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Abstract 

 Human activity recognition involves the learning and classification of various activities 

performed in daily life. However, most research has focused on using carefully obtained data 

collected in a supervised, laboratory setting that is far from representative of data collected in 

real-world conditions. Therefore, this project has investigated several machine learning models 

and studied the hyperparameters involved in human activity recognition on a pseudo free-living 

dataset collected at the University of Georgia. On this data set, we found that standard, flat 

models outperformed hierarchical metaclassifiers with MLPs and SVMs achieving 64.62% and 

63.95 percent accuracy on classifying 7 different activities. Ensemble models achieved only 

marginally better results. A window size of 10 seconds was found to be ideal for this dataset, and 

participant pre-training was revealed to be a promising method for improving classification 

accuracy. It was observed that activities on an incline, such as ascending and descending stairs, 

proved the most difficult to classify. Excluding this class improved accuracy to 80%, while 

folding it into the “walking comfortably” class further increased accuracy to 85.9%.  

INDEX WORDS: Supervised Classification, human activity recognition, support vector 

machines, multi-layer perceptron, machine learning 
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Chapter 1 

Introduction 

 

This thesis involves the study of human activity recognition based on a body-worn 

triaxial accelerometer, and specifically encompasses the methods and models used on a dataset 

collected in a setting that occurred under pseudo free-living conditions rather than in a 

controlled, laboratory environment. Much research has focused on these clean datasets, which 

may be useful as benchmarks or for prototyping new algorithms but have limited practical 

applications because they do not accurately reflect the challenges of human activity recognition 

in free-living or pseudo free-living environments that are more representative of the real world. 

Thus, this study investigates several different machine learning models and analyzes their 

performance on a dataset that has been collected under more realistic conditions with numerous 

participants. Many hyperparameters, such as window size, are studied along with methods that 

aim to improve classification accuracy and reduce noise. Figure 1.1 provides a list of 

experiments performed and groups them into two categories: experiments focused on machine 

learning approaches, and those focuses on data and hyperparameter analysis.  

 

1.1 Machine Learning and Data Analysis 

 The dataset for this thesis was obtained from 20 participants wearing a hip-worn 

accelerometer, which provided acceleration information in all three axial directions. A total of 

seven distinct activities were performed by each patient and recorded by a researcher, and each 
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participant performed them in a natural manner without input from the researcher in order to 

generate a more realistic dataset.   

 The differences in how participants performed activities allowed us to realistically test 

inter-subject accuracy, which is the strategy of training machine learning models on every 

participant except one, and then using that individual to test the performance of the classifier. 

This is a practical approach for human activity recognition because only one general model is 

trained before it can be used on new participants. Intra-subject validation occurs when the 

participants’ data is randomly partitioned into training and testing sets so no variance between 

participants is considered. This approach would require people to individually train models and 

is less convenient. 

1.1.1 Outlier detection 

 A brief, initial experiment was performed to determine if there were any outlier 

participants present in the data. Analysis showed that participant 16 only had 28.9% accuracy 

when their data was used in the test set, so this individual was excluded from the experiments 

presented in this paper and only 19 participants were used.  

 

 Machine Learning Approaches 

 

 

 Data and Parameter Analysis 

 

 

Figure 1.1: Experiments performed in this thesis. All 12 fall under two categories, machine learning approaches and 

data analysis 
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1.1.2 Hierarchical Classifier 

 This work is based earlier work of Niazi et al. [25], described in section 2.2.5, which used 

a hierarchical meta-classifier. A similar hierarchical classifier was initially used to classify our 

own dataset. Performance was evaluated based on inter-subject accuracy, where a single 

participant’s data is left out of the training set and used only in the testing dataset; data for the 

remaining participants is used to train the classifier. The initial, 3-level hierarchy presented in 

Niazi [25] (figure 2.2) was used on this dataset with random forest classifiers used for all 5 base 

classifiers, achieving accuracies of 98.11%, 70.84%, and 54% for the first, second, and third 

levels respectively. After studying the confusion matrix, an alternative structure to the hierarchy 

was developed and all three levels saw an improvement in performance, with the top level 

reaching 98.25% accuracy, the second level had 84.24% and the third achieved 57.97% 

accuracy. This indicated that Niazi’s [25] initial hierarchy did not generalize well to inter-subject 

testing, and that an alternative structure was able to attain higher accuracies across every level. 

1.1.3 Feature Engineering 

 A total of 52 features in the time and frequency domain were extracted from the raw data 

and is described in more detail in section 3.3. Four different feature selection methods were then 

applied: expert-based, K-Best, correlation-based, and recursive feature selection. The expert-

based and K-Best methods produced 16 features, correlation-based feature selection resulted in 

21 features, and recursive feature elimination (RFE) resulted in 42 being used from the initial 52. 

Various machine learning models have different sensitivities to redundant or correlated features, 

so to properly test the feature subsets three different base classifiers were used within the 

hierarchy: support vector machines (SVMs), random forests, and multi-layer perceptrons 

(MLPs). It was found that the expert-selected features performed the worst, with the highest 
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level-3 classification accuracy being 57.97% when random forests were used, while the full 

feature set with no feature selection performed quite well, achieving the second highest 

classification accuracy at 63.94% when SVMs were used in the hierarchy. In this set of 

experiments on pseudo free-living data, RFE performed the best at 65% accuracy. 

1.1.4 Evaluation of classifiers 

 Niazi et al. [25] found that a hierarchical classifier using random forests as base learners 

achieved the highest classification accuracy on a clean data set, which is described later in this 

study. Six traditional machine learning models, random forests, MLPs, SVMs, decision trees, 

XGBoost, and quadratic discriminant analysis (QDA), were tested on our dataset in a flat 

configuration and as base learners in the hierarchical approach described in Niazi [25]. Results 

showed that SVMs performed the best within the meta-classifier, achieving 63.94% accuracy at 

the third level in the hierarchy, while QDAs performed the worst, achieving only 41.59% 

accuracy. However, MLPs performed the best overall as a single, “flat” classifier which reached 

64.62% accuracy on the data. The results indicated that the hierarchical approach didn’t convey 

any benefits over simpler methods for HAR classification on our realistic dataset. A statistical 

test determined that the flat SVM and MLP classifiers were significantly better than the 

hierarchical approach used in Niazi et al. [25]. Furthermore, when intra-subject testing was 

performed via 10-fold cross-validation (discussed in section 3.6), the accuracy increased to 85%, 

which is comparable to the intra-subject accuracy found in Niazi [25] of 86%. The large 

difference between inter-subject and intra-subject accuracy highlights the challenges facing 

machine learning approaches for datasets collected in pseudo free-living environments. 
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1.1.5 Deep Learning 

 In a separate experiment, a convolutional neural network (CNN) was constructed with 

two convolutional layers and two max-pooling layers, followed by a softmax classifier. CNNs 

are powerful classifiers that can extract feature information from the raw triaxial data, so no 

manual feature extraction was performed for this classifier. Three participants were randomly 

chosen for the test group, while the rest were used in training and validation. After 250 epochs, 

the classification accuracy at the activity level was revealed to be 57.81%, which is below the 

best performing classifiers, MLPs and SVMs, but is on par with many others.  

1.1.6 Ensemble methods 

 In addition to the classifiers described in previous sections, more ensemble methods were 

tested on our pseudo free-living dataset, including XGBoost, AdaBoost, Extra-trees, Voting 

classifier, and a stacking classifier. The voting classifier, based on an SVM, MLP and RF, 

performed best as part of the meta-classifier hierarchy, where it reached 65.7% accuracy at the 

activity level, but the stacking classifier, based on the MLP, SVM and voting classifiers, had the 

best results overall as a flat classifier, reaching 65.9% accuracy while the other ensemble 

methods achieved poor results. The voting and stacking classifier obtained slightly better results 

on the data, but at the cost of computational complexity and clarity. It seems unlikely that the 

configuration of these 2 ensemble approaches would generalize well to other, pseudo free-living 

datasets which makes any further uses restricted.  

1.1.7 Window size experiments 

 Window size is a hyperparameter of the HAR problem and is defined as the length of 

time over which feature information is extracted from the body-worn accelerometers. Classifiers 



6 

 

performed the best on nine second windows, reaching a peak of 63% accuracy, while the 15 

second window had the worst result at 58% accuracy.  

1.1.8 Window Overlap and Learning Curve 

 Window overlap specifies how much data each successive window shares with the 

preceding window during feature extraction and can be useful because higher overlap allows 

more samples to be generated for the machine learning models. A range of values from no 

overlap to 50% overlap were tested, with results showing little change in classifier performance. 

A learning curve was also generated by starting with a training set of only one participant and 

incrementally adding participants until all were included in the training set except one. This test 

showed that at around 14-16 participants in the training set, the classification accuracy plateaued, 

indicating that there was sufficient training data present and reinforcing the results seen in the 

window overlap experiment. 

1.1.9 Participant pre-training 

 Participant pre-training is the strategy where a small percentage of a test participant’s 

movement data is included in training and excluded from the testing set, simulating what 

happens when a participant briefly trains a machine learning model. This approach aims to 

reduce inter-subject variability and boost accuracy of classifiers, and it yielded results showing 

that around 69% accuracy was produced when 30% of a test participant’s data was used for 

training. This is over a 6% increase in classification accuracy over no pre-training at all, showing 

that this has potential to improve inter-subject accuracy in pseudo free-living datasets.  

1.1.10 Experiments with a clean dataset 

 Anguita et al. [4] published a HAR dataset to UCI, and it has become a well-known, 

publicly available dataset that is often used as a benchmark for machine learning algorithms. Our 
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feature extraction methods and machine learning models recorded a 95% classification accuracy 

when tested on this dataset, indicating that our approaches work well on clean data. We then 

included this data in our pseudo free-living training set to determine whether this could boost 

accuracy, but we found that accuracy actually decreased when this was done, indicating that too 

many differences existed between the datasets for this to improve our results.   

1.2.11 Analyzing activity classes 

 Most of the confusion in our models occurred when trying to classify the “walking up” 

and “walking down an incline” classes. When these classes were rolled into the “comfortably 

walking” class, activity classification greatly improved to 85.9% accuracy when using SVMs. 

However, those classes may be considered too different depending on the application, so we also 

ran tests to study the effects when the “walking up” and “walking down” instances were 

completely removed from the data. Results showed that classification accuracy still reached 

80%, showing that in pseudo-free living data sets, this may be preferable if accuracy is 

paramount. 

 This paper addresses many of the different approaches and challenges when using pseudo 

free-living data for human activity recognition as compared to a clean data set. It has been found 

that a hierarchical approach for motion classification offered no benefits over flat, base 

classifiers, where SVMs and MLPs performed the best. Ensemble methods only slightly 

improved accuracy, but act as black boxes that are unlikely to generalize well in practical 

settings. Window size has a significant impact on classification accuracy, with a span of 10 

seconds producing the best results. When using a noisier, pseudo free-living dataset, most feature 

selection methods only degraded performance and only RFE improved accuracy, while 

participant pre-training was found to be a useful tactic in improving accuracy. Walking on 
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inclines proved to be the hardest to classify, so folding those classes into the “walking 

comfortably” class or withholding those instances entirely both boosted accuracy over 80%. 
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Chapter 2 

Motivation, Background, and Related Work 

It is common that data collection for HAR happens in a laboratory setting under 

controlled conditions. Several large, publicly available datasets have been collected this way and 

are commonly used in HAR studies [4, 18, 24]. Although useful as a benchmark, these results are 

likely optimistic and are not representative of data acquired in realistic, real-world scenarios or 

pseudo free-living conditions. It is reasonable to suppose that differences in collection methods 

are one of the reasons why performance often varies widely in the literature. Many studies also 

focus solely on intra-subject classification accuracy [5,6,8,9,12,20,24,25,31] which has limited 

practical use because a new model needs to be trained for each participant. Thus, there is a need 

to have a thorough study investigating what models and parameters are needed to accurately 

classify human activities in a pseudo free-living environment for practical applications. 

2.1 Background 

2.1.1 Human Activity Recognition 

Human activity recognition (HAR) involves studying, classifying, and predicting human 

activities [20] such as running, walking, and standing. HAR has seen a surge of interest in recent 

years due to ubiquitous access to smartphones and other wearable technologies, along with 

reduced costs in embedded systems. These devices have greatly increased the access and amount 

of biometric data, which presents promising opportunities for data science and machine learning. 

There are wide-ranging applications for this field, including public health monitoring [30], 

personal activity tracking [5,7,27], and patient risk detection [13], creating a need for robust 
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models to accurately classify supervised activities performed in a realistic environment. 

However, there are many different approaches used to collect and analyze HAR data, so a more 

thorough review is presented below.  

2.1.2 Data collection 

 The manner of data collection can impact machine learning performance, such as 

reducing the variance in motion between different individuals performing the same activity [23, 

30], or helping delineate different activities when a participant changes between them [23]. It is 

common in the research literature to have data generated from multiple participants, from as few 

as two [13] to over a hundred [25], performing predefined activities in a laboratory setting while 

being monitored by a researcher. Typically, each participant performs the activities in a fixed 

timeframe while the researcher uses a stopwatch to record when each activity begins and ends [8, 

14, 22]. Classification using these types of datasets is referred to as supervised learning because 

the collected data is associated with a specific class (the activity), while only a minority of 

papers [5,22] have studied the ability to classify unsupervised data. Unsupervised data is 

significantly easier to collect without the need of a person meticulously labeling data, but the 

resulting models based on it normally have much lower performance than supervised learning [5, 

22].  

The number and types of sensors used in data collection also significantly affect the 

performance of activity classification. Multiple studies have required participants to wear several 

sensors at different positions on the body [3, 5, 7, 12, 23, 30] such as on the wrists (i.e. smart 

watches) [12], on the hip [25], or in pockets [20], while others have required only one sensor [4, 

8, 13, 20, 25]. Having multiple sensors may lead to better models, but it is unlikely participants 

would agree to wear them for very long in most scenarios, limiting their practical application. 
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The most common wearable sensors for HAR are triaxial accelerometers and gyroscopes, which 

provide acceleration and orientation information along the three spatial axes. One reason for their 

widespread use is that much of the literature is focused on smartphone applications [8, 20, 22, 

27, 31], which each have a native accelerometer and gyroscope. However, smartphones may 

achieve unreliable results if they’re not fixed to the body and may not be realistic if a participant 

wants to use their phones for other purposes while they’re being monitored, and they’re not as 

accurate as research-grade sensors. They also tend to be less reliable than dedicated hardware 

since background processes may be running.   

Although wearable sensors are common, external sensors can also be utilized for HAR. 

Vision based sensors can be used to study how a participant is moving in a free, unobstructed 

space and can be used to classify the activity [10,21]. The rise in computer vision accuracy has 

made this approach feasible, but several hurdles remain. For example, placing cameras in a room 

raises privacy concerns, and the need for a clear line-of-sight may make it impractical. An 

approach using WIFI signals has been attempted to overcome these issues [32], but faces 

problems related to noise and signal attenuation in buildings. This study focuses on the most 

practical and convenient scenario, which is a single, body-worn accelerometer. 

2.1.2 Data Analysis and Hyperparameters 

 There are several parameters involved in HAR, each of which impacts the performance of 

any machine learning classifiers. Window size is one such parameter that has been shown to 

influence the performance in HAR [6] and is defined as the length of time over which feature 

information is extracted from the body-worn accelerometer. Windows are necessary because a 

complete human activity can occur over several seconds, so all the information provided by 

sensors during that timeframe can be used by the machine learning model to more accurately 
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classify human activities. A small window size commonly seen in the literature is one second [9, 

16], while the largest values tend to be around 10 seconds [20]. Due to the lack of a thorough 

analysis of a free-living HAR dataset, the aim is to properly measure how window size can 

influence the performance of classifiers in such conditions. Some research [6] indicates a smaller 

window size increases the number of samples present while also allowing for faster activity 

recognition, while larger windows increase the ability to recognize more complex activities [6]. 

As this research is based around the work of Niazi et al. [25] we initially use window sizes of 10 

seconds, which they found to produce the best results for a hip-worn accelerometer [25]. 

 Window overlap specifies how much data each successive window shares with the 

preceding window during feature extraction. Overlap between windows increases the number of 

samples available to any classifiers, and which may be impactful in some scenarios. In theory, a 

higher percentage of overlap between windows can mitigate the randomness present when 

windows are applied to data that contain transitions between activities. However, its influence on 

accuracy hasn’t been studied quite as extensively in the literature, so it is worth investigating, 

especially in datasets that may have higher noise and inter-subject variability present. Most 

studies typically use 50% overlap [4, 8, 13] for windows, but can range from no overlap to 80% 

overlap [5] in cases where more data is necessary.  

The sampling rate, varying in the literature from 16Hz [12] to 126Hz [13], is how fast 

data is collected by a sensor and is measured in samples per second. It can “directly affect power 

consumption, data storage, and power or bandwidth requirements” [18] and has been shown to 

influence the performance of activity classifiers [18]. More information is provided with a higher 

sampling rate, but it increases computation time and may also include noise that can negatively 

impact performance in machine learning models. The Shannon-Nyquist theorem provides the 
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lower bound for sampling rate without losing any information, which is determined to be twice 

the highest frequency present in the signal. Humans tend to move slowly compared to the ability 

of sensors to collect information, so it is often possible to down-sample the data without losing 

any information. However, more complex activities generally require a higher sampling rate 

[29], so it is necessary to consider the objectives in a particular HAR project. A sampling rate 

that is too low can miss important information in the signal, while a high rate can waste 

resources and negatively impact accuracy.  

 The wide range of values of HAR parameters present in the literature often make it 

difficult to compare results and determine the best approaches for machine learning. Therefore, 

the purpose of this research is to analyze a dataset that is more realistically representative of 

uncontrolled conditions for applications related to public health and caloric expenditure. It is 

necessary to study the parameters involved in HAR in order to maximize the performance of 

machine learning models, especially with inter-subject accuracy.  

 

2.2 Project Background 

2.2.1 Data Collection Methodology 

The data for this project was obtained from a single triaxial accelerometer, the ActiGraph 

GT3X+ [2], which was fastened using an elastic belt to the non-dominant hip so that the three 

spatial axes were pointing forward, sideways, and straight up. The hip was chosen because it 

allowed us to more accurately capture lower body movements.  
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Figure 2.1: The Actigraph GT3X+ accelerometer [1]. On right, it’s being worn around the hip, similar to this study 

 

The information provided consisted of the acceleration in all three axial directions sampled at 

100 Hz [2] and was obtained from 20 patients performing 9 different activities (Table 2.1) in a 

non-laboratory, office setting. The participant was given the option of what order to perform the 

activities and executed them in a manner that seemed natural and appropriate. The aim was to 

create a dataset that would reflect how people move in real-world settings. The types and number 

of activities are comparable to other studies, which often range from 3 [12] to over 30 different 

activities [25]. However, several of the activities are quite similar and produce similar results 

during feature extraction, so both walking uphill and walking upstairs were combined to create a 

“walking up an incline” activity. Similarly, walking downhill and walking downstairs were 

combined to create the new activity of walking down an incline, resulting in 7 total activities 

provided in Table 2.2.  

Table 2.1 Nine Initial Activities Performed by Each Participant 

# Activity Description 

0 Sitting 

1 Standing 

2 Walking at a Comfortable Pace 

3 Brisk Walking 

4 Walking Uphill  

5 Walking Downhill 

6 Jogging 

7 Climbing Upstairs 

8 Climbing Downstairs 
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Table 2.2 Updated List of Seven Activities Performed 

# Activity Description 

0 Sitting 

1 Standing 

2 Walking at a Comfortable Pace 

3 Brisk Walking 

4 Up Incline 

5 Down Incline 

6 Jogging 
 

This was also motivated by the fact that preliminary experiments indicated that the two different 

walking up and walking down activities were very similar so that it was difficult to classify them 

separately. 

2.2.2 Classifiers 

The classification of data can be performed by several different machine learning 

schemes. There is no clear indication that any specific model is best-suited for HAR, as SVMs 

[3, 17, 27], MLPs [8, 20], KNN [5, 6], and random forests (RF) [9, 25] have all performed as the 

best classifier in different studies. Therefore, it is usually necessary to study many different 

possible classifiers to obtain accurate results, especially when analyzing a unique dataset. 

Parameters for the models, such as number of trees in a RF or neurons in a MLP, are tuned to 

mitigate the possibility of overfitting the training data. 

One obvious hurdle in HAR is optimizing classification time with accuracy, as overly 

complex learning schemes may take too long to be useful in online scenarios. Ideally, we would 

want a robust, online classifier that analyzed data from a single wearable sensor. Online learning 

occurs as data is being collected, while offline learning involves processing and classifying data 

afterwards. Online learning is constrained by resources, especially computation time, but is 

generally desirable due to its convenience.  
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Figure 2.2: Hierarchical meta-classifier. Has 3 levels of classification requiring 5 base learners (1 for each split). 

 

2.2.3 Hierarchical Meta-Classifier 

Several different machine learning models have been studied for HAR classification, but 

some generally perform better than others. SVMs and MLPs tend to achieve good results and are 

often considered the standard [2, 3, 5]. However, hierarchical classifiers are an interesting 

possibility and have been explored in the past as a viable model [9, 24] since activities can be 

logically grouped together based on caloric expenditure. Based on previous work done by Niazi 

et al. [25], a hierarchical, three-level classifier was used in this study. The first level separates 

non-ambulatory activities (i.e. sitting) from the ambulatory ones. At the second level the 

ambulatory activities are further divided into 2 different groups, and at the third and final level, 

activities are classified individually. Figure 2.1 displays the hierarchy in a tree structure. 

This meta-classifier requires a total of five different standard classifiers, one for each split 

in the tree. The benefit is that splitting the data gradually into more specific groups allows 
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models to specialize in classifying a smaller range of activities. However, error propagation 

occurs, so a significant amount of noise and errors may be present at lower levels if classifiers at 

the top of the hierarchy aren’t sufficiently accurate. 

2.2.4 Cross Validation 

To evaluate the performance of classifiers, cross-validation is typically used in machine learning 

applications. Machine learning models work by trying to fit a function to specific instances of 

input data, which is generally called a training set. However, to get an accurate representation of 

the performance of the model, it needs to be evaluated on a set of data it did not encounter during 

training, and this is called the testing set. Cross-validation allows every instance of the data to be 

evaluated in the testing set, which is desirable since it reduces the odds of random chance 

affecting the performance of the model. For HAR, it makes sense to use leave-one-out cross 

validation, where a single participant is used in the testing set while all others are used to train 

the model. This strategy is known as inter-subject recognition because it characterizes how well 

a model can generalize to an individual that it has never seen before. This is particularly useful 

because it is difficult to obtain labelled data in HAR, so it removes the requirement that people 

must train the model themselves before using it. However, inter-subject accuracy tends to be 

much lower than intra-subject accuracy because only one general model is used for all potential 

individuals. Intra-subject recognition describes the ability of a model to classify activities 

performed by a single participant, so any possible variance between individuals is removed. 

Five-fold or ten-fold cross validation is typically used when intra-subject accuracy is desired. An 

advantage is that performance is almost always better than leave-one-out because a significant 

source of noise is removed (variability between individuals), and so a specific model is created 
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for each individual. However, this approach is often unrealistic in many applications and a 

substantial amount of time is required for the participant to train the model.   

 This study focuses on inter-subject recognition, so leave-one-subject-out cross-validation 

is performed. In this approach, one participant hasn’t been seen by the model before and so we 

believe it presents an accurate way to see how well the model can generalize over the data to new 

participants. 

2.2.5 Previous Work by Niazi et al. 

Previous work on HAR that has influenced the development of this study has been done 

by Niazi et al. [25]. Niazi et al. performed a thorough analysis of HAR data collected at the 

University of Arizona where 310 participants were in the study. However, out of the 310, only 

16 participants were used by Niazi, and they each performed 23 different activities while 

wearing the same brand of hip-worn accelerometer used in this study under controlled conditions 

[25]. Their data collection methods occurred in a controlled, laboratory environment that 

produced a clean dataset. This contrasts with our pseudo free-living data, which aims to be 

representative of conditions in a realistic, free-living environment. 

They initially used a two second window to extract features from the raw accelerometer 

data in the time and frequency domain [25], and applied wavelet analysis to produce a total of 

246 features. To make the feature set more manageable, Niazi et al. used expert-based, 

correlation-based, and relief-based feature selection methods to generate subsets of the attributes 

[25]. A random forest classifier performed the best on the expert-based subset of 42 features, 

while it performed the worst when the entire set of features were used in the classifier [25], so 

they proceeded to use the reduced subset for all of their remaining experiments.  
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In their study of classifiers, Niazi et al. utilized a three-level hierarchical meta-classifier, 

similar to the one that was referenced above in Section 2.2.3. After studying multiple 

classification techniques, they found that random forests performed better at every level in the 

hierarchy, even when compared to ensemble methods like stacked classifiers [25]. They 

employed 10-fold cross-validation to evaluate their model. The hierarchical meta-classifier 

achieved a level-1 accuracy of 97.899%, a level-2 accuracy of 94%, and a level-3 accuracy of 

86.63% [25], which outperformed all of the other classifiers in the study.  

Using the same dataset, Niazi et al. also performed an analysis on window sizes used for 

feature extraction and sampling rates [25]. For this part of the study, they only used the subset of 

time and frequency-based features from the original 246 features that were extracted from the 

raw accelerometer data, which resulted in a total of only 32 features [25]. Furthermore, only a 

random forest base classifier was used to analyze the results, and 10-fold cross validation was 

performed as before [25].  They determined that “window size and sampling rate have a 

significant effect on accuracy” [25]. Furthermore, after studying six different window sizes and 

five different sampling rates, Niazi determined that the optimum configuration was a 9 second 

window with 50Hz sampling rate [25].  

2.3 Related Work 

The field of HAR is widely studied and is primarily concerned with body-worn sensors, 

and Table 2.3 displays the categories many of the references fall into.  

A huge contribution to this field was made by Anguita et al. [4] when they released a 

public domain dataset for such a purpose and have subsequently collected over 600 citations for 

their work. The collection was performed under controlled, laboratory conditions with a single 

triaxial accelerometer and a three-dimensional gyroscope as well.  
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Table 2.3 References displayed in different categories 

Cross-

Validation 

Strategy 

Inter-subject 4,7,13,28,30  

 

Best 

Model 

Tested  

MLP 8,20 

Intra-subject 5,6,8,9,12,19,20,24,25,30,31 SVM 3,4,17,27 

 

Sensor  

Type 

Accelerometer 8,9,13,19,20,25 KNN 5,6,13,18 

Both 4,24,28,31 
RF/Dec 

Tree 
7,9,23,25,30 

Multiple (>2) 3,5,6,7,12,24 Deep 16,24,28 

  Other 3,12,19,31 

 

The participants performed six different activities. They also provided several hundred extracted 

features with a window size of 2.56 seconds and a 50% overlap between windows, with a 

sampling rate of 50Hz. Their dataset is often used as a benchmark for new machine learning 

models or methods, and an inter-subject accuracy over 95% is often achieved on this data.  

 Another significant, early contribution to this field occurred with Altun et al. [3]. They 

performed a very thorough analysis of HAR, using several different machine learning 

approaches and different preprocessing techniques. Five different sensors were used, including a 

magnetometer, and around 1170 features were extracted from a 5 second window. They used 

PCA for feature reduction, and tested Bayesian decision making (BDM), LSM, kNN, dynamic 

time warping, SVMs, and an ANN as models. They found that BDM performed better overall, 

while SVMs performed better in certain scenarios. 

 Much like this current study, Gupta et al. [13] used only a single accelerometer worn on 

the waist. They only had seven participants but were still able to analyze inter-subject accuracy. 

With six possible activities, a 6 second window with 50% overlap, and a sampling rate of 126Hz, 

they achieved 98% accuracy with a KNN classifier. 

 Bao et al. [7] utilized user-annotated acceleration data, which is important because it 

provides a more realistic data set than those made in carefully controlled settings. This group 

used 20 participants with 5 accelerometers placed on different locations on the body. They found 
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that decision tree classifiers achieved 85% accuracy, and that the accelerometer placed on the 

thigh was the most accurate. 

 Bayat et al. [8] used an accelerometer in a smartphone with only 4 participants to produce 

a realistic data set. Six activities were used, along with a 10 second window and a sampling rate 

of 100Hz. However, they didn’t study inter-subject accuracy, but only used 10-fold cross 

validation. They found that multi-layer perceptrons performed best at 89% accuracy.  

 In another similar study, Kwapisz et al. [20] also used a smartphone accelerometer placed 

in the pocket to classify 6 different activities. However, this group used 29 participants and a 10 

second window, one of the largest observed. They also found MLP to be the best performing 

classifier. Interestingly, their classifier had difficulty recognizing climbing stairs and descending 

stairs.  

 Khan et al. [11] used a hierarchical classifier to classify 15 activities with 97.9% 

accuracy. This is a unique classifier that was also used by Niazi et al. [25] and is also utilized in 

this study. Khan’s classifier uses different features at different levels in the hierarchy. However, 

they only used 6 individuals, so they couldn’t analyze inter-subject accuracy.  

 Banos et al. [6] studied the effect of window size in human activity recognition. They 

found that large windows were useful for classifying more complex activity, but ultimately 

recommended using a window size between 1 and 2 seconds for best accuracy. However, they 

used a more controlled data set that may not reflect real-world conditions and noise. They also 

found that kNN was the best classifier at over 95% accuracy. 

 In an influential, comprehensive study, Wang et al. [31] used an accelerometer and 

gyroscope in a smartphone to classify six different possible activities in a public data set. They 

found naïve Bayes to be the most successful at 90% accuracy. 
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 In an early HAR study, Tapia et al. [30] used accelerometers and a heart rate monitor for 

their study. They found that their classifier could achieve a 94.6% classification accuracy on 

subject-dependent tests, but only 56.3% accuracy when it was subject-independent. This 

highlights the struggles in making a single, general classifier that can be efficacious on new 

individuals. 

 Gonzalez et al. [12] studied HAR for elderly patients at risk of stroke or falls. They used 

two wrist-worn sensors and classified based on three different activities with a sampling rate of 

16Hz. They achieved high accuracy using a genetic fuzzy finite state machine.  

 Attal et al. [5] performed a review of HAR using 3 accelerometers worn on the body with 

6 participants performing 12 possible activities. They used a one second window with 80% 

overlap, one of the highest seen in the literature. They found that kNN performed best at 99% 

accuracy, while hidden markov models performed the best among the unsupervised classifiers. 

However, they used 10-fold cross-validation, so inter-subject accuracy wasn’t examined. Lu et 

al. [22] also studied unsupervised physical activity. 

 Liu et al. [21] and Chen et al. [10] both explored HAR using visual sensors instead of 

only body worn sensors. Chen explored the fusion of both types of sensors to improve accuracy. 

Wang et al. [32] used WiFi signals for HAR because they aren’t limited by line-of-sight, which 

is a downside to visual cameras. They achieved 96% accuracy using 10-fold cross-validation. 

 Khan et al. [18] performed an in-depth study of sampling rates on 5 public, benchmark 

datasets. They used SVMs for their classification, and developed a framework to optimize this 

parameter independent of the dataset being used. 

 Ronao et al. [28] used a convolutional neural network to classify samples into six 

different activities. They used 30 volunteers who performed 6 different activities with a 
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smartphone in their pocket, providing accelerometer and gyroscopic data. They didn’t perform 

any manual feature extraction because CNNs automatically perform this task in their hidden 

layer, and they fed 2.56 seconds of the data into the network at a time. Using inter-subject 

experiments, they achieved 94.8% accuracy with this deep learning approach. 

Hammerla et al. [16] explored several different deep learning approaches on 3 public 

datasets. They used a one second window with 50% overlap. They found that CNNs perform 

better classifying differentiating between running and walking, while LSTMs perform better at 

classifying other tasks.  

 Reyes-Ortiz et al. [27] studied the classification of activities and the transitions between 

activities. They used three datasets and used an accelerometer and gyroscope as their sensors. 

SVMs were used as the classifiers and were able to achieve over 90% accuracy.  

 Casale et al. [9] used a single accelerometer and used 20 features after performing feature 

selection on their extracted information. They also used a one second window with 50% overlap. 

They found that random forests achieved 94% classification accuracy using 5-fold cross-

validation. 

 Most studies that have been observed do not consider inter-subject accuracy or they use 

public datasets that were collected in well-controlled environments. Neither situation translates 

well to real-world scenarios where the data is noisy, and users will not be able to properly train 

any machine learning models. Even the Niazi et al. study, which this work expands upon, does 

not measure inter-subject accuracy and uses a clean dataset collected in a laboratory 

environment. For the studies that do achieve high performance when doing inter-subject testing 

[4,7,13,28], they use clean datasets collected in controlled conditions where participants tend to 

make more deliberate movements. Thus, this study focuses on a pseudo free-living data set with 
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20 participants, which allows for adequate testing of the performance of our machine learning 

models. We also used only a single accelerometer, which complicates classification but presents 

a more practical, realistic scenario. Furthermore, our goal is to characterize the effects of 

different parameters, such as window overlap and window size, on such a dataset. 
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Chapter 3 

Classifying a HAR Dataset 

3.1 Preprocessing 

The data for this research was collected from 20 participants, ranging in age from 18 to 54, 

performing 9 activities which were later grouped into 7 activities for classification purposes 

(Table 2.2). The data was collected at the University of Georgia and participants were selected 

from the surrounding area. Each participant wore an accelerometer on the waist secured by an 

elastic strap, and they were able to perform the activities in any order they chose and had 

flexibility in choosing the duration of each activity. Each device was initially sampled at 100Hz.  

 Because this work is based off research done by Niazi et al. [25], a hierarchical structure 

was initially used on the data. At the highest level, activities are grouped into either non-

ambulatory or ambulatory activities. At the second level, ambulatory is further divided into 

activities on a flat surface or inclined surface. The lowest level in the hierarchy consists of 

classifying the individual activities, and the initial hierarchy is displayed in Figure 2.1.  

3.2 Determining Hierarchy Structure 

The hierarchy used on the Niazi et al. [25] dataset may not be ideal for our current 

dataset, so the performance of it was evaluated using random forests at every level, consistent 

with Niazi’s approach [25] (see Ch. 2 for more information). Five random forest base classifiers 

were used in the hierarchy, and leave-one-out cross validation was used to evaluate the model, 

resulting in the confusion matrix displayed in Figure 3.1. Ten second windows with no  
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i. Level - 1 

0 1  

433 27 0 

14 1700 1 

 
0 – Non- ambulatory 
1 - Ambulatory 

ii. Level – 2 

0 1 2  

433 10 17 0 

9 622 295 1 

5 298 485 2 

 
 
0 – Non-ambulatory, 1- Group 1, 2 – 
Group 2,  
 

iii. Level- 3 

0 1 2 3 4 5 6  

144 72 2 0 3 2 0 0 

57 160 6 1 5 7 1 1 

2 4 303 44 153 87 4 2 

0 1 30 76 14 41 17 3 

0 2 166 20 149 63 0 4 

0 3 76 31 61 212 5 5 

0 2 0 7 0 0 141 6 

 
0 – Sit, 1 – Stand, 2 – Walk at comfortable pace, 3 – 
Brisk walking, 4 – Up, 5 – Down, 6 – Jogging 

 

OVERALL ANALYSIS – 
In terms of Level-wise accuracy 

LEVEL-1 
Accuracy: 98.48% 
 
Total Correctly Classified: 2133.0 
Total Number of Instances: 2174.0 

LEVEL-2 
Accuracy: 70.84% 
 
Total Correctly Classified: 1540 
Total Number of Instances: 2174 
 

LEVEL-3 
Accuracy: 54% 
 
Total Correctly Classified: 1185 
Total instances: 2174 
 

 

Figure 3.1: Confusion matrix and performance metrics for 3-level meta-classifier 

 

overlapping were used to extract 16 expert-selected features for the classifier (features explained 

in next section). 

These results show that the hierarchical classification strategy produces weak results at 

the individual activity level (level 3), and even performs poorly at level 2 with only 70% 

accuracy for the groupings. This seems to indicate that the data is quite noisy, or that the 

machine learning model is not suitable for this dataset. This contrasts with Niazi’s results, which 

achieved 94% accuracy at the grouping level (level-2) and had a level-3 accuracy of 86.63% 

[25]. In theory, a new hierarchy better suited for this data should produce better results, so a new 

tree structure was created based on the confusion matrix of the previous results, which is 

displayed in Figure 3.2. The confusion matrix suggests that the “walking up an incline” class is 

often confused with the “walk at a comfortable pace” class. These 2 were subsequently grouped 

together at level 2 in order to apply a random forest model to better classify the data. A more 

accurate level 2 model will reduce error propagation down to the third level, which should 
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improve the performance at that level too. The same models and cross-validation method were 

used on the update hierarchy, and the results are presented in Figure 3.3.  

 
Figure 3.2: Updated hierarchy structure. Walking down and jogging now share a Level 2   group. The other 

3 ambulatory activities share a different Level 2 group 

 

 

Figure 3.3: Comparison of Hierarchical Classifiers. The updated hierarchy (Fig 3.2) outperforms the 

original structure (Fig 2.1) 
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The results show improvement with the new tree structure, especially at level-2 which 

saw a 13% increase in classification accuracy. Even classification at the individual activity level 

saw a 2.13% improvement over the previous tree structure that had been used. This indicates that 

the groupings of activities can heavily influence accuracy results, although level-3 accuracy still 

remains relatively weak with the updated hierarchy. This does demonstrate how classifier 

performance in inter-subject testing can differ significantly from that in intra-subject testing. 

 

3.3 Feature Extraction 

Several features were extracted from the time domain among all three spatial axes and the vector 

magnitude. These features included the mean, maximum, and minimum values, as well as the 

standard deviations, median crossings and the 10th, 25th, 50th, 75th, and 90th percentile. A Fourier 

transform was used to extract features in the frequency domain, such as the dominant frequency 

and the magnitudes among all three axes. This resulted in a total of 36 features for the time 

domain, and 16 for the frequency domain for a total of 52 manually generated features. First 

differentials and wavelet analysis were used in feature extraction in the meta-classifier section of 

Niazi’s study [25]. However, in the statistical analysis section, Niazi et al. only used features 

extracted from the time and frequency domain [25], which is the approach taken in this study due 

to its simplicity and faster computation times.  

3.4 Feature Selection 

Processing many features increases the complexity and training time for a model, and it may 

negatively impact performance because there is a risk for overfitting to occur on unimportant 

features. Correlations between features were measured, and we can see that some are strongly 
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correlated with each other (Figure 3.4). Consequently, several different feature selection methods 

were used to create a subset of features that may contribute more to activity classification.  

 

 

Figure 3.4: Correlation among subset of time-based features. This figure displays how the subset of 

extracted features in the time-domain are correlated with each other. 
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Expert-based feature selection used a researcher (a member of Niazi et al. [25]) with 

domain knowledge to choose the most relevant features, and 16 were selected. K-Best feature 

selection was also chosen to select 16 features in order to compare this method to the previous 

expert-based one, and it was found that this selection method did choose a different feature set 

than the expert. Furthermore, WEKA, an open-source machine learning tool that has many robust 

feature selection methods, was used to explore other ways to optimize the features [15]. From 

WEKA, correlation-based feature subset selection was used [14] and 21 features were produced. 

Two other methods, classifier and correlation attribute evaluation, didn’t remove any of the 

features from the original 52, while recursive feature elimination (RFE) resulted in 42 features. 

Three different classifiers were used to test the efficacy of the feature sets in order to eliminate any 

possible biases. This is because random forests tend to be resistant to unnecessary features in the 

data, while other methods may be more sensitive to different features. The results are shown in 

Table 3.1. 

 The results consistently show that the expert-selected features perform the worst, even 

against K-Best feature selection. Surprisingly, using the entire feature set produced very accurate 

results at the 2nd and 3rd levels of the hierarchy, while RFE performed the best when using 42 

features out of the original 52. This runs counter to many of the studies encountered which showed 

a large increase in accuracy when using feature-selection methods [31]. This is also at odds with 

the results obtained by Niazi et al. [25], which showed that expert-based feature selection produced 

the highest results. The reason for this discrepancy is likely due to the feature selecting abilities 

inherent to the classifiers, since machine learning models can be robust to some superfluous 

features. Niazi et al. [25] eliminate a large percentage of features, while this study shows that for 

a pseudo-free living dataset, retaining most of the features is a more promising approach.  
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Table 3.1: Evaluation of Feature-Selection Methods on 3 Different Classifiers. Results display 

the accuracies from each level of the meta-classifier with 3 different base classifiers tested. 

Classifier Random Forest 

(Accuracy %) 

MLP (Accuracy %) SVM (Accuracy %) 

Expert FS Level 1: 98.25% 

Level 2: 84.24% 

Level 3: 57.97% 

Level 1: 98.4% 

Level 2: 83.8% 

Level 3: 55.6% 

Level 1: 98.5% 

Level 2: 84.2% 

Level 3: 57.0% 

K-Best FS Level 1: 98.48% 

Level 2: 82.77% 

Level 3: 58.98% 

Level 1: 98.45% 

Level 2: 84.1% 

Level 3: 56.8% 

Level 1: 98.5% 

Level 2: 84.4% 

Level 3: 58.9% 

Corr.-Based FS Level 1: 98.56% 

Level 2: 82.55% 

Level 3: 58.89% 

Level 1: 98.22% 

Level 2: 83.27% 

Level 3: 60.58% 

Level 1: 98.37% 

Level 2: 83.80% 

Level 3: 60.87% 

No FS (All 52 

Features) 

Level 1: 98.46% 

Level 2: 82.36% 

Level 3: 58.98% 

Level 1: 98.36% 

Level 2: 84.57% 

Level 3: 63.17% 

Level 1: 98.37% 

Level 2: 85.38% 

Level 3: 63.94% 

RFE (42 Features) Level 3: 58.37% Level 3: 64.85  Level 3: 65.05 

 

Furthermore, RFE was able to perform the best only by retaining many of the features compared 

to the other selection methods (42) while only dropping the very worst features, slightly 

outperforming the “No FS” strategy. This offers a slight performance boost for a slight reduction 

in complexity. However, if there are serious constraints on time for an online learner, then it may 

be beneficial to use correlation-based feature selection, which reduced the number of features to 

only 21 while dropping accuracy between 2 and 3 percent for MLPs and SVMs. Random forests 

appear to be unaffected by the different feature selection strategies, which is likely because they 

already randomly assign feature subsets to the different decision trees in the forest.  

 

3.5 Experimental Results of Classifiers 

Scikit-learn is an open-source machine learning library that was used in this study for 

experimenting with different classification algorithms and their parameters [26].  

The hierarchical meta-classifier requires 5 base classifiers, and to reduce computation 

time each of the 5 nodes used the same classifier while the parameters of each base learner could 
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be unique from each other.  Previous studies have shown the benefits of using the hierarchical 

approach [19, 25], but we tested this approach against multiple “flat” classifiers. In this instance, 

a flat classifier is just the individual base learner by itself, which is useful for evaluating the 

effectiveness of the hierarchical meta-classifier. Furthermore, participant 16 was excluded from 

each of the below tests, as this always improved accuracy and will be explained further in the 

study. As a preprocessing step, the data was standardized before being fed into the model. 

Six different base classifiers were used, random forests, multi-layer perceptrons (MLP), 

support vector machines (SVM), decision trees, XGBoost, and quadratic discriminant analysis 

(QDA), in both the “flat” configuration and as a part of the meta-classifier for a total of 12 

different machine learning models. The results of these classifiers, along with several others, are 

shown in Table 3.2. 

Both MLP and SVM are the highest performing classifiers and they achieve accuracy at 

level-3 between 63 and 64%. However, using just a single classifier instead of the hierarchy 

produces similar results at the activity level across virtually all models tested, which raises 

questions regarding the effectiveness of the hierarchical method. It’s apparent that the 

hierarchical meta-classifier failed to offer significant advantages over “flat” learners when 

dealing with this pseudo free-living dataset. This may be due to the dataset being noisy, which 

exacerbates the problem of error propagation. Additionally, SVMs and MLP are shown to be the 

best classifiers. This is different from the work in Niazi et al. [25], which used random forest 

classifiers, but does align with many other studies which have revealed the high performance of 

SVMs and MLPs. Thus, with a pseudo free-living or noisy data set it may be beneficial to 

eschew complicated classifiers for simpler ones that generalize better, which is in line with 

Occam’s razor. 
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Table 3.2: Evaluation of Classifiers 

Classifier Flat Hierarchical 

Random Forest Accuracy: 58.03% Level 1 Accuracy: 98.46% 

Level 2 Accuracy: 82.36% 

Level 3 Accuracy: 58.98% 

MLP Accuracy: 64.62% Level 1 Accuracy: 98.36% 

Level 2 Accuracy: 84.57% 

Level 3 Accuracy: 63.17% 

SVM Accuracy: 63.85% Level 1 Accuracy: 98.37% 

Level 2 Accuracy: 85.38% 

Level 3 Accuracy: 63.94% 

Decision Tree Accuracy: 50.77% Level 1 Accuracy: 97.07% 

Level 2 Accuracy: 75.38% 

Level 3 Accuracy: 50.62% 

XGBoost Accuracy: 57.07% Level 1 Accuracy: 98.51% 

Level 2 Accuracy: 81.63% 

Level 3 Accuracy: 58.70% 

QDA Accuracy: 47.93% Level 1 Accuracy: 94.52% 

Level 2 Accuracy: 61.12% 

Level 3 Accuracy: 41.59% 

 

A Wilcoxon signed-rank test was conducted to determine whether the MLP and SVM models 

had performed significantly better on the data than the hierarchical random forest. This is a 

paired statistical test that doesn’t make assumptions about the distribution of the samples, which 

is beneficial in this case given the relatively small sample size. We are able to use this test 

because we performed leave-one-out inter-subject testing, which allows us to treat the 

participants as matched samples between the two classifiers. The computed test statistics and p-

values are given in Table 3.3. 

Table 3.3 Classifier Significance 

 MLP SVM 

W-statistic 139 139.5 

p-value .04 .038 
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The results from the Wilcoxon signed-rank test show that both the MLP and SVM have p-values 

below 0.05, allowing us to conclude that both are significantly better classifiers than the 

hierarchical random forest used by Niazi et al. [25] on this dataset.  

3.6 Intra-subject Testing 

 Niazi et al. [25] only used an intra-subject cross-validation strategy on his clean dataset, 

so an intra-subject test was performed on our pseudo free-living dataset in order for us to better 

compare the different results between the two datasets. Based on the classifier performance in 

section 3.5, an MLP was chosen as the classifier, and 10-fold cross-validation was performed on 

the data, with the resulting confusion matrix displayed in Figure 3.5. 

 The accuracy has increased from 64% to 86% when intra-subject recognition is 

employed. This is comparable to the results obtained by Niazi et al. [25] on their relatively clean 

dataset and demonstrates the high variability between different participants’ activities. The two 

most confused activities, walking up and down an incline, have much higher accuracy here, 

which suggests that the variability between participants stems mainly from these two activities. 

 

i. Level- 3 

0 1 2 3 4 5 6  

3917 440 40 0 0 60 0 0 

198 4450 76 0 100 79 0 1 

38 40 10626 40 505 327 0 2 

0 0 297 3177 100 0 0 3 

0 20 2009 40 5605 172 0 4 

0 40 913 60 614 6025 0 5 

0 0 0 0 0 20 2959 6 

 
0 – Sit, 1 – Stand, 2 – Walk at comfortable pace, 3 – Brisk walking, 

4 – Up, 5 – Down, 6 – Jogging 
 

LEVEL-3 
Accuracy: 86.1%                                    Total Correctly Classified: 36759 
                                                                             Total instances: 42687 

Figure 3.5: Intra-subject confusion matrix. Accuracy for MLP is greatly improved to 86.1% 
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3.7 Removing an Outlier 

During the course of these experiments, an outlier participant was spotted and excluded 

from the data set. The accuracy for the individual participants is presented in Table 3.4.  

It was determined that participant 16 is a statistically significant outlier. This could be the 

result of a faulty accelerometer, mislabeled data, or wildly inaccurate movement when performing 

the activities. Regardless, excluding this individual increased level-3 accuracy by 1.5% for the 

MLP, and resulted in improvements for every classifier, showing the benefits of having a large 

sample size so that accurate test results can be achieved. These results also reveal the large 

discrepancy between the classification accuracy for each participant. The standard deviation, with 

participant 16 excluded, is still at 11.2223%, demonstrating how inter-subject variability in 

movement poses one of the biggest challenges to human activity recognition.  

 

3.8 Deep Learning 

Increased computation power and deep learning have provided many exciting results in AI 

and machine learning, and these approaches have potential to be applied to the HAR problem as 

well [4, 19, 24]. One of the chief benefits of this approach is automatic feature learning.  

 

 

Table 3.4: Accuracy for each individual test participant using MLP 

1 2 3 4 5 6 7 8 9 10 

74.2% 57.4% 63.4% 69.5% 73.6% 72.1% 72.3% 54.2% 43.3% 64.8% 

11 12 13 14 15 16 17 18 19 20 

52.7% 79.1% 40.5% 66.1% 59.8% 28.9% 45.7% 72.2% 68.8% 65.9% 
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Similar to the other learning schemes, standardization was performed on the raw data to 

prepare it for being fed into the neural network. A seven second window was used to segment the 

data, and the most frequent class was used as the label for each segment. Three-dimensional data 

in the form [total segments, input width, input channel] was generated, which was then reshaped 

so it had a height of 1 to feed into the network. The model itself consisted of one convolution 

layer, followed by max pooling and then another convolution layer, which was also followed by 

max pooling. That was then connected to a fully connected layer, and finally a Softmax layer. 

The architecture is given in Figure 3.6. 

Previous experiments showed that around 250 epochs produced the best results without 

seriously overfitting the training data. A 7 second window is used due to resource and time 

constraints for the NN architecture, and the results are given below. 

 

Table 3.5: Results of CNN performance on HAR data 

Epoch Length 250 

Training Accuracy 98.53% 

Testing Accuracy 57.8% 

 

 

 

Figure 3.6: Pictorial representation of CNN architecture. 2 Convolutional layers and 2 Max-Pool layers with a fully 

connected dense layer before the output. 
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Due to time constraints, 20-fold cross validation on all participants could not be 

performed, so only a subset of 3 randomly selected participants were withheld from training and 

were used in the testing group. The resulting test accuracy is 57.8%, which is below that reached 

for other machine learning approaches, such as MLP and SVMs, and significantly below the 

training accuracy. However, this does show the power of learning features automatically as it 

almost reaches the same performance as random forests while being fed only the raw data, 

significantly simplifying the preprocessing steps.  

3.9 Ensemble Methods 

After examining many of the traditional learning models, ensemble methods were tried. 

The reasoning behind this is that they can help overcome bias that may be present in a single 

model, while the disadvantage of these approaches is that each learner acts as a black box, 

making it difficult to ascertain whether a particular model will be successful with other data sets 

or scenarios.  

XGBoost and AdaBoost have become two popular boosting methods that use ensembles 

of relatively weak classifiers to improve overall performance [11]. XGBoost uses gradient 

boosted ensembles of decision trees to train and classify data, while AdaBoost can use any weak 

classifier as its base learner, and it utilizes a weighted some from their outputs to produce a 

prediction [11].  

The Extra Trees classifier uses an ensemble of decision trees to create a predictive model. 

This classifier is slightly different than a random forest because it makes splitting decisions for 

each tree randomly, as well as randomly choosing subsets of features for each tree [26]. This 



38 

 

introduces an extra amount of uncertainty when the trees are constructed than with random 

forests, with the intent at reducing possible overfitting. 

A voting classifier uses multiple base learners that each independently make a prediction, 

and each prediction is then tallied to determine what the final prediction should be. In this way, 

each lower level model casts a “vote”, and in a hard-voting approach the class with the most 

votes wins. However, if soft-voting is used, then each classifier gives a probability along with its 

predicted class, so that classifiers that are very confident are given more weight in the voting. 

Stacking classifiers use multiple base models to make predictions on the input data, 

which are then fed into another higher-level classifier which uses these predictions as inputs to 

make a final prediction for the output. The higher-level learners in a stacking classifier tend to be 

simple models, such as a decision tree, in order to reduce the chances of overfitting. Similar to 

the voting classifier, either the predicted classes or their corresponding probabilities can be fed 

into the higher-level learner. 

Random forests are an ensemble method but were already tested in an earlier section. The 

results of the ensemble classifiers are given in Table 3.6. 

Table 3.6: Evaluation of ensemble learning methods 

Classifier Full 52 Features 

XGBoost Level 1 Accuracy: 98.46% 

Level 2 Accuracy: 81.39% 

Level 3 Accuracy: 57.84% 

AdaBoost Level 1 Accuracy: 98.08% 

Level 2 Accuracy: 80.34% 

Level 3 Accuracy: 53.94% 

ExtraTrees Level 1 Accuracy: 98.41% 

Level 2 Accuracy: 82.02% 

Level 3 Accuracy: 59.71% 

Voting Classifier Level 1 Accuracy: 98.42% 

Level 2 Accuracy: 85.38% 

Level 3 Accuracy: 65.7% 

Stacking Flat only 

Level 3 Accuracy: 65.9% 



39 

 

 

Several new ensemble methods were attempted to see if any improvement in accuracy 

could be achieved. The worst performing method was AdaBoost which only had around 54% 

accuracy. It’s generally accepted that boosting methods are more susceptible to overfitting noise, 

which helps explain its poor performance for this dataset. ExtraTrees classifier performed 

slightly better than a Random Forest classifier, while XGBoost performed slightly worse. 

Overall, the tree-based learners performed poorly and were outclassed by SVMs, MLPs and 

other ensemble methods. By far the best performing models were the voting and stacking 

classifiers, which achieved the best accuracies yet of 65.7%, and 65.9% respectively. The voting 

classifier used Random Forests, SVMs, and MLPs as its 3 base learners and used a soft voting 

approach to classification. These base classifiers were chosen because they employ different 

methods for classification, which allows them to compensate for each other’s weaknesses.  

The stacking classifier used the voting classifier, SVMs, and MLPs, and were chosen due 

to their high accuracy individually. This was much slower than the other approaches so only the 

flat classifier was tested but achieved promising results. Stacking classifiers are difficult to 

implement, and care must be taken to avoid feeding testing data into the training data set. 

Another downside for ensembles is that they act as a black box making it difficult to determine 

what the underlying patterns are or how they achieve their success. For instance, it is not clear 

why the voting classifier, SVM, and MLP configuration performed the best for the stacking 

classifier, since the voting one is itself an ensemble method. Nevertheless, it seems they can 

perform well in noisy data and help compensate for individual models. These results are again at 

odds with the study done by Niazi et al. [25] where they found ensemble methods, such as the 
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voting classifier, performed worse than the hierarchical approach, which again highlights how a 

pseudo free-living dataset needs different approaches and models than a clean one. 
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Chapter 4 

Data and Parameter Analysis 

4.1 Window Size 

After researching several different machine learning models, a deeper look at the data’s 

hyperparameters for HAR was undertaken. The first experiment deals with the effect of window 

size on level-3 accuracy (individual activity level) when using random forests, MLPs, and 

SVMs. These were chosen as the classifiers because the ensemble methods, such as voting 

classifier, were significantly slower and only offered marginal improvements in classification 

accuracy. They also feature prominently in the literature, especially for HAR. Studies have 

shown significant improvements in accuracy when altering window size [6], but very little work 

has been done on this topic using pseudo free-living data sets. Figure 4.1 shows how changing 

the window size can affect accuracy. 

 
Figure 4.1: Activity classification accuracy as a function of window size. A peak occurs at a window size of 10 

seconds 
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We see a peak classification accuracy at a 10 second window interval, while the second 

highest time is at the 7 second mark for MLPs and SVMs. The plots form a rough parabola, but it 

should be noted that there were only slight improvements in accuracy found at the 10 second 

mark, with an accuracy of around 64% compared to a 62% accuracy at the 7-second window size 

mark, showing that there were only slight variations at reasonable time spans for the window. 

These results also indicate that a relatively large window size of 10 seconds may help mitigate 

the effects of noise and large inter-subject differences, but when it gets too large the performance 

degrades. Smaller window sizes have the advantage of faster computation time, but apparently 

don’t perform as well on this data set. This is in contrast to the work of Niazi et al., who 

observed significant differences in accuracy when the window size was altered [25], although we 

both reach the same conclusion that a 10 second window is optimal.  

 

4.2 Window Overlap 

Another big factor in feature extraction is whether to allow any window overlap. This has 

the potential to affect the accuracy because it produces more data, which could improve results. 

The experiment was run on the percent of overlap between windows. For instance, 0.2 overlap 

means the previous window shares 20% overlap of the data with the current window. The results 

of this experiment are given in Figure 4.2.  

Random forests, MLPs, and SVMs were also used for this experiment. The window 

overlap percentage was tested because previously we only used non-overlapping windows. This 

technique has the advantage of producing more data, although processing time increases with as 

overlap increases. 
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Figure 4.2: Activity Classification accuracy as a function of percent window overlap 

 

There are only minimal changes in activity classification accuracy, with all falling in a range of 3 

percentage points. A 10% overlap achieved the best results at 63.6% accuracy for the SVM, but 

overall, this indicates that there are no significant effects related to window overlap.  

 

4.3 Learning Curve 

The learning curve of a dataset is helpful in determining whether there is enough training 

data to learn useful information and have decent performance. Ideally, a logarithmic learning 

curve is desirable, which would mean that any more training data is unlikely to improve results 

and that you are not under-fitting the data. 

The learning curve was generated for the HAR data as seen in Figure 4.3. This was 

accomplished by gradually increasing the number of participants that were included in the 

training set from 1 to 19 individuals. The participants in the training set were randomly selected, 

and this process was repeated 19 times for each particular training set size and the average was 

taken. 
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Figure 4.3: Learning curve. Displays the averaged accuracy of classifier as the number of participants used in 

training is changed 

 

Initially the activity classification accuracy starts out at around 30%. The curve then 

follows a roughly logarithmic path until it levels out at around 60% accuracy, which occurs when 

15 participants are in the training set. This indicates that adding more participants/data to the 

training set would not result in an increase in accuracy, as this is approximate to the accuracy 

seen when all 19 are used. Thus, the main limitation on the training accuracy appears to be the 

inter-subject variability present in the data, along with possible noise, instead of insufficient data. 

This also explains why altering window overlap didn’t affect the performance at all. Increasing 

window overlap increases the amount of data present, but the learning curve suggests that 

enough data is present to avoid under-fitting. 

 

4.4 Participant “Pre-training” Models 

It appears that inter-subject variability is contributing to the poor performance in level-3 

accuracy for the learning models. To alleviate this, experiments were ran that included 

increasingly large portions of the particular test participant’s accelerometer data in the training 

set. This simulates the participant ‘training’ the accelerometer by providing some information 
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about what activity they perform. For instance, 19 participants are used to train an SVM model, 

while participant 1 will be used to test the learning model. We initially provide the first 10% of 

participant 1’s data involving all 7 of the different activities to the training set. In theory, 

allowing some of participant 1’s data to be included in training should improve accuracy. The 

goal is to remove some variability between participants while also maintaining a minimal, 

realistic amount of training data provided by the test participant. To this authors knowledge, this 

is the first such experiment performed using this method, and Figure 4.4 displays the results of 

the experiment.  

Initially, just 10% of the participant’s data is included for training to simulate a person 

‘training’ an accelerometer before using it. An SVM model is used for classification, and the 

accuracy is improved at all levels from a base level of 61.7% accuracy. At 10% contribution, the 

accuracy increases to 64.5% accuracy. This jumps to 68.7% accuracy when the individual 

provides roughly 30% of their data in the training set. This jumps higher when 70% is provided, 

but this is unrealistic as the test set becomes too small to provide much information. Thus, we do 

see a noticeable increase in accuracy when the patient’s data is included in the training set, 
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Figure 4.4: Accuracy of classifier as percent of intra-subject data is increased 

 

especially when the data contributed is at 30%, before it eventually levels off. This is promising 

because it provides a way to reduce the inter-subject variability present in a pseudo free-living 

data set using a relatively small amount of data from the user in question, with over a 5% 

increase in base level accuracy seen. 

 

4.5 Adding Data to Training 

Anguita et al. [4] published a dataset to UCI that is publicly available and consists of 

accelerometer measurements obtained from a hip-worn sensor with several different classified 

activities. It may be beneficial to include their dataset with ours because their dataset is typically 

used as a benchmark in HAR studies. The theory is that high quality data may improve training, 

which in turn could lead to a more generalized model. The different possible activities include 

walking, walking upstairs, walking downstairs, sitting, standing, and laying, so samples labeled 

with “laying” are excluded from our dataset because we do not have an activity that matches it. 

 

ii. Level- 3 

0 1 2 3 4 5 6  

154 55 3 0 4 1 0 0 

30 189 8 0 5 6 1 1 

2 5 352 40 98 61 4 2 

0 0 39 51 12 53 17 3 

0 2 149 14 181 32 0 4 

1 1 66 22 37 233 7 5 

0 0 1 11 0 2 131 6 

 
0 – Sit, 1 – Stand, 2 – Walk at comfortable pace, 3 – Brisk walking, 
4 – Up, 5 – Down, 6 – Jogging 

 

LEVEL-3 
Accuracy: 62.1%                                    Total Correctly Classified: 1291 
                                                                              Total instances: 2080 

Figure 4.5: Confusion matrix for combined dataset. The UCI data was only added to the training set. 
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The UCI data was only included in training, and once again an SVM was used as the 

model in the hierarchical classifier, and the results are displayed in Figures 4.5 and 4.6.  

The classifier performed worse when the UCI data is included in the training set for our 

own data, which isn’t entirely unexpected because the learning curve showed that adding more 

data did not significantly improve accuracy after a certain point. The level-3 accuracy was 

reduced over 2% to 61% accuracy. Additionally, there may be other differences present in the 

data that have not been accounted for, which would undoubtedly deteriorate the results. From 

Figure 4.5, it is shown that the UCI reduced accuracy for the “walking up an incline” class, while 

most results for other classes were relatively unchanged when compared to results from our data 

only. This reveals that most of the difference between these two datasets occurs in the “walking 

up” activity. We can conclude that doping the training data with cleaner data from a well-studied 

dataset does not help the model generalize better. 

 

 
Figure 4.6: Accuracy with and without UCI data. Accuracy of the SVM classifier without UCI data 

included (black) and with the UCI data included in training (Red). 
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4.6 UCI Dataset Alone 

 In section 4.5, we studied the effects of adding the UCI dataset to our own, pseudo free-

living dataset and found that results did not improve. However, it would still be informative to 

ascertain how well our current feature extraction techniques and models would perform on the 

UCI data alone, since it would allow us to see if the machine learning models were at fault. To 

this end, only the triaxial accelerometer data from the UCI data was used in this experiment. The 

same feature extraction techniques discussed previously were applied, and three machine 

learning models were tested on the data. These models were the random forest, MLP, and SVM 

learners, and the results are displayed in Figure 4.7 below. The results show that all three models 

performed significantly better on the much cleaner UCI data, with the random forest model 

having 91% accuracy, the MLP at 96.4% accuracy, and the SVM at 94.2% accuracy. These are 

significantly better than any model used on our realistic data and is comparable to the inter-

subject accuracy obtained by Anguita et al. [4] in their original study. 

 
Figure 4.7: Classifier accuracy on two different HAR data sets. Accuracy of the RF, SVM, and MLP 

classifiers on the UGA data (black) and the UCI data (Red) 
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This reveals how approaches used on “clean” datasets can perform substantially different when 

used on a more realistic one collected in close to free-living conditions. 

 

4.7 Simplifying Activities 

 The confusion matrices generated from these studies indicate that walking upstairs and 

walking downstairs are confused by virtually all the machine learning models. This implies that 

different participants are climbing these inclines in significantly different manners, so the models 

are having a difficult time generalizing to new individuals. However, if the participant or 

researcher is uninterested in the specific terrain an individual is walking across (i.e. an incline) or 

if stairs are reasonably expected to be rarely encountered, then it would make sense to label those 

instances as walking. Hypothetically, we would be able to achieve much better results by just 

considering those 2 classes as part of the “walking comfortably” class. To test this, the activities 

of walking upstairs and walking downstairs were folded into the “comfortably walking” activity 

so that no samples were discarded, just relabeled. Figure 4.8 displays the confusion matrix for 

this, using an SVM as the classifier. The accuracy obtained from this is 85.9%, which is 

comparable to many HAR studies in the literature.  

i. Level- 3 

0 1 2 3 4 5 6  

164 46 6 0 0 0 1 0 

33 188 16 0 0 0 2 1 

4 7 1234 52 0 0 1 2 

0 0 96 63 0 0 13 3 

0 0 0 0 0 0 0 4 

0 0 0 0 0 0 0 5 

0 10 1 5 0 0 138 6 

 
0 – Sit, 1 – Stand, 2 – Walk at comfortable pace, 3 – Brisk walking, 
4 – Up, 5 – Down, 6 – Jogging 

 

LEVEL-3 
Accuracy: 85.9%                                   Total Correctly Classified: 1787 
                                                                              Total instances: 2080 

 

Figure 4.8: Confusion matrix with simplified activity classes. Confusion matrix from SVM classifier when Walking 

Up and Down classes are folded into the Walking Comfortably class. Accuracy is 85.9%. 
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i. Level- 3 

0 1 2 3 4 5 6  

165 48 4 0 0 0 1 0 

33 196 8 0 0 0 2 1 

3 9 482 64 0 0 4 2 

0 0 71 86 0 0 15 3 

0 0 0 0 0 0 0 4 

0 0 0 0 0 0 0 5 

0 1 1 5 0 0 138 6 

 
0 – Sit, 1 – Stand, 2 – Walk at comfortable pace, 3 – Brisk walking, 
4 – Up, 5 – Down, 6 – Jogging 

 

LEVEL-3 
Accuracy: 79.9%                                    Total Correctly Classified: 1336 
                                                                              Total instances: 1067 

 

Figure 4.9: Confusion matrix when activity classes are excluded. Displays confusion matrix from SVM classifier 

when Walking Up and Walking Down classes are excluded from the data. Accuracy is 80%. 

 

These results show that most of the inter-subject variability arises from the walking upstairs and 

downstairs activities. This makes sense because there is a wide array of factors that can influence 

how someone climbs stairs. 

 The assumption that walking up and down an incline can be grouped with a comfortable 

walking pace may be overbroad. Therefore, a test was performed where these samples were 

removed from the dataset, so that only 5 activities remained. The results are shown in Figure 4.9. 

The accuracy from this experiment is at 80%, indicating that much of the inter-subject variability 

has been removed when walking up and down an incline is not included.  

 When the Up/Down classes were included as a single group, SVM classification accuracy 

increased to 67% accuracy (not shown). This confirms what is observed in the confusion matrix, 

that classifiers struggle to distinguish between terrain types, and that the walking on incline tends 

to be confused with walking at a comfortable pace. 
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Ch. 5 Conclusion and Future Directions 

 Using realistic data for the HAR problem presents many challenges in achieving high 

performance for machine learning models. The goal of this research is to create a robust model 

and methodology that is practical, has high performance, and can generalize classification to new 

individuals when using this type of dataset. It’s been observed that the hierarchical meta-

classifier fails to offer significant advantages over “flat” learners. This is most likely due to a 

noisy data set where error propagation is a significant downside for hierarchical approaches. 

Occam’s razor suggests that the simpler classifiers, such as SVMs, are better able to generalize 

over noisy data and offer the best performance. 

Feature selection also doesn’t offer significant improvements in performance, despite 

some correlation among the attributes, although RFE offers a slight improvement by retaining 42 

features. This is likely because the most of the feature selection approaches don’t offer 

significant improvements over the machine learning models’ inherent feature selection 

capabilities.  

SVMs and MLPs perform the best out of the base learners on the data with 7 classes of 

activities, achieving an accuracy of around 63%. Ensemble methods perform the best at of all 

learners with both the voting and stacking classifiers achieving a level-3 accuracy of around 

66%. Ensembles of learners may be able to better cope with noise in the data and compensate for 

weaknesses present in the individual models. However, it was found to greatly increase training 

and computation time, and they also acted as black boxes that would likely perform poorly if 

used on other data sets. Due to this, SVMs and MLPs are considered the best performers. 
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Analyzing the data and experimenting with the HAR hyperparameters produced several 

viable approaches for decreasing inter-subject variability and boosting performance. It was found 

that a window size of 10 seconds was optimal for this dataset and slightly increased accuracy. 

Conversely, window overlap and sampling size didn’t produce any significant changes in the 

data. An interesting approach explored in this paper was including limited intra-subject data to 

improve accuracy. This yielded an increase of around 5% accuracy when 30% of the intra-

subject data was provided. This demonstrated a practical, realistic way in which users can 

produce more reliable results for HAR. An attempt was made to further increase accuracy by 

including the UCI dataset in the training samples. The goal was to provide “cleaner” data for the 

models. Ultimately, this experiment showed that this approach will not work, and classification 

accuracy actually decreased when using this method. 

Finally, it was observed that walking up and down an incline posed the greatest difficulty 

for the classifiers. If we are using HAR for caloric intake calculations or for general public 

health, it may be reasonable to assume that amount spent walking up an incline and down an 

incline will be irrelevant or unimportant. If we make this assumption, then we can lump this data 

into the “walking comfortably” class. By doing this, the number of classes decreased to 5 and 

overall classification accuracy increased to 85.9%. This classification accuracy is comparable to 

intra-subject accuracy found in the literature. When we simply excluded samples labeled as 

“walking up an incline” or “down an incline”, then the classification accuracy increased to 80%. 

This indicates that much of the inter-subject noise is from these 2 classes.  

Future directions include increasing the number of participants present. This could help 

improve robustness in the algorithms. Furthermore, exploring more deep learning methods can 

be useful. Convolutional neural networks and LSTMs are promising approaches to the HAR 
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problem. They benefit from having automatic feature extraction, which can help achieve higher 

performance than standard methods.  
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