
 

 

SOCIAL STRUCTURE AND COLLECTIVE INTELLIGENCE IN PROBABILITY-BASED 

PARTICLE SWARM OPTIMIZATION FOR THE FOREST PLANNING PROBLEM 

by 

ANGELA TSAO 

(Under the Direction of Pete Bettinger) 

Forest planning can be represented as a type of spatially constrained combinatorial optimization. 

Many complex forest planning problems are computationally intractable, but metaheuristics 

allow for efficient discovery of high quality solutions. This project introduces a new velocity 

update procedure for a probability-based variant of the Particle Swarm Optimization algorithm, 

incorporating models of baboon information-pooling behavior to inform social influence among 

particles. The new baboon-based algorithm is tested over three forest planning problems in 

comparison to existing optimization strategies. The baboon communication mechanism 

significantly improves performance of the PSO on complex, higher-dimensional problems. We 

implement strategies for improving performance of probability-based optimization over a 

constrained search space and test the effect of different frameworks of social influence on 

algorithm performance.  

 

 

INDEX WORDS: Combinatorial optimization, Constrained optimization, Probability 

optimization, Discrete particle swarm optimization, Forest planning, 

Nature-inspired optimization, Collective intelligence, Social networks  



 

 

SOCIAL STRUCTURE AND COLLECTIVE INTELLIGENCE IN PROBABILITY-BASED 

PARTICLE SWARM OPTIMIZATION FOR THE FOREST PLANNING PROBLEM 

 

 

by 

 

Angela Tsao 

BS, University of Georgia, 2021 

 

 

 

 

 

 

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment 

of the Requirements for the Degree 

 

MASTER OF SCIENCE 

 

ATHENS, GEORGIA 

2021  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 

Angela Tsao 

All Rights Reserved 

  



 

 

SOCIAL STRUCTURE AND COLLECTIVE INTELLIGENCE IN PROBABILITY-BASED 

PARTICLE SWARM OPTIMIZATION FOR THE FOREST PLANNING PROBLEM 

 

by 

 

ANGELA TSAO 

 

 

 

 

      Major Professor: Pete Bettinger 
      Committee:  Frederick Maier 
         Chris Cieszewski 
          
          
 
 
 
 
 
 
 
 
 
 
Electronic Version Approved: 
 
Ron Walcott 
Vice Provost for Graduate Education and Dean of the Graduate School 
The University of Georgia 
May 2021 
 



 

iv 

 

 

ACKNOWLEDGEMENTS 

I would like to express my gratitude to my advisor, Dr. Bettinger, for his guidance and 

support of my foray into the study of heuristic optimization algorithms. His Advanced Forest 

Planning course inspired me to explore this subject deeper and incorporate my experiences in 

ecology with my interest in computational intelligence. I thank him for his continued mentorship, 

especially in talking through ideas and sharing patient feedback over numerous revisions.  

 I would also like to thank Dr. Maier and Dr. Cieszewski for their support and being 

members of my thesis committee. Their comments and advice helped shape the direction of this 

final product.  

 Finally, I am grateful to my family for their unwavering love.  



 

v 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

LIST OF TABLES ......................................................................................................................... vi 

LIST OF FIGURES ...................................................................................................................... vii 

CHAPTER 

 1 INTRODUCTION .........................................................................................................1 

 2 BACKGROUND ...........................................................................................................4 

   2.1 FOREST PLANNING .......................................................................................4 

   2.2 PARTICLE SWARM OPTIMIZATION ...........................................................9 

   2.3 ROULETTE WHEEL PSO ..............................................................................15 

   2.4 COLLECTIVE INTELLIGENCE ...................................................................17 

 3 ALGORITHM DEVELOPMENT ...............................................................................19 

   3.1 B-RWPSO (BABOON-BASED ROULETTE WHEEL PARTICLE SWARM 

OPTIMIZATION) ..................................................................................................19 

   3.2 NETWORK INFLUENCE TYPE (LEARNING STRATEGY) .....................26 

 4 RESULTS AND DISCUSSION ..................................................................................29 

   4.1 TESTING ON EXAMPLE FORESTS  ...........................................................29 

   4.2 NETWORK INFLUENCE TYPE COMPARISON ........................................39 

 5 CONCLUSION ............................................................................................................41 

REFERENCES ..............................................................................................................................43  



 

vi 

 

 

LIST OF TABLES 

Page 

Table 1: Comparison of Mixed Integer Programming and B-RWPSO Best Solutions .................30 

Table 2: Comparison of Heuristics for the 40-Stand Northern Forest ...........................................33 

Table 3: Comparison of Heuristics for the 73-Stand Western Forest ............................................33 

Table 4: Comparison of Heuristics for the 625-Stand Southern Forest .........................................33 

Table 5: Paired Comparison of the Baboon-Modification on the 625-Stand Forest .....................35 

Table 6: Paired Comparison of the Baboon-Modification on the 625-Stand Forest .....................35 

Table 7: Paired Comparison of the Baboon-Modification on the 625-Stand Forest .....................35 

Table 8: Comparison of Time-Varying vs. Static Parameters on the 625-Stand Forest ................36 

Table 9: Comparison of Different Time-Varying Parameters on the 625-Stand Forest ................36 

Table 10: Comparison of Learning Strategy and Network Influence on the 625-Stand Forest ....40 

  



 

vii 

 

 

LIST OF FIGURES 

Page 

Figure 1: Map of the 43- and 70- stand forests ................................................................................7 

Figure 2: Vector representation of spatial adjacency constraints ....................................................9 

Figure 3: gbest vs. lbest neighborhood topologies .........................................................................12 

Figure 4: Fitness vs. Iteration curve for B-RWPSO and RWPSO on the 625-stand Forest ..........37 

Figure 5: Fitness vs. Iteration curve for B-RWPSO and RWPSO on the 73-stand Forest ............38 

Figure 6: Fitness vs. Iteration curve for B-RWPSO and RWPSO on the 40-stand Forest ............39 

 

 



 

1 

 

 

CHAPTER 1 

INTRODUCTION 

 In natural resource management, forest planning involves decision-making about when 

and where to conduct various forest management activities. Forest planning can occur at 

different scales and involves selection of appropriate management prescriptions at certain 

locations over a time horizon, with a goal of achieving stakeholder-defined objectives. These 

goals may be as diverse as economic production, environmental services, or social good. Due to 

the combinatorial complexity of potential management configurations, mathematical 

programming methods like linear programming and mixed integer programming have been 

applied in the development of forest plans. However, the size or nature of different forest 

planning problems may render these methods computationally inefficient or infeasible for 

practical use. Some researchers have applied search and optimization heuristics to forest 

planning in an attempt to produce high-quality forest plans more efficiently (Bettinger et al., 

2009); promising results from application of heuristic algorithms like Simulated Annealing and 

Tabu Search (Borges & Eid, 2014; Bettinger et al., 2009) suggest that the development of 

efficient, robust heuristics is important for the forest planning problem.   

 Particle Swarm Optimization (PSO) is a population-based optimization algorithm based 

on the behavior of interacting individuals in a swarm. In the canonical PSO, candidate solutions 

represent individual particles in a larger swarm. Each particle possesses a position, a velocity, 

and memory of its personal best position ever found as well as the swarm’s best position ever 

found (Eberhart & Kennedy, 1995). While PSO achieved much success in many different types 
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of problem (particularly over the continuous domains it was originally designed for), its discrete 

variants did not perform particularly well when applied to the forest planning problem. The 

Roulette Wheel PSO (RWPSO) is a variant of PSO designed specifically to perform well on 

nominal variable problems like the forest planning problem. While RWPSO outperformed 

existing heuristics on two harvest scheduling problems, it had inferior performance on a higher-

dimensional, more complex harvest scheduling problem (Smythe, 2012) and struggles with 

constraint-handling. PSO-class algorithms lack native constraint-handling, so algorithms must 

use problem-level methods that may transfer poorly over probability-based movement. Despite 

the initial promising results of RWPSO, there has been a lack of further research into these 

challenges and the broader potential of probability-based PSO variants for solving the forest 

planning problem. Our project extends this work by updating the RWPSO algorithm with 

behavioral models of social structure from cognitive ecology.  

We introduce a direct information-sharing behavior based on baboon social groups to the 

RWPSO algorithm; a new velocity update function is developed that incorporates information 

from both global and neighborhood-level sources, modeled on baboon social structure. In 

addition, the efficacy of the baboon modification is tested across various network structures to 

evaluate their impact in the harvest scheduling domain. We incorporate an embedded constraint 

handling method for operation over a discrete, nominal search space, which coordinates the 

probability-space flight of RWPSO with local movement in the solution space. In testing over 

three test cases, B-RWPSO matched the best solution found by mixed integer programming in 

two low-dimension test cases and found a solution within 2.5% of the mixed integer solution on 

the most complicated test forest. B-RWPSO improves upon the performance of the original 

RWPSO. Paired testing to compare the isolated effect of the baboon modification shows that B-
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RWPSO improves the RWPSO’s mean best objective function by a range of 10.4% to 17.4%, 

depending on parameter settings. Our testing of velocity initialization strategies also provides 

insight into the interaction between spatial adjacency handling and population evolution in 

generational algorithms.  

 Chapter 2 of this work summarizes existing background information about the forest 

planning problem domain. Details are also given about the canonical particle swarm optimization 

algorithms and modifications that have improved performance, including the probability-based 

discrete RWPSO variant. Chapter 2 also briefly discusses collective intelligence, and how 

insights from this field of behavioral ecology can, like its swarm intelligence subfield, augment 

development efforts in nature-inspired algorithms. Chapter 3 describes the details of design and 

development of the Baboon-Modified RWPSO (B-RWPSO). Chapter 4 presents the results of 

testing B-RWPSO in comparison to existing heuristics and mixed integer programming on three 

spatial harvest scheduling problems. We assess different parameter combinations and discuss the 

impact of constraint-handling. In addition, testing is conducted to evaluate performance of the 

baboon-based information-pooling process in various network topology types. Finally, Chapter 5 

provides a summary discussion of this project and directions for future work. 
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CHAPTER 2 

BACKGROUND 

2.1 FOREST PLANNING 

 Forest planning is a field of natural resource management that has a long tradition of 

using mathematical programming for harvest scheduling. Forest planning efforts often involve 

selecting the timing and location of forest management activities, at the forest or landscape level, 

to best meet the objectives of the landowner or land managers. This type of problem can be 

represented as constrained optimization, and is inherently an allocation problem (where to go and 

what management activity to apply) under graph-coloring adjacency constraints. In forestry, a 

management plan could be designed to maximize an economic (e.g., net present value), 

commodity production (e.g., timber volume), environmental (e.g., wildlife habitat), or social 

(e.g., net human benefit, jobs, etc.) objective. In addition, a management plan could be designed 

to minimize environmental damage, management costs, and other measures of outcomes from 

the assignment of activities to a landscape; the quality of forest plans can be assessed based on 

the calculated expected outcomes. Common constraints in forest management plans include 

those applied to the forest inventory (e.g., to prevent depletion), to the timing and placement of 

certain activities (e.g., to prevent clearcuts from becoming too large), to the budgets that are 

assumed, and to many other economic, environmental, and social concerns as long as they can be 

quantified. 
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However, when the number of decision variables increases beyond trivial levels, a 

planning problem suffers combinatorial explosion— also known as the curse of dimensionality— 

where the number of distinct forest plans that can be developed is: 

(Number of decision variables related to a stand) number of stands 

rendering the problem basically intractable to the human mind. Linear programming (LP) was 

the first quantitative method applied in the development of forest plans for areas larger than 

small forests. Linear programming utilizes the Simplex method to solve a problem that is 

arranged in a detached coefficient matrix. LP remains a common optimization technique in forest 

planning, but assumes that each decision variable can be assigned a continuous real number (the 

assumption of divisibility). In practical terms, linear programming may produce a solution that 

splits a stand's timber harvest amongst two or more time periods. An alternative strategy, the 

mixed integer programming model, forces all decisions into integer or discrete solution values 

and requires the use of branch and bound (Lawler & Wood, 1966), cutting plane, or other 

methods. In contemporary forest planning efforts, there is a need for integer solution values for 

some decision variables, to control the timing and size of final harvests (clearcuts) or the size and 

location of wildlife habitat patches. Depending on the size of the problem and the nature of the 

data to which the problem is applied, these methods may be computationally intensive and 

require significant time to arrive at the optimal solution. Heuristics have thus been suggested as 

alternatives to mixed integer programming. While heuristics can be designed to produce high-

quality solutions (forest plans), they cannot guarantee optimal solutions will be located. 

Additionally, many heuristic algorithms have been primarily designed for deployment over 

unconstrained optimization problems, so constraint-handling methods must be integrated into the 

algorithm to solve certain constrained problems and keep solutions in feasible regions (Liu & 
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Wang, 2019). Therefore, the development of computationally efficient and robust heuristic 

methods is important in the forest planning problem.  

 

2.1.1 Harvest Scheduling 

 Harvest scheduling as described by Bettinger & Zhu (2006) presents a simplified version 

of the forest planning problem, narrowed down to focus primarily on the single objective of 

timber harvest volume. In this version of the harvest scheduling challenge, an individual stand in 

the forest is scheduled either with a single time period to be harvested or left untouched 

throughout the management horizon; however, each stand may only be cut once. To simplify the 

representation of this challenge, the set of “management prescriptions” or potential locations at a 

dimension in the vector space is limited to just clearcuts of an entire stand. Real-world 

considerations would allow for alternative management activities such as partial harvests or 

thinnings. The challenge is one of combinatorial optimization with graph-coloring constraints, as 

different stands (spatial units) within a forest need to be harvested at appropriate times to 

maintain even-flow cutting while subject to unit-restriction spatial adjacency constraints (like 

those found in a typical graph-coloring problem).  

Specifically, we model the problem such that a stand within a forest may not be clear-cut 

in the same time period as an adjacent stand, and depending on the type of tree grown, a stand 

may not be harvested until reaching a certain age. These spatially-based harvest constraints 

represent environmental protections during forest green-up periods. One unique consideration for 

the spatial constraints used in forest planning is the disanalogy between spatial relationships in 

the physical forest and the numerical representation of stands (Figure 2) used by a heuristic. For 

example, two stands that are ‘neighboring’ in the vector representation of a forest plan (e.g. 
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stands 3 and 4 in the 40-stand forest, Figure 2) may not be subject to adjacency constraints 

because they map to real forest stands that are far apart. Unlike traditional ordinal problems, 

constraints lack shape or order in the solution space and reflect the combinatorial relationship 

between stand-level assignments in a forest plan.  

In order to maximize even-flow of harvest volume, we then define the objective function: 

𝑓! =	$%𝑇 −	$𝑎"ℎ",$

%

"&!

*

'(

$&!

 

Where for each simulated forest plan, we sum the time period’s squared deviations of scheduled 

harvest volume from target harvest volume in each period. T is the target harvest volume for 

each time period, an is the acres in stand n, hn,k is the volume harvested per acre in stand n for 

time period k, and d is the total number of stands. z represents the number of time periods. Here, 

f1 represents the squared error from a determined target harvest volume, an optimal schedule is 

one that minimizes f1. 

 Optimization heuristics may be used to search potential configurations of forest plans for 

an optimal or near-optimal solution by representing the problem as an n-dimensional search 

space, where each dimension n can have a value (a harvest time period or management 

prescription) from the set of allowable k. This project considers three different forests to which 

an array of different optimization strategies have previously been employed. These forests 

include a 40-stand northern forest (Bettinger & Zhu, 2006; Smythe, 2012), a 73-stand Daniel 

Pickett Forest (Bettinger & Zhu, 2006; Smythe, 2012), and a 625-stand southern forest (Bettinger 

& Zhu, 2006; Smythe, 2012).  
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Figure 1. The 73-stand forest (left) and the 40-unit northern forest (right)  

 

These forest planning problems span three time periods, giving each stand a choice 

among 4 management options (time period 1, 2, or 3, or no cut at all). The target harvest and 

projected yields per time period are determined a priori and input into the problem. For the 40-

stand forest the target harvest is 9,134.6 m3, for the 73-stand forest the target harvest is 34,467 
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MBF (thousand board feet), and for the 625-stand forest the target harvest is 2,972,462 tons 

(Bettinger & Zhu, 2006). The target volumes for these forests are the derived linear 

programming solutions; however, because real-world constraints on harvest require that entire 

stands be managed as a unit, the optimal solution derived from a forest plan must be found with 

methods that accommodate this requirement. Therefore, mixed-integer solutions are used as a 

point of comparison in Chapter 4.  

 

Position Vector: [2,3,1,1,3,1,3,3,2,2,1,2,1,2,3,1,3,1,1,3,2,3,2,2,1,1,1,3,3,1,2,1,2,2,2,3,1,3,2,3] 

Figure 2: Representation of spatial adjacency constraints (unit-restriction model): forest plan 

spatial overlay vs. vector representation in harvest scheduling 

 

2.2 PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization (PSO) is a population-based search algorithm modeled after 

the swarm behavior of animals such as birds and fish. The population in a PSO is referred to as 
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the swarm, while individuals in the population are particles in the swarm (Eberhart & Kennedy, 

1995). Particles—or  candidate solutions—represent a point or position in an i-dimensional 

search space, and they move to different positions in the search space based on their recorded 

velocity, which is in turn updated based on the local and global best locations in memory. In the 

forest planning context, each particle is a complete but mutable forest plan, and it possesses a 

current location, velocity, and memory of both its own best past location and the swarm-level 

best past location.  

The population is initialized by generating randomly positioned individuals with random 

starting velocities. Like evolutionary algorithms, SI algorithms iteratively update individuals in 

the population across time-steps, which may be referred to as generations, epochs, or iterations. 

In an iteration of the algorithm for each particle’s dimension i, the particle updates its position x 

based on its velocity and previous position. Meanwhile, it updates its velocity based on its 

previous velocity, its personal best position in memory p, and the swarm’s best position in 

memory g (where “best” is determined by a user-defined objective function). For the velocity of 

dimension i at iteration t, the particle’s previous velocity is multiplied by an inertia factor μ and 

the relative weight given to knowledge about the particle’s local best and the swarm’s global best 

positions is dependent on the cognitive influence factor, c1, and the social influence factor, c2. 

Stochasticity is introduced via random coefficients r1 and r2: 

𝑣)(𝑡) = 	𝜇𝑣)(𝑡 − 1) +	𝑟!𝑐!4𝑝) − 𝑥)(𝑡 − 1)7 +	𝑟'𝑐'4𝑔) −	𝑥)(𝑡 − 1)7 

𝑥)(𝑡) = 	𝑥)(𝑡 − 1) +	𝑣)(𝑡) 

Self-organization in the group arises from individuals’ iterative velocity updates where aggregate 

movements result in superior movements as a manifestation of “swarm intelligence.” The many-

wrongs principle hypothesizes that group cohesion works to suppress the numerous individual 
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errors made by members of a group; in PSO, similarly, individual particles contribute to 

stochastic exploration but accelerate toward the best solution found by the swarm. 

An oft-cited advantage of PSO is that its nature-inspired velocity mechanism removes the 

need for a gradient, thus allowing PSO to be applied on problems with objectives that are not 

differentiable. However, due to its modelling of velocities as a combination of direction and 

magnitude, there are difficulties in representing movement of particles in the solution space of a 

problem with nominal variables, such as the forest planning problem. Smythe (2012) notes that 

PSO is frequently adapted to travel in the probability space of nominal variables instead of their 

value space, as the latter lacks congruence with particles’ movement orientation and magnitude. 

Researchers have made many iterative improvements to PSO (Freitas, 2020); this background 

section describes some modifications and variants of the PSO that show promise for the forest 

planning problem. 

 

2.2.1 Social Interaction in PSO:  

 The standard PSO algorithm described above uses a singly informed network influence 

type with gbest topology, which means that all individual particles in the swarm receive social 

influence exclusively from the global leader (“exclusively” because the swarm is a singly 

informed network type; “from the global/swarm-level leader” because of gbest sociometry). In 

such a case, each particle is connected to every other one, in a gbest sociometry (although in any 

given iteration, only one social neighbor’s influence is considered). However, it has been 

proposed that this gbest topology may be poorly suited for problems without long gradients in 

the function landscape (Kennedy & Mendes, 2006). The alternative lbest topology with “best-of-

neighborhood” network type connects each particle only to its k immediate neighbors and 
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updates each particle’s velocity based on the position of its best neighbor in the set of k nearest. 

This has been shown to curb premature convergence in PSO, as global leaders stuck in a local 

optimum cannot pull all other particles toward the local optimum. In contrast, the gbest “best of 

neighborhood” PSO has performed especially poorly on complicated, higher dimensional 

problems (Parsopolous & Vrahatis, 2005) where particles can easily fall into local optima.  

 

        

Figure 3. Network depiction of gbest topology (left) and lbest topology with k= 2 (right) 

 

The neighborhood topology refers to which other particles a given particle may ever see 

or interact with. On the other hand, the network influence type (e.g., fully informed, singly 

informed/“best-of-neighborhood”) refers to a particle’s willingness to use information from its 

visible neighbors—the particle may use only the “best-of-neighborhood,” or it could even 

receive social influence from every particle in its neighborhood. To improve upon these 

extremes, the Unified Particle Swarm Optimization (UPSO) was introduced to combine the gbest 

and lbest topologies by weighting each approach with a unification factor (Parsopoulos & 

Vrahatis, 2005). Kennedy and Mendes (2006) tested the performance of the fully informed 

particle swarm (FIPS), a network influence type of the PSO where each particle is influenced by 

the success of all of its neighbors (as opposed to just the global or neighborhood leader) and find 

that the FIPS outperforms the singly informed canonical PSO in some cases, depending on 

neighborhood topology (e.g., gbest vs. lbest). The importance of neighborhood topology is 
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evidenced by empirical data that particles need not be informed exclusively by the best 

performing particle in the swarm (Kennedy & Mendes, 2006). However, previous applications of 

PSO variants to the forest planning problem have not explored the effect of topology on 

problem-specific performance. Variation in the information influence structure and 

neighborhood topology can have a significant effect on convergence speed and likelihood of 

premature convergence (Vasquez, 2014), although these effects vary by problem and domain 

(Freitas, 2020). Our work in collective intelligence communicative procedures is inspired by 

these inquiries into the role of network influence type and neighborhood topology on algorithm 

performance.  

 

2.2.2 Variable Parameters in PSO 

The parameters in PSO include inertia weight μ, besides cognitive/social influence factors 

and two random coefficients. In the canonical PSO, these parameters are static throughout 

execution. The values of these parameters are critical to the algorithm’s performance, as they 

help to modulate a balance between global exploration and local exploitation of the search space. 

Cognitive and social influence factors contribute to these two aims, respectively, while inertia 

helps balance the local and global search by weighting the value of previous particle trajectory 

(Shi & Eberhart, 1999). Some degree of parameter tuning is crucial to ensure that the swarm 

balances both exploration and exploitation. In particular, Eberhart and Kennedy (1995) found 

that a high cognitive influence factor can result in meandering around the search space, while a 

high social component could lead particles in the swarm to premature convergence at a local 

optimum.  
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Later studies by Shi and Eberhart (1999) then demonstrated an improvement to PSO 

performance when using a linearly varying inertia factor (within a user-specified range for 

inertia, between maximum start μ1 and minimum ending value μ2). The implementation of time-

varying acceleration coefficients (social and cognitive factors) can also improve PSO 

performance (Ratnaweera, 2004).  

 

2.2.3 Constrained Optimization with PSO 

 Although PSO is incredibly versatile and can be applied to a large number of domains, it 

lacks a native constraint handling strategy for adapting to constrained optimization challenges 

(like forest planning). The three main applicable strategies have been the penalty function 

method, feasibility-based rules method, and the constraint-preserving method (Sun, 2011). The 

former involves representing a constrained optimization problem as an unconstrained 

optimization problem, but modifying the objective function to include a penalty for infeasible 

solutions. A simple brute-force strategy adopted for PSO is the Preservation of Feasible 

Solutions Method, in which all feasible solutions found in the search space are preserved, and the 

optimal solution from this pool is selected after reaching stopping criteria (Hu & Eberhart, 2002). 

However, for domains like forest planning, checking feasibility for each individual in a swarm at 

every iteration to calculate a penalty assignment can become the most computationally expensive 

aspect of the algorithm. Many heuristics reduce the required number of feasibility checks by 

employing a “fly-back” type of constraint-preserving method by only accepting feasible moves 

to retain legal solutions at all times. Constraint-checking can then be streamlined by only 

checking adjacencies for the few stands affected by a move from an existing solution, and illegal 

moves are simply never made. If, however, a better feasible solution is separated from a current 
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particle by an infeasible intermediate move, then “islands” in the search space may not be found 

under the constraint-preserving method. Existing algorithms like the NVPSO and IVPSO work 

in continuous spaces to alter particle velocities when they move out of feasible regions (Sun, 

2011). This vector-based acceleration augments the exploratory capabilities of the swarm, unlike 

earlier methods that used the “fly-back” protocol to undo particle’s movement out the boundary 

of the occupied feasible zone (Sun, 2011). However, a clear extension of this acceleration 

strategy to probability-based PSO variants does not exist, as probabilities in the velocity domain 

map to likelihood of a location k at dimension i being selected, rather than mapping to a real 

value in the solution space.  

 

2.3 ROULETTE WHEEL PSO 

2.3.1 Discrete PSO:  

Discrete PSO is a subtype of PSO that operates over a discrete search space. Forest 

planning is one type of problem that requires use of DPSO, as the categorical variables do not 

map coherently to a continuous space. In DPSO with interval or ordinal variables, the traditional 

equation for velocity update and position update can still be used (with a rounding modification), 

but baseline performance with DPSO is subpar over nominal-type variables. In such problems, 

locations or positions in the solution space are not ordered and lack spatial relationships to each 

other. 

 

2.3.2 Roulette Wheel PSO: 

RWPSO is a discrete multi-valued PSO designed specifically for use with nominal or 

categorical variables (Smythe, 2012), as in the case of harvest time periods scheduled in the 
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forest planning context. Because RWPSO is a probability-based variant, particles in the swarm 

travel over a probability space that maps to locations in the solution space. The RWPSO includes 

four static parameters that have been adapted to explicitly adjust roulette wheel values, namely 

stopping criteria (number of iterations to run), swarm size, maximum step size (of a change in 

probability), and social emphasis. An additional fifth parameter, cognitive emphasis, is simply 

equal to 1-social emphasis.  

In RWPSO, every potential location k in dimension i of a particle n in the swarm is 

assigned a roulette wheel probability that gets updated at each iteration t (referred to as a velocity 

vi,k(t)) (Smythe, 2012). Because these velocities are based on a roulette wheel, the velocities 

vi,k(t) for all locations k in the dimension sum to 1. The original RWPSO initializes starting 

velocities uniformly at each location k for each dimension i to the reciprocal of the number of 

permissible locations in dimension i. The velocity update equation parallels that of standard 

PSO:  

𝑣),$(𝑡) = 	𝑣),$(𝑡 − 1)

+ 𝑚 :𝑠4𝐵(𝑔) , 𝑘) − 𝐵(𝑥)(𝑡 − 1), 𝑘)7 + (1 − 𝑠)4𝐵(𝑝) , 𝑘) − 𝐵(𝑥)(𝑡 − 1), 𝑘)7?	

where	𝐵(𝑥) , 𝑘) = 	 D
1				𝑖𝑓	𝑥) = 𝑘
0				𝑒𝑙𝑠𝑒									

	

Given updated velocities, a particle calculates its new position for each dimension i by selecting 

a location for i in accordance with the probability distribution given by the roulette wheel 

probability of locations in each dimension. 

𝑃(𝑥)(𝑡) = 𝑘) = 	
𝑣),$(𝑡)

∑ 𝑣),*(𝑡)+
*&!

 

RWPSO has been tested on the forest planning problems in (Bettinger & Zhu, 2006; 

Smythe, 2012), and has achieved performance equal or superior to existing metaheuristics on 
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certain types of problems. Notably, RWPSO was superior to the forestry domain-specific 

Raindrop Optimization algorithm and existing heuristic methods like Tabu Search and Threshold 

Accepting when applied to the 40-stand and 73-stand forests (Bettinger & Zhu, 2006; Smythe, 

2012). These promising results suggest that the RWPSO may be advantageous in forest planning. 

However, the RWPSO was inferior to both RO and Threshold Accepting on the 625-stand forest, 

and seemed to converge prematurely toward local optima (Smythe, 2012). This poor 

performance, and the comparative advantage of Raindrop Optimization algorithm, may be 

related to incompatibilities between the structure of the solution space, regions of infeasibility, 

and RWPSO’s constraint handling. RWPSO thus requires additional refining and modifications 

that can enhance social communication. RWPSO also adds a multiplicative layer of time 

complexity in that velocity and position updates must be calculated over t iterations for n 

particles across i dimensions and k potential locations. The time complexity of RWPSO increases 

dramatically with combinatorial complexity for problems, especially those with many 

dimensions or many potential decisions in a dimension. To mitigate this challenge, we propose 

the baboon social structure modification as a way of updating information pooling in addition to 

improving the time complexity of the algorithm. 

 

2.4 COLLECTIVE INTELLIGENCE 

In empirical studies from cognitive ecology, it has been observed that group decisions 

generally improve in accuracy with an increase in the number of individuals involved in the 

decision-making process (Santos & Przybyzin, 2016). Collective intelligence may arise in 

intelligent species via a centralized social structure regulating the process of information pooling. 

Swarm intelligence is a lower-level manifestation of CI and a more decentralized information-
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sharing process, including simple mechanisms like stigmergy (Krause, 2010). SI is what 

algorithms like PSO, ant colony optimization, and bee colony algorithm use; it differs from CI in 

that SI is the individual decisions of interacting organisms in the group, while CI refers to the 

group-level decision-making process of higher-level organisms. A swarm or group achieves CI 

via mechanisms of social structure and hierarchical communication. Within the CI-based baboon 

algorithm, we test an empirical model of baboon behavior as described by Strandburg-Peshkin & 

Farine (2015).  

Collective Intelligence has the potential to complement the social-psychological 

phenomena built into PSO. Because CI governs centralized interactions between group members, 

more complicated relationships and patterns of social influence can be built in with structural 

approaches. These mechanisms may provide more nuanced communication between individuals, 

mitigating some issues in PSO related to premature convergence. Kennedy (2000) built a spatial 

lbest neighborhood topology based on clustering with “social stereotyping,” simulating the 

sociological process of group assimilation and identity formation. This modification sets an 

example for how insights from CI may be integrated into the PSO as a behavioral mechanism or 

modification of the velocity update function.  
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CHAPTER 3 

ALGORITHM DEVELOPMENT  

3.1 B-RWPSO (BABOON-BASED ROULETTE WHEEL PARTICLE SWARM 

OPTIMIZATION) 

The baboon modification introduces social structure to the Particle Swarm Optimization’s 

standard particle-based velocity update mechanism, where traditionally the particle’s velocity is 

updated based on cognitive and social coefficients, the population’s global best position in 

memory, and the particle’s own individual best position in memory. In the baboon algorithm, 

some particles directly update their velocity based on a collective intelligence approach that 

accounts for the local exploration of “movement initiators” in an iteration. Additionally, many of 

the improvements to the canonical PSO (discussed in Section 2.2) do not translate over to 

probability-based discrete PSO; certainly, the reframing of parameters as roulette wheel 

probabilities in RWPSO precludes certain strategies from being logically extended from PSO. As 

such, we adapt some promising features from the continuous PSO literature— like TVAC and 

innovative constraint-handling— and additionally develop new modifications to work 

specifically for an algorithm traveling over the probability space instead of the solution space. 

 

3.1.1 Baboon Information-Pooling Behavior 

 Baboon troops interact with extreme egalitarianism when foraging (Strandburg-Peshkin 

& Farine, 2015), which allows for robust global exploration. There is also strong preference in 

baboons for moving toward locations that have previously been occupied by other baboons in the 
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troop (Strandburg-Peshkin, 2017), which supports a social intelligence ecosystem for search 

intensification. In wild movements, a random number of baboons will choose to move at any 

given moment, becoming “movement initiators” for a period of time. Surprisingly, these baboons 

need not have any social status or standing in the group; any baboon in the troop can initiate a 

movement and successfully influence others. Non-initiator baboons that decide where to move 

based on the decisions and distribution of these initiators are known as “followers”.  

An algorithm is implemented that randomly selects between 2.5% and 10% of baboons in 

the population to be movement initiators in an iteration. The B-RWPSO uses the constraint-

preserving method (Sun, 2011) as the means of constraint handling and restricting search to only 

feasible solutions/forest plans. Baboons in an iteration are subject to strict constraint-preserving 

with fly-back implemented in the position function (which assigns a position based on 

probabilities specified by the individual’s roulette wheel “velocities”). Based on a decision-

making function modelled by ecologists with individual-level tracking data (Strandburg-Peshkin 

& Farine, 2015), follower baboons copy the velocity update (change in velocity) of movement 

initiators in their static social neighborhood. However, if the initiators branch in different 

directions, the followers may choose to compromise and take the path in between two initiating 

subgroups. Thus, there emerge 3 potential behavioral patterns that can be followed by a baboon 

in any iteration.  

1) a) Randomly chosen baboon movement initiators OR b) baboons without any 

initiators in their social neighborhood both use the standard velocity update 

equation to calculate their new velocities 

2)   Follower baboons with exactly one initiator located in their social neighborhood  

3)   Follower baboons with more than one initiator located in their social neighborhood 
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Categories 1a and 1b follow the standard RWPSO update equation discussed in Section 2.3. 

However, follower baboons (categories 2 and 3) use two different behavioral equations, 

depending on how many initiators moved in their neighborhood in any given iteration. In the 

case of neighborhoods with a single initiator, all followers in the neighborhood will copy the 

change in velocity of the movement initiator (category 2). This equation can be represented most 

simply by: 

𝑣),$(𝑡) = 	𝑣),$(𝑡 − 1)

+ 𝑚 :𝑠4𝐵(𝑔) , 𝑘) − 𝐵(𝑟)(𝑡 − 1), 𝑘)7 + (1 − 𝑠)4𝐵(𝑞) , 𝑘) − 𝐵(𝑟)(𝑡 − 1), 𝑘)7?	

Where ri is the position at dimension i of an initiator in the follower’s neighborhood, and qi is the 

best location in memory for that initiator. Other variables retain their meaning; essentially, the 

follower simply copies the change in movement of the initiator, by summing this additive factor 

and its own current velocity. Because the initiator classifies as category 2, its velocity update at 

iteration t follows the standard RWPSO velocity update equation. If there are two or more 

initiators in the neighborhood, then the follower follows a baboon behavioral pattern of 

“compromise” between diverging paths (category 3). This update takes the form of the equation: 

𝑣),$(𝑡) = 	𝑣),$(𝑡 − 1) 

																												+	
∑ 𝑚 L𝑠 :𝐵(𝑔) , 𝑘) − 𝐵4𝑟(,)(𝑡 − 1), 𝑘7? + (1 − 𝑠) :𝐵4𝑞(,) , 𝑘7 − 𝐵4𝑟(,)(𝑡 − 1), 𝑘7?M	(
!

𝑧 	

Where z represents the number of initiators in the follower’s neighborhood, and rz,i and qz,i 

respectively refer to the current position and best location in memory of neighbor initiator z at 

dimension i. The velocity update based on this equation will be referred to as “baboon update.”  

The conceptual modification is described as “baboon information-pooling” or “baboon 

modification.” 
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3.1.2 Constraint Handling over Roulette Wheel Velocities 

RWPSO uses a penalty function method to handle infeasibilities arising from unsatisfied 

constraints. However, if a certain assignment of any dimension within a configuration violates a 

constraint, then RWPSO simply “unschedules” it, or chooses a neutral assignment that adds no 

value to the optimization (Smythe, 2012). One of the challenges within the harvest scheduling 

domain is that feasible solutions may form “islands” essentially surrounded by infeasible 

solutions. Because RWPSO velocities represent probabilities of selection, assignment of location 

based on probability still requires a constraint-handling step at the plan formulation stage.  

 B-RWPSO uses a relaxed constraint-preserving strategy, in which follower particles only 

traverse feasible positions in the solution space. This is maintained via constraint-checking as 

solutions are given assignments based on the roulette wheel velocities. In a strict constraint-

preserving method, a disconnect may arise between the velocity in the probability space and 

position in the solution space—for example, a high-probability location k for dimension i might 

be rejected for infeasibility in the broader context of the particle’s working assignments. This 

manner of dealing with constraint-preserving is analogous to the harsh repair penalty function 

from Smythe (2005):  

𝑓' =	$%𝑇 −	$𝑉",$

%

"&!

*

'(

$&!

 

where	𝑉),, =	D
𝑎"ℎ",$
0										

	
				𝑖𝑓	𝑠" = 𝑘	𝐴𝑁𝐷	∄𝑞, 𝑠-∈*%/(") = 𝑘
𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																					 		and 

𝑎𝑑𝑗	(𝑛) = {ℎ|ℎ	𝑖𝑠	𝑎	𝑠𝑡𝑎𝑛𝑑	𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡	𝑡𝑜	𝑛} 

Where unit-restriction adjacency checking is also similar to the simpler graph coloring check 

employed in the quaternary PSO (Cui & Qin, 2008).  
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A popular strategy with the constraint-preserving method is the particle “fly-back.” This 

is a default move that forces particles to return to their origin point if they cross into an infeasible 

region. For continuous search spaces, these boundaries may be more clear, but for nominal, 

combinatorial problems, constraints may have little relation to spatial locations. Improved 

constraint-preserving strategies found in the New Vector PSO and Improved Vector PSO alter 

the fly-back strategy by redirecting a particle entering an infeasible region and updating its 

velocity (Sun, 2011). There is not a clear analogy between this type of strategy and what could 

potentially be employed by probability-based discrete variants of the PSO. We implement a 

modified type of search reversion that uses randomly initialized velocities to overcome the 

tendency of the algorithm to converge early in local optima that are surrounded by infeasible 

moves.  

 

3.1.3 Variable RWPSO Parameters 

One unique feature of the RWPSO is that it expresses its parameters in explicit terms as 

coefficients of a roulette wheel-based method. As such, the parameters in the equation are 

uniquely suited to guide the swarm’s traversal over the problem’s solution probability space. 

While current versions of the RWPSO only use static parameters, we introduce conceptual 

modifications built around the canonical PSO to vary the social/cognitive influence coefficients 

throughout iterations of the algorithm.  

 Existing algorithms such as Simulated Annealing and Threshold Accepting employ 

variable parameters in order to modulate the exploration and exploitation behavior of the 

algorithm; the modifications to PSO discussed in Chapter 2 (e.g., linear varying inertia weight, 

time-varying acceleration constants) have similar function. To parallel the usage of time-varying 
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acceleration coefficients in PSO (Ratnaweera, 2004), we implement a similar strategy (called 

Time-Varying Parameters for clarity) for the RWPSO’s social coefficients. The TVP requires an 

input sstart and sfinish, from which the coefficient at time t, s(t) is calculated and linearly increased 

throughout the algorithm’s runtime. The simple calculation is based on:  

𝑠(𝑡) = 𝑠2,*3, +	
𝑡 ∗ 	4𝑠4)")25 − 𝑠2,*3,7

𝑡6*7
	

Because RWPSO and the baboon modified B-RWPSO both use maximum number of iterations 

as a stopping criteria, calculation of social coefficient at any iteration is based on tmax, the total 

number of allowed iterations.  

 

3.1.4 Reversion 

Reversion refers to a technique employed in search algorithms to “kick” a solution from 

its current location in the search space to a previous recorded best solution. Search reversion has 

been employed primarily with s-metaheuristics. In such cases, reversion interrupts a search 

sequence by re-initiating the search process from a previously found high-quality or best 

solution. Reversion techniques often introduce another parameter to the search algorithm, as the 

reversion rate has been found to have a significant effect on solution quality (Bettinger & 

Demirci, 2015). In PSO, a particle’s immediate position, however, undergoes much more 

movement than a candidate solution would in other types of search. A type of reversion that has 

been adapted for the particle swarm by researchers is the concept of velocity “reinitialization”. In 

the context of probability-based PSO, this reinitialization may have a far more significant impact 

on particle’s locations than would a change to particle trajectory in a continuous search space. 

Following the strategy employed in Ratnaweera (2004) we apply a velocity reinitialization when 

the velocity (probability) of any location k for dimension i in a particle becomes 0. If this 
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happens, the entire dimension i for that particle has the velocity for each location k in the 

dimension reset to the reciprocal of the total number of locations. One advantage of the baboon 

algorithm reinitialization-style reversion is that the reversion technique is implicit in the 

algorithm, and built into the particle behavior. As such, no parameter testing is needed. 

 

3.1.5 Concept and Implementation 

 While the essence of the Baboon-Based Roulette Wheel Particle Swarm Optimization is 

the baboon information-pooling and modified communication procedures drawing from 

Collective Intelligence, the other modifications are also important as potential changes that could 

improve the canonical RWPSO. Here, we include a workflow depicting the sequence and 

structure of the algorithm. 

1) Initialize Population, initialize velocities 

2) Record particles’ best, global best 

3) Update particles position based on velocities (this equation is uniform) 

4) Call initiators, store their velocity update factors based on standard equation, update 

initiator velocities 

5) If baboon has initiator in neighborhood à becomes follower. Else à update baboon 

velocity based on standard equation.  

6) Update follower baboons’ velocities (depending on # of baboons in neighborhood) 

7) If termination criteria not reached à loop to step 2. Else à end program 

The B-RWPSO was implemented in Python, as was the base RWPSO. Individual baboons 

(forest plans) were list objects with index corresponding to forest stand number, and the value at 

a given index in the list corresponding to the time period for harvest of that stand.  
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3.2 NETWORK INFLUENCE TYPE (LEARNING STRATEGY)  

We build a doubly informed B-RWPSO, developing a neighborhood-in-neighborhood 

approach to define hierarchical levels of social influence. Existing research by Kennedy and 

Mendes (2006) describes how problem and neighborhood topology can cause differences in the 

search ability and convergence speed of a fully-informed particle swarm compared to a singly-

informed, best-of-neighborhood (canonical) particle swarm. The learning strategy of a particle, 

or network influence type, thus has important, domain-specific effects on algorithm performance.  

 

3.2.1 Doubly Informed Roulette Wheel Velocity Update Function 

We develop a modification of the canonical “best-of-neighborhood” PSO that adds social 

influence from both the leading particle in the local neighborhood and the leading particle in the 

whole swarm. This PSO sociometric configuration is referred to as “doubly informed particle 

swarm.” The Fully Informed Particle Swarm (FIPS), which affords social influence from each 

particle in the swarm on every other, can perform very well on certain types of problems 

(Mendes & Kennedy, 2004). However, the fully-informed learning strategy is extremal and 

prone to very poor performance in other scenarios. The Unified Particle Swarm Optimization 

presented a successful attempt to balance the influence of the local and global leaders in a 

continuous search space (Parsopolous and Vrahatis, 2005). However, depending on the 

unification factor used in UPSO to weight lbest vs. gbest, the equation used by UPSO will not 

always maintain the roulette wheel nature of velocities in a dimension. Given the 

parameterization of RWPSO’s social and cognitive coefficients, we are able to develop an 

alternative method of incorporating influence from both a neighborhood and global leader. The 

doubly-informed learning strategy can be derived by easily adapting the existing roulette wheel 
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velocity update equation to develop a new function that compromises between the strong social 

influence of the FIPS and the streamlined best-of-neighbor PSO:   

𝑣),$(𝑡) = 	𝑣),$(𝑡 − 1)

+ 𝑚:𝑠4𝐵(𝑔) , 𝑘) − 𝐵(𝑥)(𝑡 − 1), 𝑘)7 + 𝑛4𝐵(𝑙) , 𝑘) − 𝐵(𝑥)(𝑡 − 1), 𝑘)7

+ (1 − 𝑠 − 𝑛)4𝐵(𝑝) , 𝑘) − 𝐵(𝑥)(𝑡 − 1), 𝑘)7?	

where	𝐵(𝑥) , 𝑘) = 	 D
1				𝑖𝑓	𝑥) = 𝑘
0				𝑒𝑙𝑠𝑒									

	

The new velocity update function adds two new parameters, n and li, which represent the 

neighborhood influence factor and value at dimension i of neighbor best recorded solution l. 

While this new partially-informed velocity update equation still incorporates a particle’s personal 

memory and the swarm’s leader, it additionally weights the best position found by any particle’s 

leading neighbor. The neighborhoods for this latter social influence are decided in 

implementation. In order for every particle to be connected to the influence of the global leader, 

the neighborhood topology is necessarily gbest. However, with neighborhood-in-neighborhood 

hierarchical influence structure, we designate additional social neighborhoods of arbitrary size 

(assigned by nominal adjacency of particles, as in lbest). The employ of influence from social 

neighbors can improve the balance of exploration and exploitation in the algorithm because 

social neighbors are distant at runtime, but slowly congregate throughout execution. If an 

algorithm properly converges, social neighbors become physical neighbors. Thus the neighbor’s 

influence encourages global exploration early on and exploitation later.  

In the context of the B-RWPSO, the neighborhood inside the global neighborhood is 

equivalent to the baboon social neighborhoods. The baboon social neighborhood is defined 

statically as baboons 1 through 0.05 ´ ps, 0.05 ´ (ps + 1) through 0.1 ´ ps, and so on where ps 
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denotes the population size input parameter specified at runtime. The Doubly Informed Particle 

Swarm network influence type is uniquely compatible with the baboon-based strategy because 

baboons can be influenced by neighbors chosen both democratically and meritocratically. With 

the usage of DIPS velocity update, baboons without any neighboring movement initiators still 

receive supplementary social influence from others in their neighborhood. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 TESTING ON EXAMPLE FORESTS 

In evaluating heuristics, there are different levels of testing that can be performed to 

assess the quality of the solutions derived. The preferred method of performance validation in the 

forest planning domain involves comparison against a mixed integer formulation of the same 

problem (Bettinger et al., 2009). Alternatively, comparison against a linear programming 

solution of the relaxed version of the problem can also provide a lower-bound, best-case 

benchmark for minimization problems. In the case of the 3 test forests, we used a linear 

programming solution as the “target volume” and harvest goal in the B-RWPSO objective 

function. For the B-RWPSO, we ran each algorithm 10 times on problems using the 625- or 73-

stand forests, and 20 times for problems using the 40-stand forest. We recorded the best solution 

found by each execution in addition to charting the population’s convergence in 20- or 5-

iteration timestamps. In order to ascertain “fair” testing compared to the RWPSO, we normalized 

the number of fitness evaluations allowed for each execution—on the 73-stand and 40-stand 

forests, this upper bound number of fitness evaluations was 800,000, while the more complicated 

625-stand forest was allowed 1,000,000 fitness evaluations. The number of fitness evaluations is 

a product of population size and epochs/generations of runtime. 

In line with findings from the canonical RWPSO, we tested with a static social 

coefficient of 0.25 as baseline best performance for the RWPSO. With time-varying parameters 

(TVPs), a wider range of coefficients (including start and end values) were tested. To compare 
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other algorithmic setups, an identical set of time-varying roulette wheel parameters was 

implemented across all experiments, due to the superior performance found when testing with 

TVPs (setting: m = 0.1, sstart = 0.1, sfinish = 0.35, maxiterations = 5000]). However, these TVPs 

used for the testing in Table 2 were not the optimal parameters, and simply used as a point of 

reference to compare different experimental conditions. These parameters were held constant to 

allow for fair comparison between experimental conditions attached to any version of the tested 

algorithms—RWPSO and B-RWPSO. The grid of experimental settings included: 

{Baboon-information pooling: y / n [B-RWPSO vs. RWPSO]} 

{Velocity-initialization: nonzero-biased start (pb) / random-start (rsv)} 

Tables 2 through 4 show the best and worst solution found across some of these separate 

executions, the average of their best solutions, and their standard deviation. We compared the 

results of the B-RWPSO to the best result found by from mixed integer programming in 

Bettinger & Zhu (2006) (Table 1). We also compared the results of the B-RWPSO to the original 

RWPSO (Smythe, 2012) and the forestry-specific Raindrop Optimization algorithm (Bettinger & 

Zhu, 2006).  

 

Test Forest Objective 
Function Value 

Harvest Volumes 
Period 1 Period 2 Period 3 Total 

625-stand 
Mixed Integer 64,859,941,092 2,796,070  2,834,340 2,851,350 8,661,760 
B-RWPSO 71,662,208,452 2,778,050 2,842,570 2,842,100 8,462,720 
73-stand 
Mixed Integer 5,500,330 33,049.5  32,933.6 33,399.4 99,382.5 
B-RWPSO 5,500,330 33,049.5 32,933.6 33,399.4 99,382.5 
40-stand 
Mixed Integer 98,439 8,981.5 8,903.6 8,987.5 26,872.6 
B-RWPSO 90,489 8,879.4 9,010.8 9,034.5 26,924.7 

Table 1: Best Mixed Integer Solution vs. best B-RWPSO solution (best parameter setting) 
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 The B-RWPSO outperformed mixed integer programming on the simple 73-stand and 

40-stand forests. This aligns with expectations and some of the results displayed over the original 

RWPSO, as PSO is well-known to operate very effectively on small problems. While the B-

RWPSO still lags behind the mixed-integer solution for the large 625-stand forest, it only differs 

by 2.29% in absolute terms of real-world harvested volume. While the more productive solution 

of mixed-integer programming would be preferred on this problem, these results demonstrate 

that it is possible for PSO-based algorithms to achieve high-quality (although somewhat less than 

optimal) results, even on complex and high-dimensional problems. This is still a very useful 

finding, as heuristics hold the greatest potential value when deployed on complex, high-

dimensional problems for which integer programming formulations are difficult or impossible to 

design. Furthermore, B-RWPSO, like the original RWPSO and other probability-based PSO 

variants, is conceptually simple to implement because of its nature-inspired mechanisms. The B-

RWPSO has an even greater advantage over other PSO variants because the expression of 

movement over the problem’s probability space helps potential users gain clarity into how the 

algorithm attains solutions. This quality of B-RWPSO should be particularly valued in situations 

like forest planning. 

One other testing consideration was the initialization of velocities (Tables 2-4). The 

roulette wheel nature of RWPSO demands that the set of probabilities (velocities) across all 

locations in a dimension must sum to one. Smythe (2012) defaulted the initial velocities vi,k(t=0) 

to a uniform assignment of the reciprocal of the number of total locations for each location k: 

[vi,0(0), vi,1(0), vi,2(0), vi,3(0)] = [0.25, 0.25, 0.25, 0.25] 

This previous literature also suggested that a velocity initialization bias against assignment of the 

“0” location actually improved convergence speed and solution quality, and found an ideal start 
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bias of vi,0(0) = 0.04 when testing vi,0(0) values along the grid vi,0(0) ∈{0.01, 0.04, 0.07, 0.10} 

with the three other assignments given equal probabilities to round out the roulette wheel 

(Smythe, 2012). We instead randomly initialized velocities by a random roulette wheel 

generation process. 

0 ≤ vi,0(0), vi,1(0), vi,2(0), vi,3(0) ≤ 1 

subject to:  vi,0(0) + vi,1(0) + vi,2(0) + vi,3(0) = 1 

We found that randomly initialized roulette wheel velocities actually perform better than 

the original RWPSO’s nonzero-bias velocity initialization setting. This contradicts the 

assumption and previous findings that a forest planning problem would perform better with an 

initial set of roulette wheel velocities biased against unscheduled, or 0-value, locations. This 

results in part due to the spatial constraints in the problem; initializing the population with 

random values allows for more diversification through the search space because throughout the 

algorithm’s execution, fewer moves are restricted by adjacency constraints. This finding sheds 

light into the interaction between the competing algorithm behaviors of following spatial 

adjacency constraints and maximizing harvest value. We demonstrate that the evolutionary 

movement of solutions in SI and other generation-based algorithms interacts with non-native 

constraint handling strategies, an important consideration for working with algorithms like PSO 

variants, which lack such an in-built constraint handling mechanism. In harvest scheduling 

problems, the constraint-preserving method may reduce computational expense by internalizing 

adjacency checks, but can also limit the exploration capacity of the algorithm. A randomly 

generated initial population enables the most exploration behavior when coupled with random 

starting velocities; the global exploration of the algorithm can further be improved with 

introduction of the baboon information-pooling modification. These novel features for 
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probability-based PSO help the swarm to converge faster (Figure 6) and to a better final solution 

(Figures 4,5,6). Besides the value of the baboon communication strategy in identifying the most 

appropriate region for convergence (via enhanced exploration), the baboon modification also 

improved exploitation within a promising region, ensuring that particles could escape shallow 

local troughs to find a superior solution in the surrounding area (Figures 4-6).  

 

Alg. Best (Minimum) Worst Average Std. Dev. 
RO 90,499.90 xx 160,698.00 46,879.00 
RWPSO (pb) 90,489.90 144,672.94 107,518.32 22,730.86 
RWPSO (rsv) 90,489.90 142,610.82 105,407.40 19,501.98 
B-RWPSO (pb) 90,489.90 101,863.07 92,636.65 4,345.05 
B-RWPSO (rsv) 90,489.90 101,863.07 94,280.96 5,686.59 

Table 2: Summary statistics for different algorithms applied to the 40-stand Northern Forest 
 
Alg. Best (Minimum) Worst Average Std. Dev. 
RO 5,500,330.28 xx 6,729,995.00 1,472,126.00 
RWPSO (pb) 5,500,330.28 7,065,589.17 6,015,657.39 628,686.90 
RWPSO (rsv) 5,560,961.74 6,904,719.75 6,116,777.79 449,938.51 
B-RWPSO (pb) 5,500,330.28 5,921,566.64 5,584,577.55 188,382.63 
B-RWPSO (rsv) 5,500,330.28 6,449,654.99 5,606,465.47 297,180.39 

Table 3: Summary statistics for different algorithms applied to the 73-stand Western Forest 
 
Alg. Best (Minimum) Worst Average Std. Dev. 
RO 61,913,898,152 xx 66,142,041,314 2,895,384,577 
RWPSO (pb) 85,439,462,612 113,493,797,732 103,248,427,772 9,370,587,523 
RWPSO (rsv) 86,452,695,062 94,258,971,212 91,056,808,979 4,087,614,009 
B-RWPSO (pb) 86,974,967,972 97,131,895,032 89,912,416,257 4,831,133,090 
B-RWPSO (rsv) 75,481,397,552 81,546,025,732 79,357,171,382 1,588,931,575 
B-RWPSO 
(optimal setting) 

71,662,208,452 81,451,900,072 77,703,271,168 
 

3,768,686,890 
 

Table 4: Summary statistics for different algorithms applied to the 625-stand Southern Forest  
 

On the lower-dimensional 40- and 73- stand forests, B-RWPSO runs up against the 

integer optimum for the problem. While a better “best solution” may not be possible, the B-

RWPSO still improves performance compared to RO and the original RWPSO, because B-

RWPSO achieves even better average values and a smaller standard deviation. For these simpler 
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harvest scheduling problems, B-RWPSO achieves a very tight distribution of test values. A small 

standard deviation in the distribution is especially relevant to the forest planning context because 

it indicates consistency, reliability, and stability in the heuristic’s performance, which allows for 

increased trust to be placed in the quality of the generated solutions.  

 

4.1.1 Baboon Information-Pooling 

 To compare the isolated effect of the baboon information-pooling without the 

confounding effects of other modifications of RWPSO, we run additional tests directly 

comparing B-RWPSO and RWPSO under otherwise identical experimental settings and 

parameter setups. We applied these comparison test cases on the high-dimensional 625-stand 

forest, where the most significant gains can be made to canonical PSO variants. RWPSO, like 

other types of PSO, struggles on higher-dimensional problems, and is most prone to premature 

convergence in these complex search spaces. The results from these tests are shown in Tables 5 

through 7. Each algorithm was run 10 times for each of the experimental configurations. For 

each experimental setting, we applied the Shapiro-Wilk normality test on the set of 10 best-found 

solutions for each of the two algorithms (B-RWPSO and RWPSO) to determine if the sample of 

best solutions was normally distributed. All of the data listed in Tables 5 through 7 met the 

normality criteria with 𝛼 < .05. With the assumption of normality in the sampled solution sets, 

we compared the difference between B-RWPSO and RWPSO for each parameter configuration 

with a two-tailed t-test. For all settings, we observed statistically significant differences (p < 

0.01) between the RWPSO with baboon information-pooling (B-RWPSO) and standard RWPSO 

(Tables 5,6,7). The results from these t-tests indicate that the distribution of solutions produced 

in B-RWPSO was significantly different from the distribution of solutions produced by RWPSO.  
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Algorithm Best (Minimum) Worst Average Std. Dev. 
B-RWPSO 75,481,397,552 81,546,025,732 79,357,171,382 1,588,931,575 
RWPSO 86,452,695,062 94,258,971,212 91,056,808,979 4,087,614,009 

Table 5: B-RWPSO vs. RWPSO for time-varying parameters m = 0.1, sstart = 0.1, sfinish = 0.35, 
populationsize = 200; randomly initialized velocity (denoted rsv); and gbest topology with 10-
baboon social neighborhoods. p = 0.0033 
 
Algorithm Best (Minimum) Worst Average Std. Dev. 
B-RWPSO (pb) 86,974,967,972 99,595,892,492 92,481,591,283 5,093,623,123 
RWPSO (pb) 85,439,462,612 113,493,797,732 103,248,427,772 9,370,587,523 

Table 6: B-RWPSO vs. RWPSO for time-varying parameters m = 0.1, sstart = 0.1, sfinish = 0.35, 
populationsize = 200; biased-start velocity (denoted pb); and gbest topology with 10-baboon 
social neighborhoods. p = 0.0041 
 
Algorithm Best (Minimum) Worst Average Std. Dev. 
B-RWPSO 75,727,943,532 85,773,854,952 80,345,507,369 2,910,402,975 
RWPSO 87,444,889,432 108,579,847,892 97,228,699,815 8,933,066,422 

Table 7: B-RWPSO vs. RWPSO for time-varying parameters m = 0.1, sstart = 0.1, sfinish = 0.35, 
populationsize = 200; randomly initialized velocity (denoted rsv); gbest topology with 10-
baboon social neighborhoods; and velocity reinitialization “reversion”. p = 0.0047 
 

Notably, the standard deviation of results from the RWPSO with randomly initialized 

velocity was smaller than even the standard deviation of the B-RWPSO when B-RWPSO was 

initialized with the anti-zero starting velocity. Random initialization of velocity dramatically 

improved performance of both RWPSO and B-RWPSO compared to when each algorithm used 

the anti-zero velocity bias. On the other hand, the velocity reinitialization (reversion mechanism) 

actually resulted in inferior performance for both the B-RWPSO and RWPSO. It did not generate 

substantively different solutions than the B-RWPSO without reinitialization, but had a somewhat 

inferior standard deviation. However, for the RWPSO, velocity reinitialization significantly 

decreased performance of the algorithm.  
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4.1.2 Time-Varying Parameters 

 The effect of time-varying parameters was also tested. Although there appears to be a 

slight improvement with time-varying parameters compared to static parameters, it is not a 

statistically significant difference (Table 8). Likewise, when changing just the sfinish value in the 

experiments, there was very little difference in the performance of the algorithm (Table 9). 

Although these modifications may not improve performance, this demonstrates that the B-

RWPSO is fairly robust to parameterization, which may be useful for deploying the algorithm in 

a variety of different contexts. The B-RWPSO can be more confidently deployed on a wider 

variety of problems without extensive parameter testing.  

 

Algorithm Best (Minimum) Worst Average Std. Dev. 
B-RWPSO (TVAC) 86,974,967,972 99,595,892,492 92,481,591,283 5,093,623,123 
B-RWPSO (Static) 87,247,858,452 108,539,881,992 94,639,708,121 6,465,199,136 

Table 8: B-RWPSO with time-varying parameters [m = 0.1, sstart = 0.1, sfinish = 0.35] vs. static 
parameters [m = 0.05, s = 0.25], populationsize = 200; anti-zero biased initial velocity (denoted 
pb); gbest topology with 10-baboon social neighborhoods. p = 0.3077 
 
Algorithm Best (Minimum) Worst Average Std. Dev. 
B-RWPSO 
(sfinish = 0.25) 

75,152,559,312 
 

83,336,276,292 
 

78,998,328,472 
 

3,409,541,240 
 

B-RWPSO 
(sfinish = 0.30) 

71,662,208,452 
 

81,451,900,072 
 

77,703,271,168 
 

3,768,686,890 
 

B-RWPSO 
(sfinish = 0.35) 

75,727,943,532 
 

85,773,854,952 80,850,313,079 
 

3,216,510,214 
 

B-RWPSO 
(sfinish = 0.40) 

74,963,047,112 
 

81,727,568,792 
 

79,611,413,707 
 

3,140,539,631 
 

Table 9: B-RWPSO with time-varying parameters {m = 0.1, sstart = 0.05 and sfin	∈ [0.25, 0.3, 
0.35, 0.4]}; populationsize = 200; randomly initialized velocity (denoted bsv); gbest topology 
with 10-baboon social neighborhoods; velocity reinitialization “reversion”  
 

4.1.3 Convergence Behavior 

The fitness vs. iteration curves depict the mean best objective found at an iteration for all 

10 sample runs of an algorithm at a given parameter setting. On the y-axis is the mean calculated 
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value of the objective function, while the x-axis shows number of iterations in various step sizes. 

(for the 625-stand forest, each tick mark represents 20 iterations, i.e., if the label is 50, we are on 

the 1000th iteration; for the 40- and 73-stand forests, each tick mark represents 5 iterations.) 

 

 

Figure 4: Fitness vs. Iteration curves for B-RWPSO vs. RWPSO on the 625-stand forest, for 
identical settings besides baboon information-pooling (time-varying parameters m = 0.1, sstart = 
0.1, sfinish = 0.35, populationsize = 200; randomly initialized velocity (denoted rsv), and gbest 
topology with 10-baboon social neighborhoods.) 
 

For the 625-stand forest, RWPSO and B-RWPSO overlap in the timing of their rapid 

climb (descent in this case of a minimization problem). At about 1000 iterations, the rate of 

improvement of solution quality slows down, although B-RWPSO is able to find a superior final 

solution. For the 73-stand forest, RWPSO actually approaches the local optimum faster than B-

RWPSO; however, it suffers premature convergence and plateaus at an inferior final solution 

compared to B-RWPSO.  
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Figure 5: Fitness vs. Iteration curves for B-RWPSO vs. RWPSO on the 73-stand forest, for 
identical settings besides baboon information-pooling (time-varying parameters m = 0.1, sstart = 
0.1, sfinish = 0.35, populationsize = 200; randomly initialized velocity (denoted rsv), and gbest 
topology with 10-baboon social neighborhoods.) 
 

 Finally, B-RWPSO converges very quickly on the 40-stand forest and with sharp 

precision. Although B-RWPSO was allowed up to 800,000 or 1,000,000 fitness evaluations for 

each of these problems, the algorithm finds a solution much quicker than the evaluations allotted. 

With a population size of 200 for each of these configurations, both B-RWPSO and RWPSO had 

largely converged by iteration 250, 1000, or 2000 (respectively for the 40-, 73-, and 625-stand 

forests). These equate to just 5,000, 200,000, and 400,000 fitness evaluations (far less than half 

the number of evaluations we allowed). We notice that the improvement in performance of the 

baboon modification over original RWPSO is least significant on this simplest of the test 

problems.  
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Figure 6: Fitness vs. Iteration curves for B-RWPSO vs. RWPSO on the 40-stand forest, for 
identical settings besides baboon information-pooling (time-varying parameters m = 0.1, sstart = 
0.1, sfinish = 0.35, populationsize = 200; randomly initialized velocity (denoted rsv), and gbest 
topology with 10-baboon social neighborhoods.) 
 

 These figures depict the exploratory behavior of the algorithms at different iterations, in 

order to establish a uniform point of comparison between progressive stages of the B-RWPSO 

and RWPSO. However, the two algorithms differed in total runtime, and so B-RWPSO will 

reach a given iteration more quickly than the canonical RWPSO. Over the runs used in Figure 4 

for the 625-stand forest, the baboon modification sped up average algorithm run-time by 22.8%. 

This advantage is valuable in business applications that favor quick planning. 

 

4.2 NETWORK INFLUENCE TYPE COMPARISON 

 In FIPS, each particle is informed by the success of all of its neighbors each iteration 

(Kennedy & Mendes, 2006). Canonical singly informed particle swarm only includes social 

influence from the global leader in the swarm at each iteration. Doubly informed particle swarm 
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seeks to balance competing strands of social information by including social influence from both 

the global leader and a neighborhood leader. We tested these three informational structures on 

the 625-stand forest: 

{Network influence type (static neighborhood) : “best of neighborhood” canonical 

singly-informed gbest / fully-informed gbest / doubly-informed lbest & gbest } 

 

Network Influence 
Type  
(Learning Strategy) 

Best (Minimum) Worst Average Std. Dev. 

Singly informed 
(gbest) 

75,481,397,552 81,546,025,732 79,357,171,382 1,588,931,575 

Doubly informed 
(lbest & gbest) 

79,531,304,832 86,521,861,392 81,941,154,536 2,977,877,438 

Fully informed 
(gbest) 

77,680,411,052 80,199,673,252 79,777,328,125 1,920,888,834 

Table 10: Comparison of Network Influence Types on B-RWPSO with identical parameter 
settings (time-varying parameters m = 0.1, sstart = 0.1, sfinish = 0.35, populationsize = 200; 
randomly initialized velocity (denoted rsv), and gbest topology with 10-baboon social 
neighborhoods.) 
 

Suitability of a problem to any given network topology and influence type has 

historically varied by domain. The effects of changing the network’s sociometry—whether 

positive or negative—can be dependent on the topology of the solution space as well as other 

features of the problem. In the tested cases of harvest scheduling for forest planning, network 

influence type was not a significant factor in the particle swarm’s search behavior. This may be 

related to the graph-coloring constrained search space, which likely restricts search. 
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CHAPTER 5 

CONCLUSION 

 We develop a new particle swarm velocity update mechanism based on the 

communication behavior of wild baboons and apply this modification to a probability-based PSO 

variant used in harvest scheduling applications for the forest planning problem. Baboon-Based 

Roulette Wheel Particle Swarm Optimization (B-RWPSO) improves the performance of 

traditional discrete and probability-based PSO algorithms on a variety of problems, with a 

particular improvement on complex, high-dimensional harvest scheduling problems. We 

demonstrate that bio-inspired and nature-inspired strategies may continue to improve existing 

evolutionary optimization heuristics. Addressing spatial constraints may be difficult in nominal 

variable problems because boundaries in the solution space are disjoint from real-world 

geographical boundaries. For probability-based algorithms that traverse over the probability 

space of the problem, there may be further conflicts with constraint-handling efforts to restrict 

search to feasible regions.  

Our experimental results overturn previous assumptions about harvest scheduling 

problems that the ideal velocity initialization should be biased against unscheduled (or 0-valued) 

dimensions. Rather, we find that random initialization of velocities (and greater preference 

toward 0-valued dimensions in early iterations) can actually improve performance of probability-

based RWPSO and B-RWPSO. Although this testing only incorporated three harvest scheduling 

problems, with simplifications compared to real-world planning needs, our results shed light into 

potential synergies between methods for spatial constraint-handling and algorithm design. These 
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findings suggest a need for further research into the complex interactions between spatial 

constraints, optimization objectives, and constraint-handling methods. Additionally, our 

implementation of a search reversion mechanism via velocity reinitialization resulted in inferior 

results. Further work may investigate whether this type of reinitialization may be refined, 

perhaps in a phased implementation, so that it is selectively applied to improve the search. 

 We also extend research into the role of social influence topology on social interactions 

in the particle swarm; because the appropriateness of social connectivity is highly dependent on 

the domain or problem, we test what procedure for information influence will perform best in 

harvest scheduling with a neighborhood-in-neighborhood approach to include both global and 

neighbor influence. Finally, while the baboon modification described here was only implemented 

on the discrete RWPSO, the conceptual baboon information-pooling could hold promising 

results for canonical and continuous variants of PSO. Among other recent innovations in nature-

inspired optimization, the integration of models of collective intelligence may help coordinate 

information-sharing patterns between sophisticated individuals, especially in complex emerging 

fields like multi-population swarm intelligence. The baboon modification may also be suitable 

for Pareto-based multi-objective exploration because subgrouping can enhance exploration of the 

solution space, and potentially discovery of diverse points along the Pareto frontier. 
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