-e filters out these spurious variations and retains only 

the most salient explanation factors. For the upper layers which are close to the final output, 

many concepts forming the different classes are entangled. Hence, a simple propagation 

rule which will be insensitive to these entanglements are needed, which are LRP-0. Using 

composite LRP rules, we can overcome the disadvantages of the single approach and the 

features can be identified and highlighted faithfully and clearly. In Table 1, you can find a 

comprehensive summary of the LRP rules and their proper usage in the model layer 

locations, which provided by the LRP overview paper [11]. 
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Table 1: LRP Rules Summary [11] 

Name Formula Usage 

LRP-0 𝑅! =%
𝑎!𝑤!"

∑ 𝑎!𝑤!"#,!"
𝑅" Upper layers 

LRP-e 𝑅! =%
𝑎!𝑤!"

𝜀 + ∑ 𝑎!𝑤!"#,!"
𝑅" Middle layers 

LRP-g 𝑅! =%
𝑎!-𝑤!" + 𝛾𝑤!"% /

∑ 𝑎!-𝑤!" + 𝛾𝑤!"% /#,!"
𝑅" Lower layers 

LRP-ab 𝑅! =% 0𝛼
-𝑎!𝑤!"/

%

∑ -𝑎!𝑤!"/
%

#,!
− 𝛽

-𝑎!𝑤!"/
&

∑ -𝑎!𝑤!"/
&

#,!
4

"
𝑅" Lower layers 

zb-rule 𝑅' =%
𝑥'𝑤'! − 𝑙'𝑤'!% − ℎ'𝑤'!&

∑ 𝑥'𝑤'! − 𝑙'𝑤'!% − ℎ'𝑤'!&'!
𝑅! First layer 

 

In practice, there are special layers in the neural networks that have no weights and biases 

associated, such as pooling layer, batch normalization and the input layer. They couldn't 

be handled by rules mentioned above and need to be addressed separately during the back 

propagation. For the max pooling layers, it can be handled either by winner-take-all 

redistribution scheme, or by using the same rules as for the sum-pooling case. As we know, 

batch normalization layers are commonly used to mitigate the problem of vanishing or 

exploding gradient. It helps the training process converge and improve the prediction 

accuracy. As reported in the paper [11], these layers can be absorbed by the adjacent linear 

layer without changing the function, which means applying identity rule for batch 

normalization layer could be enough in some cases. Input layer is different from 

intermediate layers as they do not receive ReLU activations as input but pixel values. 

Therefore, they need to be handled by LRP-Zb rule, which you can see in Figure 3. 
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2.3 Area over Perturbation Curve (AOPC) 

So far, we have looked at two widely used heatmap methods: CAM and LRP. By 

generating heatmaps to quantify the importance of individual pixels, we can get visual 

explanations for corresponding result. But how do we evaluate a heatmap? As human, we 

can assess the heatmap quality intuitively, by matching the heatmap with what we know is 

important for certain label. When we have small number of heatmaps for relatively simple 

images, this might work. But given many heatmaps generated by various methods, to rank 

them will takes enormous amount of efforts using this kind of individual manual 

evaluation. Additionally, human evaluations are always subjective, and it is very likely that 

different people will attribute different weights to the same feature when they evaluate a 

heatmap. Therefore, we need an objective method to quantify the heatmap quality. 

 

A method called Area over Perturbation Curve is proposed for such purpose [13]. It is 

based on a very intuitive thought that comparing to the pixels with low relevance score, the 

high relevance score pixels should make the prediction value f(x) drop faster if they are 

perturbed. To test this expected behavior, they progressively remove information from the 

original input image x and measure how the final output value f(x) change. This process is 

referenced as region random perturbation. The very first step before any perturbations can 

be applied is to divide the original input image into patches. In the 3D cases, each patch 

will be a cube. There are different ways to do the division, and we experimented two in 

this thesis. The first way is to uniformly divide the image using a predefined grid. There is 

no overlapping between cubes, and they are right next to each other in the spatial domain. 

For instance, for the 3D MNIST data where input image is in the size of 32 x 32 x 32, if 
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we set the stride to be 4, then we will have 8 x 8 x 8 = 512 cubes, which means there are 

512 cubes in total we can apply perturbation. The second way is to allow overlapping 

between cubes, which we call greedy search method. At each perturbation step, we search 

for a new cube that gives the maximum value using the Heatmapping Function hp = H(x, 

f, r p). In this method, we can always focus on the most relevant cube.  

 

After we have a list of divided regions, the next step will be to assign each region a priority 

for perturbation. Basically, we need to sort the original list into an ordered sequence, which 

can be represented as O = (r1, r2, . . . , rL). This sorting process is guided by a heatmapping 

function hp = H(x, f, r p), which assigns each cube a priority value based on the heatmap. 

After the sorting, all indices of the sequence O should satisfy the following property in 

Formula 2. It means the relevance of each cube is coded in the ordering of the sequence O. 

Locations in the image that are most relevant for the class encoded by the classier function 

f will be found at the beginning of the sequence O, and regions that are mostly irrelevant 

will be positioned at the end of the sequence. 

(𝑖 < 𝑗) ⟺ (𝐻(𝑥, 𝑓, 𝑟B) > 𝐻(𝑥, 𝑓, 𝑟")) (2) [13] 
 

After the input image is divided and the cubes are sorted, we are ready to apply the 

perturbation. In this thesis, a uniform distribution is used for the perturbation. The overall 

process can be summarized using the Formulas 3. Here are the meanings of the symbols so 

it’s easier to grasp the essence of the perturbation process. L represents the number of 

perturbation steps in total, and k stands for the current step number. MoRF is short for Most 

Relevant First sequence, which is the ordered sequence O we introduced in the previous 

sections. X stands for the original input image, and XMoRF(k) stands for the input image after 
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kth perturbation. Thus, XMoRF(0) is also the original input image X. As we can see in Formula 

3, after applying the perturbation function g on region rk and the previously perturbed image 

XMoRF(k-1), we get the perturbed image at current step, which is XMoRF(k). We can see that 

the perturbation effect is accumulated at each step. Apparently, at the last step L, all of the 

L regions in the images have been changed. L is a parameter that should be decided based 

on the computational resources we have at hand and also the size of the image. It is closely 

related to perturbation coverage percentage.  

					𝑥DEFG
(H) = 𝑥 

(3) [13] 
∀	1 ≤ 𝑘 ≤ 𝐿:	𝑥DEFG

(') = 𝑔(𝑥DEFG
('PQ), 𝑟') 

 

After having obtained the image at each perturbation step XMoRF(k), we are ready to 

calculate the final Area over Perturbation Curve (AOPC), which is well defined in Formula 

4. We start by calculating the final prediction score f(XMoRF(k)) for image perturbed at each 

step by applying the prediction function. Then calculate the difference with the original 

prediction value. Then we sum up all of the changes at each step and normalize it using the 

number of total perturbation steps. As we can imagine, if we only plot the AOPC curve for 

one image, it might look jagged. At the same time, given hundreds of testing images, how 

do we decide which image to choose? Obviously, cherry picking can’t give us a reliable 

curve, since we can’t trust it to reflect the overall performance of the model. Therefore, 

usually more than one images will be chose to be calculated, then their corresponding 

AOPC curves will be averaged as the final curve for the model. So that we can get a reliable 

and stable curve. In this thesis, we used 100 images in the 3D MNIST dataset and 30 images 

in the MRI dataset after balancing the computational resources and reliable performance. 

In the AOPC formula, the average over all images in the dataset is denoted by p(x). 
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𝐴𝑂𝑃𝐶 =	
1

𝐿 + 10%𝑓-𝑥DEFG
(H) / − 𝑓-𝑥DEFG

(') /
V

'WH

4
X(Y)

 (4) [13] 

 

2.4 Sanity Check for Saliency Map 

Besides the numeric heatmap quality metric AOPC we just looked at, there is another way 

to verify the soundness of the heatmap, which is Sanity Check for Saliency Map proposed 

by Adebayo and his colleagues [14]. It offers us a binary result whether a heatmap passed 

the Sanity Check or not. In this paper, the experiments were mostly done on Gradient based 

methods. As Guided Back Propagation methods gained many attentions and success 

nowadays, Dr. Leon Sixt and his colleagues conducted the sanity check on most of the 

Guide BP methods [15] and you can find the results in Figure 3. 

 

The intuition behind this method is that if the parameters of the original model are 

randomized, the produced saliency map should change. The parameters randomization is 

performed in cascading fashion from top to bottom layer, with the last Dense layer as top 

layer and the convolutional layer right after input layer as bottom layer. After we randomize 

the parameters in the top layer, we generate heatmap. Then randomize the second layer 

parameters on top of the first layer randomized model and generate corresponding heatmap. 

Repeat the same process until the bottom layer is reached.  

 

We can find the above-mentioned process described in Figure 3 part (a) on the horizontal 

axis. On the vertical axis, we can see that 10 methods are tested. Apparently, we would 

expect the heatmap to change, since the top layer directly makes final decision. 



 

19 

Surprisingly, most saliency maps stay identical or only switched signs, which means most 

of them failed the sanity check. Therefore, these methods do not explain the networks’ 

predictions faithfully. In the lower part of Figure 3, it is to test the Class insensitivity of 

LRP-a1b0 on VGG-16. Part (b) is the original input image where you can see a Persian 

cat on the left and a King Charles Spaniel dog on the right. Part (c) is the explanation for 

cat and part (d) is the explanation for dog. Surprisingly, you can see they are almost the 

same, which means the saliency maps becomes visually identical for different classes. It is 

concerning because the generated heatmap is not faithful to the label it is trying to explain. 

 

Figure 3: Sanity Check for Guided BP methods [15] 

What caused these widely used heatmap methods failed the saliency test? In this 

publication [15], they not only raised the problem but also shed light on the cause of it. As 

we know in the back-propagation process, the relevance matrix is propagated layer by 
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layer. Therefore, by the time the relevance score matrix reaches to the first input layer, it 

is the result of a matrix multiplication chain. In some back-propagation rules, such as LRP-

a1b0, only the positive contributions are used. Therefore, the final relevance score matrix 

is the result of a positive matrix multiplication chain, and at certain layer, the result 

converges to a rank 1 matrix.  

 

Here is geometric proof for the matrix convergence. On the left side of Figure 4, we can 

see a convex cone in light blue. Inside of it, the light red convex cone consists of all vectors 

ax + by with a and b being positive, for the depicted x and y vector. It shows that all non-

negative linear combinations of x and y fall into this light red convex cone. On the right 

side of Figure 4, we can see the similar illustration for column vectors convergence in the 

backpropagation. As we mentioned, the matrices are all non-negative due to the rules we 

choose, so the column vectors are in the positive quadrant, and all non-negative linear 

combination of the column vectors will remain in its convex cone. It ensures that the cone 

shrinks with every iteration and it converges to a single vector in the end. 

 

Figure 4: Convex Cone Illustration for the Convergence [15] 
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As we know, the rank of a matrix represents the max number of linearly independent 

column or row vectors in the matrix. If a matrix has rank 1, then it can be written as the 

product of two column vectors. For example, in Formula 5, we have a rank 1 matrix C that 

is rewritten as the multiplication of two column vectors c and g. If we multiply C with any 

vector n, the new vector n can be combined with the transpose of g and results in a constant 

l that only changes the scaling. But the direction of the resulting vector stays identical. 

𝐶 = 𝑐𝛾[	where	𝑐 ∈ ℝb	and	𝛾 ∈ 	ℝf 
(5) [15] 

𝐶𝝊 = 𝑐𝛾[𝝊 = 	𝜆𝑐	with	𝜆 ∈ ℝ 
 

Therefore, once a matrix has converged at layer k, any layers after that do not contribute 

to the final result other than scaling. But the scaling is irrelevant since the heatmap is 

normalized in the end. As we know, the final decision of a network is made in the last layer 

which is after layer k. It doesn’t contribute to the explanation other than scaling because 

the matrix has already sufficiently converged. That’s why the saliency maps become 

visually identical for different classes. In summary, the positive contribution back 

propagation rule yields a multiplication chain of non-negative matrices which converge to 

a rank 1 matrix, that is the reason why these heatmap methods failed the sanity check.  
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CHAPTER 3 

Experiments and Results 

Chapter 3.1 Datasets and Setups 

Open Access Series of Imaging Studies (OASIS) is a project aimed at making 

neuroimaging dataset of brain freely available to the scientific community, by providing 

open access to a significant database of neuroimaging and processed imaging data across 

a broad demographic, cognitive, and genetic spectrum. All data is available via www.oasis-

brains.org. In this thesis, I used Open OASIS dataset-2 [8], which contains longitudinal 

MRI data in no demented and demented older adults. 150 subjects aged between 60 to 96 

participated in the study and each one was scanned on at least two visits. There is at least 

one-year gap between visits and 373 imaging sessions were collected in total. For each 

single scan sessions, 3 or 4 individual T1-weighted MRI scans were obtained. All subjects 

are right-handed and both men and women are included. Out of the 150 subjects, 72 were 

characterized as nondemented throughout the study; 14 were characterized as nondemented 

at their initial visit and were subsequently characterized as demented at a later visit; 64 

were characterized as demented at their initial visit and remained so for subsequent scans. 

Both 2D and 3D MRI images are provided in this dataset. We started with the 2D images 

but realized the CNN model suffers from low performance due to the loss of 3D spatial 

information. Thus, in this thesis, we focused on the 3D version where each image is in the 

size of 128 x 128 x 128 voxels after preprocessing. The MRI image size is not small, but 

given enough time and resources, there is no problem to train a model with decent accuracy. 
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In this thesis, we are interested in not only obtaining a model with high classification 

accuracy but also understanding how the model makes decisions.  

 

To verify the observations from the OASIS-2 dataset, we also conducted all the parallel 

experiments in the 3D MNIST dataset from Kaggle (https://www.kaggle.com/daavoo/3d-

mnist). Just like the original 3D MNIST dataset, it is a dataset of handwritten digits but in 

3D format. The data is provided in the format of point cloud, which is a set of data points 

in space produced by 3D scanners through measuring points on the external surfaces of 

objects. With some preprocessing scripts, I generated voxels from the original cloud points 

so the CNN model can be trained on this dataset. The entire dataset contains 5000 training 

images and 1000 testing images, in the size of 32 x 32 x 32 voxels. Due to the smaller size 

comparing to OASIS-2 dataset, it takes shorter time to conduct tests on this dataset. Since 

this is a handwritten digit dataset whose input images we are all familiar with, it is easier 

for us to interpret the corresponding heatmaps and observe patterns, which can be used as 

comparison and confirmation for the results from OASIS-2 dataset. 

 

In the previous section, we saw many kinds of deep learning models have been designed 

for the AD research. Some directly used autoencoder in multi-modalities to extract generic 

features, some use GAN to generate missing modality data so multi-modalities could be 

used, some used transfer learning so features learned on AD can be transferred to MCI, but 

in this thesis we discovered that for AD vs NC classification task, a sequential model with 

VGG-16 architecture suffices to achieve above 95% accuracy. But as we have mentioned, 

our focus is more on understanding 3D CNN’s decision than achieving high accuracy. To 
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explain the model’s decision using Class Activation Mapping (CAM) method, we need to 

remove the last two Dense layers, because as claimed in the CAM publication the fully 

connected layers cause the network to lose the spatial features that it has learned in the 

early stage. Thus, fully connected layers are removed in the model. It causes the parameters 

in the model to decrease and so does the model complexity. As a result, the prediction 

accuracy on the testing data also dropped, but it can still be considered as decent and the 

details can be found in the coming paragraph. Besides CAM, we also used another heatmap 

method Layer-wise Relevance Propagation (LRP) to visualize the network’s decision. To 

compare these two heatmap methods equally, same model is used.  

 

As we know, overfitting is not an uncommon issue for 3D CNN, especially in the AD 

classification task where relatively small amount of training samples is available but large 

number of the parameters need to be trained in the model. There are several techniques to 

address this issue, such as drop out, weight decay, early stopping, etc. In this thesis, early 

stopping is the technique we chose. For both datasets, 10% of the training data is used as 

validation set to prevent overfitting. The patience is set to be 3, which means if the 

validation loss set keeps decreasing over three epochs, the training process will be stopped. 

By applying this technique, we can prevent the model from just memorizing the data 

instead of learning general features. For the optimizer, Adam is used with the learning rate 

of 0.00001. For the loss function, categorical cross-entropy is used for both since they are 

classification tasks. For the OASIS-2 dataset, even though binary cross-entropy could be 

used, we stick to the categorical cross-entropy so the implementation for OASIS-2 can be 

generalized to 3D MNIST dataset.   
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In the training process, usually people dedicate a bigger part of data as training and a 

smaller part as testing, for example, 80% and 20% correspondingly. As we can imagine, 

after training there might be some biases in the model since it only extracted features from 

80% of the data. What if some important features happen to only exist in the 20% testing 

data? Then the model obtained will not be able to generalize well to unseen data in the 

future and will also have poor performance on the testing data. Another case could be all 

features in the testing data happen to be well learned already but not so for all features in 

the training data. In this case, the model will have a very high prediction accuracy but it’s 

misleading. Thus, to ensure the model is not biased to specific part of the training data, we 

used K Fold Cross Validation in the training process. The overall illustration is depicted in 

Figure 5. It starts with diving the data into K subsets. There will be K rounds in total and 

at each time, one of the K subsets is used as the test set and the other K-1 subsets are 

combined together to form the training set. The average performance of all iterations is 

considered as the overall performance. As we can see, every data point gets the chance to 

be trained for k-1 times and be tested for once. Therefore, it significantly reduces bias and 

variance as all data has been looked at for pattern extraction.  

 

Figure 5: Cross Validation Illustration 
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In this thesis, a 5-fold cross validation is used for the 3D MNIST dataset and 10-fold cross 

validation is used for OASIS-2 dataset. The testing performances are listed in Table 3 and 

Table 5. As we know, the standard deviation is a measure of the variation amount in a set 

of values, which can be used to check if the model performance is stable or not. Thus, mean 

and standard deviation are calculated for both datasets. The corresponding model 

architectures are listed in Table 2 and Table 4. 

Table 2: 3D MNIST Models Architecture 

Number of Convolutional Layers Architecture 
2 Conv, Maxpool, Conv, GAP, Dense 
3 (Conv, Maxpool) x 2, Conv, GAP, Dense 
4 Conv, (Conv, Maxpool) x 2, Conv, GAP, Dense 
5 (Conv, Conv, Maxpool) x 2, Conv, GAP, Dense 
6 (Conv, Conv, Maxpool) x 2, Conv, Conv, GAP, Dense 

 

Table 3: 5-Fold Cross Validation Testing Result for 3D MNIST Dataset 

Number of 
Convolutional Layers 1 2 3 4 5 Mean Std 

2 56.5 58.42 56.58 53.17 54.92 55.92 1.77 
3 85 87.08 84.83 85.42 86 85.67 0.81 
4 90 89.5 88.58 88.67 90.42 89.43 0.72 
5 90.33 91.92 91.75 90.67 92.83 91.5 0.90 
6 93.92 95.92 95.83 95.42 95.58 95.33 0.73 

 

Table 4: OASIS-2 Models Architecture 

Number of Convolutional Layers Architecture 
3 (Conv, Maxpool) x 3, GAP, Dense 
6 (Conv, Maxpool) x 6, GAP, Dense 

 

Table 5: 10-Fold Cross Validation Testing Result for OASIS-2 Dataset 

Number of 
Convolutional 

Layers 
1 2 3 4 5 6 7 8 9 10 Mean Std 

3 52.9 52.9 52.9 50 52.9 50 52.9 50 50 47.1 51.2 1.92 
6 88.2 82.4 88.2 94.1 88.2 85.3 94.1 91.2 88.2 94.1 89.4 3.76 
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Chapter 3.2 CAM for 3D MNIST and OASIS-2 

As we introduced in the previous chapter, CAM is the heatmap method that generate the 

relevance scores by using the class activation map, which is calculated using the weighted 

sum of the feature maps from the last layer before global average pooling. Then simply up-

sample the class activation map to the original image size and save it as heatmap. 

Considering the simplicity of this method, will it work well for complex models? How 

would the heatmaps change under different level of model complexity and different 

datasets? Can we trust the heatmaps to always faithfully present the features that the model 

uses to make decision? In this section, we seek to answer these questions by experimenting 

on 3D MNIST and OASIS-2 datasets using well-trained models with different 

architectures. In the training process, k-fold cross validation is used to verify the stableness 

of the model performance, and the related details can be found in section above. 

 

In both datasets, heatmap is generated for every single image in the testing set. To make 

sound statements, hand picking heatmaps to show could be biased. Directly using the 

average of all heatmaps for the same class could be one way of solving the cherry-picking 

issue. But the uniqueness of each input leaves the simple average result hard to understand. 

Take the 3D MNIST dataset for example, there are many ways for human to write a digit 

4. Some like to close the top part, and some like to leave it open. Thus, it is likely that the 

network will rely on different features in different input to make the decision. Simply 

taking average over all heatmaps will cause us not to be able to recognize the real features 

that is highlighted, since the heatmap and input are misaligned. This is the typical issue 

that could be addressed by the image registration technique, which is to transform different 



 

28 

sets of images into one coordinate system. This part is kindly contributed by my dear lab 

mate Ankita Prashant Joshi. Due to the time and computation resource limit, we only 

registered heatmaps on the 3D MNIST dataset. For each digit from 0 to 9, we registered 

around 10 source images into their corresponding target images using a chosen templet, 

then use the average of all registered images. In both CAM and LRP, the heatmaps for 3D 

MNIST presented in this thesis are registered. Even though we were not able to register the 

OASIS-2 dataset, we did observe similar patterns in both datasets, which we will illustrate 

in detail in the following sections. 

 

Chapter 3.2.1 CAM for 3D MNIST  

On the left side of Figure 6, we can see a summary of the models’ complexity change. As 

the number of layers increases, the parameters in the model increase and the model gets 

more and more complex. We know that as the network gets deeper, the low-level features 

captured in the first few layers will be passed into higher layers for further abstraction. 

Therefore, the network can capture features at different level and the performance should 

also increase. On the right side of Figure 6, we do see this expected trend that the prediction 

performance increase monotonically when the model gets more and more complex. 

 

Figure 6: Model Complexity and Prediction Performance Change in 3D MNIST Models 
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The results for heatmaps generated by the simple model with only 2 convolutional layers 

is displayed in Figure 7. All three views are available for the heatmap, but here we only 

show the plane that best reflects the digit pattern for the sake of space. In this heatmap set, 

we can see that in most cases, the model is using the overall structure of the digits to make 

decisions, since the heighted features follow the stroke closely. For example, for digit 0 

and 8, the highlighted regions are exactly the corresponding strokes. For digit 1, the 

absence of other strokes plays an important role for the model to make prediction.  

 

Figure 7: Registered 3D MNIST Heatmaps Using CAM in the Model with 2 Convolutional Layers 

In Figure 8, we can see the heatmaps generated by the complex model which has 6 

convolutional layers. Comparing to Figure 7, the model doesn’t rely on the overall contour 

to make decisions anymore. The highlighted features are more abstract and for some digits 

it makes sense visually but not all not them. For digit 0, we can see the center of the circle 

is highlighted and it shows that closed circle is very important to predict label 0. For digit 

7, the highlighted region is in upper left. It makes senses since that’s the difference between 

7 and 9. For digit 3, the middle part is highlighted. It also makes sense since it is how we 

distinguish 3 from 8.  But for other digits, it is hard to make sense of them directly. 



 

30 

 

Figure 8: Registered 3D MNIST Heatmaps Using CAM in the Model with 6 Convolutional Layers 

 

Chapter 3.2.2 CAM for OASIS-2  

Same with the MNIST, we also generated heatmaps from both the simple and complex 

model in OASIS-2 dataset. The heatmap patterns are actually very similar across all 

subjects. Thus, showing result for one subject is enough and here we chose subject 28. In 

Figure 9, we can see the corresponding transverse, sagittal and coronal views of the 

heatmap generated by the simple model. The heatmaps are in RGB color scheme where the 

red channel and blue channel represent the positive and negative contributions 

correspondingly. Part of the cerebral cortex and ventricle are highlighted as positive 

contribution and these areas could be where lesions are detected. In the rest part of the MRI 

image, the overall structure of the brain is highlighted as blue. It could be for this subject 

that the network treats these parts as normal. Thus, it contributes negatively for the model 

to make the decision about AD.  
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Figure 9: Heatmap for Subject 28 in OASIS-2 Using CAM in the Model with 3 Convolutional Layers 

With a more complex model, the prediction performance also increases for the OASIS-2 

dataset. And how about the corresponding heatmap? Similar to the 3D MNIST results, the 

heatmap stopped to make sense visually. As you can see in Figure 10, even some corners 

where there are no voxel values are highlighted as important for the model to make 

decision. Thus, in this brain MRI image dataset, we can’t rely on CAM to visually show 

us the important features in the complex model. 

 

Figure 10: Heatmap for Subject 28 in OASIS-2 Using CAM in the Model with 6 Convolutional Layers 

By looking at these heatmaps from both datasets, we can see that when the model is less 

complex, it relies more on the contour of the input images to make decision. The prediction 

accuracy is not high due to the lack of abstract features. But the heatmaps generated by 

CAM using simple model can visually explain what features the model used to make 

decision. On the other side, when the model gets more complex, the prediction accuracy 
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will increase as expected. But The highlighted regions make less sense visually. This 

pattern is verified in two datasets, and we see it as the limit of CAM method. Due to the 

simplicity of its design, it couldn’t convert and transform the abstract features to visual 

representation accurately when the model gets complex. 

 

Chapter 3.3 LRP for 3D MNIST and OASIS-2 

As we mentioned in the illustration of LRP in Chapter 2.3, we know that this method works 

by back propagating the final prediction score layer by layer using the contribution 

percentage during the forward propagation. Finally, when the relevance score reached the 

input layer, it will be saved as the heatmap for corresponding prediction. There are many 

LRP rule designed for different purposes. It is suggested a composite rule should be used 

so that we can make the most of each rule’s advantage and avoid its disadvantage. From 

Table 6 we know that LRP- Zb should be used for the last layer which is the layer right 

before the input layer. LRP-g or LRP-ab should be used for the lower layers. LRP-e should 

be used for middle layers and LRP-0 should be used for the upper layers. However, there 

is no clear cut between the definition of lower, middle, and upper layers. It is for sure that 

the 2nd layer, the 4th and the 6th layer should be considered as lower, middle and upper layer 

correspondingly. But the 3rd layer could be treated as either lower or middle layer and the 

5th layer could be thought as either middle or upper layer. For the Max Pooling layer, we 

could use either winner-take-all strategy or average pooling strategy. The values for g, e, 

a, b should also be tuned for different model and dataset. Thus, considering all of the 

combinations, the composite rule space we can explore is actually infinite. Due to the time 
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limit, we can only explore a small set of composite rules. In this thesis, the three rules we 

chose are listed in Table 6. 

Table 6: Composite LRP Used in This Thesis (g = 0.25, e = 0.0025, a = 1, b = 0) 

 1st Conv 2nd Conv 3rd Conv 4th Conv 5th Conv 6th Conv Maxpooling 
Composite 

LRP 1 LRP-zb LRP-g LRP-e LRP-e LRP-0 LRP-0 Winner-
take-all 

Composite 
LRP 2 LRP-zb LRP-g LRP-g LRP-e LRP-0 LRP-0 Average 

Pooling 
Composite 

LRP 3 LRP-zb LRP-ab LRP-ab LRP-e LRP-0 LRP-0 Average 
Pooling 

 

 

In the previous CAM section, different models are used to explore how the heatmap method 

behave in different model complexity. In LRP, we are more interested in understanding 

how different LRP rules affect the heatmap. At the same time, we know that LRP is a 

sophisticatedly designed heatmap method that carefully pass the relevance score using 

weights as guidance. It is less likely to have a big difference when dealing with models at 

different complexity. Thus, we only experimented on the complex model. To be able to 

make fair comparisons between these two heatmap methods, we generated heatmaps from 

the same model in LRP and CAM.  

 

Chapter 3.3.1 LRP for 3D MNIST 

In the 3D MNIST heatmaps generated by composite LRP 1 and 2, only small regions are 

highlighted. Thus, they are not very helpful in explaining the network decision. For the 

sake of space, we only show the heatmaps from composite LRP 3 in Figure 11 which have 

more significant results. We can see that the features highlighted are very specific to 

individual input. For digit 0, the middle part on the right side of the contour is highlighted. 
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It makes sense because with an additional stroke there, it will become 9. For most of other 

digits, the features are highlighted in a very similar fashion. For example, the bottom left 

part highlighted in digit 7 distinguishes itself from digit 2. The upper left part highlighted 

in digit 4 makes the difference with digit 9. Also, the middle part highlighted in digit 3 is 

important for it to be a 3 instead of 8. The bottom right part highlighted in digit 1 makes it 

different with digit 7. The way digit 5 is written makes it become 6 if an additional stroke 

is added near the highlighted part. For digit 8, the way it is written makes the first circle 

very important for it to be a digit 8, since that circle almost becomes solid instead of hollow. 

It makes sense to highlight that part.  

 

Figure 11: Registered 3D MNIST Heatmaps Using Composite LRP 3 

 

Chapter 3.3.2 LRP for OASIS-2  

In this section, we use LRP methods to explain the 3D CNN model’s decision about 

Alzheimer’s Disease. This is not the first effort in this field. Dr. Bohel and his colleagues 

have already published their results in Frontiers in Aging Neuroscience at 2019 July [12]. 

However, the efforts in this thesis are independent from their work. It means the overall 
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pipeline design, code implementation and LRP rules setting are of our original work, since 

we were not aware of this publication until the middle phase of our exploration. But we did 

get inspirations from their work about how the LRP-ab rule is understood in AD 

classification context, which we will see in the coming section. 

 

Same with 3D MNIST dataset, the heatmaps generated by composite LRP 3 shows the 

strongest signal while the heatmaps from the other two rules are relatively weak. Therefore, 

we only show the heatmaps generated by Composite LRP 3 for subject 16, 24 and 28 in 

Figure 12, 13 and 14. For AD subjects, we can observe the highlighted areas are very 

specific to individual subject in terms of location and intensity. At the same time, we can 

also see there are similarities in the highlighted regions across different subjects, which is 

that most of them are in the cerebral cortex in the frontal lobe and temporal lobe. It matches 

with what is known about the brain legions related to Alzheimer’s Disease. For Normal 

Control (NC) subject, the overall structure of the brain is used to make decisions and the 

heatmap intensities are also relatively low. Thus, we can see that heatmap generated by 

composite LRP 3 have great potential in identifying the features the model used to classify 

an input as AD. More importantly, it is able to give specific explanation for a subject. 

 

Figure 12: Heatmap for AD Subject 24 in OASIS-2 Using Composite LRP 3 
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Figure 13: Heatmap for AD Subject 28 in OASIS-2 Using Composite LRP 3 

     

Figure 14: Heatmap for NC Subject 16 in OASIS-2 Using Composite LRP 3  

In the heatmaps results from 3D MNIST and OASIS-2 dataset, we can see that composite 

LRP 3 achieved the best performance in identifying useful features for the model. The 

difference between composite LRP 3 and the other two rules is that LRP-ab is used for the 

lower layers and Average Pooling is used for the Max Pooling layers during the back 

propagation. From the LRP rules summary in Table 6, we can see that both LRP-ab and 

LRP-g promote the positive contribution. But LRP-ab also inhibits the negative 

contribution. In composite LRP 3, b is set to be 0, which means the negative contributions 

are totally eliminated, and only the positive contribution during the forward propagation 

plays a role in distributing the relevance scores. In the LRP in AD classification paper [12], 

they did experiment on different b values and found the sparseness increases with higher 

b value. When b is close to 0, the network focuses on the positive contribution and is more 
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clinical interpretable. In the LRP Overview paper [11], they used average pooling strategy 

in back propagation for the Max Pooling layer, but no justification is given about their 

choice. In our experiments, it turns out the average pooling strategy also works better than 

the other one, but we haven’t figured out the reason yet. Therefore, at this point, we 

discovered that composite LRP 3 have great potential in explaining the network’s decision 

at an individual level. But more work is still needed to reveal why the average pooling is 

superior than the winner-takes-all strategy for the Max Pooling layer.  

 

Chapter 3.4 AOPC for 3D MNIST and OASIS-2 

So far, we looked at the heatmaps generated by CAM and LRP on two datasets. By visual 

appearance, we can make judgement call about which heatmap is better based on our 

opinions. But different person might have different opinions. Sometimes, the difference 

between two versions of heatmap are not easily distinguishable by naked eyes. Thus, an 

objective metric that can quantify the heatmap quality is needed.  

 

Area over Perturbation Curve is proposed for such purpose. As we mentioned in the 

previous introduction chapter, the first step to use this metric is to divide the input image 

into unisize cubes. There are two strategies we can choose. First one is to use a predefined 

grid to divide the image so that the cubes are adjacent to each other, which we call uniform 

division strategy. The second one is to use greedy search fashion to always pick the cube 

that returns the greatest heatmapping function value, which we call greedy search strategy. 

The heatmapping function hp also needs to be designed. One very intuitive function would 

be to use the sum of all heatmap voxel values inside a cube. In the previous heatmaps 
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shown, we see it is possible to have red and blue regions in the same cube, where the 

positive and negative signals might cancel out each other if we use a direct sum for the hp. 

It will set the cube to the end of the MoRF sequence and become less likely to be chosen 

for perturbation. Thus, another option is to use the sum of the absolute voxel values as the 

hp. In this thesis, to seek to understand how the dividing strategy, heatmapping function hp, 

and stride size affect the AOPC score, we experimented several combinations of these 

factors in both 3D MNIST and OASIS-2 dataset.  

 

Chapter 3.4.1 AOPC for 3D MNIST 

In the 3D MNIST dataset where the image dimension is 32 x 32 x 32, the coverage 

percentage is listed in Table 7 under different stride size. The reason why coverage 

percentage matters is that the curve trend might change as more perturbations are applied, 

which we did observe in some of our plots. With a low coverage percentage, we could be 

fooled by the unstable curve in its early stage, thus, we will risk unreliable conclusion. 

Comparing to the 15.7% perturbation coverage that is used in the original AOPC paper, we 

can be much more confident about our conclusion looking at the perturbation coverage 

percentage in Table 7. For 3D MNIST dataset, we actually explored 5 models with different 

complexity, which has 2 to 6 convolutional layers in its architecture correspondingly. Even 

though in the previous CAM heatmap section, we didn’t display heatmaps from all models 

for the sake of space, they are actually generated. In this section, we calculated the AOPC 

scores for all of them. 
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Table 7: Perturbation Coverage Percentage for MNIST 

Stride 
size 

Number of 
cubes in total 

Total perturbation steps 
length L 

Perturbation 
Coverage Percentage 

4 (32/4)^3 = 512 500 500/512 = 96% 
8 (32/8)^3 = 64 50 50/64 = 78% 

 

In Figure 15 and 16, we can see the AOPC plots for 4 variations using different 

combinations of the heatmapping function hp and the dividing strategy when the stride size 

is 4 and 8 correspondingly. From the top rows in these two figures, we can see that in both 

dividing strategies, whichever hp function we use barely makes a difference except a very 

small change in the simplest model with 2 convolutional layers. If we look at the bottom 

rows in Figure 15 and 16, where the dividing strategy is experimented, we can see that in 

the first half of the perturbation steps, the scores are almost the same, but afterwards using 

the original voxel values gradually achieved slightly better scores. These changes don’t 

appear to be significant actually. Comparing between stride size 4 and stride size 8, we can 

see using stride size 4 achieved around 10% higher AOPC scores than using stride size 8 

regardless of hp function and searching strategy setting. As we can imagine, using a smaller 

stride, the division is in a higher granularity and thus can associate cube priority with the 

features better.  

 

Among all of the AOPC plots for CAM in Figure 15 and 16, there is one pattern that is 

preserved throughout every stride size, searching strategy and hp combination. It is that the 

AOPC scores always correlate positively with the model complexity. Starting from simple 

model that has 2 convolutional layers to the complex one with 6 convolutional layers, we 

can see the AOPC curve for one model is always above the other if it is more complex. It 
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shows that the heatmaps generated by complex model have higher quality than the ones 

generated by simple model in this metric. In Figure 6, we saw that the prediction 

performance also correlates positively with the model complexity. Thus, the heatmaps 

generated by CAM actually correlates positively with the prediction performance. 

Previously, we saw CAM heatmaps that are generated from the simplest model reflect the 

input image contour while the ones that are from the complex model make less sense 

visually. But from this pattern we just mentioned, it is not the 3D Neural Network that 

doesn’t make sense. It is the limit of the CAM method that it couldn’t map back the abstract 

features to the original input space. This is probably due to its simplicity. If we could design 

a more sophisticated way for the class activation map to be up-sampled to the input image 

size, such as the layer-by-layer fashion in LRP, CAM could achieve better visualization 

results for complex models. 

 

Figure 15: AOPC Curves for 3D MNIST Using CAM with Stride 4 (view in color) 

 



 

41 

 

Figure 16: AOPC Curves for 3D MNIST Using CAM with Stride 8 (view in color) 

The AOPC scores are generated for three LRP rules. From Figure 17, we can see all four 

variations when the stride size is set to 4, and in Figure 18, it is when stride size is 8. In top 

rows from these two figures, we investigate how the hp function affects the AOPC scores. 

For composite LRP 3, we can see the difference is actually minor, which should be caused 

by the LRP rule that only allows positive contribution in the propagation. For composite 

LRP 1 and 2, as we mentioned earlier, the signals in the heatmaps are not very significant. 

Thus, not very much cubes in the MoRF sequence have non-zero voxel values inside. 

Changing hp function will have more impact on the cube ordering in the MoRF sequence 

comparing to composite LRP 3, that’s why we can see a big difference. From the bottom 

rows on Figure 17 and 18, we can see how the search strategy affects the AOPC scores. 

For composite LRP 3, it is almost the same though out all variants. But for composite LRP 

1 and 2, using uniform dividing is better than greedy search. If we compare the final AOPC 

scores between stride 4 and stride 8, we can see that the scores using stride size 4 is around 

5% greater than stride size 8.  
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Figure 17: AOPC Curves for 3D MNIST Using LRP with Stride 4 (view in color) 

 

 

Figure 18: AOPC Curves for 3D MNIST Using LRP with Stride 8 (view in color) 

From these AOPC plots for heatmaps generated by LRP, we can see that composite LRP 

3 almost always achieved better scores throughout all experiments. Therefore, we conclude 

the heatmap generated by composite LRP 3 have the highest quality, which verifies our 



 

43 

previous observation that the heatmaps generated by composite LRP 1 and 2 are not 

significant enough to represent the features the model used to make decision. Comparing 

the best AOPC scores from CAM 6conv and composite LRP 3, we can see the CAM 6conv 

achieved around 10% greater score than LRP, which means the heatmaps are in higher 

quality. Even though the CAM 6conv heatmaps don’t make sense visually as much as the 

composite LRP 3, it shows us the potential of the CAM method if we can design a more 

well guided process for the feature map to be up-sampled to the original input image size.  

 

Chapter 3.4.2 AOPC for OASIS-2 

Comparing to the 3D MNIST dataset that has dimension of 32 x 32 x 32, OASIS-2 dataset 

is in a much higher dimension 128 x 128 x 128. Therefore, it is not feasible to repeat all 

experiments we did in MNIST. At the same time, we see that the greedy search and a 

smaller stride size didn’t boost the AOPC scores very much in the 3D MNIST dataset. 

Therefore, we only explored the hp function factor while setting the stride to be 32 and 

using uniformly dividing strategy. With the total perturbation steps L set to be 50, the 

coverage percentage is 50/64 = 78%. Like we mentioned in the previous section, it is big 

enough for us to be confident about the overall curve trend.  

 

In Figure 19 we can see the AOPC plot for CAM method in OASIS-2 dataset. If we directly 

use the voxel values for hp, which means absolute parameter is set to false, the complex 

model initially increases slower than the simple one. But in the end, the trend is reversed, 

and the complex model reached higher score. As we saw in Figure 9, the cerebral cortex 

and ventricle is highlighted in red. Therefore, when the absolute is set to false, the cerebral 
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cortex and ventricle areas will get selected first. As we know the atrophy of cerebral cortex 

and enlarged ventricle are closely related to AD diagnosis. By perturbing these regions, the 

prediction score will decrease very quickly. Thus, the AOPC score will increase quickly 

since it measures the difference between original prediction score and the one after 

perturbation. That's why initially, the AOPC score for heatmaps generated by simple model 

grows faster than the complex one. In Figure 9, we also saw that most of the brain 

anatomical structure are highlighted in blue. Thus, the cubes that contains brain structure 

will be found at the end of MoRF sequence. Comparing to these cubes, even the ones in 

the corner where there are no voxel values will be chosen first. That's why after around 

half of the perturbation steps, the AOPC scores for heatmaps generated by complex model 

become greater than the simple one.  

 

When we set the absolute parameter to be true, which means the color of the heatmap 

doesn't matter anymore, only the intensity make a difference in the MoRF sequence. As 

we just mentioned in the previous section, the heatmap generated by the simple model 

reflects the anatomical structure of the brain and also highlighted AD related brain legions. 

With absolute value hp function, the cubes with aforementioned important features will be 

chosen first. That's why the heatmaps generated from simple model achieved greater 

AOPC scores. As we saw in Figure 10, the heatmaps generated from the complex model 

barely have negative highlighted regions, that’s why switching absolute parameter value 

doesn’t affect its AOPC scores.  



 

45 

 

Figure 19: AOPC Curves for OASIS-2 Using CAM (view in color) 

Same with CAM, stride size 32 and uniformly diving strategy are used to generate AOPC 

plots for the heatmaps from LRP method. In Figure 20, we can see the hp function doesn’t 

makes very much difference across all three rules. It is also obvious that the heatmaps 

generated by composite LRP 3 achieved the best score regardless of the hp function setting, 

which confirms what we observed and explained in the LRP on OASIS-2 chapter. 

 

Figure 20: AOPC Curves for OASIS-2 Using LRP (view in color) 
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To compare the performance of CAM and LRP in explaining Alzheimer’s Disease, we use 

the AOPC scores for the heatmaps generated from complex model, which is around 0.3 for 

CAM and 0.45 for LRP. We can see that the LRP method achieved around 50% higher 

score than CAM. Therefore, LRP have better performance than CAM at explaining the 

network’s decision on AD. 

 

Chapter 3.5 Sanity Check for 3D MNIST and OASIS-2 

Similar to AOPC scores that evaluate heatmaps using objective metrics, sanity check is 

another form to evaluate the heatmap. Instead of giving a numeric measurement about the 

heatmap quality, sanity check offers us a binary decision whether the heatmap pass the 

check or not. As we introduced earlier in Chapter 2, sanity check is based on a very intuitive 

assumption that randomizing parameters in the model should cause the heatmap to change. 

To verify whether the heatmaps we generated are sane, we performed this check on both 

methods and both datasets. In CAM, only the second last layer which is the one between 

Global Average Pooling and final Dense layer has weights that are used in generating 

heatmaps. Thus, there is only one-layer perturbed heatmap. For LRP, since weights are 

needed when the relevance scores are passed through each convolutional and dense layer, 

we performed the parameter randomization on each layer, in the cascading fashion from 

top to bottom. In the models we used, there are 7 weight layers. Thus, there will be 7 

versions of perturbed heatmaps in LRP. 

 

The heatmaps generated are in 3D format and all transverse, sagittal and coronal views are 

available. Because the view is merely a different perspective of the same object, the 
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conclusion of whether passing the sanity check or not is the same across all three views. 

There is no need to show all of them for the sake of space. Thus, only the sagittal view for 

all perturbed heatmaps are displayed. 

 

Chapter 3.5.1 Sanity Check for 3D MNIST 

In Figure 21, we can see the one on the left is the original heatmap and the one on the right 

is the randomized heatmap. Apparently, they are different. Thus, CAM method passed the 

sanity check on 3D MNIST dataset. 

   

Figure 21: Original and Parameters Randomized CAM Heatmaps for Digit 3  

In Figure 22, we can see the first image on the left upper corner is the original Digit 3 

heatmap generated by composite LRP 3. The rest are layer parameters randomized 

heatmap. The randomization process starts from the top layer and increase one layer at a 

step till all seven layers’ parameters are perturbed. We can see that each heatmap is 

different from its previous version. Therefore, LRP also survived the sanity check on 3D 

MNIST data. 
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Figure 22: Original and Parameters Randomized LRP Heatmaps for Digit 3 

Chapter 3.5.2 Sanity Check for OASIS-2 

In Figure 23 we can see the original heatmap on the left side and the perturbed heatmap on 

the right side. Since this layer contribute directly to the decision making, the heatmap 

should definitely change. As expected, the heatmap did change. Since parameters in this 

layer are the only weights that CAM uses to generate heatmaps, by setting it to a random 

distribution, all regions in the heatmap got highlighted with almost the same intensity. 

Therefore, CAM survived the sanity check on OASIS-2 dataset. 

 

Figure 23: Original and Parameters Randomized CAM Heatmaps for Subject 28  
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In Figure 24, we see the original composite LRP 3 heatmap on subject 28 on the upper left 

corner, and then the 7 layers perturbed heatmaps are displayed on the left to right and top 

to bottom fashion. Immediately, we can notice that the one layer and two layers perturbed 

heatmap are identical with the original heatmap. Starting from the third layer, the heatmap 

began to respond to the parameters perturbation and begin to change. Therefore, composite 

LRP 3 failed the sanity check. However, that doesn't mean the heatmaps generated by 

composite LRP 3 is worthless. In chapter 2, we looked at the cause of this failure which is 

that a chain of positive matrix multiplication makes the matrix converge, and the relevance 

scores won’t change after convergence. It is concerning that the heatmap doesn’t even 

respond to the last layer which it uses to make decision, which could make us doubt the 

faithfulness of the corresponding heatmap. But in the same publication, they also 

mentioned that this might not be too problematic since in some cases explaining local 

convolutional features could be sufficient to explain a predicted class, and Alzheimer's 

Disease is one such case. 

 

Figure 24: Original and Parameters Randomized LRP Heatmaps for Subject 28 
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CHAPTER 4 

Conclusion 

To improve the 3D CNN’s transparency and explain its decision on AD classification, we 

started the efforts of visualizing network’s prediction. Two heatmap methods Class 

Activation Mapping (CAM) and Layer-wise Relevance Propagation (LRP) are explored on 

two datasets 3D MNIST and OASIS-2. To evaluate different heatmap methods objectively, 

we calculated numeric scores to quantify the heatmap’s quality using the method of Area 

over Perturbation Curve (AOPC). To further verify the soundness of generated heatmaps, 

Sanity Check is performed on both methods in both datasets.  

 

In CAM, we tested how the heatmaps change in five different models with increasing 

complexity. We observed that in both datasets, the heatmaps generated by the simple model 

focuses more on the contours of the overall input image and they have higher visual 

interpretability. Whereas the heatmaps from complex model use the abstract high-level 

features to explain model’s decision and it is more difficult to make sense visually. 

However, according to the AOPC scores, the heatmaps generated by the simple model have 

low qualities, and the heatmaps generated by the complex model have high qualities. Thus, 

the visual interpretability correlates negatively with the heatmap quality which is totally 

unexpected. The inconsistency is very likely to be caused by its simple design so that it 

can’t transform the abstract feature back into the visual space. But CAM did pass the Sanity 

Check on both datasets, and in the 3D MNIST dataset, it achieved even around 10% greater 
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AOPC scores than LRP, which shows us that with a more sophisticated design to guide the 

feature map back, CAM has the potential to explain the network’s decision well. 

 

Comparing to CAM, the heatmaps generated by LRP in both datasets have higher visual 

interpretability, and they are also specific to individuals. Thus, LRP has a higher potential 

to bring more understanding and trust to the model’s decision in AD classification task. 

But for some LRP rules where only positive contributions are used during the back 

propagation, the relevance matrix could converge at a certain layer and stop to change 

afterwards. Thus, in spite of the high visual interpretability and heatmap quality score in 

OASIS-2, this method failed the Sanity Check. Even though this doesn’t mean the heatmap 

becomes meaningless as we explained earlier, it is concerning knowing the heatmap 

doesn’t even change when parameters in the decision layer get randomized. However, LRP 

did pass the Sanity Check on 3D MNIST dataset, probably because the smaller image size 

slowed down the convergence rate.   

 

When we evaluate the LRP heatmaps from the perspectives of visual interpretability and 

AOPC heatmap quality score, 3D CNN seems to be trustworthy in the AD classification 

task. However, this statement is weakened due to the fact that it failed the Sanity Check. 

Looking at the pros and cons of both methods, we believe new heatmap method needs to 

be designed so high-level abstract features can be perfectly mapped back to the visual space 

without suffering any aforementioned issues. In the future, as more and more efforts are 

devoted in this field, we believe 3D CNN can gradually become transparent and play a 

routine role in clinical care.  
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