
ACTIVE CYBER DECEPTION AND ATTACKER INTENT RECOGNITION

USING FACTORED INTERACTIVE POMDPS

by

ADITYA P. SHINDE

(Under the Direction of Prashant Doshi)

ABSTRACT

This work presents active cyber deception as a sequential decision-making problem in a two-agent

context. We model the problem of cyber deception for multiple attacker types using factored

finitely-nested interactive POMDPs (I-POMDPX ). In contrast to previous work which focuses

on confusing adversaries and delaying them, our approach aims to engage with the adversary to

learn their intent. Formulating cyber deception as a sequential decision-making problem enables

us to model multiple phases of cyber attacks on a single host. The I-POMDPX -based defender

agent can manipulate the attacker’s beliefs using decoys and false information and thus prolong

the interaction to form increasingly accurate predictions of the attacker’s intent. Explicit model-

ing of the adversary, allowed by the I-POMDPX , also enables us to study how deception affects

the attacker’s mental state. We further implement the I-POMDPX -based defender agent on a real

honeypot system to create an adaptive high-interaction honeypot. Our experiments in both simu-

lations and on a real honeypot show that the I-POMDPX -based agent performs significantly better

at intent recognition than commonly used deception strategies on honeypots.
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Chapter 1

Introduction

Protecting modern enterprise networks against sophisticated cyber adversaries is proving to be

increasingly difficult because of the evolving nature of advanced threats. Commonly used de-

fense techniques involve the use of intrusion detection systems and other such rule-based systems.

However, rule-based systems are difficult to adapt to the dynamic nature of cyber warfare. Also,

rule-based systems suffer from a high false-positive rate. This makes cyber defense a challenging

problem with defenders having to set up detection systems a priori and anticipate the attackers.

Such a strategy gives the attackers an asymmetric advantage over defenders. The defenders have

to anticipate the attackers and prepare against all possible weaknesses that the attackers may ex-

ploit. In contrast, the attackers have to only find a single flaw to bypass the defender’s defenses.

In response to this asymmetric advantage, a growing number of organizations are adopting cyber

deception as an effective cyber defense strategy [26]. Deception provides a simpler low cost and

low maintenance solution which can be easily used alongside existing rule-based systems. A key

aspect of cyber deception is the use of decoy systems called honeypots [32]. Honeypots are iden-

tical to other hosts on the network and are equipped with additional monitoring capabilities. They

are usually well camouflaged to make them indistinguishable from real hosts. Other systems in

the network are oblivious to the existence of honeypots. Thus any attempt at interacting with a
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honeypot can be easily flagged as suspicious activity leading to lower false-positive rates. This

makes them extremely effective as tools for detecting attackers in a network. Besides, the presence

of honeypots also increases uncertainty for the attackers who now have to carefully observe and

choose their targets to avoid setting off alarms.

While honeypots do give the defender significant advantages, their use in the context of threat

detection is a passive defense strategy. Detection and containment are certainly important aspects

of cyber defense. However, these techniques do not yield any useful information about the threat.

Any attempt to contain a threat immediately after detection only alerts the attacker to the presence

of detection mechanisms. Instead, actively engaging with the attacker offers an opportunity to

better understand the attacker’s intent and capabilities. Active strategies entail adaptive deception

which seeks to influence the attackers’ beliefs and manipulates the attackers into performing de-

sired actions [18]. Engaging the attacker through deception, while simultaneously protecting the

critical assets offers more information about the attacker’s intent, capabilities, and motivations.

Such a strategy offers a proactive approach to cyber defense.

Our work applies sequential decision-making to the problem of active cyber deception. We

show that AI-based deception strategies can be effective at engaging attackers for a longer duration.

Longer engagements provide more information about the adversary that reveals their intent. To this

end, we develop the I-POMDPX , a factored variant of the I-POMDP. This framework enables us

to explicitly model the adversary in a two-agent interaction scenario. We formulate active cyber

deception as a multi-agent sequential decision-making problem and use the developed I-POMDPX

framework to compute and evaluate optimal strategies.

1.1 Related work in AI-based cyber deception

Cyber deception has been an active area of research. Recently, several AI techniques are beginning

to be explored for use in deception. An area of significant recent interest has been game-theoretic
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multi-agent modeling of cyber deception. This approach contrasts with the decision-theoretic mod-

eling adopted in our work. Below, we briefly mention some of the recent work related to AI-based

cyber deception.

Schlenker et al. [28] apply Stackelberg games [30] to the problem of cyber deception. They

introduce the cyber deception game as a framework to model interactions between attackers and

defenders. Their work models the network reconnaissance phase of a cyber attack. They define the

attacker and defender as two players in a non-cooperative game. The attacker performs network

scans to learn more about the hosts in a network. The defender controls the responses to these

scans. The defender responds to an attacker’s scans using a mix of true and false information

to deny the attacker any useful information. This significantly increases the uncertainty for the

attacker. An attacker equipped with a particular exploit can no longer use network scans to locate a

vulnerable host with certainty. Another similar approach by Durkota et al. [11] allocates honeypots

in a network using a Stackelberg game. Given a fixed number of honeypots and real hosts, they

compute the optimal randomized deployment of honeypots that maximizes the probability of an

attacker interacting with a honeypot instead of a real host. Carroll et al. [5] model deception as a

dynamic non-cooperative game with incomplete information. In their work, the defender chooses

to camouflage a normal host as a honeypot and vice versa. During the attack, the attacker has to

determine whether or not to attack a system based on its observed characteristics which can be

manipulated by the defender. Jajodia et al. [17] develop a probabilistic logic to model deception

during network scanning. Using this logic, they compute optimal responses that can be provided to

an attacker during the network reconnaissance phase of an attack. They apply several constraints

on the possible responses to ensure that these responses cause minimum damage to the defender

while being consistent with the attacker’s expectations. Ferguson-Walter et al. [13] model possible

differences between the attacker’s and defender’s perceptions toward the interaction by modeling

cyber deception as a hypergame [21]. Hypergames model different views of the game being played

from the perspective of the players.
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While the application of game theory to cyber deception provides an objective view of the

interaction between attackers and defenders, most of the work in this area aims to explicitly deceive

the attackers or to lead them to honeypots. In contrast, we study the interaction from the subjective

perspective of a defender. The defender aims to learn the attacker’s intent, and for this purpose,

attempts to prolong the interaction with the attacker. We show that deception emerges naturally as

an optimal strategy when the defender aims to keep the attacker engaged.

1.2 Contributions

We briefly mentioned some related work in the previous section. While those efforts focus on

delaying or confusing the attackers using deception, we aim to actively engage with the attackers

to learn more about their intent. To model this multi-agent interaction, we extend I-POMDPs to

their factored variant, the I-POMDPX . The key contributions of our work are as follows:

1. We represent cyber deception on a single host as a decision-making problem between a

defender and an attacker. We consult cybersecurity experts to estimate the dynamics of the

environment, and to assign realistic actions to both agents.

2. We model cyber attacks in multiple phases analogous to the Lockheed Martin Cyber Kill

Chain® [16] and the MITRE ATT&CK framework [33]. Also, we model multiple types of

attackers with realistic objectives to simulate threats with unknown intentions.

3. We introduce a factored variant of the well-known interactive partially observable Markov

decision process [14], labeled as I-POMDPX . I-POMDPX exploits the factored structure of

the problem, representing the dynamics and observation function using algebraic decision

diagrams [2]. This makes the I-POMDPX tractable for the cyber deception domain.

4. The I-POMDPX enables explicit modeling of the opponent throughout the interaction. This

gives us insight into how deception affects the attacker’s subjective view of the system.
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5. We test the proposed I-POMDPX agent in simulations and on a testbed. We compare the

I-POMDPX agent against other commonly used deception strategies. Our results show that

the I-POMDPX based agent performs significantly better at intent recognition than other

baseline strategies.

6. Lastly, we implement the attacker and the defender on a real system to show that our decep-

tion techniques and strategies can be realistically implemented on honeypots.

Through our work, we hope to motivate a more proactive approach towards cyber defense in

contrast to the reactive strategies currently being used.

1.3 Structure of this work

In this section, we introduced cyber deception and briefly reviewed some work on AI-based de-

ception. We also mentioned how our work differs from previous work and some of our key contri-

butions. Below we briefly mention the contents of the subsequent chapters.

Chapter 2 provides some background on sequential decision-making frameworks. Our work

formulates cyber deception as a sequential decision-making problem. Hence this background lays

the groundwork for the next chapters in which we introduce the I-POMDPX . We review factored

POMDPs and their solution techniques. We then discuss finitely-nested I-POMDPs which extend

POMDPs to multi-agent settings.

Chapter 3 introduces the I-POMDPX framework. We apply the techniques reviewed in Chap-

ter 2 to extend finitely nested I-POMDPs to their factored variant. We show how I-POMDPX

factors can be represented using ADDs analogous to factored POMDPs. We also define the cyber

deception domain using the I-POMDPX and define the dynamics for attacker and defender agents.

In Chapter 4 we define the different attacker types which we use to evaluate the defender. We

discuss their optimal policies and their objectives.
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Chapter 5 shows the results of our experiments. We evaluate the I-POMDPX -based defender

in simulations and on a real testbed. This chapter shows the duration of the interactions and the

performance of intent recognition in both cases.

Chapter 6 concludes the thesis. We briefly highlight our contributions and also mention some

limitations of our approach. We also briefly discuss possible areas of improvement.
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Chapter 2

Background

We model the interaction between the cyber attacker and defender as an interaction between two

self-interested agents. The attacker’s problem is modeled as a POMDP. The defender who also

models the attacker explicitly is modeled as a finitely nested I-POMDP. In this chapter, we provide

some background on factored POMDPs and finitely nested I-POMDPs. We show how compact

representations and approximate solution techniques are used to solve factored POMDPs effi-

ciently. In later chapters, we will use the same principles to achieve computational advantages

in solving I-POMDPs.

2.1 Factored POMDPs

Partially Observable MDPs (POMDPs) are a generalization of MDPs. POMDPs model sequential

decision-making problems for partially observable environments [20]. In practice, POMDPs often

exhibit structure in their transition and observation functions. States and observations in such cases

influence, and are in turn influenced by a select few states. Hence the POMDP can be compactly

represented as a dynamic Bayesian network (DBN) [6]. Accordingly, the transition and observa-

tion functions take the form of conditional probability distributions over sets of variables in the
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Figure 2.1: A factored POMDP as a two-slice DBN. Ai represents agent i’s action. X and X ′ are the sets of
pre-action and post-action state variables. Y ′i is the set of observation variables.

DBN. POMDPs which exhibit such structure are called factored POMDPs [15, 19, 27]. DBNs

explicitly represent conditional independence [24] between variables. This is an important prop-

erty that enables compressed representations of POMDP dynamics using conditional probability

distributions. Figure 2.1 shows the DBN representation of factored POMDP dynamics. Below, we

provide a brief background on factored POMDP representations and solution techniques and how

they relate to their unfactored counterparts.

2.1.1 Definition

Similar to POMDPs, a factored POMDP can be defined as the tuple,

POMDPi = 〈X , Ai, Ti,Yi, Oi,Ri〉

where,

• X = {X1, X2, X3, ..., Xn} is the state space consisting of n state variables. Every Xi is a

single state variable. A state is represented by a joint instantiation of all state variables.

8



• Ai is the set of actions available to agent i.

• Ti represents the transition function, Ti: S × A × S −→ [0, 1]. The transition function is

represented in the DBN as the conditional probability distribution P (X ′|X , Ai)

• Yi = {Yi1 , Yi2 , Yi3 , ..., Yin} is the observation space. Similar to the state variables, every Yii

is an observation variable.

• Oi is the observation function, Oi: S × A × Ω −→ [0, 1]. The conditional probability distri-

bution P (Y ′i|X ′, Ai) denotes the observation function in a factored POMDP

• Ri defines the reward function for agent i,Ri: X × Ai −→ R.

2.1.2 Factor representation using ADDs

In section 2.1, we mentioned how conditional independence can be leveraged to compress the

transition and observation functions. Additionally, the dynamics of a factored POMDP can be

represented more compactly by exploiting context-specific independence [3]. Context-specific in-

dependence is the property that some random variables are independent of each other for specific

values of those variables. Boutilier and Poole have previously used decision trees (DTs) to lever-

age context-specific independence to represent factors [4]. Similarly, Hoey et al., and Feng and

Hansen use algebraic decision diagrams (ADDs) to represent MDP and POMDP factors respec-

tively [19, 12]. ADDs are extensions of binary decision diagrams (BDDs) which are commonly

used for boolean function verification [2]. In probabilistic planning, ADDs are used to repre-

sent probability functions. A significant advantage that ADDs offer over DTs are that they are

canonical– every probability function has a unique ADD representation that cannot be compressed

further. ADDs are essentially DTs with merged isomorphic sub-trees. Formally, an ADD repre-

senting a factor F consisting of discrete random variables X1, X2, ..., Xn can be denoted as,

9



F = C, if F is a terminal node

F (X1, X2, ..., Xn) = Fx1(X2, ..., Xn), where X1 = x1

Here, C ∈ R is the value of the leaf node which represents the probability value for a given joint

instantiation of the random variables. The term x1 denotes a given value of the random variable

X1, and Fx1 is the subgraph rooted at the node at the x1 edge of the subgraph rooted at X1.

Feng and Hansen have shown how ADDs can be used to represent the dynamics of a factored

POMDP [12]. For a given action Ai = ai, they define the transition function for all post-action

variables as the ADD P ai(X ′|X ). The terms X ′ and X are as defined in figure 2.1 and section

2.1.1. This factor represents the complete action diagram for factored POMDPs analogous to

the one defined for factored MDPs by Hoey et al. [19]. Similarly, the observation function is

denoted using the ADD P ai(Y ′i|X ′). This is defined as a complete observation diagram. Using the

complete action diagram and the complete observation diagram, we can define an ADD containing

all transition probabilities for action Ai = ai and observation Yi = oi as,

P ai,oi(X ′|X ) = P ai(X ′|X )P ai(Y ′|X ′) (2.1)

The factor P ai,oi(X ′|X ) is analogous to P (oi, s
′|s, ai), P ai(X ′|X ) to P (s′|s, ai), and P ai(Y ′|X ′)

to P (oi|s′, ai) in unfactored POMDPs.

2.1.3 Belief Update

Since the agent is unable to observe the state perfectly, it maintains a probability distribution over

all possible states. This distribution is called a belief and it summarizes the agent’s entire ac-
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tion/observation history [1]. The belief update for a POMDP can be written as,

bti(s
t) = P (st|ot−1

i , at−1
i , bt−1

i )

= βOi(s
t, at−1

i , oti)
∑
st−1∈S

Ti(s
t, at−1

i , st−1)bt−1
i (st−1)

(2.2)

where β is the normalization factor, bti is the belief of agent i at interaction time step t, and Oi and

Ti are the defined in section 2.1.1.

For a factored POMDP, a belief is represented as the joint distribution of all state variables.

The belief update can be written in terms of factors as,

bai,oii (X ′) = β
∑
X

b(X )P ai,oi(X ′|X ) (2.3)

where b(X ) is the prior belief, P ai,oi(X ′|X ) is the factor derived in equation 2.1 from the complete

action diagram and the complete observation diagram.

2.1.4 Solutions

An optimal POMDP policy maps beliefs of the agent to optimal actions that should be performed

in a particular belief state to get the maximum expected reward: π∗ : Bi −→ ∆(Ai). Here, Bi is the

set of all possible belief points for agent i and ∆(Ai) is the distribution over optimal actions for a

particular belief point b ∈ Bi. Below, we provide some context on approximate POMDP solutions

and how ADDs are for solving factored POMDPs.

The optimal policy is obtained from the value function which maps belief states to real numbers

representing the preferences of the agent: V : Bi −→ R. The value function for POMDPs is defined

as,

V (b) = max
ai∈Ai

{
ρ(b, ai) + γ

∑
oi∈Oi

P (oi|b, ai)Vt−1(τ(b, oi, ai))

}
(2.4)

where τ represents the belief update mentioned in the equation 2.2,
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ρ(b, ai) =
∑

s∈S R(s, ai)b(s), and P (oi|b, ai) =
∑

s,s′∈S b(s)P (s′|s, ai)P (oi|s′, ai)

Equation 2.4 forms the basis for value iteration techniques for exact solutions to POMDPs [20,

31, 23]. The optimal value function at horizon t can thus be computed from the previous value

function at t−1 by repeatedly performing the dynamic programming backup operation in equation

2.4. The backup operation maintains the piecewise linearity of the value function [31]. Hence, the

value function can be represented using a set of vectors as, V = {v0, v1, ..., vn} where each vector

vi has the same dimensions as the state space. These are called α vectors. The value function can

now be defined in the form of α vectors as,

Vt(b) = max
α∈Γt

b · α

where Γt is the set of all α vectors at time step t.

Exact solutions to POMDPs can often prove to be computationally intractable. POMDPs suffer

from the curse of dimensionality arising from the dimensionality of the state space, and also the

curse of history, which depends on the planning horizon of the problem [20]. As a faster alternative

to exact solutions, approximate solution techniques such as point-based value iteration (PBVI) are

commonly used to solve larger POMDPs. Pineau et. al. propose an anytime PBVI algorithm that

provides fast approximate solutions to larger POMDPs [25]. They use a fixed set of belief points

and update the value function at those points during backup operations. In addition, they modify

the backup operation to maintain a single α vector for each belief point. In this way, the size of

the value function is bounded by the size of the set of belief points. Using the modified backup

operation, they define the steps for generating the set of α vectors Γt from the previous α vectors
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Γt−1 as,

Γa,∗t ←− αa,∗(s) = R(s, a)

Γa,oit ←− αa,oii (s) = γ
∑
s′∈S

T (s, a, s′)O(s′, a, oi)αi(s
′), ∀αi ∈ Γt−1

Γat ←− αab = Γa,∗t +
∑
oi∈Ωi

arg max
α∈Γ

a,oi
t

(∑
s∈S

α(s)b(s)

)
, ∀b ∈ B

αb = arg max
Γa
t ,∀a∈A

(∑
s∈S

Γat (s)b(s)

)

Γt =
⋃
b∈B

αb

(2.5)

For factored POMDPs, ADDs are used to represent the value function compactly as

V = {v0(X ), v1(X ), ...vn(X )} [12]. The backup operation shown in equation 2.5 can be rewritten

for factored representations as follows,

Γai,∗t ←− αai,∗(X ) = Rai(X )

Γai,oit ←− αai,oii (X ) = γ
∑
X ′

P ai,oi(X ′|X )αi(X ′), ∀αi ∈ Γt−1

Γait ←− αaib = Γai,∗t +
∑
oi∈Yi

arg max
α∈Γ

ai,oi
t

(∑
X

α(X )b(X )

)
, ∀b ∈ B

αb = arg max
Γ
ai
t ,∀ai∈Ai

(∑
X

Γait (X )b(X )

)

Γt =
⋃
b∈B

αb

(2.6)

Above, the reward function for action ai is represented as the ADD Rai(X ). POMDP reward

functions exhibit the property of additive separability [34]. Additive separability is the property

that a reward function for a particular action ai can be built from smaller reward functions over

individual state variables: Rai(X ) =
∑n

i=0Rai(Xi). ADDs allow compact representations of

separable reward functions.

To further improve the time complexity of POMDP solutions, Vlassis and Spaan have proposed
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a technique that randomly samples belief points from the belief set and updates the value function

at those points [35]. Their technique, called Perseus, selects successively smaller subsets of beliefs

and provides faster solutions to large POMDPs. The Symbolic Perseus solver augments the Perseus

technique with ADDs for solving factored POMDPs [27]. In practice, the symbolic Perseus solver

is augmented with further enhancements. ADD computations are cached and the results are looked

up to save on computations. Further, ADDs are approximated to decrease their size. Also, the

solution is only computed over observations with higher probabilities. These approximations have

been shown to cause a negligible decrease in solution quality.

2.2 Finitely nested Interactive POMDPs

Interactive POMDPs (I-POMDPs) generalize POMDPs to sequential decision-making in multi-

agent environments [14, 8]. I-POMDPs can explicitly model other agents in a multi-agent interac-

tion. In our work, we use a factored variant of finitely nested I-POMDPs which we call I-POMDPX

to model the defender. This section provides some context on finitely nested I-POMDPs that will

help us define I-POMDPX in a later chapter.

2.2.1 Definition

Formally, an I-POMDP for agent i in a two-agent environment is defined as,

I-POMDPi = 〈ISi, A, Ti,Ωi, Oi, Ri〉

where,

• ISi denotes the interactive state space. The ISi includes the physical state S and models of

the other agent Mj . Models of the other agent can be intentional or subintentional [7]. In our

work, we assume intentional models for the opponent as they model the opponent’s beliefs
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and capabilities as a rational agent.

• A = Ai × Aj is the set of joint actions of both agents.

• Ti represents the transition function, Ti: S×A×S −→ [0, 1]. The transition function is defined

only over the physical state space S. This is a consequence of the model non-manipulability

assumption – an agent’s actions do not directly influence the other agent’s models [14, 8].

• Ωi is the set of agent i’s observations.

• O is the observation function,Oi: S×A×Ω −→ [0, 1]. Similar to Ti, the observation function

is defined only over S as a consequence of the model non-observability assumption – other’s

model parameters may not be observed directly [14, 8].

• Ri defines the reward function for agent i, Ri: Si × A −→ R.

The ability to explicitly model other agents gives rise to the possibility of infinite nesting due to

recursive modeling. However, for such cases, the I-POMDP cannot be computed [8]. Hence, in

practice the level of nesting is fixed to level 0 and the interactive state space is built bottom up.

I-POMDPs with finite levels of nesting are called finitely nested I-POMDPs. The interactive state

space ISi,l for a finitely nested I-POMDP at strategy level l is defined bottom up as,

ISi,0 = S, Θj,0 = {〈bj,0, θ̂j〉 : bj,0 ∈ ∆(ISj,0)}

ISi,1 = S ×Mj,0, Θj,1 = {〈bj,1, θ̂j〉 : bj,1 ∈ ∆(ISj,1)}
...

ISi,l = S ×Mj,l−1, Θj,l = {〈bj,l, θ̂j〉 : bj,l ∈ ∆(ISj,l)}.

Above, θ̂j represents agent j’s frame, defined as θ̂j = 〈Aj,Ωj, Tj, Oj, Rj, OCj〉. Here, OCj repre-

sents j’s optimality criterion and the other terms are as defined previously. Θj is the set of agent

j’s intentional models, defined as θj = 〈bj, θ̂j〉. At level l > 0, agent i can have infinite models of
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agent j in the interactive state space. To maintain computability, the models of agent j are limited

to a finite set, Θj,l−1 [9]. The set of j’s models is updated after every interaction to account for the

belief update of agent j. ISi,l can be then defined as,

ISi,l = S × Reach(Θj,l−1, H), Θj,l = {〈bj,l, θ̂j〉 : bj,l ∈ ∆(ISj,l)}.

Here, Reach(Θj,l−1, H) is the set of level l − 1 models that j could have in H steps; Reach

(Θj,l−1, 0) = Θj,l−1. We obtain Reach() by repeatedly updating j’s beliefs in the models in Θj,l−1.

2.2.2 Belief Update

Similar to POMDPs, an agent’s beliefs in I-POMDPs are sufficient statistics [14, 10]. An I-

POMDP agent maintains beliefs over the physical state space S and also the models of the other

agent, Mj . The belief update for I-POMDPs recursively updates the nested beliefs at all strategy

levels. It is defined as,

P (ist) = β
∑
ist−1

P (ist−1)
∑
at−1
j

P (at−1
j |θt−1

j )Oi(s
t, at− 1, oti)

× T (st−1, at−1, st)
∑
otj

τθtj(b
t−1
j , at−1

j , otj, b
t
j)Oj(s

t, at−1, otj)

(2.7)

Above, the term τθtj represents agent j’s belief update, P (at−1
j |θt−1

j ) is 1
|OPT(Aj)|∀aj ∈ OPT(Aj)

and 0 for other actions. OPT(Aj) is the set of all optimal actions for agent j for type θt−1
j .
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2.2.3 Solutions

Similar to POMDPs, I-POMDP value functions map an agent’s beliefs to real numbers representing

the preferences of the agent: V : B −→ R. The value function for I-POMDPs is defined as,

U(θj) = max
ai∈Ai

Q(θi, ai)

U(θj) = max
ai∈Ai

{∑
is

ER(is, ai)bi(is) + γ
∑
oi∈Ωi

P (oi|ai, bi)U(〈SEθi(bi, ai, oi), θ̂i〉)

}

where,

ERi(is, ai) =
∑
aj

Ri(is, ai, aj)P (aj|mj)

(2.8)

The set of optimal actions for agent i at infinite horizon with discounting for a particular belief is

given by,

OPT (θi) = arg max
ai∈Ai

Q(θi, ai)

Value iteration in I-POMDPs is based on equation 2.8. I-POMDP value functions can also be

expressed in terms of alpha vectors as,

Vt(〈bi,l, θ̂i〉) = max
α∈Γt

b · α

where the belief b is defined over the interactive state space ISi,l and the α vectors is a function of

ISi,l written as α(isi,l).

Like POMDPs, I-POMDPs also suffer from the curse of dimensionality and the curse of history.

In addition, I-POMDPs suffer from the curse of history of the modeled opponent [9]. Hence,

exact solutions to I-POMDPs can be computationally intractable for larger problems. Approximate

solutions can be much faster and yield a lot of computational savings. Interactive point based value

iteration is one such technique which is analogous to PBVI for POMDPs [9]. Just like in PBVI, I-

PBVI operates on a finite set of interactive belief points. Hence, the size of the solution is bounded.
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The backup operation for generating the next set of alpha vectors, Γt from the previous set Γt−1

for I-POMDPs is,

Γai,∗t ←− αai,∗(is) =
∑
aj∈Aj

Ri(s, ai, aj)P (aj|θj,l−1)

Γai,oit ←− αai,oii (is) = γ
∑
is′

∑
aj

P (aj|θj,l−1)Ti(s, ai, aj, s
′)Oi(s

′, ai, aj, oi)

×
∑
oj

Oj(s
′, ai, aj, oj)δD(SE(bj,l−1, aj, oj)− b′j,l−1)αi(is

′),∀αi ∈ Γt−1

Γait ←− Γai,∗t +
∑
oi∈Ωi

arg max
α∈Γ

ai,oi
t

(∑
is∈IS

α(is)b(is)

)
, ∀bi,l ∈ Bi,l

V t ←− arg max
αt∈

⋃
ai

Γai

(α · bi,l), ∀bi,l ∈ Bi,l

(2.9)

Here, V t contains at the most |Bi,l| α vectors [9].

2.3 Summary

POMDPs generalize MDPs to partially observable settings and are widely used in probabilistic

planning. In practice, POMDP states and observation can be aggregated and the dynamics can be

compactly represented using dynamic Bayesian networks (DBNs). The resulting variant is called

a factored POMDP. DBNs enable compact representations of POMDP dynamics as conditional

probability distributions. These representations can be further compressed using algebraic decision

diagrams (ADDs). Depending on the level of state abstraction, factored POMDPs can provide

computational improvements over POMDPs. However, due to the curse of dimensionality and

the curse of history, even factored POMDPs are unable to scale to larger problems. For fast and

scalable solutions to POMDPs, approximate solution techniques like point-based value iteration

(PBVI) are used. The PBVI method performs the value function backup over individual belief

points and thus limits the size of the approximated value function. The Perseus algorithm further
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improves on PBVI by using a subset of belief points to perform the backup operation. The symbolic

Perseus technique combines ADDs with Perseus to solve large POMDPs efficiently.

Interactive POMDPs (I-POMDPs) extend POMDPs to multi-agent settings. I-POMDPs ex-

plicitly model the opponent in an interaction. Thus, the state space of an I-POMDP contains the

models of the other agent in addition to the physical states. However, possibly infinite levels of

nesting and an infinite number of opponent’s models can make I-POMDPs impossible to compute.

Hence the level of nesting is fixed and the interactive state space is built bottom-up from level 0.

Also, the opponent’s models are limited to a finite set which is updated after every interaction.

I-POMDPs with finite levels of nesting are called finitely nested I-POMDPs. The same problems

which make exact solutions to POMDPs intractable also affect I-POMDPs. Also, due to the ex-

plicit modeling of the opponent, I-POMDPs suffer from the curse of history of the opponent. For

faster solutions to I-POMDPs, approximate solution techniques are used. One such technique is

interactive point-based value iteration (IPBVI). IPBVI is analogous to PBVI in POMDPs. Sim-

ilar to PBVI, IPBVI performs the backup operation at select belief points to keep the size of the

approximated value function bounded.
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Chapter 3

I-POMDPX for cyber deception

In this chapter, we present a factored variant of the finitely nested I-POMDP, the I-POMDPX . We

discuss I-POMDPX solution techniques and factor representations. Subsequently, we model active

cyber deception as an I-POMDPX and explain the domain in detail.

3.1 Finitely nested factored I-POMDPs (I-POMDPX )

In section 2.1 we reviewed how factored POMDPs coupled with approximate solution techniques

are effective for solving large POMDPs. Now, we apply the same principles to I-POMDPs re-

viewed in section 2.2 to create a factored variant, the I-POMDPX . In addition, we restrict the nest-

ing levels of I-POMDPX and also the set of agent j’s models similar to finitely nested I-POMDPs

to maintain computability.

3.1.1 Definition

Formally, the I-POMDPX is defined as:

I-POMDPX = 〈IS i, A, Ti,Yi, Oi,Ri〉
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• IS i is the factored interactive state space. This consists of the set of physical state variables

X = {X1, X2, ..., Xn} and the set of agent j’s models Mj = {mj1,mj2, ...,mjn}. In a

finitely-nested I-POMDPX the set Mj is bounded similarly to finitely-nested I-POMDPs.

• The joint action set A is defined exactly as in finitely nested I-POMDPs.

• Ti defines the transition function represented using ADDs as P ai,aj(X ′|X ) for ai ∈ Ai and

aj ∈ Aj . The model non-manipulability assumption applies to I-POMDPX .

• Yi = {Yi1 , Yi2 , ..., Yin} is the set of observation variables which make up the observation

space for agent i.

• Oi is the observation function represented as ADDs, P ai,aj(Y ′i|X ′). The model non-observability

assumption also applies to I-POMDPX .

• Ri defines the reward function for agent i. The reward function is represented as the ADD,

Rai,aj(X ).

We use algebraic decision diagrams (ADDs) [2] to represent the factors for agent i’s transition,

observation, and reward functions compactly. Figure 3.1 shows the two-slice DBN representation

of the I-POMDPX .

3.1.2 I-POMDPX dynamics using ADDs

We now show how the ADDs representing the I-POMDPX dynamics are obtained from the transi-

tion and observation functions. As shown in figure 3.1, X = {X1, ..., Xn} and X ′ = {X ′1, ..., X ′n}

are the sets of pre-action and post-action physical state variables. Y ′i = {Y ′i1 , ..., Y
′
in} and Y ′j =

{Y ′j1 , ..., Y
′
jn} denote the sets of observation variables for agents i and j respectively. Analogous

to the complete action diagram for factored POMDPs reviewed in section 2.1.2 and for factored

MDPs [19], the ADD P ai(X ′|X , Aj) = P ai(X ′1|X ′2, . . . , X ′n,X , Aj) × ... × P ai(X ′n|X , Aj) rep-

resents the complete action diagram for action Ai = ai. Similarly, the ADD P ai(Y ′i|X ′, Aj) =
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Figure 3.1: A two-slice DBN representation of I-POMDPX . The factored interactive state space IS consists
of the factored physical state space X and the set of agent j’s models, Mj . Yi and Yj make up agent i and
agent j’s observation space. Similarly, Ai and Aj denote the actions of both agents.

P ai(Y ′i1|X
′, Aj) × ... × P ai(Y ′in|X

′, Aj) represents the complete observation function which is

analogous to the complete observation diagram [12]. The factored interactive state space IS con-

tains models of agent j in addition to the physical states X . In a finitely nested I-POMDPX , the

set of models of j is limited to those contained in Reach(Θj,l−1, H). This set is updated after

every interaction. We define Mj = {mj1 : 〈bj1 , θ̂j1〉, ...,mjn : 〈bjq , θ̂jr〉} as the set of all models

in Reach(Θj,l−1, H). Neither aj nor oj are directly accessible to agent i. Hence they are repre-

sented as conditional probability distributions using ADDs P (Aj|Mj) and P ai(Y ′j|X ′, Aj). The

I-POMDP belief update recursively updates the beliefs for models of agent j. In I-POMDPX , this

update is captured in the conditional distribution over M ′
j as P ai(M ′

j|Mj,Y ′j, Aj,X ′) =

P ai(M ′
j|Mj, Aj,Y ′j)× P ai(Y ′j|X ′, Aj). Using these factors, we can now define the joint transition
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function for X ′ and M ′
j given action ai and observation oi as a single ADD,

P ai,oi(M ′
j,X ′|Mj,X ) =

∑
Aj ,Y ′j

P ai,oi(Y ′j,M ′
j,X ′, Aj|Mj,X )

=
∑
Aj ,Y ′j

P ai(X ′|X , Aj)P ai(Y ′i|X ′, Aj)P (Aj|Mj)

× P ai(M ′
j|Mj, Aj,Y ′j,X ′).

(3.1)

Here, the ADD P ai(X ′|X , Aj) compactly represents Ti(st−1, at−1
i , at−1

j , st), P ai(Y ′i|X ′, Aj) repre-

sents the probabilities Oi(s
t, at−1

i , at−1
j , oti), P (Aj|Mj) represents P (at−1

j |θt−1
j ), and

P ai(M ′
j|Mj, Aj,Y ′j,X ′) represents the recursive belief update transitions τθtj(b

t−1
j , at−1

j , otj, b
t
j)×

Oj(s
t, at−1

i , at−1
j , otj) of the original I-POMDP.

3.1.3 Belief Update

Using the joint transition function computed above in equation 3.1, we can compute the I-POMDPX

belief update as:

bai,oii (X ′,M ′
j) =

∑
X ,Mj

b(X ,Mj)× P ai,oi(X ′,M ′
j|X ,Mj) (3.2)

where b(X ,Mj) represents the initial belief. The initial belief is also represented using ADDs as a

joint distribution of X and Mj .

3.1.4 Solutions

For solving I-POMDPX efficiently, we augment the IPBVI technique with ADDs for representating

factors. Thus, we leverage the computaional advantages of IPBVI and the compactness of ADDs

to make the I-POMDPX tractable for larger problems.

We generalize the Symbolic Perseus solver [27] reviewed in section 2.1.4 for solving I-POMDPX .
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The backup operation to generate α vectors using IPBVI is generalized for factored representations

as follows,

Γai,∗ ←− αai,∗(X ,Mj) =
∑
Aj

Rai(X , Aj)P (Aj|Mj)

Γai,oi
∪←− αai,oi(X ,Mj) = γ

∑
X ′,M ′j

P ai,oi(X ′,M ′
j|X ,Mj)α

t+1(X ′,M ′
j), ∀αt+1 ∈ V t+1

Γai ←− Γai,∗ ⊕oi arg max
Γai,oi

(αai,oi · bi), V t ←− arg max
αt∈

⋃
ai

Γai

(αt · bi), ∀bi ∈ Bi

(3.3)

Here, V t+1 is the set of α-vectors from the next time step and bi is a belief point from the set of

considered beliefsBi. For populatingBi, we project the agent’s beliefsH time steps into the future

using equation 3.2. It is not practical to generate all possible beliefs from the initial belief b0. This

is because the branching factor for the belief tree is |Ai| × |Oi|. So H time steps in the future, the

belief tree will have a maximum of
∑H

n=0(|Ai| × |Oi|)n nodes. To avoid this exponential growth

in the number of possible beliefs, future outcomes are simulated by sampling an action and an

observation at each step, and using these to generate the next belief. We use stochastic simulation

with greedy action (SSGA) strategy, also known as the ε-greedy exploration strategy to generate

belief points [25]. In this method, an optimal action is chose with probability 1 − ε and a random

action is chosen with a small probability, ε. The optimal action is computed from the best available

estimate of the value function at that time.

Several augmentations in the Symbolic Perseus solver such as cached ADD computations and

ADD approximations further enable us to solve I-POMDPX efficiently.

3.2 The cyber deception domain

In our work, we model the interaction between an attacker and a defender on a single honeypot host

system. We describe the honeypot system and the attacker’s mental states using a set of discrete
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State Variable Name Values Description

PRIVS DECEPTION user, root, none Deceptive reporting of privileges

S DATA DECOYS yes, no Presence of sensitive data decoys

C DATA DECOYS yes, no Presence of critical data decoys

HOST HAS DATA
sensitive data, Type of valuable data

critical data, none on the system

DATA ACCESS PRIVS user, root Privileges required to access or find data

ATTACKER PRIVS user, root Attacker’s highest privileges

DATA FOUND yes, no Valuable data found by the attacker

VULN FOUND yes, no Local PrivEsc discovered by attacker

IMPACT CAUSED yes, no Attack successful

ATTACKER STATUS active, inactive Presence of attacker on the host

HOST HAS VULN yes, no Presence of local PrivEsc vulnerability

Table 3.1: The state space of the cyber deception domain is comprised of 11 variables.

random variables. This section describes the state space, the attacker and defender’s observation

variables, actions, and reward functions.

3.2.1 States and observations

The state space of the cyber deception domain is made up of 11 state variables defining a total of

4,608 states. Table 3.1 briefly summarizes the state space. We broadly categorize the states into

the following abstract categories:

• States representing deception: The PRIVS DECEPTION, S DATA DECOYS, and C DATA -

DECOYS state variables belong to this category. The S DATA DECOYS and C DATA DECOYS

state variables represent the presence of sensitive data decoys and critical data decoys. We

differentiate between sensitive data and critical data as distinct targets. Sensitive

data, for example, includes private data of employees, high ranking officials, or any data that

25



the attacker would profit from stealing. Critical data is type of data which is vital for the

operation of a business process or a physical piece of equipment. The attacker would benefit

from manipulating this type of data.

• States describing the honeypot system: These state variables represent the ground truth

about the honeypot system. In our work, we focus on the presence or absence of various

assets. The state variables belonging to this category are HOST HAS DATA, DATA ACCESS -

PRIVS and HOST HAS VULN. The HOST HAS DATA variable represents the true type of valu-

able data on the system. In practical scenarios, honeypots never contain any real valuable

data. Hence, in our work, the HOST HAS DATA state is none. However, the attacker is un-

aware of the honeypot or the data decoys and hence can form a belief over this state variable.

Thus, the HOST HAS DATA variable gives a subjective view of the attacker being deceived. As

mentioned previously, we present sensitive data and critical data as distinct targets.

We assume that a system cannot have two different types of valuable data simultaneously.

This is a reasonable assumption because usually different hosts on enterprise networks pos-

sess different assets.

• States describing the attacker’s progress: These state variables represent the attacker’s

privileges, presence and mental states about discovery of assets on the system. The state vari-

ables that belong to this category are ATTACKER PRIVS, ATTACKER STATUS, DATA FOUND,

VULN FOUND and IMPACT CAUSED. The ATTACKER PRIVS state denotes the highest level of

privileges available to the attacker. For the sake of simplicity, we assign two values to this

variable; user, which represents an attacker with user level privileges, and root, an attacker

with highest level of privileges. The defender cannot observe this state and has to formulate

a strategy to keep attackers at both privilege levels engaged. The ATTACKER STATUS state

indicates if the attacker is still active on the honeypot. An attacker may decide to leave if

the objective of the attack is accomplished or if there is no way of making progress. The
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defender cannot observe this state and gets no information about it from any observations.

This state has to be inferred from the defender’s models of the attacker. DATA FOUND and

VULN FOUND states indicate if the attacker has found data or local privilege escalation vul-

nerability.

Since some states are not completely observable, both agents get information about these states

from their observations after performing actions. The attacker’s observation space, Yj , contains 5

observation variables which make a total of 48 unique observations. These observation variables

are: OP RESULT, PRIVS, DATA, VULN, DISCREPANCY, and AOC COMPLETE. The PRIVS, DATA, and

VULN observations inform the attacker about the ATTACKER PRIVS, DATA FOUND and VULN FOUND

states. The OP RESULT informs the attacker if the current action was completed without errors or

failures. Besides, the attacker can also observe any anomalies through the DISCREPANCY observa-

tion variable. This is an abstract observation and has different interpretations for each attacker type.

Broadly, if an attacker observes unexpected data or contradicting types of data, this observation is

triggered. Thus the attacker’s observations mainly serve the purpose of information gathering.

The defender’s observations provide information about the attacker’s activity and the attacker’s

interactions with any existing decoys. The defender’s observation space, Yi, consists of 3 ob-

servation variables; S DATA DECOY INTERACTION = { yes, no}, C DATA DECOY INTERACTION

= { yes, no}, and LOG INFERENCE = { file recon, sys info, persist attempt, none}.

S DATA DECOY INTERACTION and C DATA DECOY INTERACTION observations alert the defender

if the attacker interacts with sensitive data decoys or critical data decoys. The LOG IN-

FERENCE observation variable informs the defender about the attacker’s actions inferred from log

analysis. In our work, we use GrAAlf [29], a graph-based log analysis framework to implement the

observation function for the LOG INFERENCE variable. Inference from log analysis is often prone

to noise from other background activity in the system. Hence this observation is noisy.
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Action name States affected Description

FILE RECON SDATA DATA FOUND Search for sensitive data for theft

FILE RECON CDATA DATA FOUND Search for critical data for manipulation

VULN RECON VULN FOUND Search for local PrivEsc vulnerability

PRIV ESC ATTACKER PRIVS Exploit local PrivEsc vulnerability

CHECK ROOT none Check availability of root privileges

START EXFIL IMPACT CAUSED Upload critical data over network

PERSIST IMPACT CAUSED Establish a permanent presence in the system

MANIPULATE DATA IMPACT CAUSED Manipulate stored data

EXIT ATTACKER STATUS Terminate the attack

Table 3.2: The actions available to the attacker.

3.2.2 Attacker and defender actions

At each step in the interaction, the attacker and defender can each act simultaneously. The attacker

performs actions to gather information about the system, manipulate the system, or to take action

on objectives. The defender’s actions mainly govern the decoy deployment. Besides, the defender

can also use instrumented coreutils programs to supply deceptive information to the attacker.

The actions available to the attacker, Aj , are briefly summarized in table 3.2. The FILE -

RECON SDATA and FILE RECON CDATA actions are used for data discovery. Depending on the

action, the data discovery is successful if the attacker encounters sensitive data or critical -

data. VULN RECON looks for exploitable privilege escalation vulnerabilities on a system. PRIV -

ESC performs the privilege escalation exploit. This action usually leads to the attacker transitioning

from user-level privileges to higher privileges. CHECK ROOT is an information gathering action

which informs the attacker about the highest available privileges. Depending on the type of the

attacker, the START EXFIL, MANIPULATE DATA, or PERSIST actions can be performed to achieve
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Figure 3.2: The dynamics for information-gathering actions compactly represented as a two time-slice DBN
for select joint actions and observation variables.

the main objective.

The attacker can complete the attack only after locating the required assets and gaining the

required privileges. Several different actions have to be performed sequentially to achieve this.

Similarly, the defender has to accurately infer the intents of the attacker and deploy specific types of

decoys to bait the attacker and learn more about their intent. The success or failure of these actions

and the information gained by performing them is governed by the transition and observation

functions. We consult cybersecurity experts to estimate the transition and observation probabilities

in our work. Figure 3.2 shows the dynamics for information-gathering actions performed by the

attacker. We now look briefly at how the attacker’s and defender’s actions affect the state space.

As previously mentioned, data discovery is an important part of the attacker’s plan. The

FILE RECON SDATA and FILE RECON CDATA actions, which are used for data discovery, cause

the DATA FOUND variable to transition to yes. FILE RECON SDATA action is slightly worse at find-

ing data than the FILE RECON CDATA. This reflects the fact that private sensitive information is
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Figure 3.3: The ADD PNOP (VULN FOUND′|X , A′j = VULN RECON). This ADD represents the joint transi-
tion function for the VULN FOUND’ state variable given Ai = NOP and Aj = VULN RECON.

slightly difficult to find because it is often stored in user directories in arbitrary locations. On the

other hand, critical data, like service configuration or database files, are stored in well-known lo-

cations on the system. We assume that the attacker is unable to discern between decoy data and

real data, and hence, unable to determine which variable influences the DATA FOUND state transi-

tion during file discovery. However, the attacker can become aware of contradicting or unexpected

types of data if the wrong decoys are deployed. On observing DATA and DISCREPANCY observa-

tions simultaneously, the attacker develops a belief over the decoy data states as the host can have

only one type of data. This realistically models a situation in which the attacker encounters mul-

tiple decoys of different types and suspects deception. VULN RECON is another action that works

similarly and causes the VULN FOUND transition to yes. Figure 3.3 shows a part of this transition

function in its ADD representation.

The defender starts with complete information about the system. Her actions mostly govern the

deployment and removal of different types of decoys. These actions influence the S DATA DECOYS

and C DATA DECOYS states. Besides baiting the attacker through decoys, the defender can influence
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the attacker’s observations about her privileges through the PRIVS DECEPTION state. The set of

actions available to the defender, Ai, is defined as Ai = { DEPLOY S DATA DECOYS, DEPLOY C -

DATA DECOYS, REMOVE S DATA DECOYS, REMOVE C DATA DECOYS, DEPLOY VULN, SHOW ROOT -

PRIVS, NO-OP, SHOW USER PRIVS }. The SHOW USER PRIVS and SHOW ROOT PRIVS actions use

instrumented coreutils binaries to supply deceptive information about the attacker’s privileges.

These actions influence the PRIVS DECEPTION state. In our work, we implement these actions on

an adaptive honeypot running Linux. The deception is accomplished by showing lower or higher

privileges regardless of the true privileges when the attacker uses commands like whoami or id.

The DEPLOY VULN action installs a vulnerable application or script on the system. The defender

does this to facilitate privilege escalation for the attacker. This allows the defender to learn about

the attacker’s true motives.

We previously explained the noisy nature of the LOG INFERENCE observation for the defender.

Apart from the LOG INFERENCE observation, the defender gets a near-perfect observation when-

ever the attacker interacts with a decoy through the S DATA DECOY INTERACTION and C DATA -

DECOY INTERACTION. Figure 3.4 shows the ADD for this observation function. The ADD for

C DATA DECOY INTERACTION is similar.

3.2.3 Rewards

We model three different attacker types in our work. These are, the data exfil attacker, the data

manipulator, and the persistent threat type attacker. These attacker types are modeled as different

frames in the defender’s set of agent j’s models, Mj . The reward function is different for each type

of attacker.

The attacker is rewarded for exiting the system after causing an impact. However, the way this

is achieved is different for each attacker type. For the data exfil attacker, performing the START EX-

FIL action after finding sensitive data accomplishes the attacker’s objective. Similarly, for the

data manipulator, performing MANIPULATE DATA on critical data accomplishes the attacker’s
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Figure 3.4: The ADD PNOP (S DATA DECOY INTERACTION′|X ′, A′j). This ADD represents the observa-
tion function for the S DATA DECOY INTERACTION observation. This observation implies that the attacker
performed the START EXFIL action.

objective. The persistent threat attacker is rewarded for getting root level persistence in the system.

Figure 3.5 shows the reduced ADD for the EXIT action for data manipulator attacker. The reward

for the data exfil attacker is similar.

The defender’s reward function is simpler. For every interaction step in which the ATTACKER -

STATUS is active, the defender receives a small reward. Also, since I-POMDP reward functions

are defined over joint actions, we apply a small cost for every Aj = EXIT irrespective of Ai

and state. This motivates the defender to prolong the interaction for as long as possible to delay

the penalty from the attacker performing EXIT. Hence, the defender is not explicitly motivated to

deceive the attacker. However, deception emerges as a behavior since the defender wants to delay

the attacker’s exit.
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Figure 3.5: The reward ADD REXIT (X ) for the data manipulator type attacker. The attacker is rewarded
for performing the EXIT action if the IMPACT CAUSED state is yes and critical data is found.

3.3 Summary

We generalize finitely nested I-POMDPs to their factored form, I-POMDPX . ADDs are used to

represent the dynamics of the I-POMDPX . Analogous to POMDPs, the belief update and point-

based value backup for I-POMDPs can be extended to use factored representations. Due to the

compact representations using ADDs and the fast approximate solutions enabled by IPBVI, I-

POMDPX proves to be tractable for larger problems. The I-POMDPX framework is used to model

a defender agent in a cyber deception interaction on a honeypot. The adaptive honeypot environ-

ment in which this interaction takes place is modeled using a set of state variables. The attacker

acts to gather information, manipulate the system, and achieve specific objectives. The observa-

tions from the attacker’s actions provide information about the presence of assets, vulnerabilities,

and discrepancies in the system. The defender acts to manipulate the state of deception on the

system. The defender’s observations provide information about the attacker’s interaction with de-

ployed decoys, and the actions performed by the attacker. From these observations, the defender

33



infers the frame of the attacker. Multiple types of attackers are defined, each having different pref-

erences and objectives. These attackers are modeled using their optimal level-0 POMDP policies.
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Chapter 4

Attacker models

Targeted cyberattacks are implemented in multiple phases. Attackers usually start with user-level

access inside the target organization. Starting from this initial phase, attackers have to maintain

their access, elevate their privileges, and perform reconnaissance to locate their target before taking

actions that cause impact. These phases are defined in various cyber-attack models such as the

Lockheed Martin Cyber Kill Chain® [16], and the MITRE ATT&CK matrix [33]. The cyber

deception domain described in the previous chapter is designed such that the attacker policies are

analogous to these models to simulate realistic attackers.

We have previously defined the three distinct types of attackers which are modeled as separate

frames in the I-POMDP. We implement each of these attackers using Metasploit [22], a well-known

post-exploitation framework. To obtain the optimal policies for the attackers, we solve their level-0

POMDPs. Below we discuss the optimal policies for each attacker type.

4.1 The data exfil attacker frame

The data exfil type attacker is rewarded for stealing sensitive data on the host. We model this

attacker type based on threats that steal private data and other sensitive data from systems. The
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Figure 4.1: Optimal policy for data exfil type attacker. The data exfil attacker targets sensitive data on the
system. The policy shows that the attacker starts with file discovery. On failure to find a file, the attacker
escalates privileges and looks again before giving up.

attacker starts with no knowledge of the existence of data on the system. Figure 4.1 shows the op-

timal policy obtained by solving the level-0 POMDP. We see that the optimal policy recommends

the FILE RECON SDATA action which simulates sensitive data discovery on computers. After fail-

ing to find data in the first few attempts, the attacker attempts to escalate privileges and search

again. If the attacker encounters unexpected types of decoys, she leaves since there is no reward

for stealing other types of data. Also, the observation of discrepancies when data is found informs

the attacker about the possibility of deception. This is because the system only contains a single

type of valuable asset. On being alerted to the possibility of being deceived, the attacker leaves the

system.
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4.2 The data manipulator attacker frame

Figure 4.2: Optimal policy for data manipulator type attacker. The data manipulator attacker targets
critical data for manipulation.

The data manipulator type attacker is rewarded for manipulating critical data on the host.

Figure 4.2 shows the optimal policy for this attacker type. The attacker is modeled after adversaries

that intrude systems to manipulate data that is critical for a business operation. Similar to the data

exfil type, the attacker starts with no information about the existence of data. The optimal policy for

this attacker type recommends FILE RECON CDATA action in the initial steps. Because critical data

like service configurations or databases are usually stored in well-known locations, the FILE -

RECON CDATA is modeled to find critical data quickly as compared to sensitive data. In the

subsequent interaction steps, the attacker escalates privileges to continue the search if data is not

found in the initial steps. Like the data exfil attacker, the data manipulator also leaves the system

on observing discrepancies, suspecting deception, or on failure to find data.

4.3 The persistent threat attacker frame

The persistent threat aims to establish root level persistence on the host. Such attacks are com-

mon. Attackers establish a strong presence in an organization’s network and stay dormant for an

extended duration. Figure 4.3 shows the optimal policy for the persistent threat. For this attacker
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Figure 4.3: Optimal policy for persistent threat type attacker. Unlike the other attacker types, the persistent
threat begins with vulnerability discovery actions. On finding a vulnerability and escalating privileges, the
persistent threat attempts to establish a permanent presence in the system

type, the policy consists of vulnerability discovery actions in the initial steps. The attacker esca-

lates privileges by performing the PRIV ESC action on finding vulnerabilities. Once the attacker

has the required privileges, the PERSIST action is performed to complete the objective.

While all three attacker policies may seem significantly different from their actions, the de-

fender’s observations of these actions are noisy. The errors in observation come from the noisy

nature of real-time log analysis. For example, the VULN RECON action models vulnerability discov-

ery on a host. This action involves looking through the local file system for any vulnerable scripts,

enumerating system information, listing services, etc. In real-time log analysis, a VULN RECON can

be mistaken for a FILE RECON CDATA or a FILE RECON SDATA which involve one or more similar

steps. Similarly, it is difficult to tell the difference between the FILE RECON CDATA and FILE RE-

CON SDATA from logs alone. Hence, without baiting the attacker into performing further actions, it

is challenging to infer the intent of the attacker from the first few actions.
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4.4 Summary

We model three different types of threats: the data exfil attacker, the data manipulator attacker, and

the persistent threat through our attacker models. The data exfil attacker intends to steal sensitive

data. Data manipulator intends to manipulate critical data. And the persistent threat aims to estab-

lish a strong presence at elevated privilege levels. To obtain the optimal policies for each of these

attackers, we solve their level-0 POMDPS. These policies are based on the Lockheed Martin Cyber

Kill Chain® and the MITRE ATT&CK matrix to make the models realistic. For the data exfil at-

tacker, the optimal policy recommends data discovery actions in the initial steps. On failure to find

data, the policy recommends privilege escalation. After getting elevated privileges, the attacker

attempts to find data once again. On failure to find any data or on observing discrepancies, the

attacker leaves the system. The data manipulator policy is very similar to the data exfil attacker.

A key difference is that data discovery actions of the data manipulator are better than the data

exfil attacker. Hence the attacker performs fewer data discovery steps before and after privilege

escalation. Lastly, the policy for persistent threat skips the data discovery phase completely. The

attacker starts with vulnerability discovery. After elevating privileges, the attacker performs per-

sistence. We use this attacker models against the defender to evaluate its performance in realistic

scenarios.
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Chapter 5

Experiment results and discussion

To test the effectiveness of the I-POMDPX -based defender agent, we evaluate its performance

on multiple scenarios in simulations and on an implemented adaptive honeypot. At each step in

the interaction, we record the attacker’s and defender’s beliefs. We then compute the difference

between these beliefs to determine if the defender was successful in recognizing the attacker’s

intent. In both sets of experiments, we compare the I-POMDPX -based defender against other pas-

sive defenders. These passive defenders simulate commonly used simpler deception deployment

strategies. In this section, we describe the setup for these experiments and discuss the results.

5.1 Simulations

In simulations, we sample the state transitions and observations for both, the attacker and the

defender from their respective observation functions. The frame and the starting privileges of the

attacker are randomly sampled to simulate a threat with unknown intentions and privileges. The

attacker starts with no prior knowledge about any vulnerabilities or data on the system.

As previously mentioned, we compare the I-POMDPX policy against other passive baselines:

one that does not engage and passively observes the attacker, and another which uses deception
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Agent
Mean Standard Max

duration error duration

I-POMDPX agent 5.90 ± 0.24 9

NO-OP agent (no decoys) 4.30 ± 0.16 7

NO-OP agent (all decoys) 3.26 ± 0.20 5

Table 5.1: Interaction duration for each agent in simulations.

Agent
Cross-entropy Cross-entropy

mean standard error

I-POMDPX agent 0.153 ± 0.080

NO-OP agent (no decoys) 0.649 ± 0.142

NO-OP agent (all decoys) 0.451 ± 0.101

Table 5.2: Mean cross-entropy at the final step after 30 simulations.

indiscriminately having deployed both sensitive and critical data decoys and all vulnerabilities in

the honeypot at the beginning. We label the first baseline as NO-OP(no decoy) and the second

baseline as NO-OP(all decoys). Each simulation trial lasts for 10 interaction steps. We perform 30

trials of the simulation. The I-POMDPX policy converges in about 6 minutes with a mean time per

backup of 37 secs on Ubuntu 18 with Intel i7 and 64 GB RAM. Table 5.1 shows the mean duration

and max duration of 30 simulation trials.

The NO-OP(no decoy) and NO-OP(all decoy) yields a mean (± std err.) of 4.3± 0.16 and 3.26

± 0.20 steps of engagement with the attacker, respectively. The longest engagement among these

last for 7 and 5 steps, respectively. With NO-OP(no decoy), the attacker is unable to find anything

valuable on the system. Hence, after performing a few discovery actions and attempting to esca-

late privileges, the attacker exits. With NO-OP(all decoys), the agent either immediately finds the
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Figure 5.1: Mean cross-entropy between the defender’s prediction of the attacker’s frame and the attacker’s
true frame in simulations. The low cross entropy values for the I-POMDPX agent with low standard error
shows that the I-POMDPX agent is significantly better at intent recognition.

target data or encounters unexpected decoys and suspects deception. In contrast, the I-POMDPX

agent engages with the attacker for a mean duration of 5.9± 0.24 with the longest interaction hap-

pening for 9 steps. The I-POMDPX -based defender leverages the information gained by the first

few observations to selectively deploy the right type of decoys. In the initial steps, the defender

performs the SHOW USER PRIVS action to manipulate the attacker’s observations about her privi-

leges. This increases her chances of observing file enumeration or vulnerability discovery activity,

forming a belief over the frames. Subsequently, the defender baits the attacker using decoys and

observes the interaction to solidify her belief. This minimizes the risk of the attacker encountering

unexpected decoys or noticing discrepancies.

Figure 5.1 shows the cross-entropy between the defender’s belief of the attacker’s frame and
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the attacker’s true frame, as it varies across the steps of the interaction. The defender’s I-POMDPX

policy eventually yields the lowest cross-entropy values compared to the baselines. In the initial

steps, the noisy observations of the attacker’s actions from log analysis help the defender form

an approximate belief over the attacker’s frame. For instance, multiple consecutive data recon-

naissance steps filter out the persistence attacker type. However, observations from log inference

are noisy. Hence, the defender cannot eliminate any of the attacker types. The cross-entropy de-

creases gradually as the interaction proceeds and more observations are made. After the initial

few discovery actions, the final step of either exfiltrating the data or manipulating it allows the

defender to distinguish between the two attacker types. For the persistent threat type attacker, the

defender watches for vulnerability discovery actions. However, these actions also generate noisy

observations for the defender. Hence, the defender facilitates privilege escalation and watches for

possible persistence attempts. But, for the NO-OP(no decoy) with no deception, the only source

of information about the attacker is from log inference. Hence, such a defender is unable to form

accurate beliefs before the attacker leaves the interaction. For the NO-OP(all decoy) agent that in-

discriminately uses deception, observations from decoy interactions are perfect, but the risk of the

attacker encountering contradicting decoys and suspecting deception is also high leading to early

exits. This is evident from the immediate sharp decrease in cross-entropy in the first few steps. But

the high standard deviation suggests that this agent makes wrong predictions a significant number

of times. Table 5.2 shows the mean cross-entropy between the defender’s predictions and the truth

at the final step of the simulation. By the final step, the I-POMDPX agent has engaged with the

attacker for enough duration to form very accurate beliefs about the frame of the attacker. In con-

trast, the other agents are not able to form accurate beliefs. This is evident from their higher mean

cross-entropy and variance even in the final step.
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Figure 5.2: System architecture of the testbed used to deploy the agents. The defender manipulates the
system through decoys and commonly used coreutils binaries to give deviant observations.

5.2 Host deployment

To implement the I-POMDPX defender on a real system, we build an adaptive honeypot aug-

mented with advanced logging abilities. Figure 5.2 shows the overall architecture of our testbed

implementation. The testbed consists of 3 separate hosts: the attacker, the adaptive honeypot and

the defender. The attacker system operates a Kali Linux distribution which is well known for

the variety of offensive and defensive cybersecurity tools that are preinstalled on it. The adap-

tive honeypot on which the interaction takes place is a Metasploitable 3 Linux distribution. This

distribution has a wide range of builtin vulnerabilities and is commonly used to simulate victim

workstations in cyber-attack simulations. The adaptive honeypot also contains an attacker agent

which executes the actions given by the attacker. We program the attacker agent to use realistic

techniques commonly used by real attackers. For instance, privilege escalation is done by ex-

ploiting real vulnerabilities on the host. The adaptive honeypot also has a defender agent that

implements the defender’s actions and gets observations.
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Agent
Mean Standard Max

duration error duration

I-POMDPX agent 5.90 ± 0.28 10

NO-OP agent (no decoys) 4.44 ± 0.11 5

NO-OP agent (all decoys) 3.86 ± 0.23 6

Table 5.3: Interaction duration for each agent on the adaptive honeypot implementation.

Agent
Cross-entropy Cross-entropy

mean standard error

I-POMDPX agent 0.068 ± 0.030

NO-OP agent (no decoys) 0.410 ± 0.139

NO-OP agent (all decoys) 0.256 ± 0.073

Table 5.4: Mean cross-entropy at the final step after 30 testbed runs.

The defender AI located on the defender workstation recommends the optimal action for each

interaction step by solving the I-POMDPX . To implement the observation function for the LOG -

INFERENCE observation variable, we use GrAALF [29], a graphical framework for processing

and querying system call logs. GrAALF analyzes system call logs in real-time and provides the

stochastic LOG INFERENCE observation variable values for file and vulnerability searches. Besides,

GrALLF also provides the perfectly observed DATA DECOY INTERACTION variable values to the

defender.

Table 5.3 shows the interaction duration for 30 trials on the testbed. The duration of the engage-

ments for the I-POMDPX is consistent with the results of the simulation with minor differences.

Figure 5.3 shows the cross-entropy between the frame predicted by the defender and the attacker’s

actual frame. The cross-entropy values are consistent with the simulations for the I-POMDPX
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Figure 5.3: The cross-entropy values for the I-POMDPX agent on the testbed runs are consistent with the
results in simulations.

agent and the NO-OP agent that does not use deception. However, the NO-OP agent that uses

all decoys seems to perform better than in simulations. However, the high standard error implies

that this strategy has a very high rate of failure. Despite this difference, the I-POMDPX agent

significantly outperforms the other two at intent recognition. The performance of all three agents

at intent recognition is shown in table 5.4.

5.3 Instances of active deception

We record the beliefs of both agents in our experiments as the interaction proceeds. Below, we

show a few instances of the defender using deception to influence the attacker’s beliefs.

Figure 5.4 illustrates a scenario taken from an actual simulation run with the data manipulator
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Figure 5.4: The attacker starts with a low prior belief on the existence of decoys and an active defender. If
decoys are indistinguishable from real data, the attacker attributes his observation to the existence of real
data even when the host has none.

attacker type. Initially, the attacker has a non-zero belief over the existence of data on the system.

However, the true state of the honeypot on the left shows that it does not contain any data. In

the absence of the defender or any static data decoys, the attacker will eventually realize this after

FILE RECON CDATA fails to find any data. However, before this happens, the defender deploys data

decoys when the attacker acts. The attacker’s inability to tell the difference between decoy data and

real data and his prior belief about the absence of decoys leads her to attribute her observations to

the existence of real data. This is evident from the attacker’s beliefs which show a high probability

for the critical data value of the HOST HAS DATA state variable.

Figure 5.5 shows another scenario taken from simulations. In this particular scenario, the

defender observed a file discovery action in the beginning and deployed critical data decoys. How-

ever, subsequent observations made by the defender were inconsistent with the data manipulator

type attacker. Hence, the defender switches the decoys before the attacker can spot any discrepan-
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Figure 5.5: In the event of deploying wrong decoys, the defender corrects the decoy deployment. In this
case, on observing file discovery actions, the defender deployed critical data decoys. Later as the interaction
progresses, the defender forms a better belief over the attacker’s frame from the observation and replaces
the decoys before the attacker discovers the discrepancy.

cies. The true state of the system is shown on the left. The defender performs REMOVE CDATA -

DECOYS when the C DATA DECOYS state is yes. Simultaneously, the attacker performs FILE RE-

CON SDATA. In such a scenario, the defender’s action is given priority. Hence the attacker is unable

to find data and the next state shows that C DATA DECOYS has transitioned to no. The attacker is

unable to find any data and has a stronger belief that the host might not have any data. As the

attacker performs the FILE RECON SDATA action for the last time, the defender deploys sensitive

data decoys. In this particular case, the attacker was able to find the decoys and interact with them.

In some cases, the attacker is unable to find the decoys despite the defender deploying them due

to the imperfect nature of the FILE RECON SDATA action. When this happens, the defender does

not observe any decoy interactions and is unable to form an accurate belief over the frame of the

attacker.
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Figure 5.6: The attacker suspects deception on observing discrepancies. On performing FILE RECON -
SDATA, the attacker gets the DATA and the DISCREPANCY observation simultaneously. This leads to non-zero
beliefs over the existence of decoys and the attacker exits in the next step.

The next scenario is taken from a simulation with the NO-OP (all decoys) agent. The beliefs of

the attacker as the simulation proceeds are shown in figure 5.6 on the right. For the NO-OP agent,

all decoys are deployed in the beginning. The figure shows this through the perfect probabilities of

the S DATA DECOYS and C DATA DECOYS states on the left. On performing the FILE RECON SDATA

action, the attacker encounters both decoys. But the HOST HAS DATA state implies that the system

can only contain a single type of asset. Hence, the attacker forms a belief over the decoys states.

This leads the attacker to promptly exit the system.

The scenarios mentioned above demonstrate how a defender can actively engage with the at-

tacker using deception. In our work, the I-POMDPX -based defender is able to leverage the imper-

fect information gained from log inference to formulate better deception strategies. This shows the

value of AI-based active deception in engaging with attackers.
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5.4 Summary

We implement the attacker agents discussed in chapter 4 and the I-POMDPX -based defender agent

on a real system. We evaluate the I-POMDPX -based defender against a randomly sampled attacker

with randomly assigned privileges. We compare the I-POMDPX -based defender against two other

simpler agents that simulate commonly used deception strategies. Our results show that the I-

POMDPX -based defender agent can engage with the attacker significantly longer than the other

agents. Further, at the end of the interaction, on an average the I-POMDPX -based agent has the

lowest cross-entropy values between the predicted frame and the true frame. This shows that the

I-POMDPX agent outperforms the other agents at intent recognition. We perform all these exper-

iments and evaluations in simulations and on a real honeypot which we implement. Our results

are consistent in both cases. This shows that I-POMDPX can be effective for intent recognition

in practical scenarios. We also illustrate how deception affects the attacker’s beliefs using select

instances of the interactions taken from actual simulations
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Chapter 6

Conclusion

Cyber deception is being rapidly adopted as an effective strategy for cyber defense. Deception

increases the uncertainty for the attackers and improves the defenders’ reaction time. Despite its

numerous advantages, however, deception is mostly used to detect and/or confuse the attackers.

Our work demonstrates that deception can be used dynamically to actively engage threats and

learn more about their intent. Intent recognition yields more information about the enemy and is

vital in mounting an effective cyber defense.

Our approach of utilizing automated decision-making for deception to recognize attacker intent

is a novel application of AI and decision-making in cybersecurity. Broadly, we show that cyber

deception for intent recognition can be formulated as a multi-agent automated decision-making

problem. To compute optimal deception strategies for this problem, we introduce a factored variant

of the I-POMDP framework. Our experiments reveal that the I-POMDPX -based agent succeeds

in engaging various types of attackers for a longer duration than passive honeypot strategies. The

results from the interactions between the implemented attacker and defender agents show that

longer interactions indeed facilitate intent recognition. Importantly, the I-POMDPX -based agent

can be practically implemented on a real system with logging capabilities paving the way for its

deployment in actual honeypots.
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6.1 Limitations

While the I-POMDPX is effective at solving larger problems, its advantages mainly depend on the

level of abstraction of the state space and observation space. In scenarios involving cybersecurity,

the computational complexity of I-POMDPX solutions can often be a limiting factor. Active cyber

defense requires fast and efficient online policies.

Also, in our work, we assume that the attackers are rational agents. This may be a strong

assumption since attackers are humans and can act irrationally. While it is possible to account for

irrational behavior by assigning a small probability ε to P (Aj|Mj),∀aj /∈ OPT (Aj), it greatly

increases the number of opponent’s models in the interactive state space. This further increases the

time required for computing the optimal policy.

6.2 Future work

There are several aspects of our work that can be improved upon. An obvious area to improve will

be to build a faster solver for the I-POMDPX and scale it to very large domains. This will enable

better solutions to the I-POMDPX within realistic time bounds. Additionally, the proposed cyber

deception domain can be extended to multi-host settings. This will enable the defender to model

other key phases of cyberattacks such as lateral movement, network discovery, etc. Modeling

multiple hosts also opens up the possibility of using network-level deception. This will facilitate

longer and realistic engagements which can reveal much more about the attacker. Lastly, the

nesting level of the I-POMDPX can be increased to model possible counter deception strategies

that the attackers may use. As deception becomes increasingly popular, modeling deception-aware

attackers may reveal how attackers might counter commonly used deception strategies.

We believe that our work will highlight the interesting capabilities that AI has to offer in the

area of automated cyber defense.
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